Quantum Chaotic Attractor in a Dissipative System
NASA Astrophysics Data System (ADS)
Liu, W. Vincent; Schieve, William C.
1997-04-01
A dissipative quantum system is treated here by coupling it with a heat bath of harmonic oscillators. Through quantum Langevin equations and Ehrenfest's theorem, we establish explicitly the quantum Duffing equations with a double-well potential chosen. A quantum noise term appears the only driving force in dynamics. Numerical studies show that the chaotic attractor exists in this system while chaos is certainly forbidden in the classical counterpart.
Quantum localization in open chaotic systems.
Ryu, Jung-Wan; Hur, G; Kim, Sang Wook
2008-09-01
We study a quasibound state of a delta -kicked rotor with absorbing boundaries focusing on the nature of the dynamical localization in open quantum systems. The localization lengths xi of lossy quasibound states located near the absorbing boundaries decrease as they approach the boundary while the corresponding decay rates Gamma are dramatically enhanced. We find the relation xi approximately Gamma(-1/2) and explain it based upon the finite time diffusion, which can also be applied to a random unitary operator model. We conjecture that this idea is valid for the system exhibiting both the diffusion in classical dynamics and the exponential localization in quantum mechanics.
Fourier's law for quasi-one-dimensional chaotic quantum systems
NASA Astrophysics Data System (ADS)
Seligman, Thomas H.; Weidenmüller, Hans A.
2011-05-01
We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.
Scar and antiscar quantum effects in open chaotic systems.
Kaplan, L
1999-05-01
We predict and numerically observe strong periodic orbit effects in the properties of weakly open quantum systems with a chaotic classical limit. Antiscars lead to a large number of exponentially narrow isolated resonances when the single-channel (or tunneling) opening is located on a short unstable orbit of the closed system; the probability to remain in the system at long times is thus exponentially enhanced over the random matrix theory prediction. The distribution of resonance widths and the probability to remain are quantitatively given in terms of only the stability matrix of the orbit on which the opening is placed. The long-time remaining probability density is nontrivially distributed over the available phase space; it can be enhanced or suppressed near orbits other than the one on which the lead is located, depending on the periods and classical actions of these other orbits. These effects of the short periodic orbits on quantum decay rates have no classical counterpart, and first appear on times scales much larger than the Heisenberg time of the system. All the predictions are quantitatively compared with numerical data. PMID:11969492
NASA Astrophysics Data System (ADS)
Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong
2016-09-01
To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Quantum-classical correspondence principle for work distributions in a chaotic system
NASA Astrophysics Data System (ADS)
Zhu, Long; Gong, Zongping; Wu, Biao; Quan, H. T.
2016-06-01
We numerically study the work distributions in a chaotic system and examine the relationship between quantum work and classical work. Our numerical results suggest that there exists a correspondence principle between quantum and classical work distributions in a chaotic system. This correspondence was proved for one-dimensional integrable systems in a recent work [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015), 10.1103/PhysRevX.5.031038]. Our investigation further justifies the definition of quantum work via two-point energy measurements.
Quantum-classical correspondence principle for work distributions in a chaotic system.
Zhu, Long; Gong, Zongping; Wu, Biao; Quan, H T
2016-06-01
We numerically study the work distributions in a chaotic system and examine the relationship between quantum work and classical work. Our numerical results suggest that there exists a correspondence principle between quantum and classical work distributions in a chaotic system. This correspondence was proved for one-dimensional integrable systems in a recent work [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)1063-651X10.1103/PhysRevX.5.031038]. Our investigation further justifies the definition of quantum work via two-point energy measurements. PMID:27415209
Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics.
Wang, Guang-Lei; Ying, Lei; Lai, Ying-Cheng; Grebogi, Celso
2013-05-01
Quantum chaotic scattering is referred to as the study of quantum behaviors of open Hamiltonian systems that exhibit transient chaos in the classical limit. Traditionally a central issue in this field is how the elements of the scattering matrix or their functions fluctuate as a system parameter, e.g., the electron Fermi energy, is changed. A tacit hypothesis underlying previous works was that the underlying classical phase-space structure remains invariant as the parameter varies, so semiclassical theory can be used to explain various phenomena in quantum chaotic scattering. There are, however, experimental situations where the corresponding classical chaotic dynamics can change characteristically with some physical parameter. Multiple-terminal quantum dots are one such example where, when a magnetic field is present, the classical chaotic-scattering dynamics can change between being nonhyperbolic and being hyperbolic as the Fermi energy is changed continuously. For such systems semiclassical theory is inadequate to account for the characteristics of conductance fluctuations with the Fermi energy. To develop a general framework for quantum chaotic scattering associated with variable classical dynamics, we use multi-terminal graphene quantum-dot systems as a prototypical model. We find that significant conductance fluctuations occur with the Fermi energy even for fixed magnetic field strength, and the characteristics of the fluctuation patterns depend on the energy. We propose and validate that the statistical behaviors of the conductance-fluctuation patterns can be understood by the complex eigenvalue spectrum of the generalized, complex Hamiltonian of the system which includes self-energies resulted from the interactions between the device and the semi-infinite leads. As the Fermi energy is increased, complex eigenvalues with extremely smaller imaginary parts emerge, leading to sharp resonances in the conductance.
Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics
NASA Astrophysics Data System (ADS)
Wang, Guang-Lei; Ying, Lei; Lai, Ying-Cheng; Grebogi, Celso
2013-05-01
Quantum chaotic scattering is referred to as the study of quantum behaviors of open Hamiltonian systems that exhibit transient chaos in the classical limit. Traditionally a central issue in this field is how the elements of the scattering matrix or their functions fluctuate as a system parameter, e.g., the electron Fermi energy, is changed. A tacit hypothesis underlying previous works was that the underlying classical phase-space structure remains invariant as the parameter varies, so semiclassical theory can be used to explain various phenomena in quantum chaotic scattering. There are, however, experimental situations where the corresponding classical chaotic dynamics can change characteristically with some physical parameter. Multiple-terminal quantum dots are one such example where, when a magnetic field is present, the classical chaotic-scattering dynamics can change between being nonhyperbolic and being hyperbolic as the Fermi energy is changed continuously. For such systems semiclassical theory is inadequate to account for the characteristics of conductance fluctuations with the Fermi energy. To develop a general framework for quantum chaotic scattering associated with variable classical dynamics, we use multi-terminal graphene quantum-dot systems as a prototypical model. We find that significant conductance fluctuations occur with the Fermi energy even for fixed magnetic field strength, and the characteristics of the fluctuation patterns depend on the energy. We propose and validate that the statistical behaviors of the conductance-fluctuation patterns can be understood by the complex eigenvalue spectrum of the generalized, complex Hamiltonian of the system which includes self-energies resulted from the interactions between the device and the semi-infinite leads. As the Fermi energy is increased, complex eigenvalues with extremely smaller imaginary parts emerge, leading to sharp resonances in the conductance.
Universality of spectra for interacting quantum chaotic systems.
Bruzda, Wojciech; Smaczyński, Marek; Cappellini, Valerio; Sommers, Hans-Jürgen; Zyczkowski, Karol
2010-06-01
We analyze a model quantum dynamical system subjected to periodic interaction with an environment, which can describe quantum measurements. Under the condition of strong classical chaos and strong decoherence due to large coupling with the measurement device, the spectra of the evolution operator exhibit an universal behavior. A generic spectrum consists of a single eigenvalue equal to unity, which corresponds to the invariant state of the system, while all other eigenvalues are contained in a disk in the complex plane. Its radius depends on the number of the Kraus measurement operators and determines the speed with which an arbitrary initial state converges to the unique invariant state. These spectral properties are characteristic of an ensemble of random quantum maps, which in turn can be described by an ensemble of real random Ginibre matrices. This will be proven in the limit of large dimension.
Universality of spectra for interacting quantum chaotic systems
NASA Astrophysics Data System (ADS)
Bruzda, Wojciech; Smaczyński, Marek; Cappellini, Valerio; Sommers, Hans-Jürgen; Życzkowski, Karol
2010-06-01
We analyze a model quantum dynamical system subjected to periodic interaction with an environment, which can describe quantum measurements. Under the condition of strong classical chaos and strong decoherence due to large coupling with the measurement device, the spectra of the evolution operator exhibit an universal behavior. A generic spectrum consists of a single eigenvalue equal to unity, which corresponds to the invariant state of the system, while all other eigenvalues are contained in a disk in the complex plane. Its radius depends on the number of the Kraus measurement operators and determines the speed with which an arbitrary initial state converges to the unique invariant state. These spectral properties are characteristic of an ensemble of random quantum maps, which in turn can be described by an ensemble of real random Ginibre matrices. This will be proven in the limit of large dimension.
NASA Astrophysics Data System (ADS)
Myasishchev, Denis; Bixler, David
2009-04-01
Chaos theory is a current topic in physics research and is of great scientific and applied interest. Chaotic systems include weather patterns, genetic evolution and free market economics. Modeling chaotic phenomena using electronic circuits is a convenient way to analyze nonlinear systems. We have built various types of circuits and examined the conditions under which chaos occurs. Chua's circuit and analog computing circuits (ones that directly model systems of differential equations) were in the spotlight during the fall semester. An R-C phase space diagram for the Chua's circuit was constructed and the phase transitions were examined. Different analog computing circuits were built and the resulting attractors, attractor phases, and bifurcations were recorded. A mechanical system, the two block train model, is the current focus of study. The goal is to examine attractors produced by a mechanical system, a computer simulation, and a corresponding circuit in order to prove that the same experimental results can be obtained from different sources. This way if a mechanical system is too complicated to build, it can be substituted by a suitable circuit.
The quantum-classical crossover in the adiabatic response of chaotic systems
NASA Astrophysics Data System (ADS)
Auslaender, Ophir M.; Fishman, Shmuel
2000-03-01
The autocorrelation function of the force acting on a slow classical system, resulting from interaction with a fast quantum system is calculated following Berry-Robbins, Wilkinson and Jarzynski within the leading order correction to the adiabatic approximation. The time integral of the autocorrelation function is often proportional to the rate of energy transfer between the systems. The fast quantum system is assumed to be chaotic in the classical limit for each configuration of the slow system. An analytic formula is obtained for the finite-time integral of the correlation function, in the framework of random matrix theory (RMT), for a specific dependence on the adiabatically varying parameter. Extension to a wider class of RMT models is discussed. For the Gaussian unitary and symplectic ensembles for long times the time integral of the correlation function vanishes or falls off as a Gaussian with a characteristic time that is proportional to the Heisenberg time, depending on the details of the model. The fall-off is inversely proportional to time for the Gaussian orthogonal ensemble. The correlation function is found to be dominated by the nearest-neighbour level spacings. It was calculated for a variety of nearest-neighbour level spacing distributions, including ones that do not originate from RMT ensembles. The various approximate formulae obtained are tested numerically in RMT. The results shed light on the quantum to classical crossover for chaotic systems. The implications on the possibility to experimentally observe deterministic friction are discussed.
Zurek, W.H.; Pas, J.P. |
1995-08-01
Violation of correspondence principle may occur for very macroscopic byt isolated quantum systems on rather short timescales as illustrated by the case of Hyperion, the chaotically tumbling moon of Saturn, for which quantum and classical predictions are expected to diverge on a timescale of approximately 20 years. Motivated by Hyperion, we review salient features of ``quantum chaos`` and show that decoherence is the essential ingredient of the classical limit, as it enables one to solve the apparent paradox caused by the breakdown of the correspondence principle for classically chaotic systems.
Quantum dot microlasers with external feedback: a chaotic system close to the quantum limit
NASA Astrophysics Data System (ADS)
Albert, Ferdinand; Hopfmann, Caspar; Schneider, Christian; Höfling, Sven; Worschech, Lukas; Kamp, Martin; Kinzel, Wolfgang; Forchel, Alfred; Reitzenstein, Stephan; Kanter, Ido
2012-06-01
Studying cavity quantum electrodynamical effects is an emerging and important field of research for the understanding of the many body quantum theory as well as for the generation of a new type of efficient lasers. Here we report a dramatic change in the photon statistics of quantum dot based micropillar lasers where a finite fraction of the emission is reflected back into the microcavity after a roundtrip time τ in an external cavity, where τ greatly exceeds the coherence time. Photon bunching was observed above the threshold current where the second order autocorrelation function g(2)(τ) at zero-lag can reach values up to 3.51+/-0.06. The change in the photon statistics of the two non-degenerated fundamental modes were found to be correlated, indicating non-trivial interactions between both cavity modes. Furthermore the optical feedback led to revivals of the bunching signal in integer multiples of the round trip time of the external cavity and to a decrease in the coherence time of the laser. These phenomena compare well with milliwatt chaotic lasers induced by an external feedback, indicating that chaos might occur in the nanowatt lasing regime where fluctuations in the photon statistics are in the leading order.
