Sample records for quantum channels non-commutative

  1. Non-commutative methods in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Millard, Andrew Clive

    1997-09-01

    Non-commutativity appears in physics almost hand in hand with quantum mechanics. Non-commuting operators corresponding to observables lead to Heisenberg's Uncertainty Principle, which is often used as a prime example of how quantum mechanics transcends 'common sense', while the operators that generate a symmetry group are usually given in terms of their commutation relations. This thesis discusses a number of new developments which go beyond the usual stopping point of non-commuting quantities as matrices with complex elements. Chapter 2 shows how certain generalisations of quantum mechanics, from using complex numbers to using other (often non-commutative) algebras, can still be written as linear systems with symplectic phase flows. Chapter 3 deals with Adler's trace dynamics, a non-linear graded generalisation of Hamiltonian dynamics with supersymmetry applications, where the phase space coordinates are (generally non-commuting) operators, and reports on aspects of a demonstration that the statistical averages of the dynamical variables obey the rules of complex quantum field theory. The last two chapters discuss specific aspects of quaternionic quantum mechanics. Chapter 4 reports a generalised projective representation theory and presents a structure theorem that categorises quaternionic projective representations. Chapter 5 deals with a generalisation of the coherent states formalism and examines how it may be applied to two commonly used groups.

  2. Non-commutative geometry of the h-deformed quantum plane

    NASA Astrophysics Data System (ADS)

    Cho, S.; Madore, J.; Park, K. S.

    1998-03-01

    The h-deformed quantum plane is a counterpart of the q-deformed one in the set of quantum planes which are covariant under those quantum deformations of GL(2) which admit a central determinant. We have investigated the non-commutative geometry of the h-deformed quantum plane. There is a two-parameter family of torsion-free linear connections, a one-parameter sub-family of which are compatible with a skew-symmetric non-degenerate bilinear map. The skew-symmetric map resembles a symplectic 2-form and induces a metric. It is also shown that the extended h-deformed quantum plane is a non-commutative version of the Poincaré half-plane, a surface of constant negative Gaussian

  3. Non-commuting two-local Hamiltonians for quantum error suppression

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.

    2017-04-01

    Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon-Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon-Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.

  4. Device-independent tests of quantum channels

    NASA Astrophysics Data System (ADS)

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  5. Device-independent tests of quantum channels.

    PubMed

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  6. Radar channel balancing with commutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  7. Quantum Gibbs Samplers: The Commuting Case

    NASA Astrophysics Data System (ADS)

    Kastoryano, Michael J.; Brandão, Fernando G. S. L.

    2016-06-01

    We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative {mathbb{L}_p} spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.

  8. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective

    PubMed Central

    Bylicka, B.; Chruściński, D.; Maniscalco, S.

    2014-01-01

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763

  9. Problem of quantifying quantum correlations with non-commutative discord

    NASA Astrophysics Data System (ADS)

    Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.

    2017-09-01

    In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.

  10. Groenewold-Moyal product, α*-cohomology, and classification of translation-invariant non-commutative structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varshovi, Amir Abbass

    2013-07-15

    The theory of α*-cohomology is studied thoroughly and it is shown that in each cohomology class there exists a unique 2-cocycle, the harmonic form, which generates a particular Groenewold-Moyal star product. This leads to an algebraic classification of translation-invariant non-commutative structures and shows that any general translation-invariant non-commutative quantum field theory is physically equivalent to a Groenewold-Moyal non-commutative quantum field theory.

  11. Quantum privacy and Schur product channels

    NASA Astrophysics Data System (ADS)

    Levick, Jeremy; Kribs, David W.; Pereira, Rajesh

    2017-12-01

    We investigate the quantum privacy properties of an important class of quantum channels, by making use of a connection with Schur product matrix operations and associated correlation matrix structures. For channels implemented by mutually commuting unitaries, which cannot privatise qubits encoded directly into subspaces, we nevertheless identify private algebras and subsystems that can be privatised by the channels. We also obtain further results by combining our analysis with tools from the theory of quasi-orthogonal operator algebras and graph theory.

  12. Nonthermal Quantum Channels as a Thermodynamical Resource.

    PubMed

    Navascués, Miguel; García-Pintos, Luis Pedro

    2015-07-03

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.

  13. Nonthermal Quantum Channels as a Thermodynamical Resource

    NASA Astrophysics Data System (ADS)

    Navascués, Miguel; García-Pintos, Luis Pedro

    2015-07-01

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.

  14. Information scrambling at an impurity quantum critical point

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Werner, Miklós Antal; Moca, Cǎtǎlin Paşcu

    2017-10-01

    The two-channel Kondo impurity model realizes a local non-Fermi-liquid state with finite residual entropy. The competition between the two channels drives the system to an impurity quantum critical point. We show that the out-of-time-ordered (OTO) commutator for the impurity spin reveals markedly distinct behavior depending on the low-energy impurity state. For the one-channel Kondo model with Fermi-liquid ground state, the OTO commutator vanishes for late times, indicating the absence of the butterfly effect. For the two channel case, the impurity OTO commutator is completely temperature independent and saturates quickly to its upper bound 1/4, and the butterfly effect is maximally enhanced. These compare favorably to numerics on spin chain representation of the Kondo model. Our results imply that a large late time value of the OTO commutator does not necessarily diagnose quantum chaos.

  15. Non-Commutative Rational Yang-Baxter Maps

    NASA Astrophysics Data System (ADS)

    Doliwa, Adam

    2014-03-01

    Starting from multidimensional consistency of non-commutative lattice-modified Gel'fand-Dikii systems, we present the corresponding solutions of the functional (set-theoretic) Yang-Baxter equation, which are non-commutative versions of the maps arising from geometric crystals. Our approach works under additional condition of centrality of certain products of non-commuting variables. Then we apply such a restriction on the level of the Gel'fand-Dikii systems what allows to obtain non-autonomous (but with central non-autonomous factors) versions of the equations. In particular, we recover known non-commutative version of Hirota's lattice sine-Gordon equation, and we present an integrable non-commutative and non-autonomous lattice modified Boussinesq equation.

  16. Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Raasakka, Matti

    2014-06-01

    We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano-Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical limit for three different non-commutative structures corresponding to the symmetric, Duflo and Freidel-Livine-Majid quantization maps. We find that in order to unambiguously recover discrete geometric constraints for non-commutative metric boundary data through the stationary phase method, the deformation structure of the phase space must be accounted for in the variational calculus. When this is understood, our results demonstrate that the non-commutative metric representation facilitates a convenient semi-classical analysis of the Ponzano-Regge model, which yields as the dominant contribution to the amplitude the cosine of the Regge action in agreement with previous studies. We also consider the asymptotics of the SU(2) 6j-symbol using the non-commutative phase space path integral for the Ponzano-Regge model, and explain the connection of our results to the previous asymptotic results in terms of coherent states.

  17. Quantum walled Brauer algebra: commuting families, Baxterization, and representations

    NASA Astrophysics Data System (ADS)

    Semikhatov, A. M.; Tipunin, I. Yu

    2017-02-01

    For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.

  18. Quantum teleportation via quantum channels with non-maximal Schmidt rank

    NASA Astrophysics Data System (ADS)

    Solís-Prosser, M. A.; Jiménez, O.; Neves, L.; Delgado, A.

    2013-03-01

    We study the problem of teleporting unknown pure states of a single qudit via a pure quantum channel with non-maximal Schmidt rank. We relate this process to the discrimination of linearly dependent symmetric states with the help of the maximum-confidence discrimination strategy. We show that with a certain probability, it is possible to teleport with a fidelity larger than the fidelity optimal deterministic teleportation.

  19. Quantum incompatibility of channels with general outcome operator algebras

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  20. Continuous-variable quantum key distribution in non-Markovian channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasile, Ruggero; Olivares, Stefano; CNISM, Unita di Ricerca di Milano Universita, I-20133 Milano

    2011-04-15

    We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol which is secure against Gaussian individual attacks based on optimal 1{yields}2 asymmetric cloning machines for arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties, and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a clear indication of the potential impact of non-Markovianmore » effects in QKD.« less

  1. Non-Abelian strategies in quantum penny flip game

    NASA Astrophysics Data System (ADS)

    Mishima, Hiroaki

    2018-01-01

    In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.

  2. Non-Commutative Martingale Inequalities

    NASA Astrophysics Data System (ADS)

    Pisier, Gilles; Xu, Quanhua

    We prove the analogue of the classical Burkholder-Gundy inequalites for non-commutative martingales. As applications we give a characterization for an Ito-Clifford integral to be an Lp-martingale via its integrand, and then extend the Ito-Clifford integral theory in L2, developed by Barnett, Streater and Wilde, to Lp for all 1non-commutative analogue of the classical Fefferman duality between $H1 and BMO.

  3. Characterizing quantum channels with non-separable states of classical light

    NASA Astrophysics Data System (ADS)

    Ndagano, Bienvenu; Perez-Garcia, Benjamin; Roux, Filippus S.; McLaren, Melanie; Rosales-Guzman, Carmelo; Zhang, Yingwen; Mouane, Othmane; Hernandez-Aranda, Raul I.; Konrad, Thomas; Forbes, Andrew

    2017-04-01

    High-dimensional entanglement with spatial modes of light promises increased security and information capacity over quantum channels. Unfortunately, entanglement decays due to perturbations, corrupting quantum links that cannot be repaired without performing quantum tomography on the channel. Paradoxically, the channel tomography itself is not possible without a working link. Here we overcome this problem with a robust approach to characterize quantum channels by means of classical light. Using free-space communication in a turbulent atmosphere as an example, we show that the state evolution of classically entangled degrees of freedom is equivalent to that of quantum entangled photons, thus providing new physical insights into the notion of classical entanglement. The analysis of quantum channels by means of classical light in real time unravels stochastic dynamics in terms of pure state trajectories, and thus enables precise quantum error correction in short- and long-haul optical communication, in both free space and fibre.

  4. Efficient universal quantum channel simulation in IBM's cloud quantum computer

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu

    2018-07-01

    The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

  5. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  6. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-18

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  7. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  8. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  9. All quantum observables in a hidden-variable model must commute simultaneously

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malley, James D.

    Under a standard set of assumptions for a hidden-variable model for quantum events we show that all observables must commute simultaneously. This seems to be an ultimate statement about the inapplicability of the usual hidden-variable model for quantum events. And, despite Bell's complaint that a key condition of von Neumann's was quite unrealistic, we show that these conditions, under which von Neumann produced the first no-go proof, are entirely equivalent to those introduced by Bell and Kochen and Specker. As these conditions are also equivalent to those under which the Bell-Clauster-Horne inequalities are derived, we see that the experimental violationsmore » of the inequalities demonstrate only that quantum observables do not commute.« less

  10. The non-commutative topology of two-dimensional dirty superconductors

    NASA Astrophysics Data System (ADS)

    De Nittis, Giuseppe; Schulz-Baldes, Hermann

    2018-01-01

    Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.

  11. Markovian and non-Markovian light-emission channels in strained quantum wires.

    PubMed

    Lopez-Richard, V; González, J C; Matinaga, F M; Trallero-Giner, C; Ribeiro, E; Sousa Dias, M Rebello; Villegas-Lelovsky, L; Marques, G E

    2009-09-01

    We have achieved conditions to obtain optical memory effects in semiconductor nanostructures. The system is based on strained InP quantum wires where the tuning of the heavy-light valence band splitting has allowed the existence of two independent optical channels with correlated and uncorrelated excitation and light-emission processes. The presence of an optical channel that preserves the excitation memory is unambiguously corroborated by photoluminescence measurements of free-standing quantum wires under different configurations of the incoming and outgoing light polarizations in various samples. High-resolution transmission electron microscopy and electron diffraction indicate the presence of strain effects in the optical response. By using this effect and under certain growth conditions, we have shown that the optical recombination is mediated by relaxation processes with different natures: one a Markov and another with a non-Markovian signature. Resonance intersubband light-heavy hole transitions assisted by optical phonons provide the desired mechanism for the correlated non-Markovian carrier relaxation process. A multiband calculation for strained InP quantum wires was developed to account for the description of the character of the valence band states and gives quantitative support for light hole-heavy hole transitions assisted by optical phonons.

  12. Two-photon processes based on quantum commutators

    NASA Astrophysics Data System (ADS)

    Fratini, F.; Safari, L.; Amaro, P.; Santos, J. P.

    2018-04-01

    We developed a method to calculate two-photon processes in quantum mechanics that replaces the infinite summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators that involve position, momentum, and Hamiltonian quantum operators. We analyzed several single- and many-particle cases for which a closed-form solution to the perturbation expansion exists, as well as more complicated cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson scattering, regarded as classical scattering, and quantum contributions. Such a distinction lets us derive general results concerning light scattering. Finally, possible extensions to the developed formalism are discussed.

  13. Coherifying quantum channels

    NASA Astrophysics Data System (ADS)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  14. Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels

    NASA Astrophysics Data System (ADS)

    Ahlswede, Rudolf; Bjelaković, Igor; Boche, Holger; Nötzel, Janis

    2013-01-01

    We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.

  15. Euler polynomials and identities for non-commutative operators

    NASA Astrophysics Data System (ADS)

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  16. The standard model on non-commutative space-time

    NASA Astrophysics Data System (ADS)

    Calmet, X.; Jurčo, B.; Schupp, P.; Wess, J.; Wohlgenannt, M.

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ^{μ ν}. No new particles are introduced; the structure group is SU(3)× SU(2)× U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ^{μν} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered.

  17. Quantum error suppression with commuting Hamiltonians: two local is too local.

    PubMed

    Marvian, Iman; Lidar, Daniel A

    2014-12-31

    We consider error suppression schemes in which quantum information is encoded into the ground subspace of a Hamiltonian comprising a sum of commuting terms. Since such Hamiltonians are gapped, they are considered natural candidates for protection of quantum information and topological or adiabatic quantum computation. However, we prove that they cannot be used to this end in the two-local case. By making the favorable assumption that the gap is infinite, we show that single-site perturbations can generate a degeneracy splitting in the ground subspace of this type of Hamiltonian which is of the same order as the magnitude of the perturbation, and is independent of the number of interacting sites and their Hilbert space dimensions, just as in the absence of the protecting Hamiltonian. This splitting results in decoherence of the ground subspace, and we demonstrate that for natural noise models the coherence time is proportional to the inverse of the degeneracy splitting. Our proof involves a new version of the no-hiding theorem which shows that quantum information cannot be approximately hidden in the correlations between two quantum systems. The main reason that two-local commuting Hamiltonians cannot be used for quantum error suppression is that their ground subspaces have only short-range (two-body) entanglement.

  18. Controlling the loss of quantum correlations via quantum memory channels

    NASA Astrophysics Data System (ADS)

    Duran, Durgun; Verçin, Abdullah

    2018-07-01

    A generic behavior of quantum correlations during any quantum process taking place in a noisy environment is that they are non-increasing. We have shown that mitigation of these decreases providing relative enhancements in correlations is possible by means of quantum memory channels which model correlated environmental quantum noises. For two-qubit systems subject to mixtures of two-use actions of different decoherence channels we point out that improvement in correlations can be achieved in such way that the input-output fidelity is also as high as possible. These make it possible to create the optimal conditions in realizing any quantum communication task in a noisy environment.

  19. Conclusive identification of quantum channels via monogamy of quantum correlations

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar; Prabhu, R.; Sen(De), Aditi; Sen, Ujjwal

    2016-10-01

    We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger-Horne-Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties.

  20. Second-Order Asymptotics for the Classical Capacity of Image-Additive Quantum Channels

    NASA Astrophysics Data System (ADS)

    Tomamichel, Marco; Tan, Vincent Y. F.

    2015-08-01

    We study non-asymptotic fundamental limits for transmitting classical information over memoryless quantum channels, i.e. we investigate the amount of classical information that can be transmitted when a quantum channel is used a finite number of times and a fixed, non-vanishing average error is permissible. In this work we consider the classical capacity of quantum channels that are image-additive, including all classical to quantum channels, as well as the product state capacity of arbitrary quantum channels. In both cases we show that the non-asymptotic fundamental limit admits a second-order approximation that illustrates the speed at which the rate of optimal codes converges to the Holevo capacity as the blocklength tends to infinity. The behavior is governed by a new channel parameter, called channel dispersion, for which we provide a geometrical interpretation.

  1. Stochastic theory of non-Markovian open quantum system

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu

    In this thesis, a stochastic approach to solving non-Markovian open quantum system called "non-Markovian quantum state diffusion" (NMQSD) approach is discussed in details. The NMQSD approach can serve as an analytical and numerical tool to study the dynamics of the open quantum systems. We explore three main topics of the NMQSD approach. First, we extend the NMQSD approach to many-body open systems such as two-qubit system and coupled N-cavity system. Based on the exact NMQSD equations and the corresponding master equations, we investigate several interesting non-Markovian features due to the memory effect of the environment such as the entanglement generation in two-qubit system and the coherence and entanglement transfer between cavities. Second, we extend the original NMQSD approach to the case that system is coupled to a fermionic bath or a spin bath. By introducing the anti-commutative Grassmann noise and the fermionic coherent state, we derive a fermionic NMQSD equation and the corresponding master equation. The fermionic NMQSD is illustrated by several examples. In a single qubit dissipative example, we have explicitly demonstrated that the NMQSD approach and the ordinary quantum mechanics give rise to the exactly same results. We also show the difference between fermionic bath and bosonic bath. Third, we combine the bosonic and fermionic NMQSD approach to develop a unified NMQSD approach to study the case that an open system is coupled to a bosonic bath and a fermionic bath simultaneously. For all practical purposes, we develop a set of useful computer programs (NMQSD Toolbox) to implement the NMQSD equation in realistic computations. In particular, we develop an algorithm to calculate the exact O operator involved in the NMQSD equation. The NMQSD toolbox is designed to be user friendly, so it will be especially valuable for a non-expert who has interest to employ the NMQSD equation to solve a practical problem. Apart from the central topics on the NMQSD

  2. Quantum channels and memory effects

    NASA Astrophysics Data System (ADS)

    Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano

    2014-10-01

    Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.

  3. A COMPARISON OF THE COMMUTING AND NON-COMMUTING STUDENT.

    ERIC Educational Resources Information Center

    DRESSEL, PAUL L.; NISULA, EINAR S.

    AN EXPLORATORY SURVEY INVESTIGATED THE COLLEGE EXPERIENCES AMONG COMMUTING STUDENTS, ATTENDING THREE TYPES OF INSTITUTIONS TO COMPARE COLLEGE EXPERIENCES BETWEEN COMMUTING AND RESIDENT STUDENTS. STUDENTS SELECTED FOR STUDY WERE (1) 100 COMMUTERS FROM A LARGE, PRIMARILY RESIDENT UNIVERSITY, (2) 100 COMMUTERS FROM A COMMUNITY COLLEGE WITH NO…

  4. Belief propagation decoding of quantum channels by passing quantum messages

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.

    2017-07-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.

  5. A Dream of Yukawa — Non-Local Fields out of Non-Commutative Spacetime —

    NASA Astrophysics Data System (ADS)

    Naka, Shigefumi; Toyoda, Haruki; Takanashi, Takahiro; Umezawa, Eizo

    The coordinates of κ-Minkowski spacetime form Lie algebraic elements, in which time and space coordinates do not commute in spite of that space coordinates commute each other. The non-commutativity is realized by a Planck-length-scale constant κ - 1( ne 0), which is a universal constant other than the light velocity under the κ-Poincare transformation. Such a non-commutative structure can be realized by SO(1,4) generators in dS4 spacetime. In this work, we try to construct a κ-Minkowski like spacetime with commutative 4-dimensional spacetime based on Adsn+1 spacetime. Another aim of this work is to study invariant wave equations in this spacetime from the viewpoint of non-local field theory by H. Yukawa, who expected to realize elementary particle theories without divergence according to this viewpoint.

  6. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    PubMed

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-05

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  7. Comment on 'All quantum observables in a hidden-variable model must commute simultaneously'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Koji

    Malley discussed [Phys. Rev. A 69, 022118 (2004)] that all quantum observables in a hidden-variable model for quantum events must commute simultaneously. In this comment, we discuss that Malley's theorem is indeed valid for the hidden-variable theoretical assumptions, which were introduced by Kochen and Specker. However, we give an example that the local hidden-variable (LHV) model for quantum events preserves noncommutativity of quantum observables. It turns out that Malley's theorem is not related to the LHV model for quantum events, in general.

  8. Making almost commuting matrices commute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Matthew B

    Suppose two Hermitian matrices A, B almost commute ({parallel}[A,B]{parallel} {<=} {delta}). Are they close to a commuting pair of Hermitian matrices, A', B', with {parallel}A-A'{parallel},{parallel}B-B'{parallel} {<=} {epsilon}? A theorem of H. Lin shows that this is uniformly true, in that for every {epsilon} > 0 there exists a {delta} > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specifiy how {delta} depends on {epsilon}. We give uniform bounds relating {delta} and {epsilon}. The proof is constructive, giving an explicit algorithm to construct A'more » and B'. We provide tighter bounds in the case of block tridiagonal and tridiagnonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.« less

  9. Quantum Information as a Non-Kolmogorovian Generalization of Shannon's Theory

    NASA Astrophysics Data System (ADS)

    Holik, Federico; Bosyk, Gustavo; Bellomo, Guido

    2015-10-01

    In this article we discuss the formal structure of a generalized information theory based on the extension of the probability calculus of Kolmogorov to a (possibly) non-commutative setting. By studying this framework, we argue that quantum information can be considered as a particular case of a huge family of non-commutative extensions of its classical counterpart. In any conceivable information theory, the possibility of dealing with different kinds of information measures plays a key role. Here, we generalize a notion of state spectrum, allowing us to introduce a majorization relation and a new family of generalized entropic measures.

  10. The Quantum Steganography Protocol via Quantum Noisy Channels

    NASA Astrophysics Data System (ADS)

    Wei, Zhan-Hong; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2015-08-01

    As a promising branch of quantum information hiding, Quantum steganography aims to transmit secret messages covertly in public quantum channels. But due to environment noise and decoherence, quantum states easily decay and change. Therefore, it is very meaningful to make a quantum information hiding protocol apply to quantum noisy channels. In this paper, we make the further research on a quantum steganography protocol for quantum noisy channels. The paper proved that the protocol can apply to transmit secret message covertly in quantum noisy channels, and explicity showed quantum steganography protocol. In the protocol, without publishing the cover data, legal receivers can extract the secret message with a certain probability, which make the protocol have a good secrecy. Moreover, our protocol owns the independent security, and can be used in general quantum communications. The communication, which happen in our protocol, do not need entangled states, so our protocol can be used without the limitation of entanglement resource. More importantly, the protocol apply to quantum noisy channels, and can be used widely in the future quantum communication.

  11. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  12. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  13. Intrinsic non-commutativity of closed string theory

    DOE PAGES

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2017-09-14

    We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less

  14. Intrinsic non-commutativity of closed string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less

  15. Non-adiabatic holonomic quantum computation in linear system-bath coupling

    PubMed Central

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-01-01

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of . The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities. PMID:26846444

  16. Non-adiabatic holonomic quantum computation in linear system-bath coupling.

    PubMed

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-02-05

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of (N - 2)/N. The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities.

  17. Quantum probability and quantum decision-making.

    PubMed

    Yukalov, V I; Sornette, D

    2016-01-13

    A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. © 2015 The Author(s).

  18. A channel-based framework for steering, non-locality and beyond

    NASA Astrophysics Data System (ADS)

    Hoban, Matty J.; Belén Sainz, Ana

    2018-05-01

    Non-locality and steering are both non-classical phenomena witnessed in nature as a result of quantum entanglement. It is now well-established that one can study non-locality independently of the formalism of quantum mechanics, in the so-called device-independent framework. With regards to steering, although one cannot study it completely independently of the quantum formalism, ‘post-quantum steering’ has been described, which is steering that cannot be reproduced by measurements on entangled states but does not lead to superluminal signalling. In this work we present a framework based on the study of quantum channels in which one can study steering (and non-locality) in quantum theory and beyond. In this framework, we show that kinds of steering, whether quantum or post-quantum, are directly related to particular families of quantum channels that have been previously introduced by Beckman et al (2001 Phys. Rev. A 64 052309). Utilizing this connection we also demonstrate new analytical examples of post-quantum steering, give a quantum channel interpretation of almost quantum non-locality and steering, easily recover and generalize the celebrated Gisin–Hughston–Jozsa–Wootters theorem, and initiate the study of post-quantum Buscemi non-locality and non-classical teleportation. In this way, we see post-quantum non-locality and steering as just two aspects of a more general phenomenon.

  19. Fast non-Abelian geometric gates via transitionless quantum driving.

    PubMed

    Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-12-21

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.

  20. Fast non-Abelian geometric gates via transitionless quantum driving

    PubMed Central

    Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-01-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580

  1. Conditional cooling limit for a quantum channel going through an incoherent environment.

    PubMed

    Straka, Ivo; Miková, Martina; Mičuda, Michal; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim

    2015-11-16

    We propose and experimentally verify a cooling limit for a quantum channel going through an incoherent environment. The environment consists of a large number of independent non-interacting and non-interfering elementary quantum systems--qubits. The qubits travelling through the channel can only be randomly replaced by environmental qubits. We investigate a conditional cooling limit that exploits an additional probing output. The limit specifies when the single-qubit channel is quantum, i.e. it preserves entanglement. It is a fundamental condition for entanglement-based quantum technology.

  2. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  3. Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication

    NASA Astrophysics Data System (ADS)

    Cooney, Tom; Mosonyi, Milán; Wilde, Mark M.

    2016-06-01

    This paper studies the difficulty of discriminating between an arbitrary quantum channel and a "replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein's lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel {mathcal{N}} as the optimal Type II error exponent when discriminating between a large number of independent instances of {mathcal{N}} and an arbitrary "worst-case" replacer channel chosen from the set of all replacer channels.

  4. Topics in quantum cryptography, quantum error correction, and channel simulation

    NASA Astrophysics Data System (ADS)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel

  5. Reliable quantum communication over a quantum relay channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  6. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  7. Conditional cooling limit for a quantum channel going through an incoherent environment

    PubMed Central

    Straka, Ivo; Miková, Martina; Mičuda, Michal; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim

    2015-01-01

    We propose and experimentally verify a cooling limit for a quantum channel going through an incoherent environment. The environment consists of a large number of independent non-interacting and non-interfering elementary quantum systems – qubits. The qubits travelling through the channel can only be randomly replaced by environmental qubits. We investigate a conditional cooling limit that exploits an additional probing output. The limit specifies when the single-qubit channel is quantum, i.e. it preserves entanglement. It is a fundamental condition for entanglement-based quantum technology. PMID:26568362

  8. Channel Simulation in Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano

    2018-04-01

    In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  9. Comparing exact energy solutions of quartic eigenvalue polynomials in commutative, non-commutative and non-commutative phase frameworks for boson π‑

    NASA Astrophysics Data System (ADS)

    Derakhshani, Z.; Ghominejad, M.

    2018-04-01

    In this paper, the behavior of a Duffin-Kemmer-Petiau (DKP) boson particle in the presence of a harmonic energy-dependent interaction, under the influence of an external magnetic field is precisely studied. In order to exactly solve all equations in commutative (C), non-commutative (NC) and non-commutative phase (NCP) frameworks, the Nikiforov-Uvarov (NU) powerful exact approach is employed. All these attempts end up with solving their quartic equations, trying to find and discuss on their discriminant function Δ, in a unique way which has never been discussed for any boson in any other research, especially for the boson π‑ on which, we have been exclusively concerned. We finally succeeded to obtain the exact energy spectrums and wave functions under the effects of NC and NCP parameters and energy-dependent interaction on energy eigenvalues. In this step, we analyze the behaviors of their quartic energy eigenvalue polynomials in three sections and accurately compare all achieved physical-admissible roots one by one. This comparison surprisingly shows that the NC and NCP effects on the other hand, and the assumed harmonic energy-dependent interaction on the other hand, have almost the same order of perturbation effects for limited amounts of the magnetic field in a system of DKP bosons. Furthermore, through some calculations within this paper, we came up with a very crucial point about the NU method which was mistakenly being used in many papers by several researchers and improved it to be used safely.

  10. On variational definition of quantum entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belavkin, Roman V.

    Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. Inmore » non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.« less

  11. Magnetic-free non-reciprocity based on staggered commutation

    PubMed Central

    Reiskarimian, Negar; Krishnaswamy, Harish

    2016-01-01

    Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal–oxide–semiconductor integrated circuit for the first time. PMID:27079524

  12. Anesthetics act in quantum channels in brain microtubules to prevent consciousness.

    PubMed

    Craddock, Travis J A; Hameroff, Stuart R; Ayoub, Ahmed T; Klobukowski, Mariusz; Tuszynski, Jack A

    2015-01-01

    The mechanism by which anesthetic gases selectively prevent consciousness and memory (sparing non-conscious brain functions) remains unknown. At the turn of the 20(th) century Meyer and Overton showed that potency of structurally dissimilar anesthetic gas molecules correlated precisely over many orders of magnitude with one factor, solubility in a non-polar, 'hydrophobic' medium akin to olive oil. In the 1980s Franks and Lieb showed anesthetics acted in such a medium within proteins, suggesting post-synaptic membrane receptors. But anesthetic studies on such proteins yielded only confusing results. In recent years Eckenhoff and colleagues have found anesthetic action in microtubules, cytoskeletal polymers of the protein tubulin inside brain neurons. 'Quantum mobility' in microtubules has been proposed to mediate consciousness. Through molecular modeling we have previously shown: (1) olive oil-like non-polar, hydrophobic quantum mobility pathways ('quantum channels') of tryptophan rings in tubulin, (2) binding of anesthetic gas molecules in these channels, and (3) capabilities for π-electron resonant energy transfer, or exciton hopping, among tryptophan aromatic rings in quantum channels, similar to photosynthesis protein quantum coherence. Here, we show anesthetic molecules can impair π-resonance energy transfer and exciton hopping in tubulin quantum channels, and thus account for selective action of anesthetics on consciousness and memory.

  13. Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels

    NASA Astrophysics Data System (ADS)

    Sabapathy, Krishna Kumar; Winter, Andreas

    2017-06-01

    We present a framework for studying bosonic non-Gaussian channels of continuous-variable systems. Our emphasis is on a class of channels that we call photon-added Gaussian channels, which are experimentally viable with current quantum-optical technologies. A strong motivation for considering these channels is the fact that it is compulsory to go beyond the Gaussian domain for numerous tasks in continuous-variable quantum information processing such as entanglement distillation from Gaussian states and universal quantum computation. The single-mode photon-added channels we consider are obtained by using two-mode beam splitters and squeezing operators with photon addition applied to the ancilla ports giving rise to families of non-Gaussian channels. For each such channel, we derive its operator-sum representation, indispensable in the present context. We observe that these channels are Fock preserving (coherence nongenerating). We then report two examples of activation using our scheme of photon addition, that of quantum-optical nonclassicality at outputs of channels that would otherwise output only classical states and of both the quantum and private communication capacities, hinting at far-reaching applications for quantum-optical communication. Further, we see that noisy Gaussian channels can be expressed as a convex mixture of these non-Gaussian channels. We also present other physical and information-theoretic properties of these channels.

  14. Quantum-correlation breaking channels, quantum conditional probability and Perron-Frobenius theory

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz

    2013-03-01

    Using the quantum analog of conditional probability and classical Bayes theorem we discuss some aspects of particular entanglement breaking channels: quantum-classical and classical-classical channels. Applying the quantum analog of Perron-Frobenius theorem we generalize the recent result of Korbicz et al. (2012) [8] on full and spectrum broadcasting from quantum-classical channels to arbitrary quantum channels.

  15. Gaussian error correction of quantum states in a correlated noisy channel.

    PubMed

    Lassen, Mikael; Berni, Adriano; Madsen, Lars S; Filip, Radim; Andersen, Ulrik L

    2013-11-01

    Noise is the main obstacle for the realization of fault-tolerant quantum information processing and secure communication over long distances. In this work, we propose a communication protocol relying on simple linear optics that optimally protects quantum states from non-Markovian or correlated noise. We implement the protocol experimentally and demonstrate the near-ideal protection of coherent and entangled states in an extremely noisy channel. Since all real-life channels are exhibiting pronounced non-Markovian behavior, the proposed protocol will have immediate implications in improving the performance of various quantum information protocols.

  16. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.

    PubMed

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-28

    The prototypical multi-channel reaction H + H 2 S → H 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  17. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  18. Photonic channels for quantum communication

    PubMed

    van Enk SJ; Cirac; Zoller

    1998-01-09

    A general photonic channel for quantum communication is defined. By means of local quantum computing with a few auxiliary atoms, this channel can be reduced to one with effectively less noise. A scheme based on quantum interference is proposed that iteratively improves the fidelity of distant entangled particles.

  19. Quantum biological channel modeling and capacity calculation.

    PubMed

    Djordjevic, Ivan B

    2012-12-10

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.

  20. Bootstrapping non-commutative gauge theories from L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  1. A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2013-06-01

    We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.

  2. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  3. Simultaneous continuous measurement of non-commuting observables and correlation in qubit trajectories

    NASA Astrophysics Data System (ADS)

    Chantasri, Areeya; Jordan, Andrew

    We consider the continuous quantum measurement of two or more non-commuting observables of a single qubit. Examples are presented for the measurement of two observables which can be mapped to two measurement axes on the Bloch sphere; a special case being the measurement along the X and Z bases. The qubit dynamics is described by the stochastic master equations which include the effect of decoherence and measurement inefficiencies. We investigate the qubit trajectories, their most likely paths, and their correlation functions using the stochastic path integral formalism. The correlation functions in qubit trajectories can be derived exactly for a special case and perturbatively for general cases. The theoretical predictions are compared with numerical simulations, as well as with trajectory data from the transmon superconducting qubit experiments.

  4. Spacetime Non-Commutativity Corrections to the Cardy-Verlinde Formula of Achúcarro-Ortiz Black Hole

    NASA Astrophysics Data System (ADS)

    Setare, M. R.

    2007-02-01

    In this letter we compute the corrections to the Cardy-Verlinde formula of Achúcarro-Ortiz black hole, which is the most general two-dimensional black hole derived from the three-dimensional rotating Banados-Teitelboim-Zanelli black hole. These corrections stem from the space non-commutativity. We show that in non-commutative case, non-rotating Achúcarro-Ortiz black hole in contrast with commutative case has two horizons.

  5. Private algebras in quantum information and infinite-dimensional complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crann, Jason, E-mail: jason-crann@carleton.ca; Laboratoire de Mathématiques Paul Painlevé–UMR CNRS 8524, UFR de Mathématiques, Université Lille 1–Sciences et Technologies, 59655 Villeneuve d’Ascq Cédex; Kribs, David W., E-mail: dkribs@uoguelph.ca

    We introduce a generalized framework for private quantum codes using von Neumann algebras and the structure of commutants. This leads naturally to a more general notion of complementary channel, which we use to establish a generalized complementarity theorem between private and correctable subalgebras that applies to both the finite and infinite-dimensional settings. Linear bosonic channels are considered and specific examples of Gaussian quantum channels are given to illustrate the new framework together with the complementarity theorem.

  6. A probabilistic quantum communication protocol using mixed entangled channel

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Dhara, Arpan

    2016-05-01

    Qubits are realized as polarization state of photons or as superpositions of the spin states of electrons. In this paper we propose a scheme to probabilistically teleport an unknown arbitrary two-qubit state using a non-maximally entangled GHZ- like state and a non-maximally Bell state simultaneously as quantum channels. We also discuss the success probability of our scheme. We perform POVM in the protocol which is operationally advantageous. In our scheme we show that the non-maximal quantum resources perform better than maximal resources.

  7. Tuning energy relaxation along quantum Hall channels.

    PubMed

    Altimiras, C; le Sueur, H; Gennser, U; Cavanna, A; Mailly, D; Pierre, F

    2010-11-26

    The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at a filling factor of ν(L)=2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating Ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at ν(L)=2, informing us, in particular, that those within the outer edge channel are negligible.

  8. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  9. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  10. On the constrained classical capacity of infinite-dimensional covariant quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holevo, A. S.

    The additivity of the minimal output entropy and that of the χ-capacity are known to be equivalent for finite-dimensional irreducibly covariant quantum channels. In this paper, we formulate a list of conditions allowing to establish similar equivalence for infinite-dimensional covariant channels with constrained input. This is then applied to bosonic Gaussian channels with quadratic input constraint to extend the classical capacity results of the recent paper [Giovannetti et al., Commun. Math. Phys. 334(3), 1553-1571 (2015)] to the case where the complex structures associated with the channel and with the constraint operator need not commute. In particular, this implies a multimodemore » generalization of the “threshold condition,” obtained for single mode in Schäfer et al. [Phys. Rev. Lett. 111, 030503 (2013)], and the proof of the fact that under this condition the classical “Gaussian capacity” resulting from optimization over only Gaussian inputs is equal to the full classical capacity. Complex structures correspond to different squeezings, each with its own normal modes, vacuum and coherent states, and the gauge. Thus our results apply, e.g., to multimode channels with a squeezed Gaussian noise under the standard input energy constraint, provided the squeezing is not too large as to violate the generalized threshold condition. We also investigate the restrictiveness of the gauge-covariance condition for single- and multimode bosonic Gaussian channels.« less

  11. Quantum channels from reflections on moving mirrors.

    PubMed

    Gianfelici, Giulio; Mancini, Stefano

    2017-11-16

    Light reflection on a mirror can be thought as a simple physical effect. However if this happens when the mirror moves a rich scenario opens up. Here we aim at analyzing it from a quantum communication perspective. In particular, we study the kind of quantum channel that arises from (Gaussian) light reflection upon an accelerating mirror. Two competing mechanisms emerge in such a context, namely photons production by the mirror's motion and interference between modes. As consequence we find out a quantum amplifier channel and quantum lossy channel respectively below and above a threshold frequency (that depends on parameters determining mirror's acceleration). Exactly at the threshold frequency the channel behaves like a purely classical additive channel, while it becomes purely erasure for large frequencies. In addition the time behavior of the channel is analyzed by employing wave packets expansion of the light field.

  12. Quantum and Private Capacities of Low-Noise Channels

    NASA Astrophysics Data System (ADS)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  13. Quantumness-generating capability of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2018-04-01

    We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

  14. Secure quantum communication using classical correlated channel

    NASA Astrophysics Data System (ADS)

    Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.

    2016-10-01

    We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

  15. Amortized entanglement of a quantum channel and approximately teleportation-simulable channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2018-01-01

    This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of entanglement and the amortized Rains relative entropy. These latter quantities are shown to be single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of a quantum channel, respectively. Of especial interest is a uniform continuity bound for these latter two special cases of amortized entanglement, in which the deviation between the amortized entanglement of two channels is bounded from above by a simple function of the diamond norm of their difference and the output dimension of the channels. We then define approximately teleportation- and positive-partial-transpose-simulable (PPT-simulable) channels as those that are close in diamond norm to a channel which is either exactly teleportation- or PPT-simulable, respectively. These results then lead to single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of channels that are approximately teleportation- or PPT-simulable, respectively. Finally, we generalize many of the concepts in the paper to the setting of general resource theories, defining the amortized resourcefulness of a channel and the notion of ν-freely-simulable channels, connecting these concepts in an operational way as well.

  16. Quantum resource theory of non-stabilizer states in the one-shot regime

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Dang, Hoan; Gour, Gilad; Sanders, Barry

    Universal quantum computing is known to be impossible using only stabilizer states and stabilizer operations. However, addition of non-stabilizer states (also known as magic states) to quantum circuits enables us to achieve universality. The resource theory of non-stablizer states aims at quantifying the usefulness of non-stabilizer states. Here, we focus on a fundamental question in this resource theory in the so called single-shot regime: Given two resource states, is there a free quantum channel that will (approximately or exactly) convert one to the other?. To provide an answer, we phrase the question as a semidefinite program with constraints on the Choi matrix of the corresponding channel. Then, we use the semidefinite version of the Farkas lemma to derive the necessary and sufficient conditions for the conversion between two arbitrary resource states via a free quantum channel. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter.

  17. An anthology of non-local QFT and QFT on non-commutative spacetime

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2005-09-01

    Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject.

  18. Instantons on a non-commutative T4 from twisted (2,0) and little string theories

    NASA Astrophysics Data System (ADS)

    Cheung, Yeuk-Kwan E.; Ganor, Ori J.; Krogh, Morten; Mikhailov, Andrei Yu.

    We show that the moduli space of the (2,0) and little-string theories compactified on T3 with R-symmetry twists is equal to the moduli space of U(1) instantons on a non-commutative T4. The moduli space of U( q) instantons on a non-commutative T4 is obtained from little-string theories of NS5-branes at Aq-1 singularities with twists. A large class of gauge theories with N=4 SUSY in 2+1D and N=2 SUSY in 3+1D are limiting cases of these theories. Hence, the moduli spaces of these gauge theories can be read off from the moduli spaces of instantons on non-commutative tori. We study the phase transitions in these theories and the action of T-duality. On the purely mathematical side, we give a prediction for the moduli space of two U(1) instantons on a non-commutative T4.

  19. Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong

    2016-01-01

    In this paper, we defined a new multi-component B type Kadomtsev-Petviashvili (BKP) hierarchy that takes values in a commutative subalgebra of {gl}(N,{{C}}). After this, we give the gauge transformation of this commutative multicomponent BKP (CMBKP) hierarchy. Meanwhile, we construct a new constrained CMBKP hierarchy that contains some new integrable systems, including coupled KdV equations under a certain reduction. After this, the quantum torus symmetry and quantum torus constraint on the tau function of the commutative multi-component BKP hierarchy will be constructed.

  20. Detecting Lower Bounds to Quantum Channel Capacities.

    PubMed

    Macchiavello, Chiara; Sacchi, Massimiliano F

    2016-04-08

    We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension.

  1. Experimental Detection of Quantum Channel Capacities.

    PubMed

    Cuevas, Álvaro; Proietti, Massimiliano; Ciampini, Mario Arnolfo; Duranti, Stefano; Mataloni, Paolo; Sacchi, Massimiliano F; Macchiavello, Chiara

    2017-09-08

    We present an efficient experimental procedure that certifies nonvanishing quantum capacities for qubit noisy channels. Our method is based on the use of a fixed bipartite entangled state, where the system qubit is sent to the channel input. A particular set of local measurements is performed at the channel output and the ancilla qubit mode, obtaining lower bounds to the quantum capacities for any unknown channel with no need of quantum process tomography. The entangled qubits have a Bell state configuration and are encoded in photon polarization. The lower bounds are found by estimating the Shannon and von Neumann entropies at the output using an optimized basis, whose statistics is obtained by measuring only the three observables σ_{x}⊗σ_{x}, σ_{y}⊗σ_{y}, and σ_{z}⊗σ_{z}.

  2. Transfer of nonclassical features in quantum teleportation via a mixed quantum channel

    NASA Astrophysics Data System (ADS)

    Lee, Jinhyoung; Kim, M. S.; Jeong, Hyunseok

    2000-09-01

    Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state, cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode squeezed vacuum, is separable if and only if a positive well-defined P function can be assigned to it. The fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found that quantum teleportation may give more noise than direct transmission of a field under the thermal environment, which is due to the fragile nature of quantum entanglement of the quantum channel.

  3. Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Xie, Cailang; Liao, Qin; Zhao, Wei; Zeng, Guihua; Huang, Duan

    2017-08-01

    The survival of Gaussian quantum states in a turbulent atmospheric channel is of crucial importance in free-space continuous-variable (CV) quantum key distribution (QKD), in which the transmission coefficient will fluctuate in time, thus resulting in non-Gaussian quantum states. Different from quantum hacking of the imperfections of practical devices, here we propose a different type of attack by exploiting the security loopholes that occur in a real lossy channel. Under a turbulent atmospheric environment, the Gaussian states are inevitably afflicted by decoherence, which would cause a degradation of the transmitted entanglement. Therefore, an eavesdropper can perform an intercept-resend attack by applying an entanglement-distillation operation on the transmitted non-Gaussian mixed states, which allows the eavesdropper to bias the estimation of the parameters and renders the final keys shared between the legitimate parties insecure. Our proposal highlights the practical CV QKD vulnerabilities with free-space quantum channels, including the satellite-to-earth links, ground-to-ground links, and a link from moving objects to ground stations.

  4. Unbounded number of channel uses may be required to detect quantum capacity.

    PubMed

    Cubitt, Toby; Elkouss, David; Matthews, William; Ozols, Maris; Pérez-García, David; Strelchuk, Sergii

    2015-03-31

    Transmitting data reliably over noisy communication channels is one of the most important applications of information theory, and is well understood for channels modelled by classical physics. However, when quantum effects are involved, we do not know how to compute channel capacities. This is because the formula for the quantum capacity involves maximizing the coherent information over an unbounded number of channel uses. In fact, entanglement across channel uses can even increase the coherent information from zero to non-zero. Here we study the number of channel uses necessary to detect positive coherent information. In all previous known examples, two channel uses already sufficed. It might be that only a finite number of channel uses is always sufficient. We show that this is not the case: for any number of uses, there are channels for which the coherent information is zero, but which nonetheless have capacity.

  5. Side-channel-free quantum key distribution.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano

    2012-03-30

    Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.

  6. Almost all quantum channels are equidistant

    NASA Astrophysics Data System (ADS)

    Nechita, Ion; Puchała, Zbigniew; Pawela, Łukasz; Życzkowski, Karol

    2018-05-01

    In this work, we analyze properties of generic quantum channels in the case of large system size. We use random matrix theory and free probability to show that the distance between two independent random channels converges to a constant value as the dimension of the system grows larger. As a measure of the distance we use the diamond norm. In the case of a flat Hilbert-Schmidt distribution on quantum channels, we obtain that the distance converges to 1/2 +2/π , giving also an estimate for the maximum success probability for distinguishing the channels. We also consider the problem of distinguishing two random unitary rotations.

  7. On a quantum particle in laser channels

    NASA Astrophysics Data System (ADS)

    Dik, A. V.; Frolov, E. N.; Dabagov, S. B.

    2018-02-01

    In this paper the effective potential describing interaction of a scalar quantum particle with arbitrary nonuniform laser field is derived for a wide spectrum of the particle energies. The presented method allows to take into account all the features of the effective potential for a scalar particle. The derived expression for effective potential for quantum particle has the same form as the one presented earlier for a classical particle. A special case for channeling of a quantum particle as well as accompanying channeling radiation in a field formed by two crossed plane laser waves is considered. It is shown that relativistic particles moving near the laser channel bottom should be examined as quantum ones at both arbitrarily large longitudinal energies and laser fields of accessible intensities.

  8. Base norms and discrimination of generalized quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenčová, A.

    2014-02-15

    We introduce and study norms in the space of hermitian matrices, obtained from base norms in positively generated subspaces. These norms are closely related to discrimination of so-called generalized quantum channels, including quantum states, channels, and networks. We further introduce generalized quantum decision problems and show that the maximal average payoffs of decision procedures are again given by these norms. We also study optimality of decision procedures, in particular, we obtain a necessary and sufficient condition under which an optimal 1-tester for discrimination of quantum channels exists, such that the input state is maximally entangled.

  9. On the Path Integral in Non-Commutative (nc) Qft

    NASA Astrophysics Data System (ADS)

    Dehne, Christoph

    2008-09-01

    As is generally known, different quantization schemes applied to field theory on NC spacetime lead to Feynman rules with different physical properties, if time does not commute with space. In particular, the Feynman rules that are derived from the path integral corresponding to the T*-product (the so-called naïve Feynman rules) violate the causal time ordering property. Within the Hamiltonian approach to quantum field theory, we show that we can (formally) modify the time ordering encoded in the above path integral. The resulting Feynman rules are identical to those obtained in the canonical approach via the Gell-Mann-Low formula (with T-ordering). They preserve thus unitarity and causal time ordering.

  10. Experimental realization of non-Abelian non-adiabatic geometric gates.

    PubMed

    Abdumalikov, A A; Fink, J M; Juliusson, K; Pechal, M; Berger, S; Wallraff, A; Filipp, S

    2013-04-25

    The geometric aspects of quantum mechanics are emphasized most prominently by the concept of geometric phases, which are acquired whenever a quantum system evolves along a path in Hilbert space, that is, the space of quantum states of the system. The geometric phase is determined only by the shape of this path and is, in its simplest form, a real number. However, if the system has degenerate energy levels, then matrix-valued geometric state transformations, known as non-Abelian holonomies--the effect of which depends on the order of two consecutive paths--can be obtained. They are important, for example, for the creation of synthetic gauge fields in cold atomic gases or the description of non-Abelian anyon statistics. Moreover, there are proposals to exploit non-Abelian holonomic gates for the purposes of noise-resilient quantum computation. In contrast to Abelian geometric operations, non-Abelian ones have been observed only in nuclear quadrupole resonance experiments with a large number of spins, and without full characterization of the geometric process and its non-commutative nature. Here we realize non-Abelian non-adiabatic holonomic quantum operations on a single, superconducting, artificial three-level atom by applying a well-controlled, two-tone microwave drive. Using quantum process tomography, we determine fidelities of the resulting non-commuting gates that exceed 95 per cent. We show that two different quantum gates, originating from two distinct paths in Hilbert space, yield non-equivalent transformations when applied in different orders. This provides evidence for the non-Abelian character of the implemented holonomic quantum operations. In combination with a non-trivial two-quantum-bit gate, our method suggests a way to universal holonomic quantum computing.

  11. Quantum Measurement, Correlation, and Contextuality

    NASA Astrophysics Data System (ADS)

    Ozawa, Masanao

    2011-03-01

    The problem has long been discussed as to whether non-commuting observables are simultaneously measurable, since Heisenberg introduced the uncertainty principle in 1927. The problem was settled state-independently: Two observables are simultaneously measurable in every state if and only if the corresponding operators commute. However, the problem has been open for state-dependent formulation. Saying that two observables are nowhere commuting if there exist no common eigenstates, the problem at stake is whether nowhere commuting observable can be simultaneously measurable in a certain state. There have been two historical arguments claiming the case: (i) In an eigenstate of an observable A one can determine both the values of A and any other observable B . (ii) In an EPR state one can determine both the values of Q ⊗ 1 and P ⊗ 1 . In this talk, we give a necessary and sufficient condition for two observables to be simultaneously measurable in a given state, show that the above two cases actually satisfy the required mathematical conditions, and give a classification of all the possible simultaneous measurements of nowhere commuting observables for the Hilbert space with dimension 2. Related problems on quantum contextuality will also be discussed using a linguistic method based on quantum logic and quantum set theory.

  12. Blind quantum computation over a collective-noise channel

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2016-05-01

    Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.

  13. Explorations in fuzzy physics and non-commutative geometry

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Seckin

    Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We

  14. Classical-quantum arbitrarily varying wiretap channel: Secret message transmission under jamming attacks

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian; Nötzel, Janis

    2017-10-01

    We analyze arbitrarily varying classical-quantum wiretap channels. These channels are subject to two attacks at the same time: one passive (eavesdropping) and one active (jamming). We elaborate on our previous studies [H. Boche et al., Quantum Inf. Process. 15(11), 4853-4895 (2016) and H. Boche et al., Quantum Inf. Process. 16(1), 1-48 (2016)] by introducing a reduced class of allowable codes that fulfills a more stringent secrecy requirement than earlier definitions. In addition, we prove that non-symmetrizability of the legal link is sufficient for equality of the deterministic and the common randomness assisted secrecy capacities. Finally, we focus on analytic properties of both secrecy capacities: We completely characterize their discontinuity points and their super-activation properties.

  15. Multi-server blind quantum computation over collective-noise channels

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Liu, Lin; Song, Xiuli

    2018-03-01

    Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.

  16. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    NASA Astrophysics Data System (ADS)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  17. Capacity of a quantum memory channel correlated by matrix product states

    NASA Astrophysics Data System (ADS)

    Mulherkar, Jaideep; Sunitha, V.

    2018-04-01

    We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.

  18. Towards Holography via Quantum Source-Channel Codes.

    PubMed

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-14

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  19. Towards Holography via Quantum Source-Channel Codes

    NASA Astrophysics Data System (ADS)

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-01

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  20. Quantum 2-Player Gambling and Correlated Pay-Off

    NASA Astrophysics Data System (ADS)

    Witte, F. M. C.

    2005-01-01

    In recent years methods have been proposed to extend classical game theory into the quantum domain. In a previous publication the nature of several non-cummutative games was briefly analyzed. Here we give an analysis of the simplest non-commutative quantum game, which is a gambling game much like simple heads or tails. The quantum game displays strategies which, though non direct-product strategies, allow for correlations between the players pay-off.

  1. On S-mixing entropy of quantum channels

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh; Watanabe, Noboru

    2018-06-01

    In this paper, an S-mixing entropy of quantum channels is introduced as a generalization of Ohya's S-mixing entropy. We investigate several properties of the introduced entropy. Moreover, certain relations between the S-mixing entropy and the existing map and output entropies of quantum channels are investigated as well. These relations allowed us to find certain connections between separable states and the introduced entropy. Hence, there is a sufficient condition to detect entangled states. Moreover, several properties of the introduced entropy are investigated. Besides, entropies of qubit and phase-damping channels are calculated.

  2. Relevance of quantum mechanics on some aspects of ion channel function

    PubMed Central

    Roy, Sisir

    2010-01-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger–Langevin equation for this kind of system within the framework of stochastic quantization. The Planck’s constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter. PMID:19520314

  3. Position-based coding and convex splitting for private communication over quantum channels

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.

    2017-10-01

    The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The ɛ -one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than ɛ \\in (0,1). The present paper provides a lower bound on the ɛ -one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the "alternate" smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.

  4. Moderate Deviation Analysis for Classical Communication over Quantum Channels

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Tan, Vincent Y. F.; Tomamichel, Marco

    2017-11-01

    We analyse families of codes for classical data transmission over quantum channels that have both a vanishing probability of error and a code rate approaching capacity as the code length increases. To characterise the fundamental tradeoff between decoding error, code rate and code length for such codes we introduce a quantum generalisation of the moderate deviation analysis proposed by Altŭg and Wagner as well as Polyanskiy and Verdú. We derive such a tradeoff for classical-quantum (as well as image-additive) channels in terms of the channel capacity and the channel dispersion, giving further evidence that the latter quantity characterises the necessary backoff from capacity when transmitting finite blocks of classical data. To derive these results we also study asymmetric binary quantum hypothesis testing in the moderate deviations regime. Due to the central importance of the latter task, we expect that our techniques will find further applications in the analysis of other quantum information processing tasks.

  5. Amortization does not enhance the max-Rains information of a quantum channel

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Wilde, Mark M.

    2018-05-01

    Given an entanglement measure E, the entanglement of a quantum channel is defined as the largest amount of entanglement E that can be generated from the channel, if the sender and receiver are not allowed to share a quantum state before using the channel. The amortized entanglement of a quantum channel is defined as the largest net amount of entanglement E that can be generated from the channel, if the sender and receiver are allowed to share an arbitrary state before using the channel. Our main technical result is that amortization does not enhance the entanglement of an arbitrary quantum channel, when entanglement is quantified by the max-Rains relative entropy. We prove this statement by employing semi-definite programming (SDP) duality and SDP formulations for the max-Rains relative entropy and a channel’s max-Rains information, found recently in Wang et al (arXiv:1709.00200). The main application of our result is a single-letter, strong converse, and efficiently computable upper bound on the capacity of a quantum channel for transmitting qubits when assisted by positive-partial-transpose preserving (PPT-P) channels between every use of the channel. As the class of local operations and classical communication (LOCC) is contained in PPT-P, our result establishes a benchmark for the LOCC-assisted quantum capacity of an arbitrary quantum channel, which is relevant in the context of distributed quantum computation and quantum key distribution.

  6. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    NASA Astrophysics Data System (ADS)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  7. Experimental demonstration of a measurement-based realisation of a quantum channel

    NASA Astrophysics Data System (ADS)

    McCutcheon, W.; McMillan, A.; Rarity, J. G.; Tame, M. S.

    2018-03-01

    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the basis of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.

  8. Commuting, Life-Satisfaction and Internet Addiction.

    PubMed

    Lachmann, Bernd; Sariyska, Rayna; Kannen, Christopher; Stavrou, Maria; Montag, Christian

    2017-10-05

    The focus of the present work was on the association between commuting (business and private), life satisfaction, stress, and (over-) use of the Internet. Considering that digital devices are omnipresent in buses and trains, no study has yet investigated if commuting contributes to the development of Internet addiction. Overall, N = 5039 participants (N = 3477 females, age M = 26.79, SD = 10.68) took part in an online survey providing information regarding their commuting behavior, Internet addiction, personality, life satisfaction, and stress perception. Our findings are as follows: Personality seems to be less suitable to differentiate between commuter and non-commuter groups, which is possibly due to commuters often not having a choice but simply must accept offered job opportunities at distant locations. Second, the highest levels of satisfaction were found with income and lodging in the group commuting for business purposes. This might be related to the fact that commuting results in higher salaries (hence also better and more expensive housing style) due to having a job in another city which might exceed job opportunities at one's own living location. Third, within the business-commuters as well as in the private-commuter groups, females had significantly higher levels of stress than males. This association was not present in the non-commuter group. For females, commuting seems to be a higher burden and more stressful than for males, regardless of whether they commute for business or private reasons. Finally, we observed an association between higher stress perception (more negative attitude towards commuting) and Internet addiction. This finding suggests that some commuters try to compensate their perceived stress with increased Internet use.

  9. Commuting, Life-Satisfaction and Internet Addiction

    PubMed Central

    Lachmann, Bernd; Sariyska, Rayna; Kannen, Christopher; Stavrou, Maria

    2017-01-01

    The focus of the present work was on the association between commuting (business and private), life satisfaction, stress, and (over-) use of the Internet. Considering that digital devices are omnipresent in buses and trains, no study has yet investigated if commuting contributes to the development of Internet addiction. Overall, N = 5039 participants (N = 3477 females, age M = 26.79, SD = 10.68) took part in an online survey providing information regarding their commuting behavior, Internet addiction, personality, life satisfaction, and stress perception. Our findings are as follows: Personality seems to be less suitable to differentiate between commuter and non-commuter groups, which is possibly due to commuters often not having a choice but simply must accept offered job opportunities at distant locations. Second, the highest levels of satisfaction were found with income and lodging in the group commuting for business purposes. This might be related to the fact that commuting results in higher salaries (hence also better and more expensive housing style) due to having a job in another city which might exceed job opportunities at one’s own living location. Third, within the business-commuters as well as in the private-commuter groups, females had significantly higher levels of stress than males. This association was not present in the non-commuter group. For females, commuting seems to be a higher burden and more stressful than for males, regardless of whether they commute for business or private reasons. Finally, we observed an association between higher stress perception (more negative attitude towards commuting) and Internet addiction. This finding suggests that some commuters try to compensate their perceived stress with increased Internet use. PMID:28981452

  10. Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, D.; Ekert, A.; Jozsa, R.