Quantum chaotic tunneling in graphene systems with electron-electron interactions
NASA Astrophysics Data System (ADS)
Ying, Lei; Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng
2014-12-01
An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.
Ramos, J G G S; Barbosa, A L R; Carlson, B V; Frederico, T; Hussein, M S
2016-01-01
We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical. The use of these results in other fields, such as nuclei, where the system can only be studied through a variation of the energy, is then discussed.
Synchronization of chaotic systems
Pecora, Louis M.; Carroll, Thomas L.
2015-09-15
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Synchronization of chaotic systems.
Pecora, Louis M; Carroll, Thomas L
2015-09-01
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.
Quantum double pendulum: study of an autonomous classically chaotic quantum system.
Perotti, Luca
2004-12-01
A numerical study of the quantum double pendulum is conducted. A suitable quantum scaling is found which allows us to have as the only parameters the ratios of the lengths and masses of the two pendula and a (quantum) gravity parameter containing Planck's constant. Comparison with classical and semiclassical results is used to understand the behavior of the energy curves of the levels, to define regimes in terms of the gravity parameter, and to classify the (resonant) interactions among levels by connecting them to various classical phase space structures (resonance islands). PMID:15697495
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
NASA Astrophysics Data System (ADS)
Aguilar-López, Ricardo; López-Pérez, Pablo A.; Lara-Cisneros, Gerardo; Femat, Ricardo
2016-09-01
In this paper, a robust nonlinear feedback control scheme with adaptive gain is proposed to control the chaotic behavior in a Bose-Einstein condensate (BEC). The control goal concerns the track or regulation purposes. The BEC system is represented as stochastic ordinary differential equations with measured output perturbed by Gaussian noise, which represents the nature of the quantum systems. The convergence of the BEC control law is analyzed under the frame of the Lyapunov stability theory. Numerical experiments show an adequate performance of the proposed methodology under the required conditions. The results are applicable when the shape of the condensate is sufficiently simple.
Will Quantum Cosmology Resurrect Chaotic Inflation Model?
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo; Kim, Won
2016-07-01
The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.
Cascade Chaotic System With Applications.
Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip
2015-09-01
Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.
Quantum chaotic resonances from short periodic orbits.
Novaes, M; Pedrosa, J M; Wisniacki, D; Carlo, G G; Keating, J P
2009-09-01
We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example.
Conductance fluctuations in chaotic bilayer graphene quantum dots.
Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2015-07-01
Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit.
Conductance fluctuations in chaotic bilayer graphene quantum dots.
Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2015-07-01
Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit. PMID:26274258
Universal impedance fluctuations in wave chaotic systems.
Hemmady, Sameer; Zheng, Xing; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M
2005-01-14
We experimentally investigate theoretical predictions of universal impedance fluctuations in wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We emphasize the use of the radiation impedance to remove the nonuniversal effects of the particular coupling between the outside world and the scatterer. Specific predictions that we test include the probability density functions (PDFs) of the real and imaginary parts of the universal impedance, the equality of the variances of these PDFs, and the dependence of these PDFs on a single loss parameter.
Chakraborty, Debdutta; Kar, Susmita; Chattaraj, Pratim Kumar
2015-12-21
The orbital free density functional theory and the single density equation approach are formally equivalent. An orbital free density based quantum dynamical strategy is used to study the quantum-classical correspondence in both weakly and strongly coupled van der Pol and Duffing oscillators in the presence of an external electric field in one dimension. The resulting quantum hydrodynamic equations of motion are solved through an implicit Euler type real space method involving a moving weighted least square technique. The Lagrangian framework used here allows the numerical grid points to follow the wave packet trajectory. The associated classical equations of motion are solved using a sixth order Runge-Kutta method and the Ehrenfest dynamics is followed through the solution of the time dependent Schrodinger equation using a time dependent Fourier Grid Hamiltonian technique. Various diagnostics reveal a close parallelism between classical regular as well as chaotic dynamics and that obtained from the Bohmian mechanics. PMID:26033095
Zhou Weihang; Chen Zhanghai; Zhang Bo; Yu, C. H.; Lu Wei; Shen, S. C.
2010-07-09
We report magnetic field control of the quantum chaotic dynamics of hydrogen analogues in an anisotropic solid state environment. The chaoticity of the system dynamics was quantified by means of energy level statistics. We analyzed the magnetic field dependence of the statistical distribution of the impurity energy levels and found a smooth transition between the Poisson limit and the Wigner limit, i.e., transition between regular Poisson and fully chaotic Wigner dynamics. The effect of the crystal field anisotropy on the quantum chaotic dynamics, which manifests itself in characteristic transitions between regularity and chaos for different field orientations, was demonstrated.
Electronic Realization Of Chaotic Systems
NASA Astrophysics Data System (ADS)
Parker, Christopher; Leiseth, Jeffrey; Braunstein, Michael; Rosell, Sharon; Petersen, Travis; Masters, Evan; Kangas, Eric
2008-05-01
The CWU chapter of the SPS is investigating electronic realizations of chaotic systems. Understanding the fundamental principles that govern this behavior is sought not only for its inherent educational value, but for its applications in physics, information theory, meteorology, biology and mathematics. J.C. Sprott has reported on a class of chaotic differential equations that can, in principle, be simply realized using discrete electronic components. These circuits can be used to investigate chaotic behavior in a simple system. We will present computational and experimental data collected from one simple chaotic circuit. Our computational results include eigenvalues and eigenvectors of the Jacobian, return maps, largest Lyapunov exponents and the numerical approximation of solutions to the differential equation utilized. Our data include output voltages at different points in the circuit representing the phase space behavior of the system. A comparison between the model and collected experimental data will be provided to analyze the realization of the nonlinear differential equation.
Chaotic synchronization system and electrocardiogram
NASA Astrophysics Data System (ADS)
Pei, Liuqing; Dai, Xinlai; Li, Baodong
1997-01-01
A mathematical model of chaotic synchronization of the heart-blood flow coupling dynamics is proposed, which is based on a seven dimension nonlinear dynamical system constructed by three subsystems of the sinoatrial node natural pacemaker, the cardiac relaxation oscillator and the dynamics of blood-fluid in heart chambers. The existence and robustness of the self-chaotic synchronization of the system are demonstrated by both methods of theoretical analysis and numerical simulation. The spectrum of Lyapunov exponent, the Lyapunov dimension and the Kolmogorov entropy are estimated when the system was undergoing the state of self-chaotic synchronization evolution. The time waveform of the dynamical variable, which represents the membrane potential of the cardiac integrative cell, shows a shape which is similar to that of the normal electrocardiogram (ECG) of human, thus implies that the model possesses physiological significance functionally.
Chaotic and Arnold stripes in weakly chaotic Hamiltonian systems.
Custódio, M S; Manchein, C; Beims, M W
2012-06-01
The dynamics in weakly chaotic Hamiltonian systems strongly depends on initial conditions (ICs) and little can be affirmed about generic behaviors. Using two distinct Hamiltonian systems, namely one particle in an open rectangular billiard and four particles globally coupled on a discrete lattice, we show that in these models, the transition from integrable motion to weak chaos emerges via chaotic stripes as the nonlinear parameter is increased. The stripes represent intervals of initial conditions which generate chaotic trajectories and increase with the nonlinear parameter of the system. In the billiard case, the initial conditions are the injection angles. For higher-dimensional systems and small nonlinearities, the chaotic stripes are the initial condition inside which Arnold diffusion occurs.
Designing Chaotic Systems by Piecewise Affine Systems
NASA Astrophysics Data System (ADS)
Wu, Tiantian; Li, Qingdu; Yang, Xiao-Song
Based on mathematical analysis, this paper provides a methodology to ensure the existence of homoclinic orbits in a class of three-dimensional piecewise affine systems. In addition, two chaotic generators are provided to illustrate the effectiveness of the method.
Information encoder/decoder using chaotic systems
Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson
1997-01-01
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.
Information encoder/decoder using chaotic systems
Miller, S.L.; Miller, W.M.; McWhorter, P.J.
1997-10-21
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.
Chaotic evolution of the solar system
NASA Technical Reports Server (NTRS)
Sussman, Gerald J.; Wisdom, Jack
1992-01-01
The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasi-periodic motion. The motion of Pluto is independently and robustly chaotic.
TS fuzzy realization of chaotic Lü system
NASA Astrophysics Data System (ADS)
Li, Dequan
2006-07-01
The Lü attractor is a new chaotic attractor, which connects the Lorenz attractor and the Chen attractor and represents the transition from one to the other. The Letter presents a hybrid TS fuzzy modeling approach for the newly coined chaotic Lü system. Then the abundant and fundamental dynamical behaviors of the chaotic Lü system are completely and comprehensive investigated based on this novel hybrid TS fuzzy model.
Nonlinear Dynamics, Chaotic and Complex Systems
NASA Astrophysics Data System (ADS)
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
A review of sigma models for quantum chaotic dynamics.
Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias
2015-07-01
We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization. PMID:26181515
A review of sigma models for quantum chaotic dynamics.
Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias
2015-07-01
We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.
A review of sigma models for quantum chaotic dynamics
NASA Astrophysics Data System (ADS)
Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias
2015-07-01
We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.
Applied mathematics of chaotic systems
Jen, E.; Alber, M.; Camassa, R.; Choi, W.; Crutchfield, J.; Holm, D.; Kovacic, G.; Marsden, J.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objectives of the project were to develop new mathematical techniques for describing chaotic systems and for reexpressing them in forms that can be solved analytically and computationally. The authors focused on global bifurcation analysis of rigid body motion in an ideal incompressible fluid and on an analytical technique for the exact solution of nonlinear cellular automata. For rigid-body motion, they investigated a new completely integrable partial differential equation (PDE) representing model motion of fronts in nematic crystals and studied perturbations of the integrable PDE. For cellular automata with multiple domain structures, the work has included: (1) identification of the associated set of conserved quantities for each type of domain; (2) use of the conserved quantities to construct isomorphism between the nonlinear system and a linear template; and (3) use of exact solvability methods to characterize detailed structure of equilibrium states and to derive bounds for maximal transience times.
Multiple channel secure communication using chaotic system encoding
Miller, S.L.
1996-12-31
fA new method to encrypt signals using chaotic systems has been developed that offers benefits over conventional chaotic encryption methods. The method simultaneously encodes multiple plaintext streams using a chaotic system; a key is required to extract the plaintext from the chaotic cipertext. A working prototype demonstrates feasibility of the method by simultaneously encoding and decoding multiple audio signals using electrical circuits.
Synchronization between uncertain nonidentical networks with quantum chaotic behavior
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2016-11-01
Synchronization between uncertain nonidentical networks with quantum chaotic behavior is researched. The identification laws of unknown parameters in state equations of network nodes, the adaptive laws of configuration matrix elements and outer coupling strengths are determined based on Lyapunov theorem. The conditions of realizing synchronization between uncertain nonidentical networks are discussed and obtained. Further, Jaynes-Cummings model in physics are taken as the nodes of two networks and simulation results show that the synchronization performance between networks is very stable.
Study of possible chaotic, quasi-periodic and periodic structures in quantum dusty plasma
Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar
2014-11-15
Existence of chaotic, quasi-periodic, and periodic structures of dust-ion acoustic waves is studied in quantum dusty plasmas through dynamical system approach. A system of coupled differential equations is derived from the fluid model and subsequently, variational matrix is obtained. The characteristic equation is obtained at the equilibrium point, and the behavior of nonlinear waves is studied numerically using Runge-Kutta method. The behavior of the dynamical system changes significantly when any of plasma parameters, such as the dust concentration parameter, temperature ratio, or the quantum diffraction parameter, is varied. The change of the characteristic of solution of the system is extensively studied. It is found that the system changes its behavior from chaotic pattern to limit cycle behavior.
Controlled transitions between cupolets of chaotic systems
NASA Astrophysics Data System (ADS)
Morena, Matthew A.; Short, Kevin M.; Cooke, Erica E.
2014-03-01
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.
Controlled transitions between cupolets of chaotic systems.
Morena, Matthew A; Short, Kevin M; Cooke, Erica E
2014-03-01
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.
Controlled transitions between cupolets of chaotic systems
Morena, Matthew A. Short, Kevin M.; Cooke, Erica E.
2014-03-15
We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.
Urey Prize Lecture - Chaotic dynamics in the solar system
NASA Technical Reports Server (NTRS)
Wisdom, Jack
1987-01-01
Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.
Desktop chaotic systems: Intuition and visualization
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.
1993-01-01
This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.
A semiclassical reversibility paradox in simple chaotic systems.