    1996-09-01

    Existing quantum cryptographic schemes are not, as they stand, operable in the presence of noise on the quantum communication channel. Although they become operable if they are supplemented by classical privacy-amplification techniques, the resulting schemes are difficult to analyze and have not been proved secure. We introduce the concept of quantum privacy amplification and a cryptographic scheme incorporating it which is provably secure over a noisy channel. The scheme uses an {open_quote}{open_quote}entanglement purification{close_quote}{close_quote} procedure which, because it requires only a few quantum controlled-not and single-qubit operations, could be implemented using technology that is currently being developed. {copyright} {ital 1996 Themore » American Physical Society.}« less

  11. Thermodynamic resource theories, non-commutativity and maximum entropy principles

    NASA Astrophysics Data System (ADS)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2017-04-01

    We discuss some features of thermodynamics in the presence of multiple conserved quantities. We prove a generalisation of Landauer principle illustrating tradeoffs between the erasure costs paid in different ‘currencies’. We then show how the maximum entropy and complete passivity approaches give different answers in the presence of multiple observables. We discuss how this seems to prevent current resource theories from fully capturing thermodynamic aspects of non-commutativity.

  12. Matrix De Rham Complex and Quantum A-infinity algebras

    NASA Astrophysics Data System (ADS)

    Barannikov, S.

    2014-04-01

    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.

  13. Quantum channels irreducibly covariant with respect to the finite group generated by the Weyl operators

    NASA Astrophysics Data System (ADS)

    Siudzińska, Katarzyna; Chruściński, Dariusz

    2018-03-01

    In matrix algebras, we introduce a class of linear maps that are irreducibly covariant with respect to the finite group generated by the Weyl operators. In particular, we analyze the irreducibly covariant quantum channels, that is, the completely positive and trace-preserving linear maps. Interestingly, imposing additional symmetries leads to the so-called generalized Pauli channels, which were recently considered in the context of the non-Markovian quantum evolution. Finally, we provide examples of irreducibly covariant positive but not necessarily completely positive maps.

  14. New Quantum Key Distribution Scheme Based on Random Hybrid Quantum Channel with EPR Pairs and GHZ States

    NASA Astrophysics Data System (ADS)

    Yan, Xing-Yu; Gong, Li-Hua; Chen, Hua-Ying; Zhou, Nan-Run

    2018-05-01

    A theoretical quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states is devised. In this scheme, EPR pairs and tripartite GHZ states are exploited to set up random hybrid quantum channel. Only one photon in each entangled state is necessary to run forth and back in the channel. The security of the quantum key distribution scheme is guaranteed by more than one round of eavesdropping check procedures. It is of high capacity since one particle could carry more than two bits of information via quantum dense coding.

  15. Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels

    NASA Astrophysics Data System (ADS)

    Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.

    2018-05-01

    Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.

  16. State dragging using the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Hacohen-Gourgy, Shay; Martin, Leigh; GarcíA-Pintos, Luis Pedro; Dressel, Justin; Siddiqi, Irfan

    The quantum Zeno effect is the suppression of Hamiltonian evolution by continuous measurement. It arises as a consequence of the quantum back-action pushing the state towards an eigenstate of the measurement operator. Rotating the operator at a rate much slower than the measurement rate will effectively drag the state with it. We use our recently developed scheme, which enables dynamic control of the measurement operator, to demonstrate this dragging effect on a superconducting transmon qubit. Since the system is continuously measured, the deterministic trajectory can be monitored, and quantum jumps can be detected in real-time. Furthermore, we perform this with two observables that are set to be either commuting or non-commuting, demonstrating new quantum dynamics. This work was supported by the Army Research Office and the Air Force Research Laboratory.

  17. Commuting behaviors and exposure to air pollution in Montreal, Canada.

    PubMed

    Miao, Qun; Bouchard, Michèle; Chen, Dongmei; Rosenberg, Mark W; Aronson, Kristan J

    2015-03-01

    Vehicular traffic is a major source of outdoor air pollution in urban areas, and studies have shown that air pollution is worse during hours of commuting to and from work and school. However, it is unclear to what extent different commuting behaviors are a source of air pollution compared to non-commuters, and if air pollution exposure actually differs by the mode of commuting. This study aimed to examine the relationships between commuting behaviors and air pollution exposure levels measured by urinary 1-OHP (1-hydroxypyrene), a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs). A cross-sectional study of 174 volunteers living in Montreal, 92 females and 82 males, aged 20 to 53 years was conducted in 2011. Each participant completed a questionnaire regarding demographic factors, commuting behaviors, home and workplace addresses, and potential sources of PAH exposure, and provided a complete first morning void urine sample for 1-OHP analysis. Multivariable general linear regression models were used to examine the relationships between different types of commuting and urinary 1-OHP levels. Compared to non-commuters, commuters traveling by foot or bicycle and by car or truck had a significantly higher urinary 1-OHP concentration in urine (p=0.01 for foot or bicycle vs. non-commuters; p=0.02 for car or truck vs. non-commuters); those traveling with public transportation and combinations of two or more types of modes tended to have an increased 1-OHP level in urine (p=0.06 for public transportation vs. non-commuters; p=0.05 for commuters with combinations of two or more types of modes vs. non-commuters). No significant difference in urinary 1-OHP variation was found by mode of commuting. This preliminary study suggests that despite the mode of commuting, all types of commuting during rush hours increase exposure to air pollution as measured by a sensitive PAH metabolite biomarker, and mode of commuting did not explain exposure variation. Copyright

  18. Epistemic View of Quantum States and Communication Complexity of Quantum Channels

    NASA Astrophysics Data System (ADS)

    Montina, Alberto

    2012-09-01

    The communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating a process of state preparation, transmission through the channel and subsequent measurement. It establishes a limit on the power of quantum communication in terms of classical resources. We show that classical simulations employing a finite amount of communication can be derived from a special class of hidden variable theories where quantum states represent statistical knowledge about the classical state and not an element of reality. This special class has attracted strong interest very recently. The communication cost of each derived simulation is given by the mutual information between the quantum state and the classical state of the parent hidden variable theory. Finally, we find that the communication complexity for single qubits is smaller than 1.28 bits. The previous known upper bound was 1.85 bits.

  19. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com; Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8; Ali, S. Twareque, E-mail: twareque.ali@concordia.ca

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and thosemore » of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.« less

  20. Perfect commuting-operator strategies for linear system games

    NASA Astrophysics Data System (ADS)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  1. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Hua; Department of Mathematics and Physics, Hubei University of Technology, Wuhan 430068; Fung, Chi-Hang Fred

    2011-10-15

    In a deterministic quantum key distribution (DQKD) protocol with a two-way quantum channel, Bob sends a qubit to Alice who then encodes a key bit onto the qubit and sends it back to Bob. After measuring the returned qubit, Bob can obtain Alice's key bit immediately, without basis reconciliation. Since an eavesdropper may attack the qubits traveling on either the Bob-Alice channel or the Alice-Bob channel, the security analysis of DQKD protocol with a two-way quantum channel is complicated and its unconditional security has been controversial. This paper presents a security proof of a single-photon four-state DQKD protocol against generalmore » attacks.« less

  2. Detecting incapacity of a quantum channel.

    PubMed

    Smith, Graeme; Smolin, John A

    2012-06-08

    Using unreliable or noisy components for reliable communication requires error correction. But which noise processes can support information transmission, and which are too destructive? For classical systems any channel whose output depends on its input has the capacity for communication, but the situation is substantially more complicated in the quantum setting. We find a generic test for incapacity based on any suitable forbidden transformation--a protocol for communication with a channel passing our test would also allow one to implement the associated forbidden transformation. Our approach includes both known quantum incapacity tests--positive partial transposition and antidegradability (no cloning)--as special cases, putting them both on the same footing.

  3. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  4. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  5. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    NASA Astrophysics Data System (ADS)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  6. Quantum teleportation through noisy channels with multi-qubit GHZ states

    NASA Astrophysics Data System (ADS)

    Espoukeh, Pakhshan; Pedram, Pouria

    2014-08-01

    We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for -qubit GHZ states where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than GHZ state under most noisy channels. However, GHZ state preserves same quantum information with respect to Einstein-Podolsky-Rosen and 3GHZ states where the noise is in direction in which the fidelity remains unchanged. We explicitly show that Jung et al.'s conjecture (Phys Rev A 78:012312, 2008), namely "average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels," is not valid for 3GHZ and 4GHZ states.

  7. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  8. Probing free-space quantum channels with laboratory-based experiments

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2017-06-01

    Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a postselection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.

  9. Coherent states for quantum compact groups

    NASA Astrophysics Data System (ADS)

    Jurĉo, B.; Ŝťovíĉek, P.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l, Bl, Cl and D l. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested.

  10. Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures

    NASA Astrophysics Data System (ADS)

    Datta, Nilanjana; Wilde, Mark M.

    2015-12-01

    A short quantum Markov chain is a tripartite state {ρ }{ABC} such that system A can be recovered perfectly by acting on system C of the reduced state {ρ }{BC}. Such states have conditional mutual information I(A;B| C) equal to zero and are the only states with this property. A quantum channel {N} is sufficient for two states ρ and σ if there exists a recovery channel using which one can perfectly recover ρ from {N}(ρ ) and σ from {N}(σ ). The relative entropy difference D(ρ \\parallel σ )-D({N}(ρ )\\parallel {N}(σ )) is equal to zero if and only if {N} is sufficient for ρ and σ. In this paper, we show that these properties extend to Rényi generalizations of these information measures which were proposed in (Berta et al 2015 J. Math. Phys. 56 022205; Seshadreesan et al 2015 J. Phys. A: Math. Theor. 48 395303), thus providing an alternate characterization of short quantum Markov chains and sufficient quantum channels. These results give further support to these quantities as being legitimate Rényi generalizations of the conditional mutual information and the relative entropy difference. Along the way, we solve some open questions of Ruskai and Zhang, regarding the trace of particular matrices that arise in the study of monotonicity of relative entropy under quantum operations and strong subadditivity of the von Neumann entropy.

  11. Capacity estimation and verification of quantum channels with arbitrarily correlated errors.

    PubMed

    Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie

    2018-01-02

    The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.

  12. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  13. Quantum filtering for multiple diffusive and Poissonian measurements

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2015-09-01

    We provide a rigorous derivation of a quantum filter for the case of multiple measurements being made on a quantum system. We consider a class of measurement processes which are functions of bosonic field operators, including combinations of diffusive and Poissonian processes. This covers the standard cases from quantum optics, where homodyne detection may be described as a diffusive process and photon counting may be described as a Poissonian process. We obtain a necessary and sufficient condition for any pair of such measurements taken at different output channels to satisfy a commutation relationship. Then, we derive a general, multiple-measurement quantum filter as an extension of a single-measurement quantum filter. As an application we explicitly obtain the quantum filter corresponding to homodyne detection and photon counting at the output ports of a beam splitter.

  14. Hidden Quantum Processes, Quantum Ion Channels, and 1/ fθ-Type Noise.

    PubMed

    Paris, Alan; Vosoughi, Azadeh; Berman, Stephen A; Atia, George

    2018-07-01

    In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, called hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral

  15. Gaussian private quantum channel with squeezed coherent states.

    PubMed

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-09-14

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.

  16. Quantum limit of heat flow across a single electronic channel.

    PubMed

    Jezouin, S; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Jin, Y; Pierre, F

    2013-11-01

    Quantum physics predicts that there is a fundamental maximum heat conductance across a single transport channel and that this thermal conductance quantum, G(Q), is universal, independent of the type of particles carrying the heat. Such universality, combined with the relationship between heat and information, signals a general limit on information transfer. We report on the quantitative measurement of the quantum-limited heat flow for Fermi particles across a single electronic channel, using noise thermometry. The demonstrated agreement with the predicted G(Q) establishes experimentally this basic building block of quantum thermal transport. The achieved accuracy of below 10% opens access to many experiments involving the quantum manipulation of heat.

  17. Heralded quantum steering over a high-loss channel.

    PubMed

    Weston, Morgan M; Slussarenko, Sergei; Chrzanowski, Helen M; Wollmann, Sabine; Shalm, Lynden K; Verma, Varun B; Allman, Michael S; Nam, Sae Woo; Pryde, Geoff J

    2018-01-01

    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8 ± 0.1 dB of added loss, equivalent to approximately 80 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater.

  18. Heralded quantum steering over a high-loss channel

    PubMed Central

    Weston, Morgan M.; Slussarenko, Sergei; Chrzanowski, Helen M.; Wollmann, Sabine; Shalm, Lynden K.; Verma, Varun B.; Allman, Michael S.; Nam, Sae Woo; Pryde, Geoff J.

    2018-01-01

    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8 ± 0.1 dB of added loss, equivalent to approximately 80 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater. PMID:29322093

  19. Quantum-state transfer through long-range correlated disordered channels

    NASA Astrophysics Data System (ADS)

    Almeida, Guilherme M. A.; de Moura, Francisco A. B. F.; Lyra, Marcelo L.

    2018-05-01

    We study quantum-state transfer in XX spin-1/2 chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform almost perfect quantum-state transmissions even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough, with the cost of having long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest that coexistence between localized and delocalized states can diminish effects of static perturbations in solid-state devices for quantum communication.

  20. Monitoring ion-channel function in real time through quantum decoherence

    PubMed Central

    Hall, Liam T.; Hill, Charles D.; Cole, Jared H.; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C. L.

    2010-01-01

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery. PMID:20937908

  1. Monitoring ion-channel function in real time through quantum decoherence.

    PubMed

    Hall, Liam T; Hill, Charles D; Cole, Jared H; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C L

    2010-11-02

    In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.

  2. Meixner Class of Non-commutative Generalized Stochastic Processes with Freely Independent Values II. The Generating Function

    NASA Astrophysics Data System (ADS)

    Bożejko, Marek; Lytvynov, Eugene

    2011-03-01

    Let T be an underlying space with a non-atomic measure σ on it. In [ Comm. Math. Phys. 292, 99-129 (2009)] the Meixner class of non-commutative generalized stochastic processes with freely independent values, {ω=(ω(t))_{tin T}} , was characterized through the continuity of the corresponding orthogonal polynomials. In this paper, we derive a generating function for these orthogonal polynomials. The first question we have to answer is: What should serve as a generating function for a system of polynomials of infinitely many non-commuting variables? We construct a class of operator-valued functions {Z=(Z(t))_{tin T}} such that Z( t) commutes with ω( s) for any {s,tin T}. Then a generating function can be understood as {G(Z,ω)=sum_{n=0}^infty int_{T^n}P^{(n)}(ω(t_1),dots,ω(t_n))Z(t_1)dots Z(t_n)} {σ(dt_1) dots σ(dt_n)} , where {P^{(n)}(ω(t_1),dots,ω(t_n))} is (the kernel of the) n th orthogonal polynomial. We derive an explicit form of G( Z, ω), which has a resolvent form and resembles the generating function in the classical case, albeit it involves integrals of non-commuting operators. We finally discuss a related problem of the action of the annihilation operators {partial_t,t in T} . In contrast to the classical case, we prove that the operators ∂ t related to the free Gaussian and Poisson processes have a property of globality. This result is genuinely infinite-dimensional, since in one dimension one loses the notion of globality.

  3. Stability assessment of QKD procedures in commercial quantum cryptography systems versus quality of dark channel

    NASA Astrophysics Data System (ADS)

    Jacak, Monika; Melniczuk, Damian; Jacak, Janusz; Jóźwiak, Ireneusz; Gruber, Jacek; Jóźwiak, Piotr

    2015-02-01

    In order to assess the susceptibility of the quantum key distribution (QKD) systems to the hacking attack including simultaneous and frequent system self-decalibrations, we analyze the stability of the QKD transmission organized in two commercially available systems. The first one employs non-entangled photons as flying qubits in the dark quantum channel for communication whereas the second one utilizes the entangled photon pairs to secretly share the cryptographic key. Applying standard methods of the statistical data analysis to the characteristic indicators of the quality of the QKD communication (the raw key exchange rate [RKER] and the quantum bit error rate [QBER]), we have estimated the pace of the self-decalibration of both systems and the repeatability rate in the case of controlled worsening of the dark channel quality.

  4. Complexity and non-commutativity of learning operations on graphs.

    PubMed

    Atmanspacher, Harald; Filk, Thomas

    2006-07-01

    We present results from numerical studies of supervised learning operations in small recurrent networks considered as graphs, leading from a given set of input conditions to predetermined outputs. Graphs that have optimized their output for particular inputs with respect to predetermined outputs are asymptotically stable and can be characterized by attractors, which form a representation space for an associative multiplicative structure of input operations. As the mapping from a series of inputs onto a series of such attractors generally depends on the sequence of inputs, this structure is generally non-commutative. Moreover, the size of the set of attractors, indicating the complexity of learning, is found to behave non-monotonically as learning proceeds. A tentative relation between this complexity and the notion of pragmatic information is indicated.

  5. A short walk in quantum probability

    NASA Astrophysics Data System (ADS)

    Hudson, Robin

    2018-04-01

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas. This article is part of the themed issue `Hilbert's sixth problem'.

  6. A short walk in quantum probability.

    PubMed

    Hudson, Robin

    2018-04-28

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  7. Protecting Quantum Correlation from Correlated Amplitude Damping Channel

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Zhang, Cai

    2017-08-01

    In this work, we investigate the dynamics of quantum correlation measured by measurement-induced nonlocality (MIN) and local quantum uncertainty (LQU) in correlated amplitude damping (CAD) channel. We find that the memory parameter brings different influences on MIN and LQU. In addition, we propose a scheme to protect quantum correlation by executing prior weak measurement (WM) and post-measurement reversal (MR). However, better protection of quantum correlation by the scheme implies a lower success probability (SP).

  8. Free-space quantum cryptography with quantum and telecom communication channels

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takayama, Yoshihisa; Klaus, Werner; Kunimori, Hiroo; Fujiwara, Mikio; Sasaki, Masahide

    2008-07-01

    Quantum cryptography is a new technique that uses the laws of physics to transmit information securely. In such systems, the vehicle to transfer quantum information is a single photon. However, the transmission distance is limited by the absorption of photons in an optical fiber in which the maximum demonstrated range is about 100 km. Free-space quantum cryptography between a ground station and a satellite is a way of sending the quantum information further distances than that with optical fibers since there is no birefringence effect in the atmosphere. At the National Institute of Information and Communications Technology (NICT), the laser communication demonstration between the NICT optical ground station and a low earth orbit satellite was successfully conducted in 2006. For such space communication links, free-space quantum cryptography is considered to be an important application in the future. We have developed a prototype system for free-space quantum cryptography using a weak coherent light and a telecom communication channel. The preliminary results are presented.

  9. Fermionic Tunneling Effect and Hawking Radiation in a Non Commutative FRW Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhalouf, H.; Aissaoui, H.; Mebarki, N.

    2010-10-31

    The formalism of a non commutative gauge gravity is applied to an FRW universe and the corresponding modified metric, veirbein and spin connection components are obtained. Moreover, using the Hamilton-Jacobi method and as a pure space-time deformation effect, the NCG Hawking radiation via a fermionic tunneling transition through the dynamical NCG horizon is also studied.

  10. Gaussian private quantum channel with squeezed coherent states

    PubMed Central

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  11. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Jian; Huang Yixiao; Wang Xiaoguang

    2011-08-15

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  12. Quantum-secure covert communication on bosonic channels.

    PubMed

    Bash, Boulat A; Gheorghe, Andrei H; Patel, Monika; Habif, Jonathan L; Goeckel, Dennis; Towsley, Don; Guha, Saikat

    2015-10-19

    Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.

  13. Contraction coefficients for noisy quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiai, Fumio, E-mail: hiai.fumio@gmail.com; Ruskai, Mary Beth, E-mail: ruskai@member.ams.org

    Generalized relative entropy, monotone Riemannian metrics, geodesic distance, and trace distance are all known to decrease under the action of quantum channels. We give some new bounds on, and relationships between, the maximal contraction for these quantities.

  14. Direct and reverse secret-key capacities of a quantum channel.

    PubMed

    Pirandola, Stefano; García-Patrón, Raul; Braunstein, Samuel L; Lloyd, Seth

    2009-02-06

    We define the direct and reverse secret-key capacities of a memoryless quantum channel as the optimal rates that entanglement-based quantum-key-distribution protocols can reach by using a single forward classical communication (direct reconciliation) or a single feedback classical communication (reverse reconciliation). In particular, the reverse secret-key capacity can be positive for antidegradable channels, where no forward strategy is known to be secure. This property is explicitly shown in the continuous variable framework by considering arbitrary one-mode Gaussian channels.

  15. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    PubMed

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  16. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-01

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  17. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.

    PubMed

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-21

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  18. Commuting by car: weight gain among physically active adults.

    PubMed

    Sugiyama, Takemi; Ding, Ding; Owen, Neville

    2013-02-01

    Prolonged sitting, including time spent sitting in cars, is detrimentally associated with health outcomes. This study examined whether commuting by car was associated with adults' weight gain over 4 years. Among 822 adult residents of Adelaide, Australia, weight change was ascertained from self-reported weight at baseline (2003-2004) and at follow-up (2007-2008). Using time spent for car commuting and work status at baseline, participants were categorized as non-car commuters, occasional car commuters, and daily car commuters. Multilevel linear regression (conducted in 2012) examined associations of weight change with car-commuting category, adjusting for potential confounding variables, for the whole sample, and among those who were physically inactive or active (≥150 minutes/week) in their leisure time. For the overall sample, adjusted mean weight gain (95% CI) over 4 years was 1.26 (0.64, 1.89) kg for non-car commuters; 1.53 (0.69, 2.37) kg for occasional car commuters; and 2.18 (1.44, 2.92) kg for daily car commuters (p for trend=0.090). Stratified analyses found a stronger association for those with sufficient leisure-time physical activity. For non-car commuters with sufficient leisure-time physical activity, the adjusted mean weight gain was 0.46 (-0.43, 1.35) kg, which was not significantly greater than 0. Over 4 years, those who used cars daily for commuting tended to gain more weight than those who did not commute by car. This relationship was pronounced among those who were physically active during leisure time. Reducing sedentary time may prevent weight gain among physically active adults. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    NASA Astrophysics Data System (ADS)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel

    2017-12-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.

  20. A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels

    NASA Astrophysics Data System (ADS)

    Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew

    2018-02-01

    We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

  1. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong

    2018-01-01

    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  2. Regularized maximum pure-state input-output fidelity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Ernst, Moritz F.; Klesse, Rochus

    2017-12-01

    As a toy model for the capacity problem in quantum information theory we investigate finite and asymptotic regularizations of the maximum pure-state input-output fidelity F (N ) of a general quantum channel N . We show that the asymptotic regularization F ˜(N ) is lower bounded by the maximum output ∞ -norm ν∞(N ) of the channel. For N being a Pauli channel, we find that both quantities are equal.

  3. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE PAGES

    Dasari, Venkat R.; Humble, Travis S.

    2016-10-10

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  4. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat R.; Humble, Travis S.

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  5. Quantum Foundations of Quantum Information

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert

    2009-03-01

    The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.

  6. Arbitrarily small amounts of correlation for arbitrarily varying quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boche, H., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de; Nötzel, J., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de

    2013-11-15

    As our main result show that in order to achieve the randomness assisted message and entanglement transmission capacities of a finite arbitrarily varying quantum channel it is not necessary that sender and receiver share (asymptotically perfect) common randomness. Rather, it is sufficient that they each have access to an unlimited amount of uses of one part of a correlated bipartite source. This access might be restricted to an arbitrary small (nonzero) fraction per channel use, without changing the main result. We investigate the notion of common randomness. It turns out that this is a very costly resource – generically, itmore » cannot be obtained just by local processing of a bipartite source. This result underlines the importance of our main result. Also, the asymptotic equivalence of the maximal- and average error criterion for classical message transmission over finite arbitrarily varying quantum channels is proven. At last, we prove a simplified symmetrizability condition for finite arbitrarily varying quantum channels.« less

  7. Asymmetric information capacities of reciprocal pairs of quantum channels

    NASA Astrophysics Data System (ADS)

    Rosati, Matteo; Giovannetti, Vittorio

    2018-05-01

    Reciprocal pairs of quantum channels are defined as completely positive transformations which admit a rigid, distance-preserving, yet not completely positive transformation that allows one to reproduce the outcome of one from the corresponding outcome of the other. From a classical perspective these transmission lines should exhibit the same communication efficiency. This is no longer the case in the quantum setting: explicit asymmetric behaviors are reported studying the classical communication capacities of reciprocal pairs of depolarizing and Weyl-covariant channels.

  8. Compensating the noise of a communication channel via asymmetric encoding of quantum information.

    PubMed

    Lucamarini, Marco; Kumar, Rupesh; Di Giuseppe, Giovanni; Vitali, David; Tombesi, Paolo

    2010-10-01

    An asymmetric preparation of the quantum states sent through a noisy channel can enable a new way to monitor and actively compensate the channel noise. The paradigm of such an asymmetric treatment of quantum information is the Bennett 1992 protocol, in which the counts in the two separate bases are in direct connection with the channel noise. Using this protocol as a guiding example, we show how to correct the phase drift of a communication channel without using reference pulses, interruptions of the quantum transmission, or public data exchanges.

  9. Quantum state transfer through time reversal of an optical channel

    NASA Astrophysics Data System (ADS)

    Hush, M. R.; Bentley, C. D. B.; Ahlefeldt, R. L.; James, M. R.; Sellars, M. J.; Ugrinovskii, V.

    2016-12-01

    Rare-earth ions have exceptionally long coherence times, making them an excellent candidate for quantum information processing. A key part of this processing is quantum state transfer. We show that perfect state transfer can be achieved by time reversing the intermediate quantum channel, and suggest using a gradient echo memory (GEM) to perform this time reversal. We propose an experiment with rare-earth ions to verify these predictions, where an emitter and receiver crystal are connected with an optical channel passed through a GEM. We investigate the effect experimental imperfections and collective dynamics have on the state transfer process. We demonstrate that super-radiant effects can enhance coupling into the optical channel and improve the transfer fidelity. We lastly discuss how our results apply to state transfer of entangled states.

  10. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    PubMed

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  11. Beyond the Quantum

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu

    2007-09-01

    pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic

  12. Evaluation of the non-Gaussianity of two-mode entangled states over a bosonic memory channel via cumulant theory and quadrature detection

    NASA Astrophysics Data System (ADS)

    Xiang, Shao-Hua; Wen, Wei; Zhao, Yu-Jing; Song, Ke-Hui

    2018-04-01

    We study the properties of the cumulants of multimode boson operators and introduce the phase-averaged quadrature cumulants as the measure of the non-Gaussianity of multimode quantum states. Using this measure, we investigate the non-Gaussianity of two classes of two-mode non-Gaussian states: photon-number entangled states and entangled coherent states traveling in a bosonic memory quantum channel. We show that such a channel can skew the distribution of two-mode quadrature variables, giving rise to a strongly non-Gaussian correlation. In addition, we provide a criterion to determine whether the distributions of these states are super- or sub-Gaussian.

  13. Robust multiparty quantum secret key sharing over two collective-noise channels

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan-jun

    2006-02-01

    Based on a polarization-based quantum key distribution protocol over a collective-noise channel [Phys. Rev. Lett. 92 (2004) 017901], a robust (n,n)-threshold scheme of multiparty quantum secret sharing of key over two collective-noise channels (i.e., the collective dephasing channel and the collective rotating channel) is proposed. In this scheme the sharer entirety can establish a joint key with the message sender only if all the sharers collaborate together. Since Bell singlets are enough for use and only single-photon polarization needs to be identified, this scheme is feasible according to the present-day technique.

  14. Teleporting an unknown quantum state with unit fidelity and unit probability via a non-maximally entangled channel and an auxiliary system

    NASA Astrophysics Data System (ADS)

    Rashvand, Taghi

    2016-11-01

    We present a new scheme for quantum teleportation that one can teleport an unknown state via a non-maximally entangled channel with certainly, using an auxiliary system. In this scheme depending on the state of the auxiliary system, one can find a class of orthogonal vectors set as a basis which by performing von Neumann measurement in each element of this class Alice can teleport an unknown state with unit fidelity and unit probability. A comparison of our scheme with some previous schemes is given and we will see that our scheme has advantages that the others do not.

  15. General Approach to Quantum Channel Impossibility by Local Operations and Classical Communication.

    PubMed

    Cohen, Scott M

    2017-01-13

    We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that the set of quantum channels that are not LOCC is not closed and that there exist channels that can be implemented by LOCC either in one round or in three rounds that are on the boundary of the set of all LOCC channels. Although every LOCC protocol must implement a separable quantum channel, it is a very difficult task to determine whether or not a given channel is separable. Fortunately, prior knowledge that the channel is separable is not required for application of our method.

  16. Experimental quantum teleportation over a high-loss free-space channel.

    PubMed

    Ma, Xiao-song; Kropatschek, Sebastian; Naylor, William; Scheidl, Thomas; Kofler, Johannes; Herbst, Thomas; Zeilinger, Anton; Ursin, Rupert

    2012-10-08

    We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.

  17. Device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hänggi, Esther

    2010-12-01

    In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.

  18. How quantum are non-negative wavefunctions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, M. B.

    2016-01-15

    We consider wavefunctions which are non-negative in some tensor product basis. We study what possible teleportation can occur in such wavefunctions, giving a complete answer in some cases (when one system is a qubit) and partial answers elsewhere. We use this to show that a one-dimensional wavefunction which is non-negative and has zero correlation length can be written in a “coherent Gibbs state” form, as explained later. We conjecture that such holds in higher dimensions. Additionally, some results are provided on possible teleportation in general wavefunctions, explaining how Schmidt coefficients before measurement limit the possible Schmidt coefficients after measurement, andmore » on the absence of a “generalized area law” [D. Aharonov et al., in Proceedings of Foundations of Computer Science (FOCS) (IEEE, 2014), p. 246; e-print arXiv.org:1410.0951] even for Hamiltonians with no sign problem. One of the motivations for this work is an attempt to prove a conjecture about ground state wavefunctions which have an “intrinsic” sign problem that cannot be removed by any quantum circuit. We show a weaker version of this, showing that the sign problem is intrinsic for commuting Hamiltonians in the same phase as the double semion model under the technical assumption that TQO-2 holds [S. Bravyi et al., J. Math. Phys. 51, 093512 (2010)].« less

  19. The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chan, L. Y.; Chan, C. Y.; Qin, Y.

    Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NO x, THC and O 3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO 2 were recorded. The strong prevailing wind

  20. Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Raffaele; Loock, Peter van

    2010-07-15

    Quantum teleportation enables deterministic and faithful transmission of quantum states, provided a maximally entangled state is preshared between sender and receiver, and a one-way classical channel is available. Here, we prove that these resources are not only sufficient, but also necessary, for deterministically and faithfully sending quantum states through any fixed noisy channel of maximal rank, when a single use of the cannel is admitted. In other words, for this family of channels, there are no other protocols, based on different (and possibly cheaper) sets of resources, capable of replacing quantum teleportation.

  1. Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices.

    PubMed

    Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin

    2017-04-13

    Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.

  2. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels

    NASA Astrophysics Data System (ADS)

    Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun

    2017-12-01

    As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.

  3. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grangier, Philippe; Laboratoire Charles Fabry, Institut d'Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau Cedex

    2011-04-15

    In this paper, we consider continuous-variable quantum-key-distribution (QKD) protocols which use non-Gaussian modulations. These specific modulation schemes are compatible with very efficient error-correction procedures, hence allowing the protocols to outperform previous protocols in terms of achievable range. In their simplest implementation, these protocols are secure for any linear quantum channels (hence against Gaussian attacks). We also show how the use of decoy states makes the protocols secure against arbitrary collective attacks, which implies their unconditional security in the asymptotic limit.

  4. Occam's Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel.

    PubMed

    Mahoney, John R; Aghamohammadi, Cina; Crutchfield, James P

    2016-02-15

    A stochastic process' statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process' cryptic order--a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost-one trades off prediction for generation complexity.

  5. Experimental demonstration of a flexible time-domain quantum channel.

    PubMed

    Xing, Xingxing; Feizpour, Amir; Hayat, Alex; Steinberg, Aephraim M

    2014-10-20

    We present an experimental realization of a flexible quantum channel where the Hilbert space dimensionality can be controlled electronically. Using electro-optical modulators (EOM) and narrow-band optical filters, quantum information is encoded and decoded in the temporal degrees of freedom of photons from a long-coherence-time single-photon source. Our results demonstrate the feasibility of a generic scheme for encoding and transmitting multidimensional quantum information over the existing fiber-optical telecommunications infrastructure.

  6. Geometric properties of commutative subalgebras of partial differential operators

    NASA Astrophysics Data System (ADS)

    Zheglov, A. B.; Kurke, H.

    2015-05-01

    We investigate further algebro-geometric properties of commutative rings of partial differential operators, continuing our research started in previous articles. In particular, we start to explore the simplest and also certain known examples of quantum algebraically completely integrable systems from the point of view of a recent generalization of Sato's theory, developed by the first author. We give a complete characterization of the spectral data for a class of 'trivial' commutative algebras and strengthen geometric properties known earlier for a class of known examples. We also define a kind of restriction map from the moduli space of coherent sheaves with fixed Hilbert polynomial on a surface to an analogous moduli space on a divisor (both the surface and the divisor are part of the spectral data). We give several explicit examples of spectral data and corresponding algebras of commuting (completed) operators, producing as a by-product interesting examples of surfaces that are not isomorphic to spectral surfaces of any (maximal) commutative ring of partial differential operators of rank one. Finally, we prove that any commutative ring of partial differential operators whose normalization is isomorphic to the ring of polynomials k \\lbrack u,t \\rbrack is a Darboux transformation of a ring of operators with constant coefficients. Bibliography: 39 titles.

  7. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications.

    PubMed

    Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin

    2012-08-01

    Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.

  8. Quantum non-objectivity from performativity of quantum phenomena

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei; Schumann, Andrew

    2014-12-01

    We analyze the logical foundations of quantum mechanics (QM) by stressing non-objectivity of quantum observables, which is a consequence of the absence of logical atoms in QM. We argue that the matter of quantum non-objectivity is that, on the one hand, the formalism of QM constructed as a mathematical theory is self-consistent, but, on the other hand, quantum phenomena as results of experimenters’ performances are not self-consistent. This self-inconsistency is an effect of the language of QM differing greatly from the language of human performances. The former is the language of a mathematical theory that uses some Aristotelian and Russellian assumptions (e.g., the assumption that there are logical atoms). The latter language consists of performative propositions that are self-inconsistent only from the viewpoint of conventional mathematical theory, but they satisfy another logic that is non-Aristotelian. Hence, the representation of quantum reality in linguistic terms may be different: the difference between a mathematical theory and a logic of performative propositions. To solve quantum self-inconsistency, we apply the formalism of non-classical self-referent logics.

  9. Laplace-Runge-Lenz vector in quantum mechanics in noncommutative space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gáliková, Veronika; Kováčik, Samuel; Prešnajder, Peter

    2013-12-15

    The main point of this paper is to examine a “hidden” dynamical symmetry connected with the conservation of Laplace-Runge-Lenz vector (LRL) in the hydrogen atom problem solved by means of non-commutative quantum mechanics (NCQM). The basic features of NCQM will be introduced to the reader, the key one being the fact that the notion of a point, or a zero distance in the considered configuration space, is abandoned and replaced with a “fuzzy” structure in such a way that the rotational invariance is preserved. The main facts about the conservation of LRL vector in both classical and quantum theory willmore » be reviewed. Finally, we will search for an analogy in the NCQM, provide our results and their comparison with the QM predictions. The key notions we are going to deal with are non-commutative space, Coulomb-Kepler problem, and symmetry.« less

  10. Tunable single-photon multi-channel quantum router based on an optomechanical system

    NASA Astrophysics Data System (ADS)

    Ma, Peng-Cheng; Yan, Lei-Lei; Zhang, Jian; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-01-01

    Routing of photons plays a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated for various systems, both in theory and experiment, the general form of a quantum router with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using an optomechanics cavity which is Coulomb coupled to a nanomechanical resonator. The router can extract single photons from the coherent input signal and directly modulate them into three different output channels. More importantly, the two output signal frequencies can be selected by adjusting the Coulomb coupling strength. For application purposes, we justify that there is insignificant influence from the vacuum and thermal noises on the performance of the router under cryogenic conditions. Our proposal may pave a new avenue towards multi-channel routers and quantum networks.

  11. Single-photon test of hyper-complex quantum theories using a metamaterial.

    PubMed

    Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.

  12. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  13. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE PAGES

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  14. Single-photon test of hyper-complex quantum theories using a metamaterial

    PubMed Central

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-01-01

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711

  15. Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities.

    PubMed

    Heo, Jino; Hong, Chang-Ho; Kang, Min-Sung; Yang, Hyeon; Yang, Hyung-Jin; Hong, Jong-Phil; Choi, Seong-Gon

    2017-11-02

    We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.

  16. Postselection technique for quantum channels with applications to quantum cryptography.

    PubMed

    Christandl, Matthias; König, Robert; Renner, Renato

    2009-01-16

    We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for an arbitrary input, it is sufficient to consider the case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained with help of the exponential de Finetti theorem.

  17. Commutative Algebras of Toeplitz Operators in Action

    NASA Astrophysics Data System (ADS)

    Vasilevski, Nikolai

    2011-09-01

    We will discuss a quite unexpected phenomenon in the theory of Toeplitz operators on the Bergman space: the existence of a reach family of commutative C*-algebras generated by Toeplitz operators with non-trivial symbols. As it tuns out the smoothness properties of symbols do not play any role in the commutativity, the symbols can be merely measurable. Everything is governed here by the geometry of the underlying manifold, the hyperbolic geometry of the unit disk. We mention as well that the complete characterization of these commutative C*-algebras of Toeplitz operators requires the Berezin quantization procedure. These commutative algebras come with a powerful research tool, the spectral type representation for the operators under study, which permit us to answer to many important questions in the area.

  18. Quantum regression theorem and non-Markovianity of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Guarnieri, Giacomo; Smirne, Andrea; Vacchini, Bassano

    2014-08-01

    We explore the connection between two recently introduced notions of non-Markovian quantum dynamics and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics has been defined looking at the behavior in time of the statistical operator, which determines the evolution of mean values, the quantum regression theorem makes statements about the behavior of system correlation functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression hypothesis, which can be obtained exactly evaluating two-point correlation functions. To this aim we consider a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities. We further study a photonic dephasing model, recently exploited for the experimental measurement of non-Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.

  19. On variational expressions for quantum relative entropies

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Fawzi, Omar; Tomamichel, Marco

    2017-12-01

    Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback-Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki's quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz' conclusion remains true if we allow general positive operator-valued measures. Second, we extend the result to Rényi relative entropies and show that for non-commuting states the sandwiched Rényi relative entropy is strictly larger than the measured Rényi relative entropy for α \\in (1/2, \\infty ) and strictly smaller for α \\in [0,1/2). The latter statement provides counterexamples for the data processing inequality of the sandwiched Rényi relative entropy for α < 1/2. Our main tool is a new variational expression for the measured Rényi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.

  20. Topological quantum pump in serpentine-shaped semiconducting narrow channels

    NASA Astrophysics Data System (ADS)

    Pandey, Sudhakar; Scopigno, Niccoló; Gentile, Paola; Cuoco, Mario; Ortix, Carmine

    2018-06-01

    We propose and analyze theoretically a one-dimensional solid-state electronic setup that operates as a topological charge pump in the complete absence of superimposed oscillating local voltages. The system consists of a semiconducting narrow channel with a strong Rashba spin-orbit interaction patterned in a mesoscale serpentine shape. A rotating planar magnetic field serves as the external ac perturbation, and cooperates with the Rashba spin-orbit interaction, which is modulated by the geometric curvature of the electronic channel to realize the topological pumping protocol, originally introduced by Thouless, in a different fashion. We expect the precise pumping of electric charges in our mesoscopic quantum device to be relevant for quantum metrology purposes.

  1. Occam’s Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.

    2016-02-01

    A stochastic process’ statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process’ cryptic order-a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost-one trades off prediction for generation complexity.

  2. Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution.

    PubMed

    Collins, Robert J; Amiri, Ryan; Fujiwara, Mikio; Honjo, Toshimori; Shimizu, Kaoru; Tamaki, Kiyoshi; Takeoka, Masahiro; Sasaki, Masahide; Andersson, Erika; Buller, Gerald S

    2017-06-12

    Ensuring the integrity and transferability of digital messages is an important challenge in modern communications. Although purely mathematical approaches exist, they usually rely on the computational complexity of certain functions, in which case there is no guarantee of long-term security. Alternatively, quantum digital signatures offer security guaranteed by the physical laws of quantum mechanics. Prior experimental demonstrations of quantum digital signatures in optical fiber have typically been limited to operation over short distances and/or operated in a laboratory environment. Here we report the experimental transmission of quantum digital signatures over channel losses of up to 42.8 ± 1.2 dB in a link comprised of 90 km of installed fiber with additional optical attenuation introduced to simulate longer distances. The channel loss of 42.8 ± 1.2 dB corresponds to an equivalent distance of 134.2 ± 3.8 km and this represents the longest effective distance and highest channel loss that quantum digital signatures have been shown to operate over to date. Our theoretical model indicates that this represents close to the maximum possible channel attenuation for this quantum digital signature protocol, defined as the loss for which the signal rate is comparable to the dark count rate of the detectors.

  3. Correlators in simultaneous measurement of non-commuting qubit observables

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan; Hacohen-Gourgy, Shay; Martin, Leigh S.; Siddiqi, Irfan; Korotkov, Alexander N.

    We consider simultaneous continuous measurement of non-commuting qubit observables and analyze multi-time correlators 〈i κ1 (t1) ^i κN (tN) 〉 for output signals i κ (t) from the detectors. Both informational (''spooky'') and phase backactions from cQED-type measurements with phase-sensitive amplifiers are taken into account. We find an excellent agreement between analytical results and experimental data for two-time correlators of the output signals from simultaneous measurement of qubit observables σx and σφ =σx cosφ +σy sinφ . The correlators can be used to extract small deviations of experimental parameters, e.g., phase backaction and residual Rabi frequency. The multi-time correlators are important in analysis of Bacon-Shor error correction/detection codes, operated with continuous measurements.

  4. Integer channels in nonuniform non-equilibrium 2D systems

    NASA Astrophysics Data System (ADS)

    Shikin, V.

    2018-01-01

    We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.

  5. Entropy production of doubly stochastic quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Hermes, Alexander, E-mail: muellerh@posteo.net; Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen; Stilck França, Daniel, E-mail: dsfranca@mytum.de

    2016-02-15

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an applicationmore » we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.« less

  6. Impact of Distance on Mode of Active Commuting in Chilean Children and Adolescents.

    PubMed

    Rodríguez-Rodríguez, Fernando; Cristi-Montero, Carlos; Celis-Morales, Carlos; Escobar-Gómez, Danica; Chillón, Palma

    2017-11-02

    Active commuting could contribute to increasing physical activity. The objective of this study was to characterise patterns of active commuting to and from schools in children and adolescents in Chile. A total of 453 Chilean children and adolescents aged between 10 and 18 years were included in this study. Data regarding modes of commuting and commuting distance was collected using a validated questionnaire. Commuting mode was classified as active commuting (walking and/or cycling) or non-active commuting (car, motorcycle and/or bus). Commuting distance expressed in kilometres was categorised into six subgroups (0 to 0.5, 0.6 to 1, 1.1 to 2, 2.1 to 3, 3.1 to 5 and >5 km). Car commuting was the main mode for children (to school 64.9%; from school 51.2%) and adolescents (to school 50.2%; from school 24.7%). Whereas public bus commuting was the main transport used by adolescents to return from school. Only 11.0% and 24.8% of children and adolescents, respectively, walk to school. The proportion of children and adolescents who engage in active commuting was lower in those covering longer distances compared to a short distance. Adolescents walked to and from school more frequently than children. These findings show that non-active commuting was the most common mode of transport and that journey distances may influence commuting modes in children and adolescents.

  7. The relationship between bicycle commuting and perceived stress: a cross-sectional study.

    PubMed

    Avila-Palencia, Ione; de Nazelle, Audrey; Cole-Hunter, Tom; Donaire-Gonzalez, David; Jerrett, Michael; Rodriguez, Daniel A; Nieuwenhuijsen, Mark J

    2017-06-23

    Active commuting - walking and bicycling for travel to and/or from work or educational addresses - may facilitate daily, routine physical activity. Several studies have investigated the relationship between active commuting and commuting stress; however, there are no studies examining the relationship between solely bicycle commuting and perceived stress, or studies that account for environmental determinants of bicycle commuting and stress. The current study evaluated the relationship between bicycle commuting, among working or studying adults in a dense urban setting, and perceived stress. A cross-sectional study was performed with 788 adults who regularly travelled to work or study locations (excluding those who only commuted on foot) in Barcelona, Spain. Participants responded to a comprehensive telephone survey concerning their travel behaviour from June 2011 through to May 2012. Participants were categorised as either bicycle commuters or non-bicycle commuters, and (based on the Perceived Stress Scale, PSS-4) as either stressed or non-stressed. Multivariate Poisson regression with robust variance models of stress status based on exposures with bicycle commuting were estimated and adjusted for potential confounders. Bicycle commuters had significantly lower risk of being stressed than non-bicycle commuters (Relative Risk; RR (95% CI)=0.73 (0.60 to 0.89), p=0.001). Bicycle commuters who bicycled 4 days per week (RR (95% CI)=0.42 (0.24 to 0.73), p=0.002) and those who bicycled 5 or more days per week (RR (95% CI)=0.57 (0.42 to 0.77), p<0.001) had lower risk of being stressed than those who bicycled less than 4 days. This relationship remained statistically significant after adjusting for individual and environmental confounders and when using different cut-offs of perceived stress. Stress reduction may be an important consequence of routine bicycle use and should be considered by decision makers as another potential benefit of its promotion. © Article

  8. The relationship between bicycle commuting and perceived stress: a cross-sectional study

    PubMed Central

    Avila-Palencia, Ione; de Nazelle, Audrey; Cole-Hunter, Tom; Donaire-Gonzalez, David; Jerrett, Michael; Rodriguez, Daniel A; Nieuwenhuijsen, Mark J

    2017-01-01

    Introduction Active commuting — walking and bicycling for travel to and/or from work or educational addresses — may facilitate daily, routine physical activity. Several studies have investigated the relationship between active commuting and commuting stress; however, there are no studies examining the relationship between solely bicycle commuting and perceived stress, or studies that account for environmental determinants of bicycle commuting and stress. The current study evaluated the relationship between bicycle commuting, among working or studying adults in a dense urban setting, and perceived stress. Methods A cross-sectional study was performed with 788 adults who regularly travelled to work or study locations (excluding those who only commuted on foot) in Barcelona, Spain. Participants responded to a comprehensive telephone survey concerning their travel behaviour from June 2011 through to May 2012. Participants were categorised as either bicycle commuters or non-bicycle commuters, and (based on the Perceived Stress Scale, PSS-4) as either stressed or non-stressed. Multivariate Poisson regression with robust variance models of stress status based on exposures with bicycle commuting were estimated and adjusted for potential confounders. Results Bicycle commuters had significantly lower risk of being stressed than non-bicycle commuters (Relative Risk; RR (95% CI)=0.73 (0.60 to 0.89), p=0.001). Bicycle commuters who bicycled 4 days per week (RR (95% CI)=0.42 (0.24 to 0.73), p=0.002) and those who bicycled 5 or more days per week (RR (95% CI)=0.57 (0.42 to 0.77), p<0.001) had lower risk of being stressed than those who bicycled less than 4 days. This relationship remained statistically significant after adjusting for individual and environmental confounders and when using different cut-offs of perceived stress. Conclusions Stress reduction may be an important consequence of routine bicycle use and should be considered by decision makers as another

  9. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels.

    PubMed

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-09-26

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell's inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique.

  10. Impact of Distance on Mode of Active Commuting in Chilean Children and Adolescents

    PubMed Central

    Cristi-Montero, Carlos; Escobar-Gómez, Danica; Chillón, Palma

    2017-01-01

    Active commuting could contribute to increasing physical activity. The objective of this study was to characterise patterns of active commuting to and from schools in children and adolescents in Chile. A total of 453 Chilean children and adolescents aged between 10 and 18 years were included in this study. Data regarding modes of commuting and commuting distance was collected using a validated questionnaire. Commuting mode was classified as active commuting (walking and/or cycling) or non-active commuting (car, motorcycle and/or bus). Commuting distance expressed in kilometres was categorised into six subgroups (0 to 0.5, 0.6 to 1, 1.1 to 2, 2.1 to 3, 3.1 to 5 and >5 km). Car commuting was the main mode for children (to school 64.9%; from school 51.2%) and adolescents (to school 50.2%; from school 24.7%). Whereas public bus commuting was the main transport used by adolescents to return from school. Only 11.0% and 24.8% of children and adolescents, respectively, walk to school. The proportion of children and adolescents who engage in active commuting was lower in those covering longer distances compared to a short distance. Adolescents walked to and from school more frequently than children. These findings show that non-active commuting was the most common mode of transport and that journey distances may influence commuting modes in children and adolescents. PMID:29099044

  11. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    NASA Astrophysics Data System (ADS)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit

  12. Interaction-free measurement as quantum channel discrimination

    NASA Astrophysics Data System (ADS)

    Zhou, You; Yung, Man-Hong

    2017-12-01

    Interaction-free measurement is a quantum process where, in the ideal situation, an object can be detected as if no interaction took place with the probing photon. Here we show that the problem of interaction-free measurement can be regarded as a problem of quantum-channel discrimination. In particular, we look for the optimal photonic states that can minimize the detection error and the photon loss in detecting the presence or absence of the object, which is taken to be semitransparent, and the number of the interrogation cycle is assumed to be finite. Furthermore, we also investigated the possibility of minimizing the detection error through the use of entangled photons, which is essentially a setting of quantum illumination. However, our results indicate that entanglement does not exhibit a clear advantage; the same performance can be achieved with unentangled photonic states.

  13. Passive states as optimal inputs for single-jump lossy quantum channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Mari, Andrea; Lloyd, Seth; Giovannetti, Vittorio

    2016-06-01

    The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum of ρ . Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], 10.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.

  14. Redundant imprinting of information in non-ideal environments: Quantum Darwinism via a noisy channel

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, Haitao; Zurek, Wojciech

    2011-03-01

    Quantum Darwinism provides an information-theoretic framework for the emergence of the classical world from the quantum substrate. It recognizes that we - the observers - acquire our information about the ``systems of interest'' indirectly from their imprints on the environment. Objectivity, a key property of the classical world, arises via the proliferation of redundant information into the environment where many observers can then intercept it and independently determine the state of the system. While causing a system to decohere, environments that remain nearly invariant under the Hamiltonian dynamics, such as very mixed states, have a diminished ability to transmit information about the system, yet can still acquire redundant information about the system [1,2]. Our results show that Quantum Darwinism is robust with respect to non-ideal initial states of the environment. This research is supported by the U.S. Department of Energy through the LANL/LDRD Program.

  15. Positrons vs electrons channeling in silicon crystal: energy levels, wave functions and quantum chaos manifestations

    NASA Astrophysics Data System (ADS)

    Shul'ga, N. F.; Syshchenko, V. V.; Tarnovsky, A. I.; Solovyev, I. I.; Isupov, A. Yu.

    2018-01-01

    The motion of fast electrons through the crystal during axial channeling could be regular and chaotic. The dynamical chaos in quantum systems manifests itself in both statistical properties of energy spectra and morphology of wave functions of the individual stationary states. In this report, we investigate the axial channeling of high and low energy electrons and positrons near [100] direction of a silicon crystal. This case is particularly interesting because of the fact that the chaotic motion domain occupies only a small part of the phase space for the channeling electrons whereas the motion of the channeling positrons is substantially chaotic for the almost all initial conditions. The energy levels of transverse motion, as well as the wave functions of the stationary states, have been computed numerically. The group theory methods had been used for classification of the computed eigenfunctions and identification of the non-degenerate and doubly degenerate energy levels. The channeling radiation spectrum for the low energy electrons has been also computed.

  16. Finite-time quantum entanglement in propagating squeezed microwaves.

    PubMed

    Fedorov, K G; Pogorzalek, S; Las Heras, U; Sanz, M; Yard, P; Eder, P; Fischer, M; Goetz, J; Xie, E; Inomata, K; Nakamura, Y; Di Candia, R; Solano, E; Marx, A; Deppe, F; Gross, R

    2018-04-23

    Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of non-commuting observables between two subsystems. At the same time, these subsystems themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication. Here, we generate propagating microwave TMS states by a beam splitter distributing single mode squeezing emitted from distinct Josephson parametric amplifiers along two output paths. We experimentally study the fundamental dephasing process of quantum cross-correlations in continuous-variable propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain the insight into finite-time entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

  17. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels

    PubMed Central

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-01-01

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell’s inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique. PMID:27667262

  18. Monte Carlo simulation of a noisy quantum channel with memory.

    PubMed

    Akhalwaya, Ismail; Moodley, Mervlyn; Petruccione, Francesco

    2015-10-01

    The classical capacity of quantum channels is well understood for channels with uncorrelated noise. For the case of correlated noise, however, there are still open questions. We calculate the classical capacity of a forgetful channel constructed by Markov switching between two depolarizing channels. Techniques have previously been applied to approximate the output entropy of this channel and thus its capacity. In this paper, we use a Metropolis-Hastings Monte Carlo approach to numerically calculate the entropy. The algorithm is implemented in parallel and its performance is studied and optimized. The effects of memory on the capacity are explored and previous results are confirmed to higher precision.

  19. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    PubMed

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  20. Private and public modes of bicycle commuting: a perspective on attitude and perception.

    PubMed

    Curto, A; de Nazelle, A; Donaire-Gonzalez, D; Cole-Hunter, T; Garcia-Aymerich, J; Martínez, D; Anaya, E; Rodríguez, D; Jerrett, M; Nieuwenhuijsen, M J

    2016-08-01

    Public bicycle-sharing initiatives can act as health enhancement strategies among urban populations. The aim of the study was to determine which attitudes and perceptions of behavioural control toward cycling and a bicycle-sharing system distinguish commuters with a different adherence to bicycle commuting. The recruitment process was conducted in 40 random points in Barcelona from 2011 to 2012. Subjects completed a telephone-based questionnaire including 27 attitude and perception statements. Based on their most common one-way commute trip and willingness to commute by bicycle, subjects were classified into Private Bicycle (PB), public bicycle or Bicing Bicycle (BB), Willing Non-bicycle (WN) and Non-willing Non-bicycle (NN) commuters. After reducing the survey statements through principal component analysis, a multinomial logistic regression model was obtained to evaluate associations between attitudinal and commuter sub-groups. We included 814 adults in the analysis [51.6% female, mean (SD): age 36.6 (10.3) years]. BB commuters were 2.0 times [95% confidence interval (CI) = 1.1-3.7] less likely to perceive bicycle as a quick, flexible and enjoyable mode compared to PB. BB, WN and NN were 2.5 (95% CI = 1.46-4.24), 2.6 (95% CI = 1.53-4.41) and 2.3 times (95% CI = 1.30-4.10) more likely to perceive benefits of using public bicycles (bicycle maintenance and parking avoidance, low cost and no worries about theft and vandalism) than did PB. Willing non-bicycle and public-bicycle commuters had more favourable perception toward public-shared bicycles compared to private cyclists. Hence, public bicycles may be the impetus for those willing to start bicycle commuting, thereby increasing physical activity levels. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  1. Temperature independent quantum well FET with delta channel doping

    NASA Technical Reports Server (NTRS)

    Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.

    1992-01-01

    A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.

  2. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Supersymmetric symplectic quantum mechanics

    NASA Astrophysics Data System (ADS)

    de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.

    2018-02-01

    Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.

  4. On a Continuum Limit for Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corichi, Alejandro; Center for Fundamental Theory, Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park PA 16802; Vukasinac, Tatjana

    2008-03-06

    The use of non-regular representations of the Heisenberg-Weyl commutation relations has proved to be useful for studying conceptual and technical issues in quantum gravity. Of particular relevance is the study of Loop Quantum Cosmology (LQC), symmetry reduced theory that is related to Loop Quantum Gravity, and that is based on a non-regular, polymeric representation. Recently, a soluble model was used by Ashtekar, Corichi and Singh to study the relation between Loop Quantum Cosmology and the standard Wheeler-DeWitt theory and, in particular, the passage to the limit in which the auxiliary parameter (interpreted as ''quantum geometry discreetness'') is sent to zeromore » in hope to get rid of this 'regulator' that dictates the LQC dynamics at each 'scale'. In this note we outline the first steps toward reformulating this question within the program developed by the authors for studying the continuum limit of polymeric theories, which was successfully applied to simple systems such as a Simple Harmonic Oscillator.« less

  5. Additive Classical Capacity of Quantum Channels Assisted by Noisy Entanglement.

    PubMed

    Zhuang, Quntao; Zhu, Elton Yechao; Shor, Peter W

    2017-05-19

    We give a capacity formula for the classical information transmission over a noisy quantum channel, with separable encoding by the sender and limited resources provided by the receiver's preshared ancilla. Instead of a pure state, we consider the signal-ancilla pair in a mixed state, purified by a "witness." Thus, the signal-witness correlation limits the resource available from the signal-ancilla correlation. Our formula characterizes the utility of different forms of resources, including noisy or limited entanglement assistance, for classical communication. With separable encoding, the sender's signals across multiple channel uses are still allowed to be entangled, yet our capacity formula is additive. In particular, for generalized covariant channels, our capacity formula has a simple closed form. Moreover, our additive capacity formula upper bounds the general coherent attack's information gain in various two-way quantum key distribution protocols. For Gaussian protocols, the additivity of the formula indicates that the collective Gaussian attack is the most powerful.