Tomsovic, Steven
2016-06-13
Using semiclassical methods, it is possible to construct very accurate approximations in the short-wavelength limit of quantum dynamics that rely exclusively on classical dynamical input. For systems whose classical realization is strongly chaotic, there is an exceedingly short logarithmic Ehrenfest time scale, beyond which the quantum and classical dynamics of a system necessarily diverge, and yet the semiclassical construction remains valid far beyond that time. This fact leads to a paradox if one ponders the reversibility and predictability properties of quantum and classical mechanics. They behave very differently relative to each other, with classical dynamics being essentially irreversible/unpredictable, whereas quantum dynamics is reversible/stable. This begs the question: 'How can an accurate approximation to a reversible/stable dynamics be constructed from an irreversible/unpredictable one?' The resolution of this incongruity depends on a couple of key ingredients: a well-known, inherent, one-way structural stability of chaotic systems; and an overlap integral not being amenable to the saddle point method. PMID:27140974
Effective production of orbital quantum entanglement in chaotic quantum dots with nonideal contacts
NASA Astrophysics Data System (ADS)
Santos, E. H.; Almeida, F. A. G.
2016-09-01
We study orbital entanglement production in a chaotic quantum dot with two-channel leads by varying the opacity of the contacts in the unitary and orthogonal Wigner-Dyson ensembles. We computed the occurrence probability of entangled states (squared norm) and its concurrence (entanglement level). We also define an entanglement production factor to properly evaluate the entanglement behavior in the system considering effective aspects. The results are numerically obtained through (i) integrations over random matrix ensembles (exact results) for the scenario of one contact ideally fixed and (ii) random matrix simulations for arbitrary contact opacities (sampling). Those outcomes are in mutual agreement and indicate that the optimum effective production of orbital entanglement is achieved when both contacts are ideal and the time-reversal symmetry is broken.
Complexity and synchronization in stochastic chaotic systems
NASA Astrophysics Data System (ADS)
Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo
2016-02-01
We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.
Design and Realisation of Chaotic Encryption Systems
NASA Astrophysics Data System (ADS)
Schwarz, Wolfgang; Falk, Thomas
2002-07-01
Chaotic signal transmission systems are often claimed to be secure by itself. Using a simple example it is shown, that this is not true and that exact design criteria have to be set up before starting the design of a chaotic encryption system. Then, beginning with statistical design objectives an information encryption system is systematically designed. The structure design leads to a controlled filter structure with overflow nonlinearity, the parameter design has to assure chaotic behaviour and mixing properties of the encoded signal. This defines the limits for the choice of the parameter set representing the key for the encryption. After developing the system structure the system is realized by electronic circuitry. Discrete and IC versions of the solution are presented. In order to prove that the system meets the design requirements experimental results are provided. It can be shown that in a n-th order system the statistical characteristics up to the n-th order of the output signal will not be affected by the input signal. The paper closes with some security estimates for the designed system.
Chaotic Orbits for Systems of Nonlocal Equations
NASA Astrophysics Data System (ADS)
Dipierro, Serena; Patrizi, Stefania; Valdinoci, Enrico
2016-07-01
We consider a system of nonlocal equations driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way. In particular, heteroclinic, homoclinic and chaotic trajectories are constructed. This is the first attempt to consider a nonlocal version of this type of dynamical systems in a variational setting and the first result regarding symbolic dynamics in a fractional framework.
The n-level spectral correlations for chaotic systems
NASA Astrophysics Data System (ADS)
Nagao, Taro; Müller, Sebastian
2009-09-01
We study the n-level spectral correlation functions of classically chaotic quantum systems without time-reversal symmetry. According to Bohigas, Giannoni and Schmit's universality conjecture, it is expected that the correlation functions are in agreement with the prediction of the circular unitary ensemble (CUE) of random matrices. A semiclassical resummation formalism allows us to express the correlation functions as sums over pseudo-orbits. Using an extended version of the diagonal approximation on the pseudo-orbit sums, we derive the n-level correlation functions identical to the n × n determinantal correlation functions of the CUE.
Localized chaotic patterns in weakly dissipative systems
NASA Astrophysics Data System (ADS)
Urzagasti, D.; Laroze, D.; Pleiner, H.
2014-01-01
A generalized parametrically driven damped nonlinear Schrödinger equation is used to describe, close to the resonance, the dynamics of weakly dissipative systems, like a harmonically coupled pendula chain or an easy-plane magnetic wire. The combined effects of parametric forcing, spatial coupling, and dissipation allows for the existence of stable non-trivial uniform states as well as homogeneous pattern states. The latter can be regular or chaotic. A new family of localized states that connect asymptotically a non-trivial uniform state with a spatio-temporal chaotic pattern is numerically found. We discuss the parameter range, where these localized structures exist. This article is dedicated to Prof. Helmut R. Brand on the occasion of his 60th birthday.
Universal and nonuniversal properties of wave-chaotic scattering systems.
Yeh, Jen-Hao; Hart, James A; Bradshaw, Elliott; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M
2010-02-01
Prediction of the statistics of scattering in typical wave-chaotic systems requires combining system-specific information with universal aspects of chaotic scattering as described by random matrix theory. This Rapid Communication shows that the average impedance matrix, which characterizes such system-specific properties, can be semiclassically calculated in terms of ray trajectories between ports. Theoretical predictions are compared with experimental results for a microwave billiard, demonstrating that the theory successfully uncovered universal statistics of wave-chaotic scattering systems.
Targeting engineering synchronization in chaotic systems
NASA Astrophysics Data System (ADS)
Bhowmick, Sourav K.; Ghosh, Dibakar
2016-07-01
A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.
Determining Chaotic Instabilities in Mechanical Systems
NASA Technical Reports Server (NTRS)
Zak, M. A.
1986-01-01
Theoretical developments enable suppression of chaotic structual motions. Theory enables prediction, avoidance, and suppression of chaotic vibrations in structures, especially using dynamic feedback stabilization. In new formulation, motion both repeatable and predictable.
Localization in chaotic systems with a single-channel opening.
Lippolis, Domenico; Ryu, Jung-Wan; Kim, Sang Wook
2015-07-01
We introduce a single-channel opening in a random Hamiltonian and a quantized chaotic map: localization on the opening occurs as a sensible deviation of the wave-function statistics from the predictions of random matrix theory, even in the semiclassical limit. Increasing the coupling to the open channel in the quantum model, we observe a similar picture to resonance trapping, made of a few fast-decaying states, whose left (right) eigenfunctions are entirely localized on the (preimage of the) opening, and plentiful long-lived states, whose probability density is instead suppressed at the opening. For the latter, we derive and test a linear relation between the wave-function intensities and the decay rates, similar to the Breit-Wigner law. We then analyze the statistics of the eigenfunctions of the corresponding (discretized) classical propagator, finding a similar behavior to the quantum system only in the weak-coupling regime.
Berkolaiko, Gregory; Kuipers, Jack
2012-04-01
Electronic transport through chaotic quantum dots exhibits universal, system-independent properties, consistent with random-matrix theory. The quantum transport can also be rooted, via the semiclassical approximation, in sums over the classical scattering trajectories. Correlations between such trajectories can be organized diagrammatically and have been shown to yield universal answers for some observables. Here, we develop the general combinatorial treatment of the semiclassical diagrams, through a connection to factorizations of permutations. We show agreement between the semiclassical and random matrix approaches to the moments of the transmission eigenvalues. The result is valid for all moments to all orders of the expansion in inverse channel number for all three main symmetry classes (with and without time-reversal symmetry and spin-orbit interaction) and extends to nonlinear statistics. This finally explains the applicability of random-matrix theory to chaotic quantum transport in terms of the underlying dynamics as well as providing semiclassical access to the probability density of the transmission eigenvalues.
Breaking time reversal in a simple smooth chaotic system
NASA Astrophysics Data System (ADS)
Tomsovic, Steven; Ullmo, Denis; Nagano, Tatsuro
2003-06-01
Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the presence (or absence) of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit conjecture, this statement extends to quantum systems with chaotic classical analogs. For practical reasons, much of the supporting numerical studies of symmetry breaking have been done with billiards or maps, and little with simple, smooth systems. There are two main difficulties in attempting to break time reversal invariance in a continuous time system with a smooth potential. The first is avoiding false time reversal breaking. The second is locating a parameter regime in which the symmetry breaking is strong enough to transform the fluctuation properties fully to the broken symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that the system is no longer chaotic. We give an example of a system of two coupled quartic oscillators whose energy level statistics closely match with those of the Gaussian unitary ensemble, and which possesses only a minor proportion of regular motion in its phase space.
Chen, Diyi; Zhang, Runfan; Sprott, J C; Chen, Haitao; Ma, Xiaoyi
2012-06-01
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. More importantly, the vector controller is one-dimensional less than the system. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Chen chaotic system and an integer-order T chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order hyperchaotic system, and the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order Lorenz chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.
Active control technique of fractional-order chaotic complex systems
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.
2016-06-01
Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Decoherence in chaotic and integrable systems: a random matrix approach
NASA Astrophysics Data System (ADS)
Gorin, T.; Seligman, T. H.
2003-03-01
We study the influence of chaos and order on entanglement and decoherence. In view of applications in quantum computing and teleportation which should be able to work with arbitrarily complicated states, we pay particular attention to the behavior of random states. While studies with coherent states indicate that chaos accelerates decoherence and entanglement, we find that there is practically no difference between the chaotic and the integrable case, as far as random states are concerned. In the present studies we use unitary time evolution of the total system, and partial traces to emulate decoherence. Random matrix models are a natural choice to describe the dynamics of random states. The invariant aspects of chaos and order are then reflected in the different spectral statistics. We develop random matrix models for the evolution of entanglement for a large variety of situations, discussing the strong coupling case in full detail.
Chaotic carrier pulse position modulation communication system and method
Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.
2001-01-01
A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.
The chaotic "sculpting" of the Solar System
NASA Astrophysics Data System (ADS)
Tsiganis, K.
2006-01-01
The orbits of the large celestial bodies in our Solar System are stable for very long times, as can be shown by numerical simulation. This gives the erroneous impression of perpetual stability of the system. It is only when we study the orbital distribution of the numerous minor bodies in the Solar System that we discover the rich variety of complex dynamical processes that have in fact shaped our system. During the last decade, enormous progress has been made, in understanding the evolution of the system over the last ~3.9 Gy. However, it also became clear that, in order to unveil its behaviour during the first ~700 million years of its lifetime, we have to find convincing explanations for observations that appear as details of its dynamical architecture. In the following we are going to show how the two best known - and up to now unexplained - observations in the Solar System, namely (i) the heavily cratered surface of the Moon and (ii) the elliptic (and not circular) motion of the planets, lead us to the discovery of the chaotic sculpting of the Solar System [1]-[3].
Spread spectrum communication system with chaotic frequency modulation
NASA Astrophysics Data System (ADS)
Volkovskii, A. R.; Tsimring, L. Sh.; Rulkov, N. F.; Langmore, I.
2005-09-01
A new spread spectrum communication system utilizing chaotic frequency modulation of sinusoidal signals is discussed. A single phase lock loop (PLL) system in the receiver is used both to synchronize the local chaotic oscillator and to recover the information signal. We study the dynamics of the synchronization process, stability of the PLL system, and evaluate the bit-error-rate performance of this chaos-based communication system.
A Chaotic System with Different Families of Hidden Attractors
NASA Astrophysics Data System (ADS)
Pham, Viet-Thanh; Volos, Christos; Jafari, Sajad; Vaidyanathan, Sundarapandian; Kapitaniak, Tomasz; Wang, Xiong
The presence of hidden attractors in dynamical systems has received considerable attention recently both in theory and applications. A novel three-dimensional autonomous chaotic system with hidden attractors is introduced in this paper. It is exciting that this chaotic system can exhibit two different families of hidden attractors: hidden attractors with an infinite number of equilibrium points and hidden attractors without equilibrium. Dynamical behaviors of such system are discovered through mathematical analysis, numerical simulations and circuit implementation.
CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM
Batygin, Konstantin; Morbidelli, Alessandro; Holman, Mathew J.
2015-02-01
On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.
Chaotic system for self-synchronizing Doppler measurement.
Carroll, Thomas L
2005-03-01
In a radar system, it is necessary to measure both range and velocity of a target. The movement of the target causes a Doppler shift of the radar signal, and the size of the Doppler shift is used to measure the velocity of the target. In this work, a chaotic drive-response system is simulated that detects a Doppler shift in a chaotic signal. The response system can detect Doppler shifts in more than one signal at a time.
NASA Astrophysics Data System (ADS)
Hur, Gwang-Ok
The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are
Conductance stability in chaotic and integrable quantum dots with random impurities.