  6. Occams Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel (Open Source)

    DTIC Science & Technology

    2016-02-15

    do not quote them here. A sequel details a yet more efficient analytic technique based on holomorphic functions of the internal - state Markov chain...required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state ...minimal, unifilar predictor4. The -machine’s causal states σ ∈ are defined by the equivalence relation that groups all histories = −∞ ←x x :0 that

  7. New phenomena in non-equilibrium quantum physics

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takuya

    From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.

  8. Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Huang, Duan; Huang, Peng; Zeng, Guihua

    2018-02-01

    We propose a long-distance continuous-variable quantum key distribution (CVQKD) with a four-state protocol using non-Gaussian state-discrimination detection. A photon subtraction operation, which is deployed at the transmitter, is used for splitting the signal required for generating the non-Gaussian operation to lengthen the maximum transmission distance of the CVQKD. Whereby an improved state-discrimination detector, which can be deemed as an optimized quantum measurement that allows the discrimination of nonorthogonal coherent states beating the standard quantum limit, is applied at the receiver to codetermine the measurement result with the conventional coherent detector. By tactfully exploiting the multiplexing technique, the resulting signals can be simultaneously transmitted through an untrusted quantum channel, and subsequently sent to the state-discrimination detector and coherent detector, respectively. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance up to hundreds of kilometers. Furthermore, by taking the finite-size effect and composable security into account we obtain the tightest bound of the secure distance, which is more practical than that obtained in the asymptotic limit.

  9. Witnessing effective entanglement over a 2 km fiber channel.

    PubMed

    Wittmann, Christoffer; Fürst, Josef; Wiechers, Carlos; Elser, Dominique; Häseler, Hauke; Lütkenhaus, Norbert; Leuchs, Gerd

    2010-03-01

    We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of the transmitted signal, we estimate the attenuation and the excess noise caused by the channel. The estimated excess noise originating from the channel and the channel attenuation including the quantum efficiency of the detection setup is investigated with respect to the detection of effective entanglement. The local oscillator is considered in the verification. We witness effective entanglement with a channel length of up to 2 km.

  10. Uncertainty relation for non-Hamiltonian quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E.

    2013-01-15

    General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.

  11. Secret-key-assisted private classical communication capacity over quantum channels

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Luo, Zhicheng; Brun, Todd

    2008-10-01

    We prove a regularized formula for the secret-key-assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak (e-print arXiv:quant-ph/0512015) on entanglement-assisted quantum communication capacity . This formula provides a family protocol, the private father protocol, under the resource inequality framework that includes private classical communication without secret-key assistance as a child protocol.

  12. Dual-lasing channel quantum cascade laser based on scattering-assisted injection design.

    PubMed

    Wen, Boyu; Xu, Chao; Wang, Siyi; Wang, Kaixi; Tam, Man Chun; Wasilewski, Zbig; Ban, Dayan

    2018-04-02

    A dual lasing channel Terahertz Quantum Cascade laser (THz QCL) based on GaAs/Al 0.17 Ga 0.83 As material system is demonstrated. The device shows the lowest reported threshold current density (550A/cm 2 at 50K) of GaAs/Al x Ga 1-x As material system based scattering-assisted (SA) structures and operates up to a maximum lasing temperature of 144K. Dual lasing channel operation is investigated theoretically and experimentally. The combination of low frequency emission, dual lasing channel operation, low lasing threshold current density and high temperature performance make such devices ideal candidates for low frequency applications, and initiates the design strategy for achieving high-temperature performance terahertz quantum cascade laser with wide frequency coverage at low frequency.

  13. Entangled state teleportation through a couple of quantum channels composed of XXZ dimers in an Ising- XXZ diamond chain

    NASA Astrophysics Data System (ADS)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2017-02-01

    The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.

  14. Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field

    NASA Astrophysics Data System (ADS)

    Tang, Xu-Bing; Gao, Fang; Wang, Yao-Xiong; Kuang, Sen; Shuang, Feng

    2015-03-01

    Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non-Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F ≥ 0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035).

  15. Connes' embedding problem and winning strategies for quantum XOR games

    NASA Astrophysics Data System (ADS)

    Harris, Samuel J.

    2017-12-01

    We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.

  16. Quantum Dot-Based Luminescent Oxygen Channeling Assay for Potential Application in Homogeneous Bioassays.

    PubMed

    Zhuang, Si-Hui; Guo, Xin-Xin; Wu, Ying-Song; Chen, Zhen-Hua; Chen, Yao; Ren, Zhi-Qi; Liu, Tian-Cai

    2016-01-01

    The unique photoproperties of quantum dots are promising for potential application in bioassays. In the present study, quantum dots were applied to a luminescent oxygen channeling assay. The reaction system developed in this study was based on interaction of biotin with streptavidin. Carboxyl-modified polystyrene microspheres doped with quantum dots were biotinylated and used as acceptors. Photosensitizer-doped carboxyl-modified polystyrene microspheres were conjugated with streptavidin and used as donors. The results indicated that the singlet oxygen that was released from the donor beads diffused into the acceptor beads. The acceptor beads were then exited via thioxene, and were subsequently fluoresced. To avoid generating false positives, a high concentration (0.01 mg/mL) of quantum dots is required for application in homogeneous immunoassays. Compared to a conventional luminescent oxygen channeling assay, this quantum dots-based technique requires less time, and would be easier to automate and miniaturize because it requires no washing to remove excess labels.

  17. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  18. Applications of Classical and Quantum Mechanical Channeling in Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Haakenaasen, Randi

    1995-01-01

    The first part of this work involves ion channeling measurements on the high temperature superconductor rm YBa_{2}Cu_{3}O _{7-delta}(YBCO). The experiments were motivated by several previous reports of anomalous behavior in the displacements of the Cu and O atoms in the vicinity of the critical temperature rm(T _{c}) in several high temperature superconductors. Our measurements were complimentary to previous experiments in that we used thin film YBCO (as opposed to bulk single crystals) and focused on a small region around rm T_{c}. We mapped out the channeling parameters chi _{min} and Psi_ {1/2} in a 30 K region around rm T_{c} in 1-2 K steps in thin film YBCO(001) on MgO. Neither of our measurements showed any discontinuities in chi _{min} or Psi_ {1/2} near the superconducting phase transition, and we therefore have no reason to expect anything but a smooth increase in atomic vibrations in this region. We conclude that any anomalous behavior in atomic displacements deduced from previous channeling experiments is not essential to superconductivity. In the second part of the work positrons were used to study quantum mechanical channeling effects. We clearly observed and quantitatively accounted for quantum interference effects, including Bragg diffraction, in the forward transmission of channeled MeV positrons through a single crystal. Experimental scans across the (100), (110), and (111) planes in Si showed excellent agreement with theoretical dynamical diffraction calculations, giving us confidence that we can accurately predict the spatial and momentum distributions of channeled positrons. New experiments are envisioned in which the channeling effect is combined with 2 quantum annihilation in flight measurements to determine valence electron and magnetic spin distributions in a crystal. Since the channeling effect focuses the positrons to the interstices of the crystal, the annihilation rate will reflect the valence electron density. Furthermore, the

  19. Does Commuting Affect Health?

    PubMed

    Künn-Nelen, Annemarie

    2016-08-01

    This paper analyzes the relation between commuting time and health in the UK. I focus on four different types of health outcomes: subjective health measures, objective health measures, health behavior, and healthcare utilization. Fixed effect models are estimated with British Household Panel Survey data. I find that whereas objective health and health behavior are barely affected by commuting time, subjective health measures are clearly lower for people who commute longer. A longer commuting time is, moreover, related to more visits to the general practitioner. Effects turn out to be more pronounced for women and for commuters driving a car. For women, commuting time is also negatively related to regular exercise and positively to calling in sick. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Channel analysis for single photon underwater free space quantum key distribution.

    PubMed

    Shi, Peng; Zhao, Shi-Cheng; Gu, Yong-Jian; Li, Wen-Dong

    2015-03-01

    We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

  1. Improved estimation of commuter waiting times using headway and commuter boarding information

    NASA Astrophysics Data System (ADS)

    Ramli, Muhamad Azfar; Jayaraman, Vasundhara; Kwek, Hyen Chee; Tan, Kian Heong; Lee Kee Khoon, Gary; Monterola, Christopher

    2018-07-01

    The average amount of waiting time spent by commuters is one of the key indicators of service quality for public bus operations. While actual measurements of actual waiting time is difficult to be done en masse, models of waiting time can be derived from bus headways and these models have been adopted by transport planners in monitoring and regulating service reliability of operators. However, these models are founded on several assumptions on the patterns of commuter arrival which may not be applicable for bus services that experience high demand and heavily fluctuating commuter patterns. Given the availability of granular data on commuter boarding from automated fare collection systems, we propose a new methodology to better estimate the average waiting time of commuters. The formulation is anchored and validated using a three-month dataset from ten selected bus routes in Singapore. Finally, we discuss how our new measure allows for minimization of commuter waiting time through schedule optimization.

  2. Non-hermitian quantum thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  3. Non-hermitian quantum thermodynamics

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  4. Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system.

    PubMed

    Lodewyck, Jérôme; Debuisschert, Thierry; García-Patrón, Raúl; Tualle-Brouri, Rosa; Cerf, Nicolas J; Grangier, Philippe

    2007-01-19

    An intercept-resend attack on a continuous-variable quantum-key-distribution protocol is investigated experimentally. By varying the interception fraction, one can implement a family of attacks where the eavesdropper totally controls the channel parameters. In general, such attacks add excess noise in the channel, and may also result in non-Gaussian output distributions. We implement and characterize the measurements needed to detect these attacks, and evaluate experimentally the information rates available to the legitimate users and the eavesdropper. The results are consistent with the optimality of Gaussian attacks resulting from the security proofs.

  5. Practical gigahertz quantum key distribution robust against channel disturbance.

    PubMed

    Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; He, De-Yong; Hui, Cong; Hao, Peng-Lei; Fan-Yuan, Guan-Jie; Wang, Chao; Zhang, Li-Jun; Kuang, Jie; Liu, Shu-Feng; Zhou, Zheng; Wang, Yong-Gang; Guo, Guang-Can; Han, Zheng-Fu

    2018-05-01

    Quantum key distribution (QKD) provides an attractive solution for secure communication. However, channel disturbance severely limits its application when a QKD system is transferred from the laboratory to the field. Here a high-speed Faraday-Sagnac-Michelson QKD system is proposed that can automatically compensate for the channel polarization disturbance, which largely avoids the intermittency limitations of environment mutation. Over a 50 km fiber channel with 30 Hz polarization scrambling, the practicality of this phase-coding QKD system was characterized with an interference fringe visibility of 99.35% over 24 h and a stable secure key rate of 306 k bits/s over seven days without active polarization alignment.

  6. H-theorem and Maxwell demon in quantum physics

    NASA Astrophysics Data System (ADS)

    Kirsanov, N. S.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.; Blatter, G.; Lesovik, G. B.

    2018-02-01

    The Second Law of Thermodynamics states that temporal evolution of an isolated system occurs with non-diminishing entropy. In quantum realm, this holds for energy-isolated systems the evolution of which is described by the so-called unital quantum channel. The entropy of a system evolving in a non-unital quantum channel can, in principle, decrease. We formulate a general criterion of unitality for the evolution of a quantum system, enabling a simple and rigorous approach for finding and identifying the processes accompanied by decreasing entropy in energy-isolated systems. We discuss two examples illustrating our findings, the quantum Maxwell demon and heating-cooling process within a two-qubit system.

  7. Non-unitary probabilistic quantum computing

    NASA Technical Reports Server (NTRS)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  8. JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Camacho-Nieto, Oscar; Dong, Shi-Hai

    2016-10-01

    We present a scheme for joint remote state preparation (JRSP) of three-particle state via three tripartite Greenberger-Horne-Zeilinger (GHZ) entangled states as the quantum channel linking the parties. We use eight-qubit mutually orthogonal basis vector as measurement point of departure. The likelihood of success for this scheme has been found to be 1/8. However, by putting some special cases into consideration, the chances can be ameliorated to 1/4 and 1. The effects of amplitude-damping noise, phase-damping noise and depolarizing noise on this scheme have been scrutinized and the analytical derivations of fidelities for the quantum noisy channels have been presented. We found that for 0.55≤η≤1, the states conveyed through depolarizing channel lose more information than phase-damping channel while the information loss through amplitude damping channel is most minimal.

  9. Improving the Teleportation Scheme of Three-Qubit State with a Four-Qubit Quantum Channel

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Jiang, Min

    2018-01-01

    Recently, Zhao-Hui Wei et al. (Int. J. Theor. Phys. 55, 4687, 2016) proposed an improved quantum teleportation scheme for one three-qubit unknown state with a four-qubit quantum channel based on the original one proposed by Binayak S. Choudhury and Arpan Dhara (Int. J. Theor. Phys. 55, 3393, 2016). According to their schemes, the three-qubit entangled state could be teleported with one four-qubit cluster state and five-qubit joint measurements or four-qubit joint measurements. In this paper, we present an improved protocol only with single-qubit measurements and the same four-qubit quantum channel, lessening the difficulty and intensity of necessary operations.

  10. Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-01

    We propose quantum information processing schemes to generate and swap entangled states based on the interactions between flying photons and quantum dots (QDs) confined within optical cavities for quantum communication. To produce and distribute entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between the photonic qubits of flying photons of consumers (Alice and Bob) and electron-spin qubits of a provider (trust center, or TC), the TC employs the interactions of the QD-cavity system, which is composed of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, the TC constructs an entanglement channel (Bell state and 4-qubit GHZ state) to link one consumer with another through entanglement swapping, which can be realized to exploit a probe photon with interactions of the QD-cavity systems and single-qubit measurements without Bell state measurement, for quantum communication between consumers. Consequently, the TC, which has quantum nodes (QD-cavity systems), can accomplish constructing the entanglement channel (authenticated channel) between two separated consumers from the distributions of entangled states and entanglement swapping. Furthermore, our schemes using QD-cavity systems, which are feasible with a certain probability of success and high fidelity, can be experimentally implemented with technology currently in use.

  11. A survey of quantum Lyapunov control methods.

    PubMed

    Cong, Shuang; Meng, Fangfang

    2013-01-01

    The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed.

  12. A Survey of Quantum Lyapunov Control Methods

    PubMed Central

    2013-01-01

    The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed. PMID:23766732

  13. The general theory of three-party quantum secret sharing protocols over phase-damping channels

    NASA Astrophysics Data System (ADS)

    Song, Ting-Ting; Wen, Qiao-Yan; Qin, Su-Juan; Zhang, Wei-Wei; Sun, Ying

    2013-10-01

    The general theory of three-party QSS protocols with the noisy quantum channels is discussed. When the particles are transmitted through the noisy quantum channels, the initial pure three-qubit tripartite entangled states would be changed into mixed states. We analyze the security of QSS protocols with the different kinds of three-qubit tripartite entangled states under phase-damping channels and figure out, for different kinds of initial states, the successful probabilities that Alice's secret can be recovered by legal agents are different. Comparing with one recent QSS protocol based on GHZ states, our scheme is secure, and has a little smaller key rate than that of the recent protocol.

  14. Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.

    PubMed

    Heedt, S; Manolescu, A; Nemnes, G A; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th

    2016-07-13

    We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.

  15. Quantum mechanics on the h-deformed quantum plane

    NASA Astrophysics Data System (ADS)

    Cho, Sunggoo

    1999-03-01

    We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended h-deformed quantum plane and solve the Schrödinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincaré half-plane, a surface of constant negative Gaussian curvature. We show that the bound state energy spectra for particles under specific potentials depend explicitly on the deformation parameter h. Moreover, it is shown that bound states can survive on the quantum plane in a limiting case where bound states on the Poincaré half-plane disappear.

  16. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si0.8Ge0.2 quantum well hetero-structure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.

    We demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication [T. M. Lu et al., Appl. Phys. Lett. 109, 093102 (2016)]. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triplemore » dot in a triangular configuration is induced leading to regions in the charge stability diagram where three addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart the single dot charge-senses the double dot with relative change of ~2% in the sensor current. We also highlight temporal drifting and metastability of the Coulomb oscillations. These effects are induced if the temperature environment of the device is not kept constant and arise from non-equilibrium charge redistribution and subsequent slow recovery.« less

  17. A reconstruction theorem for Connes-Landi deformations of commutative spectral triples

    NASA Astrophysics Data System (ADS)

    Ćaćić, Branimir

    2015-12-01

    We formulate and prove an extension of Connes's reconstruction theorem for commutative spectral triples to so-called Connes-Landi or isospectral deformations of commutative spectral triples along the action of a compact Abelian Lie group G, also known as toric noncommutative manifolds. In particular, we propose an abstract definition for such spectral triples, where noncommutativity is entirely governed by a deformation parameter sitting in the second group cohomology of the Pontryagin dual of G, and then show that such spectral triples are well-behaved under further Connes-Landi deformation, thereby allowing for both quantisation from and dequantisation to G-equivariant abstract commutative spectral triples. We then use a refinement of the Connes-Dubois-Violette splitting homomorphism to conclude that suitable Connes-Landi deformations of commutative spectral triples by a rational deformation parameter are almost-commutative in the general, topologically non-trivial sense.

  18. Quantum steering of Gaussian states via non-Gaussian measurements

    NASA Astrophysics Data System (ADS)

    Ji, Se-Wan; Lee, Jaehak; Park, Jiyong; Nha, Hyunchul

    2016-07-01

    Quantum steering—a strong correlation to be verified even when one party or its measuring device is fully untrusted—not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuous-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfilment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime.

  19. Opportunistic quantum network coding based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Du, Gang; Liu, Jian-wei

    2016-04-01

    It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

  20. An improved control mode for the ping-pong protocol operation in imperfect quantum channels

    NASA Astrophysics Data System (ADS)

    Zawadzki, Piotr

    2015-07-01

    Quantum direct communication (QDC) can bring confidentiality of sensitive information without any encryption. A ping-pong protocol, a well-known example of entanglement-based QDC, offers asymptotic security in a perfect quantum channel. However, it has been shown (Wójcik in Phys Rev Lett 90(15):157901, 2003. doi:10.1103/PhysRevLett.90.157901) that it is not secure in the presence of losses. Moreover, legitimate parities cannot rely on dense information coding due to possible undetectable eavesdropping even in the perfect setting (Pavičić in Phys Rev A 87(4):042326, 2013. doi:10.1103/PhysRevA.87.042326). We have identified the source of the above-mentioned weaknesses in the incomplete check of the EPR pair coherence. We propose an improved version of the control mode, and we discuss its relation to the already-known attacks that undermine the QDC security. It follows that the new control mode detects these attacks with high probability and independently on a quantum channel type. As a result, an asymptotic security of the QDC communication can be maintained for imperfect quantum channels, also in the regime of dense information coding.

  1. Robustness of quantum key distribution with discrete and continuous variables to channel noise

    NASA Astrophysics Data System (ADS)

    Lasota, Mikołaj; Filip, Radim; Usenko, Vladyslav C.

    2017-06-01

    We study the robustness of quantum key distribution protocols using discrete or continuous variables to the channel noise. We introduce the model of such noise based on coupling of the signal to a thermal reservoir, typical for continuous-variable quantum key distribution, to the discrete-variable case. Then we perform a comparison of the bounds on the tolerable channel noise between these two kinds of protocols using the same noise parametrization, in the case of implementation which is perfect otherwise. Obtained results show that continuous-variable protocols can exhibit similar robustness to the channel noise when the transmittance of the channel is relatively high. However, for strong loss discrete-variable protocols are superior and can overcome even the infinite-squeezing continuous-variable protocol while using limited nonclassical resources. The requirement on the probability of a single-photon production which would have to be fulfilled by a practical source of photons in order to demonstrate such superiority is feasible thanks to the recent rapid development in this field.

  2. Environment-induced quantum coherence spreading of a qubit

    NASA Astrophysics Data System (ADS)

    Pozzobom, Mauro B.; Maziero, Jonas

    2017-02-01

    We make a thorough study of the spreading of quantum coherence (QC), as quantified by the l1-norm QC, when a qubit (a two-level quantum system) is subjected to noise quantum channels commonly appearing in quantum information science. We notice that QC is generally not conserved and that even incoherent initial states can lead to transitory system-environment QC. We show that for the amplitude damping channel the evolved total QC can be written as the sum of local and non-local parts, with the last one being equal to entanglement. On the other hand, for the phase damping channel (PDC) entanglement does not account for all non-local QC, with the gap between them depending on time and also on the qubit's initial state. Besides these issues, the possibility and conditions for time invariance of QC are regarded in the case of bit, phase, and bit-phase flip channels. Here we reveal the qualitative dynamical inequivalence between these channels and the PDC and show that the creation of system-environment entanglement does not necessarily imply the destruction of the qubit's QC. We also investigate the resources needed for non-local QC creation, showing that while the PDC requires initial coherence of the qubit, for some other channels non-zero population of the excited state (i.e., energy) is sufficient. Related to that, considering the depolarizing channel we notice the qubit's ability to act as a catalyst for the creation of joint QC and entanglement, without need for nonzero initial QC or excited state population.

  3. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  4. Historical remarks on exponential product and quantum analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Masuo

    2015-03-10

    The exponential product formula [1, 2] was substantially introduced in physics by the present author [2]. Its systematic applications to quantum Monte Carlo Methods [3] were preformed [4, 5] first in 1977. Many interesting applications [6] of the quantum-classical correspondence (namely S-T transformation) have been reported. Systematic higher-order decomposition formulae were also discovered by the present author [7-11], using the recursion scheme [7, 9]. Physically speaking, these exponential product formulae play a conceptual role of separation of procedures [3,14]. Mathematical aspects of these formulae have been integrated in quantum analysis [15], in which non-commutative differential calculus is formulated and amore » general quantum Taylor expansion formula is given. This yields many useful operator expansion formulae such as the Feynman expansion formula and the resolvent expansion. Irreversibility and entropy production are also studied using quantum analysis [15].« less

  5. Probing quantumness with joint continuous measurements of non-commuting qubit observables

    NASA Astrophysics Data System (ADS)

    Garcia-Pintos, Luis Pedro; Dressel, Justin

    In this talk we consider continuous weak measurements as a means to probe foundational issues in quantum mechanics. We consider the simultaneous monitoring of two noncommuting observables-as recently implemented by the Siddiqi group at UC Berkeley. Contrary to naive expectation, the output of such experiment can be used to simultaneously track the approximate observable dynamics. Despite this seeming realism, we also show that the readouts violate macrorealistic Leggett-Garg inequalities for arbitrarily short temporal correlations, and that the derived inequalities are manifestly violated even in the absence of Hamiltonian evolution. Such violations should indicate the failure of at least one postulate of macrorealism: either physical quantities do not have well defined values at all times, or the measurement process itself disturbs what is being measured. Despite this macrorealism violation, we construct a realistic, but epistemically restricted, model that perfectly emulates both the qubit evolution and the observed noisy signals, thus also emulating the violations.

  6. Aggregating quantum repeaters for the quantum internet

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Kato, Go

    2017-09-01

    The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.

  7. Quantum steganography and quantum error-correction

    NASA Astrophysics Data System (ADS)

    Shaw, Bilal A.

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus

  8. Discrimination of correlated and entangling quantum channels with selective process tomography

    DOE PAGES

    Dumitrescu, Eugene; Humble, Travis S.

    2016-10-10

    The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hiddenmore » sources of noise. Lastly, our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.« less

  9. Quantum non-Markovianity: characterization, quantification and detection

    NASA Astrophysics Data System (ADS)

    Rivas, Ángel; Huelga, Susana F.; Plenio, Martin B.

    2014-09-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

  10. Quantum non-Markovianity: characterization, quantification and detection.

    PubMed

    Rivas, Ángel; Huelga, Susana F; Plenio, Martin B

    2014-09-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

  11. Complementary spin transistor using a quantum well channel.

    PubMed

    Park, Youn Ho; Choi, Jun Woo; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Choi, Heon-Jin; Koo, Hyun Cheol

    2017-04-20

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors, the magnetization directions of the source and drain electrodes are parallel or antiparallel, respectively, depending on the exchange bias field direction. Using this scheme, we also realize a complementary logic operation purely with spin transistors controlled by the gate voltage, without any additional n- or p-channel transistor.

  12. Quantum non-Abelian hydrodynamics: Anyonic or spin-orbital entangled liquids, nonunitarity of scattering matrix and charge fractionalization

    NASA Astrophysics Data System (ADS)

    Pareek, Tribhuvan Prasad

    2015-09-01

    In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a

  13. Mathematics of Quantization and Quantum Fields

    NASA Astrophysics Data System (ADS)

    Dereziński, Jan; Gérard, Christian

    2013-03-01

    Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.

  14. Commuter Chronicle: An Effort to Enhance Commuter Communication in a Traditional Residential Campus Environment.

    ERIC Educational Resources Information Center

    Henckler, Joyce D.

    1982-01-01

    In an effort to inform commuter students of services and programs on a regular basis, the University of Maine at Orono launched a campaign consisting of a newsletter and orientation sessions targeted directly at commuter students. The newsletter included topics of special interest to commuter students such as housing services, ridesharing, child…

  15. Noise-resilient quantum evolution steered by dynamical decoupling

    PubMed Central

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems. PMID:23912335

  16. Noise-resilient quantum evolution steered by dynamical decoupling.

    PubMed

    Liu, Gang-Qin; Po, Hoi Chun; Du, Jiangfeng; Liu, Ren-Bao; Pan, Xin-Yu

    2013-01-01

    Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems.

  17. The generalized Lyapunov theorem and its application to quantum channels

    NASA Astrophysics Data System (ADS)

    Burgarth, Daniel; Giovannetti, Vittorio

    2007-05-01

    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.

  18. Positive contraction mappings for classical and quantum Schrödinger systems

    NASA Astrophysics Data System (ADS)

    Georgiou, Tryphon T.; Pavon, Michele

    2015-03-01

    The classical Schrödinger bridge seeks the most likely probability law for a diffusion process, in path space, that matches marginals at two end points in time; the likelihood is quantified by the relative entropy between the sought law and a prior. Jamison proved that the new law is obtained through a multiplicative functional transformation of the prior. This transformation is characterised by an automorphism on the space of endpoints probability measures, which has been studied by Fortet, Beurling, and others. A similar question can be raised for processes evolving in a discrete time and space as well as for processes defined over non-commutative probability spaces. The present paper builds on earlier work by Pavon and Ticozzi and begins by establishing solutions to Schrödinger systems for Markov chains. Our approach is based on the Hilbert metric and shows that the solution to the Schrödinger bridge is provided by the fixed point of a contractive map. We approach, in a similar manner, the steering of a quantum system across a quantum channel. We are able to establish existence of quantum transitions that are multiplicative functional transformations of a given Kraus map for the cases where the marginals are either uniform or pure states. As in the Markov chain case, and for uniform density matrices, the solution of the quantum bridge can be constructed from the fixed point of a certain contractive map. For arbitrary marginal densities, extensive numerical simulations indicate that iteration of a similar map leads to fixed points from which we can construct a quantum bridge. For this general case, however, a proof of convergence remains elusive.

  19. Laser location and manipulation of a single quantum tunneling channel in an InAs quantum dot.

    PubMed

    Makarovsky, O; Vdovin, E E; Patané, A; Eaves, L; Makhonin, M N; Tartakovskii, A I; Hopkinson, M

    2012-03-16

    We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.

  20. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    NASA Astrophysics Data System (ADS)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  1. Commuter choice primer : an employer's guide to implementing effective commuter choice programs

    DOT National Transportation Integrated Search

    2003-01-01

    The Commuter Choice Primer is intended to be a concise, user-friendly reference guide for employers and transportation professionals to developing and implementing worksite commuter choice programs. It is available on-line in both HTML and PDF format...

  2. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grudka, Andrzej; National Quantum Information Centre of Gdansk, PL-81-824 Sopot; Horodecki, Pawel

    2010-06-15

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.

  3. Distributing entanglement and single photons through an intra-city, free-space quantum channel.

    PubMed

    Resch, K; Lindenthal, M; Blauensteiner, B; Böhm, H; Fedrizzi, A; Kurtsiefer, C; Poppe, A; Schmitt-Manderbach, T; Taraba, M; Ursin, R; Walther, P; Weier, H; Weinfurter, H; Zeilinger, A

    2005-01-10

    We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27+/-0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based freespace quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.

  4. A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Perez, Alejandro

    2017-05-01

    We show that the non-Abelian nature of geometric fluxes—the corner-stone in the definition of quantum geometry in the framework of loop quantum gravity (LQG)—follows directly form the continuum canonical commutations relations of gravity in connection variables and the validity of the Gauss law. The present treatment simplifies previous formulations and thus identifies more clearly the root of the discreteness of geometric operators in LQG. Our statement generalizes to arbitrary gauge theories and relies only on the validity of the Gauss law.

  5. Boosting the optical performance and commutation speed of phototransistor using SiGe/Si/Ge tunneling structure

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2018-06-01

    In this paper, a new optically controlled tunneling field effect transistor (OC-TFET) based on SiGe/Si/Ge hetero-channel is proposed to improve optical commutation speed and reduce power consumption. An exhaustive study of the device switching behavior associated with different hetero-channel structures has been carried out using an accurate numerical simulation. Moreover, a new figure of Merit (FoM) parameter called optical swing factor that describes the phototransistor optical commutation speed is proposed. We demonstrate that the band-to-band tunneling effect can be beneficial for improving the device optical commutation speed. The impact of the Ge mole fraction of the SiGe source region on the device FoMs is investigated. It is found that the optimized design with 40% of Ge content offers the opportunity to overcome the trade-off between ultrafast and very sensitive photoreceiver performance, where it yields 48 mV/dec of optical swing factor and 155 dB of I ON /I OFF ratio. An overall performance comparison between the proposed OC-TFET device and the conventional designs is performed, where the proposed structure ensures high optical detectivity for very low optical powers (sub-1pW) as compared to that of the conventional counterparts. Therefore, the proposed OC-TFET provides the possibility for bridging the gap between improved optical commutation speed and reduced power consumption, which makes it a potential alternative for high-performance inter-chip data communication applications.

  6. Quantum key distribution using continuous-variable non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.

    2016-02-01

    In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.

  7. Rail commuting duration and passenger stress.

    PubMed

    Evans, Gary W; Wener, Richard E

    2006-05-01

    Over 100 million Americans commute to work every weekday. Little is known, however, about how this aspect of work, which may indeed be the most stressful aspect of the job for some, affects human health and well-being. The authors studied a sample of 208 male and female suburban rail commuters who took the train to Manhattan, New York. The greater the duration of the commute, the larger the magnitude of salivary cortisol elevations in reference to resting baseline levels, the less the commuter's persistence on a task at the end of the commute, and the greater the levels of perceived stress. These effects were not moderated by gender. Commuting stress is an important and largely overlooked aspect of environmental health. 2006 APA, all rights reserved

  8. Active Commuting: Workplace Health Promotion for Improved Employee Well-Being and Organizational Behavior

    PubMed Central

    Page, Nadine C.; Nilsson, Viktor O.

    2017-01-01

    Objective: This paper describes a behavior change intervention that encourages active commuting using electrically assisted bikes (e-bikes) for health promotion in the workplace. This paper presents the preliminary findings of the intervention’s impact on improving employee well-being and organizational behavior, as an indicator of potential business success. Method: Employees of a UK-based organization participated in a workplace travel behavior change intervention and used e-bikes as an active commuting mode; this was a change to their usual passive commuting behavior. The purpose of the intervention was to develop employee well-being and organizational behavior for improved business success. We explored the personal benefits and organizational co-benefits of active commuting and compared these to a travel-as-usual group of employees who did not change their behavior and continued taking non-active commutes. Results: Employees who changed their behavior to active commuting reported more positive affect, better physical health and more productive organizational behavior outcomes compared with passive commuters. In addition, there was an interactive effect of commuting mode and commuting distance: a more frequent active commute was positively associated with more productive organizational behavior and stronger overall positive employee well-being whereas a longer passive commute was associated with poorer well-being, although there was no impact on organizational behavior. Conclusion: This research provides emerging evidence of the value of an innovative workplace health promotion initiative focused on active commuting in protecting and improving employee well-being and organizational behavior for stronger business performance. It considers the significant opportunities for organizations pursuing improved workforce well-being, both in terms of employee health, and for improved organizational behavior and business success. PMID:28119640

  9. Active Commuting: Workplace Health Promotion for Improved Employee Well-Being and Organizational Behavior.

    PubMed

    Page, Nadine C; Nilsson, Viktor O

    2016-01-01

    Objective: This paper describes a behavior change intervention that encourages active commuting using electrically assisted bikes (e-bikes) for health promotion in the workplace. This paper presents the preliminary findings of the intervention's impact on improving employee well-being and organizational behavior, as an indicator of potential business success. Method: Employees of a UK-based organization participated in a workplace travel behavior change intervention and used e-bikes as an active commuting mode; this was a change to their usual passive commuting behavior. The purpose of the intervention was to develop employee well-being and organizational behavior for improved business success. We explored the personal benefits and organizational co-benefits of active commuting and compared these to a travel-as-usual group of employees who did not change their behavior and continued taking non-active commutes. Results: Employees who changed their behavior to active commuting reported more positive affect, better physical health and more productive organizational behavior outcomes compared with passive commuters. In addition, there was an interactive effect of commuting mode and commuting distance: a more frequent active commute was positively associated with more productive organizational behavior and stronger overall positive employee well-being whereas a longer passive commute was associated with poorer well-being, although there was no impact on organizational behavior. Conclusion: This research provides emerging evidence of the value of an innovative workplace health promotion initiative focused on active commuting in protecting and improving employee well-being and organizational behavior for stronger business performance. It considers the significant opportunities for organizations pursuing improved workforce well-being, both in terms of employee health, and for improved organizational behavior and business success.

  10. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  11. Quantum non-Gaussianity and quantification of nonclassicality

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.

    2018-05-01

    The algebraic quantification of nonclassicality, which naturally arises from the quantum superposition principle, is related to properties of regular nonclassicality quasiprobabilities. The latter are obtained by non-Gaussian filtering of the Glauber-Sudarshan P function. They yield lower bounds for the degree of nonclassicality. We also derive bounds for convex combinations of Gaussian states for certifying quantum non-Gaussianity directly from the experimentally accessible nonclassicality quasiprobabilities. Other quantum-state representations, such as s -parametrized quasiprobabilities, insufficiently indicate or even fail to directly uncover detailed information on the properties of quantum states. As an example, our approach is applied to multi-photon-added squeezed vacuum states.

  12. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2002-12-01

    A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1(5)≈27.6%, thereby making it the most error resistant scheme known to date.

  13. Quantum spaces, central extensions of Lie groups and related quantum field theories

    NASA Astrophysics Data System (ADS)

    Poulain, Timothé; Wallet, Jean-Christophe

    2018-02-01

    Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.

  14. Mapping quantum-classical Liouville equation: projectors and trajectories.

    PubMed

    Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond

    2012-02-28

    The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.

  15. Generic framework for the secure Yuen 2000 quantum-encryption protocol employing the wire-tap channel approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaljevic, Miodrag J.

    2007-05-15

    It is shown that the security, against known-plaintext attacks, of the Yuen 2000 (Y00) quantum-encryption protocol can be considered via the wire-tap channel model assuming that the heterodyne measurement yields the sample for security evaluation. Employing the results reported on the wire-tap channel, a generic framework is proposed for developing secure Y00 instantiations. The proposed framework employs a dedicated encoding which together with inherent quantum noise at the attacker's side provides Y00 security.

  16. Relative commutativity degree of some dihedral groups

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Muhanizah; Mohd Ali, Nor Muhainiah; Sarmin, Nor Haniza; Abd Manaf, Fadila Normahia

    2013-04-01

    The commutativity degree of a finite group G was introduced by Erdos and Turan for symmetric groups, finite groups and finite rings in 1968. The commutativity degree, P(G), is defined as the probability that a random pair of elements in a group commute. The relative commutativity degree of a group G is defined as the probability for an element of subgroup, H and an element of G to commute with one another and denoted by P(H,G). In this research the relative commutativity degree of some dihedral groups are determined.

  17. Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model.

    PubMed

    Jiao, Haisong; Pu, Tao; Zheng, Jilin; Xiang, Peng; Fang, Tao

    2017-05-15

    The physical-layer security of a quantum-noise randomized cipher (QNRC) system is, for the first time, quantitatively evaluated with secrecy capacity employed as the performance metric. Considering quantum noise as a channel advantage for legitimate parties over eavesdroppers, the specific wire-tap models for both channels of the key and data are built with channel outputs yielded by quantum heterodyne measurement; the general expressions of secrecy capacities for both channels are derived, where the matching codes are proved to be uniformly distributed. The maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. The influences of various system parameters on secrecy capacities are assessed in detail. The results indicate that QNRC combined with proper channel codes is a promising framework of secure communication for long distance with high speed, which can be orders of magnitude higher than the perfect secrecy rates of other encryption systems. Even if the eavesdropper intercepts more signal power than the legitimate receiver, secure communication (up to Gb/s) can still be achievable. Moreover, the secrecy of running key is found to be the main constraint to the systemic maximal secrecy rate.

  18. Non-Markovianity hinders Quantum Darwinism.

    PubMed

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-20

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  19. Non-Markovianity hinders Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  20. Non-Markovianity hinders Quantum Darwinism

    PubMed Central

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857

  1. Asthma and school commuting time.

    PubMed

    McConnell, Rob; Liu, Feifei; Wu, Jun; Lurmann, Fred; Peters, John; Berhane, Kiros

    2010-08-01

    This study examined associations of asthma with school commuting time. Time on likely school commute route was used as a proxy for on-road air pollution exposure among 4741 elementary school children at enrollment into the Children's Health Study. Lifetime asthma and severe wheeze (including multiple attacks, nocturnal, or with shortness of breath) were reported by parents. In asthmatic children, severe wheeze was associated with commuting time (odds ratio, 1.54 across the 9-minute 5% to 95% exposure distribution; 95% confidence interval, 1.01 to 2.36). The association was stronger in analysis restricted to asthmatic children with commuting times 5 minutes or longer (odds ratio, 1.97; 95% confidence interval, 1.02 to 3.77). No significant associations were observed with asthma prevalence. Among asthmatics, severe wheeze was associated with relatively short school commuting times. Further investigation of effects of on-road pollutant exposure is warranted.

  2. Decision theory and information propagation in quantum physics

    NASA Astrophysics Data System (ADS)

    Forrester, Alan

    In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule p k =| ψ k | 2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129-3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415-438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism-the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]-I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.

  3. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  4. H-theorem in quantum physics.

    PubMed

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  5. H-theorem in quantum physics

    PubMed Central

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  6. A multi-commuted flow injection system with a multi-channel propulsion unit placed before detection: Spectrophotometric determination of ammonium.

    PubMed

    Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S

    2007-09-26

    A flow system with a multi-channel peristaltic pump placed before the solenoid valves is proposed to overcome some limitations attributed to multi-commuted flow injection systems: the negative pressure can lead to the formation of unwanted air bubbles and limits the use of devices for separation processes (gas diffusion, dialysis or ion-exchange). The proposed approach was applied to the colorimetric determination of ammonium nitrogen. In alkaline medium, ammonium is converted into ammonia, which diffuses over the membrane, causing a pH change and subsequently a colour change in the acceptor stream (bromothymol blue solution). The system allowed the re-circulation of the acceptor solution and was applied to ammonium determination in surface and tap water, providing relative standard deviations lower than 1.5%. A stopped flow approach in the acceptor stream was adopted to attain a low quantification limit (42 microgL(-1)) and a linear dynamic range of 50-1000 microgL(-1) with a determination rate of 20 h(-1).

  7. Sufficient condition for a quantum state to be genuinely quantum non-Gaussian

    NASA Astrophysics Data System (ADS)

    Happ, L.; Efremov, M. A.; Nha, H.; Schleich, W. P.

    2018-02-01

    We show that the expectation value of the operator \\hat{{ \\mathcal O }}\\equiv \\exp (-c{\\hat{x}}2)+\\exp (-c{\\hat{p}}2) defined by the position and momentum operators \\hat{x} and \\hat{p} with a positive parameter c can serve as a tool to identify quantum non-Gaussian states, that is states that cannot be represented as a mixture of Gaussian states. Our condition can be readily tested employing a highly efficient homodyne detection which unlike quantum-state tomography requires the measurements of only two orthogonal quadratures. We demonstrate that our method is even able to detect quantum non-Gaussian states with positive–definite Wigner functions. This situation cannot be addressed in terms of the negativity of the phase-space distribution. Moreover, we demonstrate that our condition can characterize quantum non-Gaussianity for the class of superposition states consisting of a vacuum and integer multiples of four photons under more than 50 % signal attenuation.

  8. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  9. Non-Markovian Complexity in the Quantum-to-Classical Transition

    PubMed Central

    Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

    2015-01-01

    The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002

  10. Hawking effects as a noisy quantum channel

    NASA Astrophysics Data System (ADS)

    Ahn, Doyeol

    2018-01-01

    In this work, we have shown that the evolution of the bipartite entangled state near the black hole with the Hawking radiation can be described by a noisy quantum channel, having a complete positive map with an "operator sum representation." The entanglement fidelity is obtained in analytic form from the "operator sum representation." The bipartite entangled state becomes bipartite mixed Gaussian state as the black hole evaporates. By comparing negativity and entanglement monotone with the analytical form of the entanglement fidelity, we found that the negativity and the entanglement monotone for s = 1/2 provide the upper and the lower bounds of the entanglement fidelity, respectively.

  11. Two-time quantum transport and quantum diffusion.

    PubMed

    Kleinert, P

    2009-05-01

    Based on the nonequilibrium Green's function technique, a unified theory is developed that covers quantum transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is applicable to transport via extended and localized states, extends previous semiphenomenological studies and puts them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the existence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.

  12. Commutability of control materials for external quality assessment of serum apolipoprotein A-I measurement.

    PubMed

    Zeng, Jie; Qi, Tianqi; Wang, Shu; Zhang, Tianjiao; Zhou, Weiyan; Zhao, Haijian; Ma, Rong; Zhang, Jiangtao; Yan, Ying; Dong, Jun; Zhang, Chuanbao; Chen, Wenxiang

    2018-04-25

    The aim of the current study was to evaluate the commutability of commercial control materials and human serum pools and to investigate the suitability of the materials for the external quality assessment (EQA) of serum apolipoprotein A-I (apo A-I) measurement. The Clinical and Laboratory Standards Institute (CLSI) EP14-A3 protocol was used for the commutability study. Apo A-I concentrations in two levels of commercial control materials used in EQA program, two fresh-frozen human serum pools (FSPs) and two frozen human serum pools prepared from residual clinical specimens (RSPs) were measured along with 50 individual samples using nine commercial assays. Measurement results of the 50 individual samples obtained with different assays were pairwise analyzed by Deming regression, and 95% prediction intervals (PIs) were calculated. The commutability of the processed materials was evaluated by comparing the measurement results of the materials with the limits of the PIs. The FSP-1 was commutable for all the 36 assay pairs, and FSP-2 was commutable for 30 pairs; RSP-1 and RSP-2 showed commutability for 27/36 and 22/36 assay pairs, respectively, whereas the two EQA materials were commutable only for 4/36 and 5/36 assay pairs, respectively. Non-commutability of the tested EQA materials has been observed among current apo A-I assays. EQA programs need either to take into account the commutability-related biases in the interpretation of the EQA results or to use more commutable materials. Frozen human serum pools were commutable for most of the assays.

  13. Signatures of a Nonthermal Metastable State in Copropagating Quantum Hall Edge Channels

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakazawa, Ryo; Ota, Tomoaki; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa

    2018-05-01

    A Tomonaga-Luttinger (TL) liquid is known as an integrable system, in which a nonequilibrium many-body state survives without relaxing to a thermalized state. This intriguing characteristic is tested experimentally in copropagating quantum Hall edge channels at bulk filling factor ν =2 . The unidirectional transport allows us to investigate the time evolution by measuring the spatial evolution of the electronic states. The initial state is prepared with a biased quantum point contact, and its spatial evolution is measured with a quantum-dot energy spectrometer. We find strong evidence for a nonthermal metastable state in agreement with the TL theory before the system relaxes to thermal equilibrium with coupling to the environment.

  14. Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system.

    PubMed

    Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju

    2017-08-21

    Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.

  15. Linear Quantum Systems: Non-Classical States and Robust Stability

    DTIC Science & Technology

    2016-06-29

    quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control

  16. Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel

    PubMed Central

    Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde

    2017-01-01

    A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks. PMID:28295024

  17. Quantum Information in Non-physics Departments at Liberal Arts Colleges

    NASA Astrophysics Data System (ADS)

    Westmoreland, Michael

    2012-02-01

    Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.

  18. Happiness and Satisfaction with Work Commute.

    PubMed

    Olsson, Lars E; Gärling, Tommy; Ettema, Dick; Friman, Margareta; Fujii, Satoshi

    2013-03-01

    Research suggests that for many people happiness is being able to make the routines of everyday life work, such that positive feelings dominate over negative feelings resulting from daily hassles. In line with this, a survey of work commuters in the three largest urban areas of Sweden show that satisfaction with the work commute contributes to overall happiness. It is also found that feelings during the commutes are predominantly positive or neutral. Possible explanatory factors include desirable physical exercise from walking and biking, as well as that short commutes provide a buffer between the work and private spheres. For longer work commutes, social and entertainment activities either increase positive affects or counteract stress and boredom. Satisfaction with being employed in a recession may also spill over to positive experiences of work commutes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11205-012-0003-2) contains supplementary material, which is available to authorized users.

  19. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  20. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    NASA Astrophysics Data System (ADS)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  1. Quantum correlations in non-inertial cavity systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2016-10-15

    Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discordmore » disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory. - Highlights: • Non-inertial cavities are utilized to store and send information in Quantum Information Theory. • Cavities include boundary conditions which will protect the entanglement once it has been created. • The problem is treated perturbatively and the maclaurian series are applied to expand the related Bogoliubov coefficients. • When two cavities are considered degradation in the degree of quantum correlation happens and it appears periodically. • The interesting issue is when a single cavity is studied and the degradation in quantum correlations disappears.« less

  2. Quantum Games under Decoherence

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen

    2016-02-01

    Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which

  3. A Study of the Efficiency of the Class of W-States as a Quantum Channel

    NASA Astrophysics Data System (ADS)

    Adhikari, Satyabrata; Gangopadhyay, Sunandan

    2009-02-01

    Recently, a new class of W-states has been defined by Agarwal and Pati (Phys. Rev. A 74:062320, 2006) and it has been shown that they can be used as a quantum channel for teleportation and superdense coding. In this work, we identify those three-qubit states from the set of the new class of W-states which are most efficient or suitable for quantum teleportation. We show that with some probability |W1rangle=1/2(|100rangle+|010rangle+sqrt{2}|001rangle) is best suited for teleportation channel in the sense that it does not depend on the input state.

  4. H-theorem in quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  5. H-theorem in quantum physics

    DOE PAGES

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; ...

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  6. Commuter Family Relationships: Alive and Thriving.

    ERIC Educational Resources Information Center

    Johnson, Sharon Ervin

    This study examined the impact that commuting, as part of a professional career lifestyle, has on family relationships. One hundred commuting couples participated in a paper and pencil survey. They responded to questions about coping as a family; dealing with the complications of children; keeping their relationship healthy; and commuting as a…

  7. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  8. Pseudospectra in non-Hermitian quantum mechanics

    NASA Astrophysics Data System (ADS)

    Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J.

    2015-10-01

    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

  9. The Association between Access to Public Transportation and Self-Reported Active Commuting

    PubMed Central

    Djurhuus, Sune; Hansen, Henning S.; Aadahl, Mette; Glümer, Charlotte

    2014-01-01

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting. PMID:25489998

  10. The association between access to public transportation and self-reported active commuting.

    PubMed

    Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette; Glümer, Charlotte

    2014-12-05

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting.

  11. 8 CFR 211.5 - Alien commuters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Alien commuters. 211.5 Section 211.5 Aliens...: IMMIGRANTS; WAIVERS § 211.5 Alien commuters. (a) General. An alien lawfully admitted for permanent residence.... An alien commuter engaged in seasonal work will be presumed to have taken up residence in the United...

  12. 8 CFR 211.5 - Alien commuters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Alien commuters. 211.5 Section 211.5 Aliens...: IMMIGRANTS; WAIVERS § 211.5 Alien commuters. (a) General. An alien lawfully admitted for permanent residence.... An alien commuter engaged in seasonal work will be presumed to have taken up residence in the United...

  13. 8 CFR 211.5 - Alien commuters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Alien commuters. 211.5 Section 211.5 Aliens...: IMMIGRANTS; WAIVERS § 211.5 Alien commuters. (a) General. An alien lawfully admitted for permanent residence.... An alien commuter engaged in seasonal work will be presumed to have taken up residence in the United...

  14. 8 CFR 211.5 - Alien commuters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Alien commuters. 211.5 Section 211.5 Aliens...: IMMIGRANTS; WAIVERS § 211.5 Alien commuters. (a) General. An alien lawfully admitted for permanent residence.... An alien commuter engaged in seasonal work will be presumed to have taken up residence in the United...

  15. 8 CFR 211.5 - Alien commuters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Alien commuters. 211.5 Section 211.5 Aliens...: IMMIGRANTS; WAIVERS § 211.5 Alien commuters. (a) General. An alien lawfully admitted for permanent residence.... An alien commuter engaged in seasonal work will be presumed to have taken up residence in the United...

  16. A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor

    NASA Astrophysics Data System (ADS)

    Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan

    2017-04-01

    Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.

  17. Quantum capacity of quantum black holes

    NASA Astrophysics Data System (ADS)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  18. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics

    PubMed Central

    Kreula, J. M.; Clark, S. R.; Jaksch, D.

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  19. Effect of Commuter Time on Emergency Medicine Residents.

    PubMed

    Sampson, Christopher; Borenstein, Marc

    2018-01-12

    Background The impact of resident work hours on resident well-being and patient safety has long been a controversial issue. Objectives What has not been considered in resident work hour limitations is whether resident commuting time has any impact on a resident's total work hours or well-being. Methods A self-administered electronic survey was distributed to emergency medicine residents in 2016. Results The survey response was 8% (569/6828). Commuter time was 30 minutes or less in 70%. Two residents reported a commuter time of 76 to 90 minutes and one resident had a commuter time of 91 to 105 minutes. None reported commuter times greater than 105 minutes. Of most concern was that 29.3% of the residents reported falling asleep while driving their car home from work. We found 12% of respondents reporting being involved in a car collision while commuting. For residents with commute times greater than one hour, 66% reported they had fallen asleep while driving. When asked their opinion on the effect of commute time, those with commute times greater than one hour (75% of residents) responded that it was detrimental. Conclusions While the majority of emergency medicine residents in this survey have commuter times of 30 minutes or less, there is a small population of residents with commuter times of 76 to 105 minutes. At times, residents whose commute is up to 105 minutes each way could be traveling a total of more than 3.5 hours for each round trip. Given that these residents often work 12-hour shifts, these extended commuter times may be having detrimental effects on their health and well-being.

  20. Effect of Commuter Time on Emergency Medicine Residents

    PubMed Central

    Borenstein, Marc

    2018-01-01

    Background The impact of resident work hours on resident well-being and patient safety has long been a controversial issue. Objectives What has not been considered in resident work hour limitations is whether resident commuting time has any impact on a resident's total work hours or well-being. Methods A self-administered electronic survey was distributed to emergency medicine residents in 2016. Results The survey response was 8% (569/6828). Commuter time was 30 minutes or less in 70%. Two residents reported a commuter time of 76 to 90 minutes and one resident had a commuter time of 91 to 105 minutes. None reported commuter times greater than 105 minutes. Of most concern was that 29.3% of the residents reported falling asleep while driving their car home from work. We found 12% of respondents reporting being involved in a car collision while commuting. For residents with commute times greater than one hour, 66% reported they had fallen asleep while driving. When asked their opinion on the effect of commute time, those with commute times greater than one hour (75% of residents) responded that it was detrimental. Conclusions While the majority of emergency medicine residents in this survey have commuter times of 30 minutes or less, there is a small population of residents with commuter times of 76 to 105 minutes. At times, residents whose commute is up to 105 minutes each way could be traveling a total of more than 3.5 hours for each round trip. Given that these residents often work 12-hour shifts, these extended commuter times may be having detrimental effects on their health and well-being. PMID:29545979

  1. Commuting and Sleep: Results From the Hispanic Community Health Study/Study of Latinos Sueño Ancillary Study.

    PubMed

    Petrov, Megan E; Weng, Jia; Reid, Kathryn J; Wang, Rui; Ramos, Alberto R; Wallace, Douglas M; Alcantara, Carmela; Cai, Jianwen; Perreira, Krista; Espinoza Giacinto, Rebeca A; Zee, Phyllis C; Sotres-Alvarez, Daniela; Patel, Sanjay R

    2018-03-01

    Commute time is associated with reduced sleep time, but previous studies have relied on self-reported sleep assessment. The present study investigated the relationships between commute time for employment and objective sleep patterns among non-shift working U.S. Hispanic/Latino adults. From 2010 to 2013, Hispanic/Latino employed, non-shift-working adults (n=760, aged 18-64 years) from the Sueño study, ancillary to the Hispanic Community Health Study/Study of Latinos, reported their total daily commute time to and from work, completed questionnaires on sleep and other health behaviors, and wore wrist actigraphs to record sleep duration, continuity, and variability for 1 week. Survey linear regression models of the actigraphic and self-reported sleep measures regressed on categorized commute time (short: 1-44 minutes; moderate: 45-89 minutes; long: ≥90 minutes) were built adjusting for relevant covariates. For associations that suggested a linear relationship, continuous commute time was modeled as the exposure. Moderation effects by age, sex, income, and depressive symptoms also were explored. Commute time was linearly related to sleep duration on work days such that each additional hour of commute time conferred 15 minutes of sleep loss (p=0.01). Compared with short commutes, individuals with moderate commutes had greater sleep duration variability (p=0.04) and lower interdaily stability (p=0.046, a measure of sleep/wake schedule regularity). No significant associations were detected for self-reported sleep measures. Commute time is significantly associated with actigraphy-measured sleep duration and regularity among Hispanic/Latino adults. Interventions to shorten commute times should be evaluated to help improve sleep habits in this minority population. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Haag duality for Kitaev’s quantum double model for abelian groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter

    2015-11-01

    We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.

  3. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendrick, Brian K.

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner

  4. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Kendrick, Brian K.

    2018-01-01

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v , j) ↔ AB(v ', j') + B and A + AB(v , j) → A + AB(v ', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v ', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.

  5. Non-adiabatic quantum reactive scattering in hyperspherical coordinates

    DOE PAGES

    Kendrick, Brian K.

    2018-01-28

    A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B 2(v, j) ↔ AB(v', j') + B and A + AB(v, j) → A + AB(v', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchangemore » symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H 3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. In conclusion, the results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner

  6. Quantum Gravity and Cosmology: an intimate interplay

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  7. A national survey of commuter rail policy.

    DOT National Transportation Integrated Search

    2015-09-22

    The research project will provided a detailed survey of the history and effectiveness of commuter rail policy in the United States. It will examine the means by which commuter rail policy is locally modified and re-employed in subsequent commuter rai...

  8. Continuous-variable quantum key distribution protocols over noisy channels.

    PubMed

    García-Patrón, Raúl; Cerf, Nicolas J

    2009-04-03

    A continuous-variable quantum key distribution protocol based on squeezed states and heterodyne detection is introduced and shown to attain higher secret key rates over a noisy line than any other one-way Gaussian protocol. This increased resistance to channel noise can be understood as resulting from purposely adding noise to the signal that is converted into the secret key. This notion of noise-enhanced tolerance to noise also provides a better physical insight into the poorly understood discrepancies between the previously defined families of Gaussian protocols.

  9. Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Marangon, Davide G.; Canale, Matteo; Savorgnan, Ilaria; Bacco, Davide; Barbieri, Mauro; Calimani, Simon; Barbieri, Cesare; Laurenti, Nicola; Villoresi, Paolo

    2015-04-01

    The unconditional security in the creation of cryptographic keys obtained by quantum key distribution (QKD) protocols will induce a quantum leap in free-space communication privacy in the same way that we are beginning to realize secure optical fiber connections. However, free-space channels, in particular those with long links and the presence of atmospheric turbulence, are affected by losses, fluctuating transmissivity, and background light that impair the conditions for secure QKD. Here we introduce a method to contrast the atmospheric turbulence in QKD experiments. Our adaptive real time selection (ARTS) technique at the receiver is based on the selection of the intervals with higher channel transmissivity. We demonstrate, using data from the Canary Island 143-km free-space link, that conditions with unacceptable average quantum bit error rate which would prevent the generation of a secure key can be used once parsed according to the instantaneous scintillation using the ARTS technique.

  10. Commuters and Parking at UNC-G. Preliminary Findings from the Commuting Student Survey.

    ERIC Educational Resources Information Center

    Reichard, Donald J.; McArver, Patricia P.

    Data gleaned from items relating to transportation and parking from the Commuting Student Survey are reported. The survey questionnaire was designed to provide an overview of several aspects of the commuting student's relationship with the university and was sent to a stratified random sample of 2,140 students who were enrolled for the spring 1975…

  11. A study of commuter airline economics

    NASA Technical Reports Server (NTRS)

    Summerfield, J. R.

    1976-01-01

    Variables are defined and cost relationships developed that describe the direct and indirect operating costs of commuter airlines. The study focused on costs for new aircraft and new aircraft technology when applied to the commuter airline industry. With proper judgement and selection of input variables, the operating costs model was shown to be capable of providing economic insight into other commuter airline system evaluations.

  12. Quantifying non-Gaussianity for quantum information

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Paris, Matteo G. A.

    2010-11-01

    We address the quantification of non-Gaussianity (nG) of states and operations in continuous-variable systems and its use in quantum information. We start by illustrating in detail the properties and the relationships of two recently proposed measures of nG based on the Hilbert-Schmidt distance and the quantum relative entropy (QRE) between the state under examination and a reference Gaussian state. We then evaluate the non-Gaussianities of several families of non-Gaussian quantum states and show that the two measures have the same basic properties and also share the same qualitative behavior in most of the examples taken into account. However, we also show that they introduce a different relation of order; that is, they are not strictly monotone to each other. We exploit the nG measures for states in order to introduce a measure of nG for quantum operations, to assess Gaussification and de-Gaussification protocols, and to investigate in detail the role played by nG in entanglement-distillation protocols. Besides, we exploit the QRE-based nG measure to provide different insight on the extremality of Gaussian states for some entropic quantities such as conditional entropy, mutual information, and the Holevo bound. We also deal with parameter estimation and present a theorem connecting the QRE nG to the quantum Fisher information. Finally, since evaluation of the QRE nG measure requires the knowledge of the full density matrix, we derive some experimentally friendly lower bounds to nG for some classes of states and by considering the possibility of performing on the states only certain efficient or inefficient measurements.