Wang, Guanglei; Ying, Lei; Lai, Ying-Cheng
2015-08-01
For a quantum dot system of fixed geometry, in the presence of random impurities the average conductance over an appropriate range of the Fermi energy decreases as the impurity strength is increased. Can the nature of the corresponding classical dynamics in the dot region affect the rate of decrease? Utilizing graphene quantum dots with two semi-infinite, single-mode leads as a prototypical model, we address the device stability issue by investigating the combined effects of classical dynamics and impurities on the average conductance over the energy range of the first transverse mode. We find that, for chaotic dot systems, the rate of decrease in the average conductance with the impurity strength is in general characteristically smaller than that for integrable dots. We develop a semiclassical analysis for the phenomenon and also obtain an understanding based on the random matrix theory. Our results demonstrate that classical chaos can generally lead to a stronger stability in the device performance, strongly advocating exploiting chaos in the development of nanoscale quantum transport devices. PMID:26382470
Efficiency of Monte Carlo sampling in chaotic systems.
Leitão, Jorge C; Lopes, J M Viana Parente; Altmann, Eduardo G
2014-11-01
In this paper we investigate how the complexity of chaotic phase spaces affect the efficiency of importance sampling Monte Carlo simulations. We focus on flat-histogram simulations of the distribution of finite-time Lyapunov exponent in a simple chaotic system and obtain analytically that the computational effort: (i) scales polynomially with the finite time, a tremendous improvement over the exponential scaling obtained in uniform sampling simulations; and (ii) the polynomial scaling is suboptimal, a phenomenon known as critical slowing down. We show that critical slowing down appears because of the limited possibilities to issue a local proposal in the Monte Carlo procedure when it is applied to chaotic systems. These results show how generic properties of chaotic systems limit the efficiency of Monte Carlo simulations.
Chaotic diffusion in the Gliese-876 planetary system
NASA Astrophysics Data System (ADS)
Martí, J. G.; Cincotta, P. M.; Beaugé, C.
2016-07-01
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
Reconstruction of time-delay systems from chaotic time series.
Bezruchko, B P; Karavaev, A S; Ponomarenko, V I; Prokhorov, M D
2001-11-01
We propose a method that allows one to estimate the parameters of model scalar time-delay differential equations from time series. The method is based on a statistical analysis of time intervals between extrema in the time series. We verify our method by using it for the reconstruction of time-delay differential equations from their chaotic solutions and for modeling experimental systems with delay-induced dynamics from their chaotic time series.
Quasibound states in a chaotic molecular system
Barr, Alex M.; Na, Kyungsun; Reichl, L. E.
2011-06-15
We show the influence of stable and unstable periodic orbits on the energy eigenstates of the HOCl molecule, both below and above dissociation. The energy range considered is low enough to hold the HO bond fixed, allowing a two-dimensional model of the molecule. Above dissociation unstable periodic orbits, in a chaotic sea, anchor quasibound states of the molecule. Quasibound states are calculated using reaction matrix theory and are found to have lifetimes ranging over five orders of magnitude.
Analytical-Algebraic Approach to Solving Chaotic System
NASA Astrophysics Data System (ADS)
Beran, Zdeněk; Čelikovský, Sergej
The aim of this paper is to present the application of the analytical series technique to study properties of the nonlinear chaotic dynamical systems. More specifically, Laplace-Adomian decomposition method is applied to Rössler system and the so-called generalized Lorenz system. Some advantages and possible applications of this approach are discussed. Results are illustrated by numerical computations.
Active synchronization between two different chaotic dynamical system
NASA Astrophysics Data System (ADS)
Maheri, M.; Arifin, N. Md; Ismail, F.
2015-05-01
In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.
Active synchronization between two different chaotic dynamical system
Maheri, M.; Arifin, N. Md; Ismail, F.
2015-05-15
In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.
Fundamentals of synchronization in chaotic systems, concepts, and applications.
Pecora, Louis M.; Carroll, Thomas L.; Johnson, Gregg A.; Mar, Douglas J.; Heagy, James F.
1997-12-01
The field of chaotic synchronization has grown considerably since its advent in 1990. Several subdisciplines and "cottage industries" have emerged that have taken on bona fide lives of their own. Our purpose in this paper is to collect results from these various areas in a review article format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with emphases on the geometry of synchronization and stability criteria. Several widely used coupling configurations are examined and, when available, experimental demonstrations of their success (generally with chaotic circuit systems) are described. Particular focus is given to the recent notion of synchronous substitution-a method to synchronize chaotic systems using a larger class of scalar chaotic coupling signals than previously thought possible. Connections between this technique and well-known control theory results are also outlined. Extensions of the technique are presented that allow so-called hyperchaotic systems (systems with more than one positive Lyapunov exponent) to be synchronized. Several proposals for "secure" communication schemes have been advanced; major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled chaotic systems have received a great deal of attention lately and have spawned a host of interesting and, in some cases, counterintuitive phenomena including bursting above synchronization thresholds, destabilizing transitions as coupling increases (short-wavelength bifurcations), and riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization is discussed, along with data analysis techniques that can be used to decide whether two systems satisfy the mathematical requirements of generalized synchronization. (c) 1997 American Institute of Physics. PMID:12779679
Quantum smearing in hybrid inflation with chaotic potentials
NASA Astrophysics Data System (ADS)
Ahmed, Waqas; Ishaque, Ommair; Rehman, Mansoor Ur
2016-01-01
We study the impact of 1-loop radiative corrections in a nonsupersymmetric model of hybrid inflation (HI) with chaotic (polynomial-like) potential, V0 + λpϕp. These corrections can arise from the possible couplings of inflaton with other fields which can play an active role in the reheating process. The tree-level predictions of these models are shown to lie outside of the Planck’s latest bounds on the scalar spectral index ns and the tensor to scalar ratio r. However, the radiatively corrected version of these models, V0 + λpϕp + Aϕ4ln ϕ, is fully consistent with the Planck’s data. More specifically, fermionic radiative correction (A < 0) reduces the tensor to scalar ratio significantly and a red-tilted spectral index ns < 1, consistent with Planck’s data, is obtained even for sub-Planckian field-values.
Jamming and chaotic dynamics in different granular systems
NASA Astrophysics Data System (ADS)
Maghsoodi, Homayoon; Luijten, Erik
Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.
Cooling of a Magmatic System Under Thermal Chaotic Mixing
NASA Astrophysics Data System (ADS)
El Omari, Kamal; Le Guer, Yves; Perugini, Diego; Petrelli, Maurizio
2015-07-01
The cooling of a basaltic melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a two-dimensional (2D) cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly modulates the temperature fields over time and greatly increases the cooling rates. This mechanism has implications for the thermal lifetime of the magmatic body and may favor the appearance of chemical heterogeneities in the igneous system as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations, including the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositional zoning observed in many plutons worldwide.
Cooling of a magmatic system under thermal chaotic mixing
NASA Astrophysics Data System (ADS)
Petrelli, Maurizio; El Omari, Kamal; Le Guer, Yves; Perugini, Diego
2015-04-01
The cooling of a melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a 2D cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing even of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly affects the temperature field during time and greatly increases the cooling rates. This mechanism has implications for the lifetime of a magmatic body and may favor the appearance of chemical heterogeneities in igneous systems as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations. Among them, the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositionally zoning observed in many plutons worldwide.
Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry
Novaes, Marcel
2015-10-15
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.
El Nino: a chaotic dynamical system
Vallis, G.K.
1986-04-11
Most of the principal qualitative features of the El Nino-Southern Oscillation phenomenon can be explained by a simple but physically motivated theory. These features are the occurrence of sea-surface warmings in the eastern equatorial Pacific and the associated trade wind reversal; the aperiodicity of these events; the preferred onset time with respect to the seasonal cycle; and the much weaker events in the Atlantic and Indian oceans. The theory, in its simplest form, is a conceptual model for the interaction of just three variables, namely near-surface temperatures in the east and west equatorial ocean and a wind-driven current advecting the temperature field. For a large range of parameters, the model is naturally chaotic and aperiodically produces El Nino-like events. For a smaller basin, representing a smaller ocean, the events are proportionally less intense.
Adaptive synchronization of a class of continuous chaotic systems with uncertain parameters
NASA Astrophysics Data System (ADS)
Zhang, Gang; Liu, Zengrong; Zhang, Jianbao
2008-01-01
This Letter investigates the problem of synchronization between two different chaotic systems. A generic adaptive synchronization scheme is proposed for a class of chaotic systems with uncertain parameters. Based on the Lyapunov stability theorem, an adaptive controller and the corresponding parameters update laws are designed to synchronize two chaotic systems. Numerical simulations are also given to show the effectiveness of the proposed method.
Regular and chaotic quantum dynamics in atom-diatom reactive collisions
Gevorkyan, A. S.; Nyman, G.
2008-05-15
A new microirreversible 3D theory of quantum multichannel scattering in the three-body system is developed. The quantum approach is constructed on the generating trajectory tubes which allow taking into account influence of classical nonintegrability of the dynamical quantum system. When the volume of classical chaos in phase space is larger than the quantum cell in the corresponding quantum system, quantum chaos is generated. The probability of quantum transitions is constructed for this case. The collinear collision of the Li + (FH) {sup {yields}}(LiF) + H system is used for numerical illustration of a system generating quantum (wave) chaos.
Random matrix theory of a chaotic Andreev quantum dot
Altland, A.; Zirnbauer, M.R.
1996-04-01
A new universality class distinct from the standard Wigner-Dyson class is identified. This class is realized by putting a metallic quantum dot in contact with a superconductor, while applying a magnetic field so as to make the pairing field effectively vanish on average. A random-matrix description of the spectral and transport properties of such a quantum dot is proposed. The weak-localization correction to the tunnel conductance is nonzero and results from the depletion of the density of states due to the coupling with the superconductor. Semiclassically, the depletion is caused by a singular mode of phase-coherent long-range propagation of particles and holes. {copyright} {ital 1996 The American Physical Society.}
Greshnov, A. A. Zegrya, G. G.; Kolesnikova, E. N.
2008-09-15
The problem of the peak values of the longitudinal conductivity under integer quantum Hall effect conditions is studied. The limiting cases of sharp and smooth chaotic potentials are considered. In the case of a sharp chaotic potential, the first longitudinal conductivity peak ({delta}{sub xx}{sup (0)}) obtained by the extrapolation of numerical data to an infinite sample size L{sup {yields}}{infinity} is (0.55{+-}0.03)e{sup 2}/h. In the case of a smooth chaotic potential, the peak values of the longitudinal conductivity are independent of the Landau level number and decrease as the chaotic-potential correlation length {lambda} increases. The results obtained for sharp and smooth chaotic potentials agree with the reported experimental and numerically calculated data.
Chaotic Motion in the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)
2001-01-01
The motion of planetary bodies is the archetypal clockwork system. Indeed, clocks and calendars were developed to keep track of the relative motions of the Earth, the Sun and the Moon. However, studies over the past few decades imply that this predictable regularity does not extend to small bodies, nor does it apply to the precise trajectories of the planets themselves over long timescale.s. Various examples of chaotic motion within our Solar System and, extrasolar planetary systems will be discussed.
Complex network synchronization of chaotic systems with delay coupling
Theesar, S. Jeeva Sathya Ratnavelu, K.
2014-03-05
The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.
Universal spin Hall conductance fluctuations in chaotic Dirac quantum dots
NASA Astrophysics Data System (ADS)
Vasconcelos, T. C.; Ramos, J. G. G. S.; Barbosa, A. L. R.
2016-03-01
We present complete analytical and numerical results that demonstrate the anomalous universal fluctuations of the spin Hall conductance in chiral materials such as graphene and topological insulators. We investigate both the corresponding fluctuations, the universal fractionated and the universal quantized, and also the open channel orbital number crossover between the two regimes. In particular, we show that the Wigner-Dyson symmetries do not properly describe such conductances and the preponderant role of the chiral classes on the Dirac quantum dots. The results are analytical and solve outstanding issues.
Classical and quantum chaotic angular-momentum pumps.
Dittrich, T; Dubeibe, F L
2015-03-01
We study directed transport of charge and intrinsic angular momentum by periodically driven scattering in the regime of fast and strong driving. A spin-orbit coupling through a kicked magnetic field confined to a compact region in space leads to irregular scattering and triggers spin flips in a spatially asymmetric manner which allows us to generate polarized currents. The dynamical mechanisms responsible for the spin separation carry over to the quantum level and give rise to spin pumping. Our theory based on the Floquet formalism is confirmed by numerical solutions of the time-dependent inhomogeneous Schrödinger equation with a continuous source term.
Forward and adjoint sensitivity computation of chaotic dynamical systems
Wang, Qiqi
2013-02-15
This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.
Chaotic oscillations and cycles in multi-trophic ecological systems.