  13. Fostering Formal Commutativity Knowledge with Approximate Arithmetic

    PubMed Central

    Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A.; Gaschler, Robert

    2015-01-01

    How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school. PMID:26560311

  14. Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups

    NASA Astrophysics Data System (ADS)

    Brannan, Michael; Collins, Benoît

    2018-03-01

    In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.

  15. Single-ion quantum lock-in amplifier.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  16. Double channel emission from a redox active single component quantum dot complex.

    PubMed

    Bhandari, Satyapriya; Roy, Shilaj; Pramanik, Sabyasachi; Chattopadhyay, Arun

    2015-01-13

    Herein we report the generation and control of double channel emission from a single component system following a facile complexation reaction between a Mn(2+) doped ZnS colloidal quantum dot (Qdot) and an organic ligand (8-hydroxy quinoline; HQ). The double channel emission of the complexed quantum dot-called the quantum dot complex (QDC)-originates from two independent pathways: one from the complex (ZnQ2) formed on the surface of the Qdot and the other from the dopant Mn(2+) ions of the Qdot. Importantly, reaction of ZnQ2·2H2O with the Qdot resulted in the same QDC formation. The emission at 500 nm with an excitation maximum at 364 nm is assigned to the surface complex involving ZnQ2 and a dangling sulfide bond. On the other hand, the emission at 588 nm-with an excitation maximum at 330 nm-which is redox tunable, is ascribed to Mn(2+) dopant. The ZnQ2 complex while present in QDC has superior thermal stability in comparison to the bare complex. Interestingly, while the emission of Mn(2+) was quenched by an electron quencher (benzoquinone), that due to the surface complex remained unaffected. Further, excitation wavelength dependent tunability in chromaticity color coordinates makes the QDC a potential candidate for fabricating a light emitting device of desired color output.

  17. Commutating Permanent-Magnet Motors At Low Speed

    NASA Technical Reports Server (NTRS)

    Dolland, C.

    1985-01-01

    Circuit provides forced commutation during starting. Forced commutation circuit diverts current from inverter SCR's and turns SCR's off during commutation intervals. Silicon controlled rectifier in circuit unnecessary when switch S10 replaced by high-current, high-voltage transistor. At present, high-current, low-voltage device must suffice.

  18. Quantum formalism for classical statistics

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  19. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    NASA Astrophysics Data System (ADS)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  20. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    PubMed Central

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-01-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588

  1. Bialgebra cohomology, deformations, and quantum groups.

    PubMed Central

    Gerstenhaber, M; Schack, S D

    1990-01-01

    We introduce cohomology and deformation theories for a bialgebra A (over a commutative unital ring k) such that the second cohomology group is the space of infinitesimal deformations. Our theory gives a natural identification between the underlying k-modules of the original and the deformed bialgebra. Certain explicit deformation formulas are given for the construction of quantum groups--i.e., Hopf algebras that are neither commutative nor cocommutative (whether or not they arise from quantum Yang-Baxter operators). These formulas yield, in particular, all GLq(n) and SLq(n) as deformations of GL(n) and SL(n). Using a Hodge decomposition of the underlying cochain complex, we compute our cohomology for GL(n). With this, we show that every deformation of GL(n) is equivalent to one in which the comultiplication is unchanged, not merely on elements of degree one but on all elements (settling in the strongest way a decade-old conjecture) and in which the quantum determinant, as an element of the underlying k-module, is identical with the usual one. PMID:11607053

  2. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Yang; Yu, Chang-Shui

    2015-06-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details.

  3. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels.

    PubMed

    Takeoka, Masahiro; Seshadreesan, Kaushik P; Wilde, Mark M

    2017-10-13

    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  4. Two-channel spin-chain communication line and simple quantum gates

    NASA Astrophysics Data System (ADS)

    Stolze, J.; Zenchuk, A. I.

    2017-08-01

    We consider the remote creation of a mixed state in a one-qubit receiver connected to two two-qubit senders via different channels. Channels are assumed to be chains of spins (qubits) with nearest-neighbor interactions, no external fields are being applied. The problem of sharing the creatable region of the receiver's state-space between two senders is considered for a communication line with the receiver located asymmetrically with respect to these senders (asymmetric communication line). An example of a quantum register realizing simple functions is constructed on the basis of a symmetric communication line. In that setup, the initial states of the two senders serve as input and control signals, respectively, while the state of the receiver at a proper time instant is considered as the output signal.

  5. Commuting--a further stress factor for working people: evidence from the European Community. II. An empirical study.

    PubMed

    Costa, G; Pickup, L; Di Martino, V

    1988-01-01

    This report summarizes the main results of research promoted by the European Foundation for the Improvement of Living and Working Conditions, concerning the impact of commuting on the health and safety of workers. An empirical study, carried out among 1167 industrial Italian workers, shows that "commuters" (workers whose journey from home to work usually does not take less than 45 min in each direction) experienced a more stressed life-style than did "non commuters" (whose journey does not take more than 20 min). Commuting appears for many workers to be a necessity which is imposed by external factors, such as the housing market and job opportunities. Commuting is shown to interfere with patterns of everyday life by restricting free-time and reducing sleeping time. A majority of commuters use public transport mainly because of cost. Public transport commuters have problems due to more changes between modes, idle waiting times and delays leading to late arrival at work. Inside transport modes, commuters suffered discomfort as a result of overcrowding, microclimatic conditions, noise and vibrations. Commuters also reported higher psychological stress scores, more health complaints, essentially of psychosomatic nature, and greater absenteeism from work due to sickness. Commuting, in addition to shiftwork, further increases sleep problems, psychosomatic complaints and difficulties with family and social life. Women commuters were at a greater disadvantage than men, having more family difficulties, more travelling complaints and higher absenteeism.

  6. Quantum mechanics on space with SU(2) fuzziness

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad

    2009-04-01

    Quantum mechanics of models is considered which are constructed in spaces with Lie algebra type commutation relations between spatial coordinates. The case is specialized to that of the group SU(2), for which the formulation of the problem via the Euler parameterization is also presented. SU(2)-invariant systems are discussed, and the corresponding eigenvalue problem for the Hamiltonian is reduced to an ordinary differential equation, as is the case with such models on commutative spaces.

  7. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  8. Quantum walk on a chimera graph

    NASA Astrophysics Data System (ADS)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  9. Non-unitary probabilistic quantum computing circuit and method

    NASA Technical Reports Server (NTRS)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  10. Quantum coherence behaviors of fermionic system in non-inertial frame

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Situ, Haozhen

    2018-04-01

    In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.

  11. Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) non-commutative motives

    NASA Astrophysics Data System (ADS)

    Bernardara, M.; Tabuada, G.

    2016-06-01

    Conjectures of Beilinson-Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [20]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [26], [27] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases S of small dimension satisfy Murre's conjecture (when \\dim (S)≤ 1), Grothendieck's standard conjecture of Lefschetz type (when \\dim (S)≤ 2), and Hodge's conjecture (when \\dim(S)≤ 3).

  12. Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2017-04-01

    The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.

  13. Charging the quantum capacitance of graphene with a single biological ion channel.

    PubMed

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  14. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel

    PubMed Central

    2015-01-01

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625

  15. Quantum Speed Limit of a Photon under Non-Markovian Dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Zhen-Yu; Zhu, Shi-Qun

    2014-02-01

    Quantum speed limit (QSL) time under noise has drawn considerable attention in real quantum computational processes. Though non-Markovian noise is found to be able to accelerate quantum evolution for a damped Jaynes—Cummings model, in this work we show that non-Markovianity will slow down the quantum evolution of an experimentally controllable photon system. As an application, QSL time of a photon can be controlled by regulating the relevant environment parameter properly, which nearly reaches the currently available photonic experimental technology.

  16. Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2018-02-01

    Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.

  17. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  18. LOCC indistinguishable orthogonal product quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun

    2016-07-01

    We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.

  19. Exploiting Non-Markovianity for Quantum Control.

    PubMed

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  20. Quantum correlation exists in any non-product state

    PubMed Central

    Guo, Yu; Wu, Shengjun

    2014-01-01

    Simultaneous existence of correlation in complementary bases is a fundamental feature of quantum correlation, and we show that this characteristic is present in any non-product bipartite state. We propose a measure via mutually unbiased bases to study this feature of quantum correlation, and compare it with other measures of quantum correlation for several families of bipartite states. PMID:25434458

  1. Intrinsic time quantum geometrodynamics

    NASA Astrophysics Data System (ADS)

    Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2015-08-01

    Quantum geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl curvature hypothesis, and thermodynamic and gravitational "arrows of time" point in the same direction. Ricci scalar potential corresponding to Einstein's general relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of gravitation and quantum mechanics.

  2. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  3. An Assessment of Commuter Aircraft Noise Impact

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.; Silvati, Laura; Sneddon, Matthew

    1996-01-01

    This report examines several approaches to understanding 'the commuter aircraft noise problem.' The commuter aircraft noise problem in the sense addressed in this report is the belief that some aspect(s) of community response to noise produced by commuter aircraft operations may not be fully assessed by conventional environmental noise metrics and methods. The report offers alternate perspectives and approaches for understanding this issue. The report also develops a set of diagnostic screening questions; describes commuter aircraft noise situations at several airports; and makes recommendations for increasing understanding of the practical consequences of greater heterogeneity in the air transport fleet serving larger airports.

  4. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, W.J.

    1981-11-10

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components. 13 figs.

  5. Mixing-induced quantum non-Markovianity and information flow

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  6. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    NASA Astrophysics Data System (ADS)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  7. Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions

    NASA Astrophysics Data System (ADS)

    Rosset, Denis; Buscemi, Francesco; Liang, Yeong-Cherng

    2018-04-01

    We provide a complete set of game-theoretic conditions equivalent to the existence of a transformation from one quantum channel into another one, by means of classically correlated preprocessing and postprocessing maps only. Such conditions naturally induce tests to certify that a quantum memory is capable of storing quantum information, as opposed to memories that can be simulated by measurement and state preparation (corresponding to entanglement-breaking channels). These results are formulated as a resource theory of genuine quantum memories (correlated in time), mirroring the resource theory of entanglement in quantum states (correlated spatially). As the set of conditions is complete, the corresponding tests are faithful, in the sense that any non-entanglement-breaking channel can be certified. Moreover, they only require the assumption of trusted inputs, known to be unavoidable for quantum channel verification. As such, the tests we propose are intrinsically different from the usual process tomography, for which the probes of both the input and the output of the channel must be trusted. An explicit construction is provided and shown to be experimentally realizable, even in the presence of arbitrarily strong losses in the memory or detectors.

  8. Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Wei; Lin, Jason

    2016-07-01

    This work presents a strategy for constructing long-distance quantum communications among a number of remote users through collective-noise channel. With the assistance of semi-honest quantum certificate authorities (QCAs), the remote users can share a secret key through fault-tolerant entanglement swapping. The proposed protocol is feasible for large-scale distributed quantum networks with numerous users. Each pair of communicating parties only needs to establish the quantum channels and the classical authenticated channels with his/her local QCA. Thus, it enables any user to communicate freely without point-to-point pre-establishing any communication channels, which is efficient and feasible for practical environments.

  9. Experimental quantum key distribution with finite-key security analysis for noisy channels.

    PubMed

    Bacco, Davide; Canale, Matteo; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo

    2013-01-01

    In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

  10. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory

    PubMed Central

    Zhang, Jun; Zhang, Yang; Yu, Chang-shui

    2015-01-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details. PMID:26118488

  11. Trade-offs between commuting time and health-related activities.

    PubMed

    Christian, Thomas J

    2012-10-01

    To further understand documented associations between obesity and urban sprawl, this research describes individuals' trade-offs between health-related activities and commuting time. A cross-section of 24,861 working-age individuals employed full-time and residing in urban counties is constructed from the American Time Use Survey (2003-2010). Data are analyzed using seemingly unrelated regressions to quantify health-related activity decreases in response to additional time spent commuting. Outcomes are total daily minutes spent in physical activity at a moderate or greater intensity, preparing food, eating meals with family, and sleeping. Commuting time is measured as all travel time between home and work and vice versa. The mean commuting time is 62 min daily, the median is 55 min, and 10.1% of workers commute 120 min or more. Spending an additional 60 min daily commuting above average is associated with a 6% decrease in aggregate health-related activities and spending an additional 120 min is associated with a 12% decrease. The greatest percentage of commuting time comes from sleeping time reductions (28-35%). Additionally, larger proportions of commuting time are taken from physical activity and food preparation relative to the mean commuting length: of 60 min spent commuting, 16.1% is taken from physical activity and 4.1% is taken from food preparation; of 120 min commuting, 20.3% is taken from physical activity and 5.6% is taken from food preparation. The results indicate that longer commutes are associated with behavioral patterns which over time may contribute to obesity and other poor health outcomes. These findings will assist both urban planners and researchers wishing to understand time constraints' impacts on health.

  12. Continuous-variable quantum key distribution in uniform fast-fading channels

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Panagiotis; Weedbrook, Christian; Pirandola, Stefano

    2018-03-01

    We investigate the performance of several continuous-variable quantum key distribution protocols in the presence of uniform fading channels. These are lossy channels whose transmissivity changes according to a uniform probability distribution. We assume the worst-case scenario where an eavesdropper induces a fast-fading process, where she chooses the instantaneous transmissivity while the remote parties may only detect the mean statistical effect. We analyze coherent-state protocols in various configurations, including the one-way switching protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration, and its extension to a three-party network. We show that, regardless of the advantage given to the eavesdropper (control of the fading), these protocols can still achieve high rates under realistic attacks, within reasonable values for the variance of the probability distribution associated with the fading process.

  13. Optimal Conclusive Teleportation of an Arbitrary d-Dimensional N-Particle Unknown State via a Partially Entangled Quantum Channel

    NASA Astrophysics Data System (ADS)

    Hao, San-Ru; Hou, Bo-Yu; Xi, Xiao-Qiang; Yue, Rui-Hong

    2003-02-01

    In this paper we generalize the standard teleportation to the conclusive teleportation case which can teleport an arbitrary d-dimensional N-particle unknown state via the partially entangled quantum channel. We show that only if the quantum channel satisfies a constraint condition can the most general d-dimensional N-particle unknown state be perfect conclusively teleported. We also present a method for optimal conclusively teleportation of the N-particle states and for constructing the joint POVM which can discern the quantum states on the sender's (Alice's) side. Two typical examples are given so that one can see how our method works. The project supported in part by National Natural Science Foundation of China under Grant No. 19975036 and the Foundation of Science and Technology Committee of Hunan Province of China under Grant No. 21000205

  14. Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bley, Gonzalo A.; Thomas, Lawrence E.

    2017-01-01

    We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.

  15. Associations between active commuting and physical activity in working adults: Cross-sectional results from the Commuting and Health in Cambridge study

    PubMed Central

    Yang, Lin; Panter, Jenna; Griffin, Simon J.; Ogilvie, David

    2012-01-01

    Objective To quantify the association between time spent in active commuting and in moderate to vigorous physical activity (MVPA) in a sample of working adults living in both urban and rural locations. Methods In 2009, participants in the Commuting and Health in Cambridge study were sent questionnaires enquiring about sociodemographic characteristics and weekly time spent in active commuting. They were also invited to wear an accelerometer for seven days. Accelerometer data were used to compute the time spent in MVPA. Multiple regression models were used to examine the association between time spent in active commuting and MVPA. Results 475 participants (70% female) provided valid data. On average, participants recorded 55 (SD: 23.02) minutes of MVPA per day. For women, reporting 150 or more minutes of active commuting per week was associated with an estimated 8.50 (95% CI: 1.75 to 51.26, p = 0.01) additional minutes of daily MVPA compared to those who reported no time in active commuting. No overall associations were found in men. Conclusions Promoting active commuting might be an important way of increasing levels of physical activity, particularly in women. Further research should assess whether increases in time spent in active commuting are associated with increases in physical activity. PMID:22964003

  16. [Family factors influence active commuting to school in Spanish children].

    PubMed

    Rodríguez-López, Carlos; Villa-González, Emilio; Pérez-López, Isaac J; Delgado-Fernández, Manuel; Ruiz, Jonatan R; Chillón, Palma

    2013-01-01

    Active commuting to school is associated to higher levels of physical activity among children. Family factors may influence on this behaviour. The objective was to analyze the association between parents' occupational activity and parents' mode of commuting to work with the mode of commuting of their children. A total of 721 families from 4 primary schools in the province of Granada participated in this study. Families reported a questionnaire about mode of commuting of their children, parents' occupational activity and mode of commuting to work, distance and travel time to school. Associations between family's occupational activity and mode of commuting to work with mode of commuting to school of their children were examined using binary logistic regression analysis adjusting for age and children's distance to school. Children whose parents did not work used to engage in higher levels of active commuting to school than those whose parents worked (p = 0,023; OR: 2,67; 95% CI: 1,14-6,23). Children whose parents used to commute actively to work used to engage in higher levels of active commuting to school than those whose parents both used passive modes of commuting to work (p = 0,014; OR: 6,30; 95% CI: 1,45-27,26). Family factors are related to mode of commuting to school in children: Unemployed families and employed families where parent are active commuters to work are more used to have children that commuted to school using active modes. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  17. Quantum decoration transformation for spin models

    NASA Astrophysics Data System (ADS)

    Braz, F. F.; Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre

    2016-09-01

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the "classical" limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising-Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  18. Extended non-local games and monogamy-of-entanglement games.

    PubMed

    Johnston, Nathaniel; Mittal, Rajat; Russo, Vincent; Watrous, John

    2016-05-01

    We study a generalization of non-local games-which we call extended non-local games -in which the players, Alice and Bob, initially share a tripartite quantum state with the referee. In such games, the winning conditions for Alice and Bob may depend on the outcomes of measurements made by the referee, on its part of the shared quantum state, in addition to Alice and Bob's answers to randomly selected questions. Our study of this class of games was inspired by the monogamy-of-entanglement games introduced by Tomamichel, Fehr, Kaniewski and Wehner, which they also generalize. We prove that a natural extension of the Navascués-Pironio-Acín hierarchy of semidefinite programmes converges to the optimal commuting measurement value of extended non-local games, and we prove two extensions of results of Tomamichel et al.  concerning monogamy-of-entanglement games.

  19. Extended non-local games and monogamy-of-entanglement games

    PubMed Central

    Johnston, Nathaniel; Mittal, Rajat; Watrous, John

    2016-01-01

    We study a generalization of non-local games—which we call extended non-local games—in which the players, Alice and Bob, initially share a tripartite quantum state with the referee. In such games, the winning conditions for Alice and Bob may depend on the outcomes of measurements made by the referee, on its part of the shared quantum state, in addition to Alice and Bob's answers to randomly selected questions. Our study of this class of games was inspired by the monogamy-of-entanglement games introduced by Tomamichel, Fehr, Kaniewski and Wehner, which they also generalize. We prove that a natural extension of the Navascués–Pironio–Acín hierarchy of semidefinite programmes converges to the optimal commuting measurement value of extended non-local games, and we prove two extensions of results of Tomamichel et al. concerning monogamy-of-entanglement games. PMID:27279771

  20. Single-photon non-linear optics with a quantum dot in a waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-10-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  1. Joint Remote State Preparation Schemes for Two Different Quantum States Selectively

    NASA Astrophysics Data System (ADS)

    Shi, Jin

    2018-05-01

    The scheme for joint remote state preparation of two different one-qubit states according to requirement is proposed by using one four-dimensional spatial-mode-entangled KLM state as quantum channel. The scheme for joint remote state preparation of two different two-qubit states according to requirement is also proposed by using one four-dimensional spatial-mode-entangled KLM state and one three-dimensional spatial-mode-entangled GHZ state as quantum channels. Quantum non-demolition measurement, Hadamard gate operation, projective measurement and unitary transformation are included in the schemes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guedes, Carlos; Oriti, Daniele; Raasakka, Matti

    The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less

  3. Effects of urban growth controls on intercity commuting.

    PubMed

    Ogura, Laudo M

    2010-01-01

    This paper presents an empirical study of the effects of urban growth controls on the intercity commuting of workers. Growth controls (land use regulations that attempt to restrict population growth and urban sprawl) have increased housing prices and diverted population growth to uncontrolled cities. It has been suggested that resulting changes in local labour supply might stimulate intercity commuting from uncontrolled to controlled cities. To test this hypothesis, a gravity model of commuting flows between places in California is estimated using alternative econometric methods (OLS, Heckman selection and count-data). The possibility of spatial dependence in commuting flows is also taken into consideration. Results suggest larger commuting flows to destination places that restrict residential growth.

  4. Noncommutative Common Cause Principles in algebraic quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofer-Szabo, Gabor; Vecsernyes, Peter

    2013-04-15

    States in algebraic quantum field theory 'typically' establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V{sub A} and V{submore » B}, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V{sub A} and V{sub B} and the set {l_brace}C, C{sup Up-Tack }{r_brace} screens off the correlation between A and B.« less

  5. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  6. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  7. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE PAGES

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; ...

    2017-12-05

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  8. Experimental non-classicality of an indivisible quantum system.

    PubMed

    Lapkiewicz, Radek; Li, Peizhe; Schaeff, Christoph; Langford, Nathan K; Ramelow, Sven; Wieśniak, Marcin; Zeilinger, Anton

    2011-06-22

    In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored--notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements--and, therefore, no non-contextual theory--can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicioğlu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.

  9. Commuting in Texas : patterns and trends

    DOT National Transportation Integrated Search

    1999-05-01

    There have been significant changes over the past two decades in Texas commuting patterns. The expansion and changing natural of the workforce has resulted in an increase in commute trips and vehicle ownership. The growth in suburban and exurban empl...

  10. Factors affecting commuter rail energy efficiency.

    DOT National Transportation Integrated Search

    2016-02-17

    The objective of this study is to develop a planninglevel model of commuter rail energy efficiency. The : environmental benefits of commuter rail are often cited as one of the key benefits and motivators for its rapid development as a public trans...

  11. Evolution equation for quantum entanglement

    NASA Astrophysics Data System (ADS)

    Konrad, Thomas; de Melo, Fernando; Tiersch, Markus; Kasztelan, Christian; Aragão, Adriano; Buchleitner, Andreas

    2008-02-01

    Quantum information technology largely relies on a precious and fragile resource, quantum entanglement, a highly non-trivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence-is so far limited, and general statements on entanglement dynamics in open systems are scarce. Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.

  12. Non-Markovian quantum processes: Complete framework and efficient characterization

    NASA Astrophysics Data System (ADS)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  13. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si 0.8Ge 0.2 quantum well hetero-structure

    DOE PAGES

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.; ...

    2018-06-04

    Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less

  14. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si 0.8Ge 0.2 quantum well hetero-structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.

    Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less

  15. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation

    PubMed Central

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2–5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4–0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  16. Measuring the Non-Line-of-Sight Ultra-High-Frequency Channel in Mountainous Terrain: A Spread-Spectrum, Portable Channel Sounder

    DTIC Science & Technology

    2018-03-01

    ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain

  17. Tomographic quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yeong Cherng; Kaszlikowski, Dagomir; Englert, Berthold-Georg

    2003-08-01

    We present a protocol for quantum cryptography in which the data obtained for mismatched bases are used in full for the purpose of quantum state tomography. Eavesdropping on the quantum channel is seriously impeded by requiring that the outcome of the tomography is consistent with unbiased noise in the channel. We study the incoherent eavesdropping attacks that are still permissible and establish under which conditions a secure cryptographic key can be generated. The whole analysis is carried out for channels that transmit quantum systems of any finite dimension.

  18. 26 CFR 1.46-11 - Commuter highway vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Commuter highway vehicles. 1.46-11 Section 1.46... Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-11 Commuter highway... investment under section 46(c)(1) for a qualifying commuter highway vehicle is 100 percent. A qualifying...

  19. 26 CFR 1.46-11 - Commuter highway vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Commuter highway vehicles. 1.46-11 Section 1.46... Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-11 Commuter highway... investment under section 46(c)(1) for a qualifying commuter highway vehicle is 100 percent. A qualifying...

  20. 26 CFR 1.46-11 - Commuter highway vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Commuter highway vehicles. 1.46-11 Section 1.46... Rules for Computing Credit for Investment in Certain Depreciable Property § 1.46-11 Commuter highway... investment under section 46(c)(1) for a qualifying commuter highway vehicle is 100 percent. A qualifying...

  1. Employees' Perceptions of Cycle Commuting: A Qualitative Study

    ERIC Educational Resources Information Center

    van Bekkum, Jennifer E.; Williams, Joanne M.; Morris, Paul Graham

    2011-01-01

    Purpose: This study aims to provide an in-depth individual level understanding of the psychological factors that affect cycle commuting. Design/methodology/approach: A total of 15 participants (eight cycle commuters and seven potential cycle commuters) from a "cycle-friendly" employer based in a Scottish city took part in the study.…

  2. Quantum reference frames and their applications to thermodynamics.

    PubMed

    Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas

    2018-07-13

    We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  3. A quantum extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2017-06-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

  4. Quantum phase transitions in the noncommutative Dirac oscillator

    NASA Astrophysics Data System (ADS)

    Panella, O.; Roy, P.

    2014-10-01

    We study the (2 + 1)-dimensional Dirac oscillator in a homogeneous magnetic field in the noncommutative plane. It is shown that the effect of noncommutativity is twofold: (i) momentum noncommuting coordinates simply shift the critical value (Bcr) of the magnetic field at which the well known left-right chiral quantum phase transition takes place (in the commuting phase); (ii) noncommutativity in the space coordinates induces a new critical value of the magnetic field, Bcr*, where there is a second quantum phase transition (right-left): this critical point disappears in the commutative limit. The change in chirality associated with the magnitude of the magnetic field is examined in detail for both critical points. The phase transitions are described in terms of the magnetization of the system. Possible applications to the physics of silicene and graphene are briefly discussed.

  5. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruifang; Lassen, Mikael; Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby

    2010-07-15

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variablemore » entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.« less

  6. Planning for rotorcraft and commuter air transportationn

    NASA Technical Reports Server (NTRS)

    Stockwell, W. L.; Stowers, J.

    1981-01-01

    Community planning needs, criteria, and other considerations such as intermodal coordination and regulatory requirements, for rotorcraft and fixed wing commuter air transportation were identified. A broad range of community planning guidelines, issues, and information which can be used to: (1) direct anticipated aircraft technological improvements; (2) assist planners in identifying and evaluating the opportunities and tradeoffs presented by rotorcraft and commuter aircraft options relative to other modes; and (3) increase communication between aircraft technologists and planners for the purpose of on going support in capitalizing on rotorcraft and commuter air opportunities are provided. The primary tool for identifying and analyzing planning requirements was a detailed questionnaire administered to a selected sample of 55 community planners and other involved in planning for helicopters and commuter aviation.

  7. Transfer of non-Gaussian quantum states of mechanical oscillator to light

    NASA Astrophysics Data System (ADS)

    Filip, Radim; Rakhubovsky, Andrey A.

    2015-11-01

    Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.

  8. Blocks in cycles and k-commuting permutations.

    PubMed

    Moreno, Rutilo; Rivera, Luis Manuel

    2016-01-01

    We introduce and study k -commuting permutations. One of our main results is a characterization of permutations that k -commute with a given permutation. Using this characterization, we obtain formulas for the number of permutations that k -commute with a permutation [Formula: see text], for some cycle types of [Formula: see text]. Our enumerative results are related with integer sequences in "The On-line Encyclopedia of Integer Sequences", and in some cases provide new interpretations for such sequences.

  9. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A commuter...

  10. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A commuter...

  11. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A commuter...

  12. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A commuter...

  13. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A commuter...

  14. Non-Markovianity of Gaussian Channels.

    PubMed

    Torre, G; Roga, W; Illuminati, F

    2015-08-14

    We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

  15. Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasile, Ruggero; Maniscalco, Sabrina; Paris, Matteo G. A.

    2011-11-15

    We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer et al.[Phys. Rev. Lett. 103, 210401 (2009);], that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow ofmore » information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit.« less

  16. Quantum coding with finite resources.

    PubMed

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M

    2016-05-09

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances.

  17. Open Quantum Walks with Noncommuting Jump Operators

    NASA Astrophysics Data System (ADS)

    Caballar, Roland Cristopher; Petruccione, Francesco; Sinayskiy, Ilya

    2014-03-01

    We examine homogeneous open quantum walks along a line, wherein each forward step is due to one quantum jump operator, and each backward step due to another quantum jump operator. We assume that these two quantum jump operators do not commute with each other. We show that if the system has N internal degrees of freedom, for particular forms of these quantum jump operators, we can obtain exact probability distributions which fall into two distinct classes, namely Gaussian distributions and solitonic distributions. We also show that it is possible for a maximum of 2 solitonic distributions to be present simultaneously in the system. Finally, we consider applications of these classes of jump operators in quantum state preparation and quantum information. We acknowledge support from the National Institute for Theoretical Physics (NITheP).