Stone, Lewi; He, Daihai
2007-09-21
A set of multi-trophic population models are described, all of which yield an interesting form of chaotic dynamics-namely, the populations cycle in a periodic fashion, yet the peak abundance within each cycle is erratic and irregular over time. Since there are many ecological and biological systems that are characterized with this same form of "uniform phase-growth and chaotic amplitude (UPCA)," these models should be useful in a range of applications. We discuss their relevance to the well-known Canadian hare-lynx system, and other small mammal foodwebs which together comprise wildlife's unusual "four and ten year cycle." The dynamics of the model equations are analysed and an explanation is given as to the source of the UPCA dynamics in the new class of foodweb systems presented, and in others found in the literature. PMID:17602706
Spectral statistics of chaotic many-body systems
NASA Astrophysics Data System (ADS)
Dubertrand, Rémy; Müller, Sebastian
2016-03-01
We derive a trace formula that expresses the level density of chaotic many-body systems as a smooth term plus a sum over contributions associated to solutions of the nonlinear Schrödinger (or Gross-Pitaevski) equation. Our formula applies to bosonic systems with discretised positions, such as the Bose-Hubbard model, in the semiclassical limit as well as in the limit where the number of particles is taken to infinity. We use the trace formula to investigate the spectral statistics of these systems, by studying interference between solutions of the nonlinear Schrödinger equation. We show that in the limits taken the statistics of fully chaotic many-particle systems becomes universal and agrees with predictions from the Wigner-Dyson ensembles of random matrix theory. The conditions for Wigner-Dyson statistics involve a gap in the spectrum of the Frobenius-Perron operator, leaving the possibility of different statistics for systems with weaker chaotic properties.
Complete chaotic synchronization in mutually coupled time-delay systems.
Landsman, Alexandra S; Schwartz, Ira B
2007-02-01
Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of parameters. The results explain and predict the dependence of synchronization on various parameters, such as time delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized subsystems.
Prescribed performance synchronization for fractional-order chaotic systems
NASA Astrophysics Data System (ADS)
Liu, Heng; Li, Sheng-Gang; Sun, Ye-Guo; Wang, Hong-Xing
2015-09-01
In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error, are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11401243 and 61403157), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201504002), and the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2015A256).
Liu, Xiaojun; Hong, Ling; Jiang, Jun
2016-08-01
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.
NASA Astrophysics Data System (ADS)
Liu, Xiaojun; Hong, Ling; Jiang, Jun
2016-08-01
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.
Liu, Xiaojun; Hong, Ling; Jiang, Jun
2016-08-01
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems. PMID:27586621
Digital Image Encryption Scheme Based on Multiple Chaotic Systems
NASA Astrophysics Data System (ADS)
Abd El-Latif, Ahmed A.; Li, Li; Zhang, Tiejun; Wang, Ning; Song, Xianhua; Niu, Xiamu
2012-06-01
Image encryption is a challenging task due to the significant level of sophistication achieved by forgerers and other cybercriminals. Advanced encryption methods for secure transmission, storage, and retrieval of digital images are increasingly needed for a number of military, medical, homeland security, and other applications. In this paper, we introduce a new digital image encryption algorithm. The new algorithm employs multiple chaotic systems and cryptographic primitive operations within the encryption process, which are efficiently implemented on modern processors, and adopts round keys for encryption using a chaotic map. Experiments conducted show that the proposed algorithm possesses robust security features such as fairly uniform distribution, high sensitivity to both keys and plainimages, almost ideal entropy, and the ability to highly de-correlate adjacent pixels in the cipherimages. Furthermore, it has a large key space, which greatly increases its security for image encryption applications.
Senkerik, Roman; Zelinka, Ivan; Pluhacek, Michal; Davendra, Donald; Oplatková Kominkova, Zuzana
2014-01-01
Evolutionary technique differential evolution (DE) is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.
Pluhacek, Michal; Davendra, Donald; Oplatková Kominkova, Zuzana
2014-01-01
Evolutionary technique differential evolution (DE) is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions. PMID:25243230
Chaotic Behavior of a Generalized Sprott E Differential System
NASA Astrophysics Data System (ADS)
Oliveira, Regilene; Valls, Claudia
A chaotic system with only one equilibrium, a stable node-focus, was introduced by Wang and Chen [2012]. This system was found by adding a nonzero constant b to the Sprott E system [Sprott, 1994]. The coexistence of three types of attractors in this autonomous system was also considered by Braga and Mello [2013]. Adding a second parameter to the Sprott E differential system, we get the autonomous system ẋ = ayz + b,ẏ = x2 - y,ż = 1 - 4x, where a,b ∈ ℝ are parameters and a≠0. In this paper, we consider theoretically some global dynamical aspects of this system called here the generalized Sprott E differential system. This polynomial differential system is relevant because it is the first polynomial differential system in ℝ3 with two parameters exhibiting, besides the point attractor and chaotic attractor, coexisting stable limit cycles, demonstrating that this system is truly complicated and interesting. More precisely, we show that for b sufficiently small this system can exhibit two limit cycles emerging from the classical Hopf bifurcation at the equilibrium point p = (1/4, 1/16, 0). We also give a complete description of its dynamics on the Poincaré sphere at infinity by using the Poincaré compactification of a polynomial vector field in ℝ3, and we show that it has no first integrals in the class of Darboux functions.
Modeling and control of evolving, noisy chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Weber, Nicholas Noel
We study the modeling and control of evolving dynamical systems. In particular we model the dynamics of an evolving noisy iterative map, we study the extraction of the control parameter of the same map using a sparse time series from it, and we also study the dynamics of an evolving electronic circuit whose control parameter changes in proportion to low-pass filtering of one of its dynamical variables. First, we study a noisy one-dimensional iterative map whose system parameter evolves randomly in time. We find that there is an optimal number of model parameters and that there is an optimal number of data points to be retained as input for the model. Second, we study modeling based on a sparsely sampled time series. We compare three different methods of extracting the system parameter from a sparse set of the map's data. Two of these methods employ an ensemble of test trajectories in order to determine if statistical properties, such as the law of large numbers, facilitate the search for the system parameter. The third extraction method uses a single test trajectory. Third, we study self-adjusting dynamical systems. We study the logistic map and a chaotic electronic circuit, the Chua oscillator. We find that when these systems begin in a chaotic region of phase space, they self-adjust their own dynamics to the edge of chaos or a periodic window neighboring chaos. In addition, we study a self-adjusting system which has both low-pass filtered feedback and linear feedback control applied to its system parameter. The objective of the linear feedback control component is to drive the parameter to a target value in the presence of the low-pass component which behaves as described earlier. We find that the system parameter stays close to the target parameter value if the dynamics is non-chaotic. (Abstract shortened by UMI.)
Sensing small changes in a wave chaotic scattering system
Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward; Anlage, Steven M.
2010-12-01
Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acoustic resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.
Evolving artificial neural networks to control chaotic systems
NASA Astrophysics Data System (ADS)
Weeks, Eric R.; Burgess, John M.
1997-08-01
We develop a genetic algorithm that produces neural network feedback controllers for chaotic systems. The algorithm was tested on the logistic and Hénon maps, for which it stabilizes an unstable fixed point using small perturbations, even in the presence of significant noise. The network training method [D. E. Moriarty and R. Miikkulainen, Mach. Learn. 22, 11 (1996)] requires no previous knowledge about the system to be controlled, including the dimensionality of the system and the location of unstable fixed points. This is the first dimension-independent algorithm that produces neural network controllers using time-series data. A software implementation of this algorithm is available via the World Wide Web.
Comparative study of synchronization methods of fractional order chaotic systems
NASA Astrophysics Data System (ADS)
Singh, Ajit K.; Yadav, Vijay K.; Das, S.
2016-09-01
In this article, the active control method and the backstepping method are used during the synchronization of fractional order chaotic systems. The salient feature of the article is the analysis of time of synchronization between fractional order Chen and Qi systems using both the methods. Numerical simulation and graphical results clearly exhibit that backstepping approach is better than active control method for synchronization of the considered pair of systems, as it takes less time to synchronize while using the first one compare to second one.
The chaotic history of the Solar System
NASA Astrophysics Data System (ADS)
Morbidelli, Alessandro
2015-08-01
I will provide a review of the models proposed to explain the structure of the Solar System, with emphasis on their predicitions regarding the origin of asteroids and comets and the build-up of the two major cometary reservoirs: the scattered disk and the Oort cloud
The equal combination synchronization of a class of chaotic systems with discontinuous output
Luo, Runzi; Zeng, Yanhui
2015-11-15
This paper investigates the equal combination synchronization of a class of chaotic systems. The chaotic systems are assumed that only the output state variable is available and the output may be discontinuous state variable. By constructing proper observers, some novel criteria for the equal combination synchronization are proposed. The Lorenz chaotic system is taken as an example to demonstrate the efficiency of the proposed approach.
The equal combination synchronization of a class of chaotic systems with discontinuous output.
Luo, Runzi; Zeng, Yanhui
2015-11-01
This paper investigates the equal combination synchronization of a class of chaotic systems. The chaotic systems are assumed that only the output state variable is available and the output may be discontinuous state variable. By constructing proper observers, some novel criteria for the equal combination synchronization are proposed. The Lorenz chaotic system is taken as an example to demonstrate the efficiency of the proposed approach.
Synchronization and an application of a novel fractional order King Cobra chaotic system.
Muthukumar, P; Balasubramaniam, P; Ratnavelu, K
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results. PMID:25273185
Synchronization and an application of a novel fractional order King Cobra chaotic system.
Muthukumar, P; Balasubramaniam, P; Ratnavelu, K
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results.
Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays.
Zheng, Song
2015-09-01
In this paper, the robust exponential stabilization of uncertain impulsive complex-variable chaotic delayed systems is considered with parameters perturbation and delayed impulses. It is assumed that the considered complex-variable chaotic systems have bounded parametric uncertainties together with the state variables on the impulses related to the time-varying delays. Based on the theories of adaptive control and impulsive control, some less conservative and easily verified stability criteria are established for a class of complex-variable chaotic delayed systems with delayed impulses. Some numerical simulations are given to validate the effectiveness of the proposed criteria of impulsive stabilization for uncertain complex-variable chaotic delayed systems.
Synchronization and an application of a novel fractional order King Cobra chaotic system
Muthukumar, P. Balasubramaniam, P.; Ratnavelu, K.
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results.
Chaotic Patterns in Lotka-Volterra Systems with Behavioral Adaptation
NASA Astrophysics Data System (ADS)
Lacitignola, D.; Tebaldi, C.
2006-03-01
We study the properties of a n2-dimensional Lotka-Volterra system describing competition among species with behaviorally adaptive abilities, in which one species is made ecologically differentiated with respect to the others by carrying capacity and intrinsic growth rate. The case in which one species has a carrying capacity higher than the others is considered here. Stability of equilibria and time-dependent regimes have been investigated in the case of four species: an interesting example of chaotic window and period-adding sequences is presented and discussed.
Nonlinear time reversal in a wave chaotic system.
Frazier, Matthew; Taddese, Biniyam; Antonsen, Thomas; Anlage, Steven M
2013-02-01
Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we demonstrate a new form of secure communication and point out other applications.
NASA Astrophysics Data System (ADS)
Martienssen, W.; Hübinger, B.; Doerner, R.
A method to transfer secret information using chaotic dynamical systems is proposed. It is based on modulating a chaotic system with the message such that its time evolution contains the hidden information. Decryption of the cipher is achieved by chaos control. Operation of the scheme is demonstrated by en- and decoding a short german text.
An Anti-Cheating Visual Cryptography Scheme Based on Chaotic Encryption System
NASA Astrophysics Data System (ADS)
Han, Yanyan; Xu, Zhuolin; Ge, Xiaonan; He, Wencai
By chaotic encryption system and introducing the trusted third party (TTP), in this paper, an anti-cheating visual cryptography scheme (VCS) is proposed. The scheme solved the problem of dishonest participants and improved the security of chaotic encryption system. Simulation results and analysis show that the recovery image is acceptable, the system can detect the cheating in participants effectively and with high security.
Hierarchical fractal Weyl laws for chaotic resonance states in open mixed systems.
Körber, M J; Michler, M; Bäcker, A; Ketzmerick, R
2013-09-13
In open chaotic systems the number of long-lived resonance states obeys a fractal Weyl law, which depends on the fractal dimension of the chaotic saddle. We study the generic case of a mixed phase space with regular and chaotic dynamics. We find a hierarchy of fractal Weyl laws, one for each region of the hierarchical decomposition of the chaotic phase-space component. This is based on our observation of hierarchical resonance states localizing on these regions. Numerically this is verified for the standard map and a hierarchical model system.
A chaotic system for the generation of extreme mechanical environments
Paez, T.L.; Gregory, D.L.; Kelton, D.; Coleman, R.
1991-01-01
A proposed system and technique for generating high frequency, high amplitude vibration environments is presented. These environments are created using a device attached to a common vibration exciter that permits multiple metal on metal impacts driving a test surface. Previous analytical studies (Refs. 1 and 2) predicted that test environments with an energy content exceeding 10 kHx could be achieved using sinusoidal and random shaker excitations. The analysis predicted that chaotic vibrations yielding random-like test environments could be generated from sinusoidal inputs. In this study, a much simplified version of the proposed system was fabricated and tested in the laboratory. Experimental measurements demonstrate that even this simplified system, utilizing a single impacting object, can generate environments on the test surface with significant frequency content in excess of 80 kHz. A theoretical model of the system is described and the results are compared with the experimental results for the simplified system. 5 refs., 8 figs.
Chaos pass filter: Linear response of synchronized chaotic systems
NASA Astrophysics Data System (ADS)
Zeeb, Steffen; Kestler, Johannes; Kanter, Ido; Kinzel, Wolfgang
2013-04-01
The linear response of synchronized time-delayed chaotic systems to small external perturbations, i.e., the phenomenon of chaos pass filter, is investigated for iterated maps. The distribution of distances, i.e., the deviations between two synchronized chaotic units due to external perturbations on the transferred signal, is used as a measure of the linear response. It is calculated numerically and, for some special cases, analytically. Depending on the model parameters this distribution has power law tails in the region of synchronization leading to diverging moments of distances. This is a consequence of multiplicative and additive noise in the corresponding linear equations due to chaos and external perturbations. The linear response can also be quantified by the bit error rate of a transmitted binary message which perturbs the synchronized system. The bit error rate is given by an integral over the distribution of distances and is calculated analytically and numerically. It displays a complex nonmonotonic behavior in the region of synchronization. For special cases the distribution of distances has a fractal structure leading to a devil's staircase for the bit error rate as a function of coupling strength. The response to small harmonic perturbations shows resonances related to coupling and feedback delay times. A bidirectionally coupled chain of three units can completely filter out the perturbation. Thus the second moment and the bit error rate become zero.
Cross-section fluctuations in chaotic scattering systems
NASA Astrophysics Data System (ADS)
Ericson, Torleif E. O.; Dietz, Barbara; Richter, Achim
2016-10-01
Exact analytical expressions for the cross-section correlation functions of chaotic scattering systems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the scattering (S )-matrix correlation functions accurately. Our results are given in the energy and in the time representations and apply in the whole range from isolated to overlapping resonances. The S -matrix contributions to the cross-section correlations are obtained in terms of explicit irreducible and reducible correlation functions. Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S -matrix autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in that region. Agreement with known analytical and experimental results is excellent.
Feedback control design for Rössler and Chen chaotic systems anti-synchronization
NASA Astrophysics Data System (ADS)
Hammami, S.; Benrejeb, M.; Feki, M.; Borne, P.
2010-06-01
The proposed anti-synchronization conditions of coupled chaotic systems are based, in this Letter, on the use of aggregation techniques for the stability study of the error dynamics. The schemes are, successfully, applied to coupled Rössler and Chen chaotic systems making the instantaneous characteristic matrix under the arrow form. Numerical simulations are performed to illustrate the efficiency of the proposed approach.
NASA Astrophysics Data System (ADS)
Orue, A. B.; Alvarez, G.; Pastor, G.; Romera, M.; Montoya, F.; Li, Shujun
2010-11-01
This paper describes a method about how to determine parameters of some double-scroll chaotic systems, including the Lorenz system and the Chua's circuit, from one of its variables. The geometric properties of the system are exploited firstly to reduce the parameter search space. Then, a synchronization-based approach, with the help of the same geometric properties as coincidence criteria, is implemented to determine the parameter values with the wanted accuracy. The method is not affected by a moderate amount of noise in the waveform. As an example of its effectiveness, the method is applied to cryptanalyze two two-channel chaotic cryptosystems, figuring out how the secret keys can be directly derived from the driving signal z(t).
Quantum chaos in nanoelectromechanical systems
NASA Astrophysics Data System (ADS)
Gusso, André; da Luz, M. G. E.; Rego, Luis G. C.
2006-01-01
We present a theoretical study of the electron-phonon coupling in suspended nanoelectromechanical systems and investigate the resulting quantum chaotic behavior. The phonons are associated with the vibrational modes of a suspended rectangular dielectric plate, with free or clamped boundary conditions, whereas the electrons are confined to a large quantum dot (QD) on the plate’s surface. The deformation potential and piezoelectric interactions are considered. By performing standard energy-level statistics we demonstrate that the spectral fluctuations exhibit the same distributions as those of the Gaussian orthogonal ensemble or the Gaussian unitary ensemble (GUE), therefore evidencing the emergence of quantum chaos. That is verified for a large range of material and geometry parameters. In particular, the GUE statistics occurs only in the case of a circular QD. It represents an anomalous phenomenon, previously reported for just a small number of systems, since the problem is time-reversal invariant. The obtained results are explained through a detailed analysis of the Hamiltonian matrix structure.
Macek, M. Leviatan, A.
2014-12-15
We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between spherical and deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A classical analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure with a Hénon–Heiles type of chaotic dynamics ascribed to the spherical minimum and a robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed but well-separated dynamics persists in the coexistence region and traces the crossing of the two minima in the Landau potential. A quantum analysis discloses a number of regular low-energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands extending to high energies and angular momenta, in the deformed region. These two kinds of regular subsets of states retain their identity amidst a complicated environment of other states and both occur in the coexistence region. A symmetry analysis of their wave functions shows that they are associated with partial U(5) dynamical symmetry (PDS) and SU(3) quasi-dynamical symmetry (QDS), respectively. The pattern of mixed but well-separated dynamics and the PDS or QDS characterization of the remaining regularity, appear to be robust throughout the QPT. Effects of kinetic collective rotational terms, which may disrupt this simple pattern, are considered.
NASA Astrophysics Data System (ADS)
Macek, M.; Leviatan, A.
2014-12-01
We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between spherical and deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A classical analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure with a Hénon-Heiles type of chaotic dynamics ascribed to the spherical minimum and a robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed but well-separated dynamics persists in the coexistence region and traces the crossing of the two minima in the Landau potential. A quantum analysis discloses a number of regular low-energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands extending to high energies and angular momenta, in the deformed region. These two kinds of regular subsets of states retain their identity amidst a complicated environment of other states and both occur in the coexistence region. A symmetry analysis of their wave functions shows that they are associated with partial U(5) dynamical symmetry (PDS) and SU(3) quasi-dynamical symmetry (QDS), respectively. The pattern of mixed but well-separated dynamics and the PDS or QDS characterization of the remaining regularity, appear to be robust throughout the QPT. Effects of kinetic collective rotational terms, which may disrupt this simple pattern, are considered.
An Experimental Communication Scheme Based on Chaotic Time-Delay System with Switched Delay
NASA Astrophysics Data System (ADS)
Karavaev, A. S.; Kulminskiy, D. D.; Ponomarenko, V. I.; Prokhorov, M. D.
We develop an experimental secure communication system with chaotic switching. The proposed scheme is based on time-delayed feedback oscillator with switching of chaotic regimes. The scheme shows high tolerance to external noise and amplitude distortions of the signal in a communication channel.
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system
NASA Astrophysics Data System (ADS)
Schanz, Holger; Esser, Bernd
1997-05-01
The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
Analysis of chaotic FM system synchronization for bistatic radar
NASA Astrophysics Data System (ADS)
Pappu, Chandra S.; Verdin, Berenice; Flores, Benjamin C.; Boehm, James; Debroux, Patrick
2015-05-01
We propose a scheme for bistatic radar that uses a chaotic system to generate a wideband FM signal that is reconstructed at the receiver via a conventional phase lock loop. The setup for the bistatic radar includes a 3 state variable drive oscillator at the transmitter and a response oscillator at the receiver. The challenge is in synchronizing the response oscillator of the radar receiver utilizing a scaled version of the transmitted signal sr(t, x) = αst(t, x) where x is one of three driver oscillator state variables and α is the scaling factor that accounts for antenna gain, system losses, and space propagation. For FM, we also assume that the instantaneous frequency of the received signal, xs, is a scaled version of the Lorenz variable x. Since this additional scaling factor may not be known a priori, the response oscillator must be able to accept the scaled version of x as an input. Thus, to achieve synchronization we utilize a generalized projective synchronization technique that introduces a controller term -μe where μ is a control factor and e is the difference between the response state variable xs and a scaled x. Since demodulation of sr(t) is required to reconstruct the chaotic state variable x, the phase lock loop imposes a limit on the minimum error e. We verify through simulations that, once synchronization is achieved, the short-time correlation of x and xs is high and that the self-noise in the correlation is negligible over long periods of time.
Relativistic quantum Darwinism in Dirac fermion and graphene systems
NASA Astrophysics Data System (ADS)
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis
2012-02-01
We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.
NASA Astrophysics Data System (ADS)
Eyre, T. M. W.
Given a polynomial function f of classical stochastic integrator processes whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as
Bifurcation and chaotic threshold of Duffing system with jump discontinuities
NASA Astrophysics Data System (ADS)
Tian, Ruilan; Zhou, Yufeng; Wang, Qiubao; Zhang, Lili
2016-01-01
Like for the smooth system, it is important to determine a criteria for bifurcation of the non-smooth system with jump discontinuities. Previously, the criteria have been constructed in some non-smooth systems with jump discontinuities which are the endpoints of interval. The research on bifurcation for non-smooth system with jump discontinuities, which are the interior points of interval, seems to be a new area. We construct the Duffing system with jump discontinuities in open interval. Bifurcation diagram of the unperturbed system is detected and Hamilton phase diagrams are simulated using Matlab. The jump discontinuities for the non-smooth Homoclinic orbit lead to a barrier for conventional nonlinear techniques to obtain the criteria for chaotic motion. Traditionally, these non-smooth factors were considered term by term. We will give a reasonable compromise based on all of characteristics of the non-smooth homoclinic orbits with the jump discontinuities. The extended Melnikov function is explicitly detected to judge the stable and unstable manifolds whether intersect transversally at any position of trajectory under the perturbation of damping and external forcing. It is worthwhile noting that the result reveals the effects of the non-smooth restoring force on the behaviors of nonlinear dynamical systems. The efficiency of the theoretical results is verified by the phase portraits, Poincaré surface of section, Largest Lyapnnov exponents diagram and bifurcation diagram.
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Sorting quantum systems efficiently
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Dual synchronization of fractional-order chaotic systems via a linear controller.
Xiao, Jian; Ma, Zhen-zhen; Yang, Ye-Hong
2013-01-01
The problem of the dual synchronization of two different fractional-order chaotic systems is studied. By a linear controller, we realize the dual synchronization of fractional-order chaotic systems. Finally, the proposed method is applied for dual synchronization of Van der Pol-Willis systems and Van der Pol-Duffing systems. The numerical simulation shows the accuracy of the theory. PMID:24163612
Dual Synchronization of Fractional-Order Chaotic Systems via a Linear Controller
Xiao, Jian; Ma, Zhen-zhen; Yang, Ye-hong
2013-01-01
The problem of the dual synchronization of two different fractional-order chaotic systems is studied. By a linear controller, we realize the dual synchronization of fractional-order chaotic systems. Finally, the proposed method is applied for dual synchronization of Van der Pol-Willis systems and Van der Pol-Duffing systems. The numerical simulation shows the accuracy of the theory. PMID:24163612
Chaotic signal reconstruction with application to noise radar system
NASA Astrophysics Data System (ADS)
Liu, Lidong; Hu, Jinfeng; He, Zishu; Han, Chunlin; Li, Huiyong; Li, Jun
2011-12-01
Chaotic signals are potentially attractive in engineering applications, most of which require an accurate estimation of the actual chaotic signal from a noisy background. In this article, we present an improved symbolic dynamics-based method (ISDM) for accurate estimating the initial condition of chaotic signal corrupted by noise. Then, a new method, called piecewise estimation method (PEM), for chaotic signal reconstruction based on ISDM is proposed. The reconstruction performance using PEM is much better than that using the existing initial condition estimation methods. Next, PEM is applied in a noncoherent reception noise radar scheme and an improved noncoherent reception scheme is given. The simulation results show that the improved noncoherent scheme has better correlation performance and range resolution especially at low signal-to-noise ratios (SNRs).
Scattering Properties of Chaotic Microwave Resonators
NASA Astrophysics Data System (ADS)
Stöckmann, Hans-Jürgen
2008-11-01
The state of the art of microwave studies of chaotic and disordered microwave billiards is presented, with special emphasis on possible applications to the emission patterns of microdisk lasers, transport through quantum dots, and the stability of quantum systems against perturbations
Quantum system identification.
Burgarth, Daniel; Yuasa, Kazuya
2012-02-24
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Synchronous analog I/O for acquisition of chaotic data in periodically driven systems
NASA Astrophysics Data System (ADS)
DeSerio, Robert
2004-04-01
A new data acquisition technique has been designed for measuring chaotic attractors in periodically driven systems. Analog output hardware generates a continuous periodic waveform used in the drive while analog input hardware digitizes one or more chaotic waveforms characterizing the system phase space variables. With both processes synchronized to a common clock, the construction of multiple Poincaré sections is reduced to the simple process of redimensioning the chaotic waveforms and taking slices in one of the array indices. The implementation described here is applied to an electronic Duffing oscillator running at 1.6 kHz and provides quality Poincaré sections in near real time.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems.