  18. Recording ion channels across soy-extracted lecithin bilayer generated by water-soluble quantum dots

    NASA Astrophysics Data System (ADS)

    Sarma, Runjun; Mohanta, Dambarudhar

    2014-02-01

    We report on the quantum dot (QD)-induced ion channels across a soya-derived lecithin bilayer supported on a laser drilled of ~100 μm aperture of cellulose acetate substrate that separates two electrolytic chambers. Adequate current bursts were observed when the bilayer was subjected to a gating voltage. The voltage-dependent current fluctuation, across the bilayer, was attributed to the insertion of ~20 nm sized water-soluble CdSe QDs, forming nanopores due to their spontaneous aggregation. Apart from a closed state, the first observable conductance levels were found as 6.3 and 11 nS, as for the respective biasing voltages of -10 and -20 mV. The highest observable conductance states, at corresponding voltages were ~14.3 and 21.1 nS. Considering two simplified models, we predict that the non-spherical pores (dnspore) can be a better approximation over spherical nanopores (dspore) for exhibiting a definite conductance level. At times, even dnspore ≤ 4dspore and that the non-spherical nanopores were associated with a smaller No. of QDs than the case for spherical nanopores, for a definite conductance state. It seems like the current events are partly stochastic, possibly due to thermal effects on the aggregated QDs that would form nanopores. The dwell time of the states was predicted in the range of 384-411 μs. The ion channel mechanism in natural phospholipid bilayers over artificial ones will provide a closer account to understand ion transport mechanism in live cells and signaling activity including labelling with fluorescent QDs.

  19. Quantum subsystems: Exploring the complementarity of quantum privacy and error correction

    NASA Astrophysics Data System (ADS)

    Jochym-O'Connor, Tomas; Kribs, David W.; Laflamme, Raymond; Plosker, Sarah

    2014-09-01

    This paper addresses and expands on the contents of the recent Letter [Phys. Rev. Lett. 111, 030502 (2013), 10.1103/PhysRevLett.111.030502] discussing private quantum subsystems. Here we prove several previously presented results, including a condition for a given random unitary channel to not have a private subspace (although this does not mean that private communication cannot occur, as was previously demonstrated via private subsystems) and algebraic conditions that characterize when a general quantum subsystem or subspace code is private for a quantum channel. These conditions can be regarded as the private analog of the Knill-Laflamme conditions for quantum error correction, and we explore how the conditions simplify in some special cases. The bridge between quantum cryptography and quantum error correction provided by complementary quantum channels motivates the study of a new, more general definition of quantum error-correcting code, and we initiate this study here. We also consider the concept of complementarity for the general notion of a private quantum subsystem.

  20. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.

    PubMed

    Li, Qiang; Wei, Hong; Xu, Hongxing

    2015-12-09

    The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.

  1. Quantum decoration transformation for spin models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de

    2016-09-15

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models.more » To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.« less

  2. Noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Gamboa, J.; Loewe, M.; Rojas, J. C.

    2001-09-01

    A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.

  3. Non-classical Correlations and Quantum Coherence in Mixed Environments

    NASA Astrophysics Data System (ADS)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  4. Non-local classical optical correlation and implementing analogy of quantum teleportation

    PubMed Central

    Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong

    2015-01-01

    This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein–Podolsky–Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977

  5. Class 2 design update for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Creighton, Thomas R.; Hendrich, Louis J.

    1987-01-01

    This is the final report of seven on the design of a family of commuter airplanes. This design effort was performed in fulfillment of NASA/USRA grant NGT-8001. Its contents are as follows: (1) the class 1 baseline designs for the commuter airplane family; (2) a study of takeoff weight penalties imposed on the commuter family due to implementing commonality objectives; (3) component structural designs common to the commuter family; (4) details of the acquisition and operating economics of the commuter family, i.e., savings due to production commonality and handling qualities commonality are determined; (5) discussion of the selection of an advanced turboprop propulsion system for the family of commuter airplanes, and (6) a proposed design for an SSSA controller design to achieve similar handling for all airplanes. Final class 2 commuter airplane designs are also presented.

  6. Open Quantum Random Walks on the Half-Line: The Karlin-McGregor Formula, Path Counting and Foster's Theorem

    NASA Astrophysics Data System (ADS)

    Jacq, Thomas S.; Lardizabal, Carlos F.

    2017-11-01

    In this work we consider open quantum random walks on the non-negative integers. By considering orthogonal matrix polynomials we are able to describe transition probability expressions for classes of walks via a matrix version of the Karlin-McGregor formula. We focus on absorbing boundary conditions and, for simpler classes of examples, we consider path counting and the corresponding combinatorial tools. A non-commutative version of the gambler's ruin is studied by obtaining the probability of reaching a certain fortune and the mean time to reach a fortune or ruin in terms of generating functions. In the case of the Hadamard coin, a counting technique for boundary restricted paths in a lattice is also presented. We discuss an open quantum version of Foster's Theorem for the expected return time together with applications.

  7. Non-Markovian quantum jumps in excitonic energy transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebentrost, Patrick; Chakraborty, Rupak; Aspuru-Guzik, Alan

    2009-01-01

    We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased excitontransport, which can be seen as an extension of recent environment-assisted quantum transport concepts to the non-Markovian regime. Within the NMQJ method,more » the Fenna–Matthew–Olson protein is investigated as a prototype for larger photosynthetic complexes.« less

  8. What interventions increase commuter cycling? A systematic review

    PubMed Central

    Stewart, Glenn; Anokye, Nana Kwame; Pokhrel, Subhash

    2015-01-01

    Objective To identify interventions that will increase commuter cycling. Setting All settings where commuter cycling might take place. Participants Adults (aged 18+) in any country. Interventions Individual, group or environmental interventions including policies and infrastructure. Primary and secondary outcome measures A wide range of ‘changes in commuter cycling’ indicators, including frequency of cycling, change in workforce commuting mode, change in commuting population transport mode, use of infrastructure by defined populations and population modal shift. Results 12 studies from 6 countries (6 from the UK, 2 from Australia, 1 each from Sweden, Ireland, New Zealand and the USA) met the inclusion criteria. Of those, 2 studies were randomised control trials and the remainder preintervention and postintervention studies. The majority of studies (n=7) evaluated individual-based or group-based interventions and the rest environmental interventions. Individual-based or group-based interventions in 6/7 studies were found to increase commuter cycling of which the effect was significant in only 3/6 studies. Environmental interventions, however, had small but positive effects in much larger but more difficult to define populations. Almost all studies had substantial loss to follow-up. Conclusions Despite commuter cycling prevalence varying widely between countries, robust evidence of what interventions will increase commuter cycling in low cycling prevalence nations is sparse. Wider environmental interventions that make cycling conducive appear to reach out to hard to define but larger populations. This could mean that environmental interventions, despite their small positive effects, have greater public health significance than individual-based or group-based measures because those interventions encourage a larger number of people to integrate physical activity into their everyday lives. PMID:26275902

  9. Active commuting to and from university, obesity and metabolic syndrome among Colombian university students.

    PubMed

    García-Hermoso, Antonio; Quintero, Andrea P; Hernández, Enrique; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Tordecilla-Sanders, Alejandra; Prieto-Benavides, Daniel; Sandoval-Cuellar, Carolina; González-Ruíz, Katherine; Villa-González, Emilio; Ramírez-Vélez, Robinson

    2018-04-19

    There is limited evidence concerning how active commuting (AC) is associated with health benefits in young. The aim of the study was to analyze the relationship between AC to and from campus (walking) and obesity and metabolic syndrome (MetS) in a sample of Colombian university students. A total of 784 university students (78.6% women, mean age = 20.1 ± 2.6 years old) participated in the study. The exposure variable was categorized into AC (active walker to campus) and non-AC (non/infrequent active walker to campus: car, motorcycle, or bus) to and from the university on a typical day. MetS was defined in accordance with the updated harmonized criteria of the International Diabetes Federation criteria. The overall prevalence of MetS was 8.7%, and it was higher in non-AC than AC to campus. The percentage of AC was 65.3%. The commuting distances in this AC from/to university were 83.1%, 13.4% and 3.5% for < 2 km, 2-5 km and > 5 km, respectively. Multiple logistic regressions for predicting unhealthy profile showed that male walking commuters had a lower probability of having obesity [OR = 0.45 (CI 95% 0.25-0.93)], high blood pressure [OR = 0.26 (CI 95% 0.13-0.55)] and low HDL cholesterol [OR = 0.29 (CI 95% 0.14-0.59)] than did passive commuters. Our results suggest that in young adulthood, a key life-stage for the development of obesity and MetS, AC could be associated with and increasing of daily physical activity levels, thereby promoting better cardiometabolic health.

  10. Quantum coding with finite resources

    PubMed Central

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M.

    2016-01-01

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995

  11. Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.

    PubMed

    Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond

    2017-02-24

    Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.

  12. Weather factor impacts on commuting to work by bicycle.

    PubMed

    Flynn, Brian S; Dana, Greg S; Sears, Justine; Aultman-Hall, Lisa

    2012-02-01

    Quantify the impact of weather conditions on individual decisions to commute to work by bicycle among a diverse panel of adults who commute ≥2 miles each way. Working adults (n=163) in a northern U.S. state reported transportation mode for four seven-day periods in 2009-2010 that maximized seasonal weather variations. Personal characteristics, trip to work distances, and commuting mode data were linked to location- and time-specific weather data and daylight hours. Analyses focused on effect of weather conditions on reports of commuting by bicycle. Participants were diverse in age, gender and bicycle use, but were relatively well-educated; they traveled to work by bicycle on 34.5% of the logged commuting days. Modeling indicated that the likelihood of bicycle commuting increased in the absence of rain (odds ratio=1.91; 95% confidence interval 1.42, 2.57) and with higher temperatures (1.03; 1.02, 1.04), and decreased with snow (0.90; 0.84, 0.98) and wind (0.95; 0.92, 0.97). Independent effects also were found for bicycle commuting distance, gender, and age, but not for daylight hours. Precipitation, temperature, wind and snow conditions had significant and substantial independent effects on the odds of travel to work by bicycle among a diverse panel of adult bicycle commuters. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  14. Reducing drag of a commuter train, using engine exhaust momentum

    NASA Astrophysics Data System (ADS)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  15. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Danhong; Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106; Gumbs, Godfrey

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases andmore » then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.« less

  16. Adiabatic Quantum Computation: Coherent Control Back Action.

    PubMed

    Goswami, Debabrata

    2006-11-22

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.

  17. Pareto-front shape in multiobservable quantum control

    NASA Astrophysics Data System (ADS)

    Sun, Qiuyang; Wu, Re-Bing; Rabitz, Herschel

    2017-03-01

    Many scenarios in the sciences and engineering require simultaneous optimization of multiple objective functions, which are usually conflicting or competing. In such problems the Pareto front, where none of the individual objectives can be further improved without degrading some others, shows the tradeoff relations between the competing objectives. This paper analyzes the Pareto-front shape for the problem of quantum multiobservable control, i.e., optimizing the expectation values of multiple observables in the same quantum system. Analytic and numerical results demonstrate that with two commuting observables the Pareto front is a convex polygon consisting of flat segments only, while with noncommuting observables the Pareto front includes convexly curved segments. We also assess the capability of a weighted-sum method to continuously capture the points along the Pareto front. Illustrative examples with realistic physical conditions are presented, including NMR control experiments on a 1H-13C two-spin system with two commuting or noncommuting observables.

  18. Universal non-adiabatic holonomic quantum computation in decoherence-free subspaces with quantum dots inside a cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Dong, Ping; Zhou, Jian; Cao, Zhuo-Liang

    2017-05-01

    A scheme for implementing the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with the interactions between a microcavity and quantum dots. A universal set of quantum gates can be constructed on the encoded logical qubits with high fidelities. The current scheme can suppress both local and collective noises, which is very important for achieving universal quantum computation. Discussions about the gate fidelities with the experimental parameters show that our schemes can be implemented in current experimental technology. Therefore, our scenario offers a method for universal and robust solid-state quantum computation.

  19. The association between commuter cycling and sickness absence.

    PubMed

    Hendriksen, Ingrid J M; Simons, Monique; Garre, Francisca Galindo; Hildebrandt, Vincent H

    2010-08-01

    To study the association between commuter cycling and all-cause sickness absence, and the possible dose-response relationship between absenteeism and the distance, frequency and speed of commuter cycling. Cross-sectional data about cycling in 1236 Dutch employees were collected using a self-report questionnaire. Company absenteeism records were checked over a one-year period (May 2007-April 2008). Propensity scores were used to make groups comparable and to adjust for confounders. Zero-inflated Poisson models were used to assess differences in absenteeism between cyclists and non-cyclists. The mean total duration of absenteeism over the study year was more than 1 day shorter in cyclists than in non-cyclists. This can be explained by the higher proportion of people with no absenteeism in the cycling group. A dose-response relationship was observed between the speed and distance of cycling and absenteeism. Compared to people who cycle a short distance (

  20. Happiness and Satisfaction with Work Commute

    ERIC Educational Resources Information Center

    Olsson, Lars E.; Garling, Tommy; Ettema, Dick; Friman, Margareta; Fujii, Satoshi

    2013-01-01

    Research suggests that for many people happiness is being able to make the routines of everyday life work, such that positive feelings dominate over negative feelings resulting from daily hassles. In line with this, a survey of work commuters in the three largest urban areas of Sweden show that satisfaction with the work commute contributes to…

  1. Quantum Hilbert Hotel.

    PubMed

    Potoček, Václav; Miatto, Filippo M; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Liapis, Andreas C; Oi, Daniel K L; Boyd, Robert W; Jeffers, John

    2015-10-16

    In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.

  2. Assessment of noise exposure during commuting in the Madrid subway.

    PubMed

    Tabacchi, M; Pavón, I; Ausejo, M; Asensio, C; Recuero, M

    2011-09-01

    Because noise-induced hearing impairment is the result not only of occupational noise exposure but also of total daily noise exposure, it is important to take the non-occupational exposure of individuals (during commuting to and from their jobs, at home, and during recreational activities) into account. Mass transit is one of the main contributors to non-occupational noise exposure. We developed a new methodology to estimate a representative commuting noise exposure. The methodology was put into practice for the Madrid subway because of all Spanish subway systems it covers the highest percentage of worker journeys (22.6%). The results of the application highlight that, for Madrid subway passengers, noise exposure level normalized to a nominal 8 hr (L(Ex,8h-cj) ) depends strongly on the type of train, the presence of squealing noise, and the public address audio system, ranging from 68.6 dBA to 72.8 dBA. These values play an important role in a more complete evaluation of a relationship between noise dose and worker health response.

  3. Longitudinal associations of active commuting with body mass index.

    PubMed

    Mytton, Oliver Tristan; Panter, Jenna; Ogilvie, David

    2016-09-01

    To investigate the longitudinal associations between active commuting (walking and cycling to work) and body mass index (BMI). We used self-reported data on height, weight and active commuting from the Commuting and Health in Cambridge study (2009 to 2012; n=809). We used linear regression to test the associations between: a) maintenance of active commuting over one year and BMI at the end of that year; and b) change in weekly time spent in active commuting and change in BMI over one year. After adjusting for sociodemographic variables, other physical activity, physical wellbeing and maintenance of walking, those who maintained cycle commuting reported a lower BMI on average at one year follow-up (1.14kg/m(2), 95% CI: 0.30 to 1.98, n=579) than those who never cycled to work. No significant association remained after adjustment for baseline BMI. No significant associations were observed for maintenance of walking. An increase in walking was associated with a reduction in BMI (0.32kg/m(2), 95% CI: 0.03 to 0.62, n=651, after adjustment for co-variates and baseline BMI) only when restricting the analysis to those who did not move. No other significant associations between changes in weekly time spent walking or cycling on the commute and changes in BMI were observed. This work provides further evidence of the contribution of active commuting, particularly cycling, to preventing weight gain or facilitating weight loss. The findings may be valuable for employees choosing how to commute and engaging employers in the promotion of active travel. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. What interventions increase commuter cycling? A systematic review.

    PubMed

    Stewart, Glenn; Anokye, Nana Kwame; Pokhrel, Subhash

    2015-08-14

    To identify interventions that will increase commuter cycling. All settings where commuter cycling might take place. Adults (aged 18+) in any country. Individual, group or environmental interventions including policies and infrastructure. A wide range of 'changes in commuter cycling' indicators, including frequency of cycling, change in workforce commuting mode, change in commuting population transport mode, use of infrastructure by defined populations and population modal shift. 12 studies from 6 countries (6 from the UK, 2 from Australia, 1 each from Sweden, Ireland, New Zealand and the USA) met the inclusion criteria. Of those, 2 studies were randomised control trials and the remainder preintervention and postintervention studies. The majority of studies (n=7) evaluated individual-based or group-based interventions and the rest environmental interventions. Individual-based or group-based interventions in 6/7 studies were found to increase commuter cycling of which the effect was significant in only 3/6 studies. Environmental interventions, however, had small but positive effects in much larger but more difficult to define populations. Almost all studies had substantial loss to follow-up. Despite commuter cycling prevalence varying widely between countries, robust evidence of what interventions will increase commuter cycling in low cycling prevalence nations is sparse. Wider environmental interventions that make cycling conducive appear to reach out to hard to define but larger populations. This could mean that environmental interventions, despite their small positive effects, have greater public health significance than individual-based or group-based measures because those interventions encourage a larger number of people to integrate physical activity into their everyday lives. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Quantum-mechanical approach to predissociation of water dimers in the vibrational adiabatic representation: Importance of channel interactions.

    PubMed

    Mineo, H; Niu, Y L; Kuo, J L; Lin, S H; Fujimura, Y

    2015-08-28

    The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H2O)2 and (D2O)2, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H2O)2 ((D2O)2). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.

  6. Bidirectional Teleportation of a Two-Qubit State by Using Eight-Qubit Entangled State as a Quantum Channel

    NASA Astrophysics Data System (ADS)

    Sadeghi Zadeh, Mohammad Sadegh; Houshmand, Monireh; Aghababa, Hossein

    2017-07-01

    In this paper, a new scheme of bidirectional quantum teleportation (BQT) making use of an eight-qubit entangled state as the quantum channel is presented. This scheme is the first protocol without controller by which the users can teleport an arbitrary two-qubit state to each other simultaneously. This protocol is based on the ControlledNOT operation, appropriate single-qubit unitary operations and single-qubit measurement in the Z-basis and X-basis.

  7. Experimental realization of self-guided quantum coherence freezing

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2017-12-01

    Quantum coherence is the most essential characteristic of quantum physics, specifcially, when it is subject to the resource-theoretical framework, it is considered as the most fundamental resource for quantum techniques. Other quantum resources, e.g., entanglement, are all based on coherence. Therefore, it becomes urgently important to learn how to preserve coherence in quantum channels. The best preservation is coherence freezing, which has been studied recently. However, in these studies, the freezing condition is theoretically calculated, and there still lacks a practical way to achieve this freezing; in addition the channels are usually fixed, but actually, there are also degrees of freedom that can be used to adapt the channels to quantum states. Here we develop a self-guided quantum coherence freezing method, which can guide either the quantum channels (tunable-channel scheme with upgraded channels) or the initial state (fixed-channel scheme) to the coherence-freezing zone from any starting estimate. Specifically, in the fixed-channel scheme, the final-iterative quantum states all satisfy the previously calculated freezing condition. This coincidence demonstrates the validity of our method. Our work will be helpful for the better protection of quantum coherence.

  8. Quantum error correction for continuously detected errors with any number of error channels per qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Charlene; Wiseman, Howard; Jacobs, Kurt

    2004-08-01

    It was shown by Ahn, Wiseman, and Milburn [Phys. Rev. A 67, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n-2 logical qubits in n physical qubits, thus requiring just one more physical qubit than in the previous case.

  9. Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency.

    PubMed

    Ter-Gabrielyan, N; Fromzel, V; Mu, X; Meissner, H; Dubinskii, M

    2013-07-15

    We demonstrated the continuous-wave operation of a resonantly pumped Er:YAG single-mode channel waveguide laser with diffraction-limited output and nearly quantum defect limited efficiency. Using a longitudinally core-pumped, nearly square (61.2 μm×61.6 μm) Er3+:YAG waveguide embedded in an undoped YAG cladding, an output power of 9.1 W with a slope efficiency of 92.8% (versus absorbed pump power) has been obtained. To the best of our knowledge, this optical-to-optical efficiency is the highest ever demonstrated for a channel waveguide laser.

  10. Quantum Tasks with Non-maximally Quantum Channels via Positive Operator-Valued Measurement

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Luo, Ming-Xing; Mo, Zhi-Wen

    2013-01-01

    By using a proper positive operator-valued measure (POVM), we present two new schemes for probabilistic transmission with non-maximally four-particle cluster states. In the first scheme, we demonstrate that two non-maximally four-particle cluster states can be used to realize probabilistically sharing an unknown three-particle GHZ-type state within either distant agent's place. In the second protocol, we demonstrate that a non-maximally four-particle cluster state can be used to teleport an arbitrary unknown multi-particle state in a probabilistic manner with appropriate unitary operations and POVM. Moreover the total success probability of these two schemes are also worked out.

  11. Houston Smart Commuter

    DOT National Transportation Integrated Search

    2002-04-01

    This final report documents the background, history, operations and findings of the Houston Smart Commuter operational test. This operational test was designed to evaluate the potential for achieving more efficient use of travel alternatives through ...

  12. Unified commutation-pruning technique for efficient computation of composite DFTs

    NASA Astrophysics Data System (ADS)

    Castro-Palazuelos, David E.; Medina-Melendrez, Modesto Gpe.; Torres-Roman, Deni L.; Shkvarko, Yuriy V.

    2015-12-01

    An efficient computation of a composite length discrete Fourier transform (DFT), as well as a fast Fourier transform (FFT) of both time and space data sequences in uncertain (non-sparse or sparse) computational scenarios, requires specific processing algorithms. Traditional algorithms typically employ some pruning methods without any commutations, which prevents them from attaining the potential computational efficiency. In this paper, we propose an alternative unified approach with automatic commutations between three computational modalities aimed at efficient computations of the pruned DFTs adapted for variable composite lengths of the non-sparse input-output data. The first modality is an implementation of the direct computation of a composite length DFT, the second one employs the second-order recursive filtering method, and the third one performs the new pruned decomposed transform. The pruned decomposed transform algorithm performs the decimation in time or space (DIT) data acquisition domain and, then, decimation in frequency (DIF). The unified combination of these three algorithms is addressed as the DFTCOMM technique. Based on the treatment of the combinational-type hypotheses testing optimization problem of preferable allocations between all feasible commuting-pruning modalities, we have found the global optimal solution to the pruning problem that always requires a fewer or, at most, the same number of arithmetic operations than other feasible modalities. The DFTCOMM method outperforms the existing competing pruning techniques in the sense of attainable savings in the number of required arithmetic operations. It requires fewer or at most the same number of arithmetic operations for its execution than any other of the competing pruning methods reported in the literature. Finally, we provide the comparison of the DFTCOMM with the recently developed sparse fast Fourier transform (SFFT) algorithmic family. We feature that, in the sensing scenarios with

  13. Minimal evolution time and quantum speed limit of non-Markovian open systems

    PubMed Central

    Meng, Xiangyi; Wu, Chengjun; Guo, Hong

    2015-01-01

    We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of quantum open systems in the non-Markovian strong-coupling regime with initial mixed states by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian quantum open system, the possible evolution time between two arbitrary states is not unique, among the set of which we find that the minimal one and its QSL can decrease more steeply by adjusting the coupling strength of the dissipator, which thus provides potential improvements of efficiency in many quantum physics and quantum information areas. PMID:26565062

  14. Probing the non-locality of Majorana fermions via quantum correlations

    PubMed Central

    Li, Jun; Yu, Ting; Lin, Hai-Qing; You, J. Q.

    2014-01-01

    Majorana fermions (MFs) are exotic particles that are their own anti-particles. Recently, the search for the MFs occurring as quasi-particle excitations in solid-state systems has attracted widespread interest, because of their fundamental importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Here we study the quantum correlations between two spatially separate quantum dots induced by a pair of MFs emerging at the two ends of a semiconductor nanowire, in order to develop a new method for probing the MFs. We find that without the tunnel coupling between these paired MFs, quantum entanglement cannot be induced from an unentangled (i.e., product) state, but quantum discord is observed due to the intrinsic nonlocal correlations of the paired MFs. This finding reveals that quantum discord can indeed demonstrate the intrinsic non-locality of the MFs formed in the nanowire. Also, quantum discord can be employed to discriminate the MFs from the regular fermions. Furthermore, we propose an experimental setup to measure the onset of quantum discord due to the nonlocal correlations. Our approach provides a new, and experimentally accessible, method to study the Majorana bound states by probing their intrinsic non-locality signature. PMID:24816484

  15. High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities

    NASA Astrophysics Data System (ADS)

    Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu

    2018-04-01

    We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.

  16. Longitudinal associations between built environment characteristics and changes in active commuting.

    PubMed

    Yang, Lin; Griffin, Simon; Khaw, Kay-Tee; Wareham, Nick; Panter, Jenna

    2017-05-17

    Few studies have assessed the predictors of changes in commuting. This study investigated the associations between physical environmental characteristics and changes in active commuting. Adults from the population-based European Prospective Investigation into Cancer (EPIC)-Norfolk cohort self-reported commuting patterns in 2000 and 2007. Active commuters were defined as those who reported 'always' or 'usually' walking or cycling to work. Environmental attributes around the home and route were assessed using Geographical Information Systems. Associations between potential environmental predictors and uptake and maintenance of active commuting were modelled using logistic regression, adjusting for age, sex and BMI. Of the 2757 participants (62% female, median baseline age: 52, IQR: 50-56 years), most were passive commuters at baseline (76%, n = 2099) and did not change their usual commute mode over 7 years (82%, n = 2277). In multivariable regression models, participants living further from work were less likely to take up active commuting and those living in neighbourhoods with more streetlights were more likely to take up active commuting (both p < 0.05). Findings for maintenance were similar: participants living further from work (over 10 km, OR: 0.06; 95% CI: 0.25 to 0.13) and had a main or secondary road on route were more likely to maintain their active commuting (OR: 0.52; 95% CI: 0.28 to 0.98). Those living in neighbourhoods with greater density of employment locations were more likely to maintain their active commuting. Co-locating residential and employment centres as well as redesigning urban areas to improve safety for pedestrians and cyclists may encourage active commuting. Future evaluative studies should seek to assess the effects of redesigning the built environment on active commuting and physical activity.

  17. Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel

    NASA Astrophysics Data System (ADS)

    Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping

    2018-01-01

    We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver's quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.

  18. Non-equilibrium dynamics of artificial quantum matter

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash

    The rapid progress of the field of ultracold atoms during the past two decades has set new milestones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical models. Two of such models which have witnessed significant experimental and theoretical attention are (1) the two-component Fermi gas with resonant s-wave interactions, and (2) the single-component Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium collective dynamics of these systems using the general framework of quantum kinetic theory. We present a concise review of the utilized mathematical methods in the first two chapters, including the Schwinger-Keldysh formalism of non-equilibrium quantum fields, two-particle irreducible (2PI) effective actions and the framework of quantum kinetic theory. We study the collective dynamics of the dipolar Fermi gas in a quasi-two-dimensional optical trap in chapter 3 and provide a detailed account of its dynamical crossover from the collisionless to the hydrodynamical regime. Chapter 4 is devoted to studying the dynamics of the attractive Fermi gas in the normal phase. Starting from the self-consistent T-matrix (pairing fluctuation) approximation, we systematically derive a set of quantum kinetic equations and show that they provide a globally valid description of the dynamics of the attractive Fermi gas, ranging from the weak-coupling Fermi liquid phase to the intermediate non-Fermi liquid pairing pseudogap regime and finally the strong-coupling Bose liquid phase. The shortcomings of the self-consistent T-matrix approximation in two spatial dimensions are discussed along with a proposal to overcome its unphysical behaviors. The developed kinetic formalism is finally utilized to reproduce and

  19. Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels.

    PubMed

    Held, Katharina; Voets, Thomas; Vriens, Joris

    2016-01-01

    Opening and closing of voltage-gated cation channels allows the regulated flow of cations such as Na(+), K(+), and Ca(2+) across cell membranes, which steers essential physiological processes including shaping of action potentials and triggering Ca(2+)-dependent processes. Classical textbooks describe the voltage-gated cation channels as membrane proteins with a single, central aqueous pore. In recent years, however, evidence has accumulated for the existence of additional ion permeation pathways in this group of cation channels, distinct from the central pore, which here we collectively name non-canonical pores. Whereas the first non-canonical pores were unveiled only after making specific point mutations in the voltage-sensor region of voltage-gated Na(+) and K(+) channels, recent evidence indicates that they may also be functional in non-mutated channels. Moreover, several channelopathies have been linked to mutations that cause the appearance of a non-canonical ion permeation pathway as a new pathological mechanism. This review provides an integrated overview of the biophysical properties of non-canonical pores described in voltage-dependent cation channels (KV, NaV, Cav, Hv1, and TRPM3) and of the (patho)physiological impact of opening of such pores.

  20. Transverse fields to tune an Ising-nematic quantum phase transition

    NASA Astrophysics Data System (ADS)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; Berg, Erez; Fernandes, Rafael M.; Fisher, Ian R.; Kivelson, Steven A.

    2017-12-01

    The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.