Beyhan, Selami
2013-07-01
This paper proposes a novel nonlinear gradient-based observer for synchronization and observer-based control of chaotic systems. The model is based on a Runge-Kutta model of the chaotic system where the evolution of the states or parameters is derived based on the error-square minimization. The stability and convergence conditions of observer and control methods are analyzed using a Lyapunov stability approach. In numerical simulations, the proposed observer and well-known sliding-mode observer are compared for the synchronization of a Lü chaotic system and observer-based stabilization of a Chen chaotic system. The noisy case for synchronization and parameter uncertainty case for stabilization are also considered for both observer-based methods.
NASA Astrophysics Data System (ADS)
Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng
2016-06-01
Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.
Sunada, Satoshi; Harayama, Takahisa; Davis, Peter; Tsuzuki, Ken; Arai, Ken-Ichi; Yoshimura, Kazuyuki; Uchida, Atsushi
2012-12-01
We present an experimental method for directly observing the amplification of microscopic intrinsic noise in a high-dimensional chaotic laser system, a laser with delayed feedback. In the experiment, the chaotic laser system is repeatedly switched from a stable lasing state to a chaotic state, and the time evolution of an ensemble of chaotic states starting from the same initial state is measured. It is experimentally demonstrated that intrinsic noises amplified by the chaotic dynamics are transformed into macroscopic fluctuating signals, and the probability density of the output light intensity actually converges to a natural invariant probability density in a strongly chaotic regime. Moreover, with the experimental method, we discuss the application of the chaotic laser systems to physical random bit generators. It is experimentally shown that the convergence to the invariant density plays an important role in nondeterministic random bit generation, which could be desirable for future ultimate secure communication systems.
Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman
2011-06-01
This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.
Generalized Gaussian wave packet dynamics: Integrable and chaotic systems
NASA Astrophysics Data System (ADS)
Pal, Harinder; Vyas, Manan; Tomsovic, Steven
2016-01-01
The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.
Efficient sensitivity analysis method for chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Liao, Haitao
2016-05-01
The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.
Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.
Pal, Harinder; Vyas, Manan; Tomsovic, Steven
2016-01-01
The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.
OPEN PROBLEM: Orbits' statistics in chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Arnold, V.
2008-07-01
This paper shows how the measurement of the stochasticity degree of a finite sequence of real numbers, published by Kolmogorov in Italian in a journal of insurances' statistics, can be usefully applied to measure the objective stochasticity degree of sequences, originating from dynamical systems theory and from number theory. Namely, whenever the value of Kolmogorov's stochasticity parameter of a given sequence of numbers is too small (or too big), one may conclude that the conjecture describing this sequence as a sample of independent values of a random variables is highly improbable. Kolmogorov used this strategy fighting (in a paper in 'Doklady', 1940) against Lysenko, who had tried to disprove the classical genetics' law of Mendel experimentally. Calculating his stochasticity parameter value for the numbers from Lysenko's experiment reports, Kolmogorov deduced, that, while these numbers were different from the exact fulfilment of Mendel's 3 : 1 law, any smaller deviation would be a manifestation of the report's number falsification. The calculation of the values of the stochasticity parameter would be useful for many other generators of pseudorandom numbers and for many other chaotically looking statistics, including even the prime numbers distribution (discussed in this paper as an example).
Validating the physical model of a chaotic system by topological analysis.
Used, Javier; Martín, Juan Carlos
2013-05-01
Topological analysis is employed for the first time to our knowledge as a method of validation for a physical model describing a chaotic system. Topological analysis theory provides both a way to characterize the topological structure of chaotic attractors by means of a set of integer numbers and a method to obtain this set departing from a time series generated by the chaotic system. The validation method proposed here consists of comparing the topological structure of chaotic attractors obtained from time series generated on the one hand by an experimental system and on the other hand by the numerical model under test. This procedure has been applied to an erbium-doped fiber laser subject to pump power sine-wave modulation.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Gröbner, M; Nägerl, H-C
2014-05-16
We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Gröbner, M; Nägerl, H-C
2014-05-16
We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics. PMID:24877938
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
NASA Astrophysics Data System (ADS)
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
Periodic and Chaotic Dynamics of the Ehrhard-Müller System
NASA Astrophysics Data System (ADS)
Park, Junho; Lee, Hyunho; Baik, Jong-Jin
2016-06-01
This paper investigates nonlinear ordinary differential equations of the Ehrhard-Müller system which describes natural convection in a single-phase loop in the presence of nonsymmetric heating. Stability and dynamics of periodic and chaotic behaviors of the equations are investigated and the periodicity diagram is obtained in wide ranges of parameters. Regimes of both periodic and chaotic solutions are observed with complex behaviors such that the periodic regimes enclose the chaotic regime while they are also immersed inside the chaotic regime with various shapes. An asymptotic analysis is performed for sufficiently large parameters to understand the enclosure by the periodic regimes and asymptotic limit cycles are obtained to compare with limit cycles obtained from numerical results.
Compound synchronization of four memristor chaotic oscillator systems and secure communication.
Sun, Junwei; Shen, Yi; Yin, Quan; Xu, Chengjie
2013-03-01
In this paper, a novel kind of compound synchronization among four chaotic systems is investigated, where the drive systems have been conceptually divided into two categories: scaling drive systems and base drive systems. Firstly, a sufficient condition is obtained to ensure compound synchronization among four memristor chaotic oscillator systems based on the adaptive technique. Secondly, a secure communication scheme via adaptive compound synchronization of four memristor chaotic oscillator systems is presented. The corresponding theoretical proofs and numerical simulations are given to demonstrate the validity and feasibility of the proposed control technique. The unpredictability of scaling drive systems can additionally enhance the security of communication. The transmitted signals can be split into several parts loaded in the drive systems to improve the reliability of communication.
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2016-07-01
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.
Nonmonotonicity in the quantum-classical transition: chaos induced by quantum effects.
Kapulkin, Arie; Pattanayak, Arjendu K
2008-08-15
The classical-quantum transition for chaotic systems is understood to be accompanied by the suppression of chaotic effects as the relative variant Planck's over 2pi is increased. We show evidence to the contrary in the behavior of the quantum trajectory dynamics of a dissipative quantum chaotic system, the double-well Duffing oscillator. The classical limit in the case considered has regular behavior, but as the effective variant Planck's over 2pi is increased we see chaotic behavior. This chaos then disappears deeper into the quantum regime, which means that the quantum-classical transition in this case is nonmonotonic in variant Planck's over 2pi. PMID:18764537
Exponential H∞ synchronization and state estimation for chaotic systems via a unified model.
Liu, Meiqin; Zhang, Senlin; Fan, Zhen; Zheng, Shiyou; Sheng, Weihua
2013-07-01
In this paper, H∞ synchronization and state estimation problems are considered for different types of chaotic systems. A unified model consisting of a linear dynamic system and a bounded static nonlinear operator is employed to describe these chaotic systems, such as Hopfield neural networks, cellular neural networks, Chua's circuits, unified chaotic systems, Qi systems, chaotic recurrent multilayer perceptrons, etc. Based on the H∞ performance analysis of this unified model using the linear matrix inequality approach, novel state feedback controllers are established not only to guarantee exponentially stable synchronization between two unified models with different initial conditions but also to reduce the effect of external disturbance on the synchronization error to a minimal H∞ norm constraint. The state estimation problem is then studied for the same unified model, where the purpose is to design a state estimator to estimate its states through available output measurements so that the exponential stability of the estimation error dynamic systems is guaranteed and the influence of noise on the estimation error is limited to the lowest level. The parameters of these controllers and filters are obtained by solving the eigenvalue problem. Most chaotic systems can be transformed into this unified model, and H∞ synchronization controllers and state estimators for these systems are designed in a unified way. Three numerical examples are provided to show the usefulness of the proposed H∞ synchronization and state estimation conditions.
Investigation on the synchronized characteristics of the incoherent optical feedback chaotic system
NASA Astrophysics Data System (ADS)
Xu, Li; Wu, Zhengmao; Li, Linfu; Fan, Li; Fan, Yan; Xia, Guangqiong
2007-11-01
Based on the theoretical model of the synchronization system with incoherent optical feedback, the influence of the internal parameter mismatch on the synchronized characteristics of the chaotic system has been investigated. The result shows that the chaotic system with incoherent optical feedback can be realized more easily than the complete synchronized system, and has higher security than injection locking synchronization system. Using encoding of chaos shift keying, the message can be hidden efficiently during the transmission in the system and decoded easily in receiver.
Ma, Huanfei; Lin, Wei; Lai, Ying-Cheng
2013-05-01
Detecting unstable periodic orbits (UPOs) in chaotic systems based solely on time series is a fundamental but extremely challenging problem in nonlinear dynamics. Previous approaches were applicable but mostly for low-dimensional chaotic systems. We develop a framework, integrating approximation theory of neural networks and adaptive synchronization, to address the problem of time-series-based detection of UPOs in high-dimensional chaotic systems. An example of finding UPOs from the classic Mackey-Glass equation is presented.
Hung, Yung-Ching; Hwang, Chi-Chuan; Liao, Teh-Lu; Yan, Jun-Juh
2006-09-01
In this paper we investigate the synchronization problem of drive-response chaotic systems with a scalar coupling signal. By using the scalar transmitted signal from the drive chaotic system, an observer-based response chaotic system with dead-zone nonlinear input is designed. An output feedback control technique is derived to achieve generalized projective synchronization between the drive system and the response system. Furthermore, an adaptive control law is established that guarantees generalized projective synchronization without the knowledge of system nonlinearity, and/or system parameters as well as that of parameters in dead-zone input nonlinearity. Two illustrative examples are given to demonstrate the effectiveness of the proposed synchronization scheme.
Extracting messages masked by chaotic signals of time-delay systems.
Zhou, C; Lai, C H
1999-07-01
We show how to extract messages masked by a chaotic signal of a time-delay system with very high dimensions and many positive Lyapunov exponents. Using a special embedding coordinate, the infinite-dimensional phase space of the time-delay system is projected onto a special three-dimensional space, which enables us to identify the time delay of the system from the transmitted signal and reconstruct the chaotic dynamics to unmask the hidden message successfully. The message extraction procedure is illustrated by simulations with the Mackey-Glass time-delay system for two types of masking schemes and different kinds of messages.
Single state feedback stabilization of unified chaotic systems and circuit implementation
NASA Astrophysics Data System (ADS)
Jing, Chun-Guo; He, Ping; Fan, Tao; Li, Yangmin; Chen, Changzhong; Song, Xin
2014-11-01
This paper focuses on the single state feedback stabilization problem of unified chaotic system and circuit implementation. Some stabilization conditions will be derived via the single state feedback control scheme. The robust performance of controlled unified chaotic systems with uncertain parameter will be investigated based on maximum and minimum analysis of uncertain parameter, the robust controller which only requires information of a state of the system is proposed and the controller is linear. Both the unified chaotic system and the designed controller are synthesized and implemented by an analog electronic circuit which is simpler because only three variable resistors are required to be adjusted. The numerical simulation and control in MATLAB/Simulink is then provided to show the effectiveness and feasibility of the proposed method which is robust against some uncertainties. The results presented in this paper improve and generalize the corresponding results of recent works.
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-07-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Experimental verification of chaotic control of an underactuated tethered satellite system
NASA Astrophysics Data System (ADS)
Pang, Zhaojun; Jin, Dongping
2016-03-01
This paper studies chaotic control of a tethered satellite system (TSS) driven only by a momentum-exchange device during its attitude adjustment. In dealing with such the underactuated system, an extended time-delay autosynchronization (ETDAS) is employed to stabilize the chaotic motion to a periodic motion. To obtain the control domains of the ETDAS method, a stability analysis of the controlled tethered satellite system in elliptical orbit is implemented. According to the principle of dynamic similarity, then, ground-based experiment setups are proposed and designed to emulate the in-plane motions of the TSS. Representative experiments are presented to demonstrate the effectiveness of the ETDAS scheme in controlling the chaotic motion of the underactuated TSS.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior.
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-07-01
The Derivative-free nonlinear Kalman Filter is used for developing a communication system that is based on a chaotic modulator such as the Duffing system. In the transmitter's side, the source of information undergoes modulation (encryption) in which a chaotic signal generated by the Duffing system is the carrier. The modulated signal is transmitted through a communication channel and at the receiver's side demodulation takes place, after exploiting the estimation provided about the state vector of the chaotic oscillator by the Derivative-free nonlinear Kalman Filter. Evaluation tests confirm that the proposed filtering method has improved performance over the Extended Kalman Filter and reduces significantly the rate of transmission errors. Moreover, it is shown that the proposed Derivative-free nonlinear Kalman Filter can work within a dual Kalman Filtering scheme, for performing simultaneously transmitter-receiver synchronisation and estimation of unknown coefficients of the communication channel.
Hur, G.; Creffield, C.E.; Jones, P.H.; Monteiro, T.S.
2005-07-15
Recently, cesium atoms in optical lattices subjected to cycles of unequally spaced pulses have been found to show interesting behavior: they represent an experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the dynamical localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum {delta}-kicked rotor ({delta}-QKR). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the recent experiments and compare them with those of the eigenstates of the {delta}-QKR at similar kicking strengths. We show that by studying the properties of the Floquet states we can shed light on the form of the observed ratchet current, as well as variations in the dynamical localization length.
Characterization of normality of chaotic systems including prediction and detection of anomalies
NASA Astrophysics Data System (ADS)
Engler, Joseph John
Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational
Entanglement and localization transitions in eigenstates of interacting chaotic systems.
Lakshminarayan, Arul; Srivastava, Shashi C L; Ketzmerick, Roland; Bäcker, Arnd; Tomsovic, Steven
2016-07-01
The entanglement and localization in eigenstates of strongly chaotic subsystems are studied as a function of their interaction strength. Excellent measures for this purpose are the von Neumann entropy, Havrda-Charvát-Tsallis entropies, and the averaged inverse participation ratio. All the entropies are shown to follow a remarkably simple exponential form, which describes a universal and rapid transition to nearly maximal entanglement for increasing interaction strength. An unexpectedly exact relationship between the subsystem averaged inverse participation ratio and purity is derived that prescribes the transition in the localization as well. PMID:27575066
Wave chaotic experiments and models for complicated wave scattering systems
NASA Astrophysics Data System (ADS)
Yeh, Jen-Hao
Wave scattering in a complicated environment is a common challenge in many engineering fields because the complexity makes exact solutions impractical to find, and the sensitivity to detail in the short-wavelength limit makes a numerical solution relevant only to a specific realization. On the other hand, wave chaos offers a statistical approach to understand the properties of complicated wave systems through the use of random matrix theory (RMT). A bridge between the theory and practical applications is the random coupling model (RCM) which connects the universal features predicted by RMT and the specific details of a real wave scattering system. The RCM gives a complete model for many wave properties and is beneficial for many physical and engineering fields that involve complicated wave scattering systems. One major contribution of this dissertation is that I have utilized three microwave systems to thoroughly test the RCM in complicated wave systems with varied loss, including a cryogenic system with a superconducting microwave cavity for testing the extremely-low-loss case. I have also experimentally tested an extension of the RCM that includes short-orbit corrections. Another novel result is development of a complete model based on the RCM for the fading phenomenon extensively studied in the wireless communication fields. This fading model encompasses the traditional fading models as its high-loss limit case and further predicts the fading statistics in the low-loss limit. This model provides the first physical explanation for the fitting parameters used in fading models. I have also applied the RCM to additional experimental wave properties of a complicated wave system, such as the impedance matrix, the scattering matrix, the variance ratio, and the thermopower. These predictions are significant for nuclear scattering, atomic physics, quantum transport in condensed matter systems, electromagnetics, acoustics, geophysics, etc.
Synchronization in node of complex networks consist of complex chaotic system
Wei, Qiang; Xie, Cheng-jun; Liu, Hong-jun; Li, Yan-hui
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Analysis of the time structure of synchronization in multidimensional chaotic systems
Makarenko, A. V.
2015-05-15
A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.
NASA Astrophysics Data System (ADS)
Drótos, G.; Jung, C.
2016-06-01
The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.
Chaotic behavior in the dynamical system of a continuous stirred tank reactor
NASA Astrophysics Data System (ADS)
Retzloff, D. G.; Chan, P. C.-H.; Chicone, C.; Offin, D.; Mohamed, R.
1987-03-01
The dynamical system describing a continuous stirred tank reactor (CSTR) for the reactions A→B→C and A→C, B→D is considered. A circulating attractor with accompanying circulating orbits is shown to exist when the critical point of the system is unique and unstable. The orbit structure has been numerically found to consist of periodic orbits and chaotic behavior.
Chaotic component obscured by strong periodicity in voice production system
Tao, Chao; Jiang, Jack J.
2010-01-01
The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity. PMID:18643315
A Double-Wing Chaotic System Based on Ion Migration Memristor and Its Sliding Mode Control
NASA Astrophysics Data System (ADS)
Min, Guoqi; Duan, Shukai; Wang, Lidan
The ion migration memristor is a nonlinear element with memory function and nanoscale size, it is considered as a potential candidate to reduce system power consumption and circuit size. When it works as the nonlinear part of the chaotic system, rich nonlinear curves will be produced, and at the same time, the complexity of chaotic systems and the randomness of signals will be enhanced. So in this paper, by Matlab numerical simulation, a new double-wing chaotic system based on an ion migration memristor is designed. In reality, there are many systems interfered inevitably by random noise, so in this paper the random bounded noises are also considered. The power spectrum, Lyapunov exponent spectrum, Poincaré map and bifurcation diagram are used to investigate its complex dynamic characteristics. Then, a SPICE-based analog circuit is presented to verify the feasibility of the system, for which the simulation results are consistent with the numerical simulation. Finally, the sliding mode variable structure control is applied to overcome the shortcomings of traditional control method, so that the chaotic orbits can be controlled to any fixed points or periodic orbits, and this provides an insight into chaos control in power electronics systems.
NASA Astrophysics Data System (ADS)
Mariño, Inés P.; Míguez, Joaquín; Meucci, Riccardo
2009-05-01
We propose a Monte Carlo methodology for the joint estimation of unobserved dynamic variables and unknown static parameters in chaotic systems. The technique is sequential, i.e., it updates the variable and parameter estimates recursively as new observations become available, and, hence, suitable for online implementation. We demonstrate the validity of the method by way of two examples. In the first one, we tackle the estimation of all the dynamic variables and one unknown parameter of a five-dimensional nonlinear model using a time series of scalar observations experimentally collected from a chaotic CO2 laser. In the second example, we address the estimation of the two dynamic variables and the phase parameter of a numerical model commonly employed to represent the dynamics of optoelectronic feedback loops designed for chaotic communications over fiber-optic links.
Quantum iterated function systems.
Łoziński, Artur; Zyczkowski, Karol; Słomczyński, Wojciech
2003-10-01
An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
Curtright, Thomas; Mezincescu, Luca
2007-09-15
Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+{nu}){sup 2}+{sigma}{sub k>0}{mu}{sub k} exp(ikx). In some nontrivial cases, equivalent Hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.
Chaotically Spiking Canards in an Excitable System with 2D Inertial Fast Manifolds
NASA Astrophysics Data System (ADS)
Marino, Francesco; Marin, Francesco; Balle, Salvador; Piro, Oreste
2007-02-01
We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a small chaotic background erratically but deterministically triggers excitable spikes. This scenario is also found in a model for a nonlinear Fabry-Perot cavity with one pendular mirror.
Manos, Thanos; Robnik, Marko
2013-06-01
We study the kicked rotator in the classically fully chaotic regime using Izrailev's N-dimensional model for various N≤4000, which in the limit N→∞ tends to the quantized kicked rotator. We do treat not only the case K=5, as studied previously, but also many different values of the classical kick parameter 5≤K≤35 and many different values of the quantum parameter kε[5,60]. We describe the features of dynamical localization of chaotic eigenstates as a paradigm for other both time-periodic and time-independent (autonomous) fully chaotic or/and mixed-type Hamilton systems. We generalize the scaling variable Λ=l(∞)/N to the case of anomalous diffusion in the classical phase space by deriving the localization length l(∞) for the case of generalized classical diffusion. We greatly improve the accuracy and statistical significance of the numerical calculations, giving rise to the following conclusions: (1) The level-spacing distribution of the eigenphases (or quasienergies) is very well described by the Brody distribution, systematically better than by other proposed models, for various Brody exponents β(BR). (2) We study the eigenfunctions of the Floquet operator and characterize their localization properties using the information entropy measure, which after normalization is given by β(loc) in the interval [0,1]. The level repulsion parameters β(BR) and β(loc) are almost linearly related, close to the identity line. (3) We show the existence of a scaling law between β(loc) and the relative localization length Λ, now including the regimes of anomalous diffusion. The above findings are important also for chaotic eigenstates in time-independent systems [Batistić and Robnik, J. Phys. A: Math. Gen. 43, 215101 (2010); arXiv:1302.7174 (2013)], where the Brody distribution is confirmed to a very high degree of precision for dynamically localized chaotic eigenstates, even in the mixed-type systems (after separation of regular and chaotic eigenstates).
A novel memristive time-delay chaotic system without equilibrium points
NASA Astrophysics Data System (ADS)
Pham, V.-T.; Vaidyanathan, S.; Volos, C. K.; Jafari, S.; Kuznetsov, N. V.; Hoang, T. M.
2016-02-01
Memristor and time-delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time-delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time-delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time-delay system has been introduced to show its feasibility.
Chaotic attractors based on unstable dissipative systems via third-order differential equation
NASA Astrophysics Data System (ADS)
Campos-Cantón, E.
2016-07-01
In this paper, we present an approach how to yield 1D, 2D and 3D-grid multi-scroll chaotic systems in R3 based on unstable dissipative systems via third-order differential equation. This class of systems is constructed by a switching control law(SCL) changing the equilibrium point of an unstable dissipative system. The switching control law that governs the position of the equilibrium point varies according to the number of scrolls displayed in the attractor.
Multivariate permutation entropy and its application for complexity analysis of chaotic systems
NASA Astrophysics Data System (ADS)
He, Shaobo; Sun, Kehui; Wang, Huihai
2016-11-01
To measure the complexity of multivariate systems, the multivariate permutation entropy (MvPE) algorithm is proposed. It is employed to measure complexity of multivariate system in the phase space. As an application, MvPE is applied to analyze the complexity of chaotic systems, including hyperchaotic Hénon map, fractional-order simplified Lorenz system and financial chaotic system. Results show that MvPE algorithm is effective for analyzing the complexity of the multivariate systems. It also shows that fractional-order system does not become more complex with derivative order varying. Compared with PE, MvPE has better robustness for noise and sampling interval, and the results are not affected by different normalization methods.
Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System
NASA Astrophysics Data System (ADS)
Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung
At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.
A secure communication using cascade chaotic computing systems on clinical decision support.
Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat
2016-06-01
Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.
Applications of fidelity measures to complex quantum systems.
Wimberger, Sandro
2016-06-13
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967
Extracting information masked by the chaotic signal of a time-delay system.
Ponomarenko, V I; Prokhorov, M D
2002-08-01
We further develop the method proposed by Bezruchko et al. [Phys. Rev. E 64, 056216 (2001)] for the estimation of the parameters of time-delay systems from time series. Using this method we demonstrate a possibility of message extraction for a communication system with nonlinear mixing of information signal and chaotic signal of the time-delay system. The message extraction procedure is illustrated using both numerical and experimental data and different kinds of information signals.
NASA Astrophysics Data System (ADS)
Li, Xiang-Tao; Yin, Ming-Hao
2012-05-01
We study the parameter estimation of a nonlinear chaotic system, which can be essentially formulated as a multidimensional optimization problem. In this paper, an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy. Experiments are conducted on the Lorenz system and the Chen system. The proposed algorithm is used to estimate the parameters for these two systems. Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.
Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers
Soriano, Miguel C. Flunkert, Valentin; Fischer, Ingo
2013-12-15
We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delay in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
NASA Astrophysics Data System (ADS)
Akpojotor, Godfrey; Ehwerhemuepha, Louis; Amromanoh, Ogheneriobororue
2013-03-01
The presence of physical systems whose characteristics change in a seemingly erratic manner gives rise to the study of chaotic systems. The characteristics of these systems are due to their hypersensitivity to changes in initial conditions. In order to understand chaotic systems, some sort of simulation and visualization is pertinent. Consequently, in this work, we have simulated and graphically visualized chaos in a driven nonlinear pendulum as a means of introducing chaotic systems. The results obtained which highlight the hypersensitivity of the pendulum are used to discuss the effectiveness of teaching and learning the physics of chaotic system using Python. This study is one of the many studies under the African Computational Science and Engineering Tour Project (PASET) which is using Python to model, simulate and visualize concepts, laws and phenomena in Science and Engineering to compliment the teaching/learning of theory and experiment.
Synchronization-based approach for estimating all model parameters of chaotic systems
NASA Astrophysics Data System (ADS)
Konnur, Rahul
2003-02-01
The problem of dynamic estimation of all parameters of a model representing chaotic and hyperchaotic systems using information from a scalar measured output is solved. The variational calculus based method is robust in the presence of noise, enables online estimation of the parameters and is also able to rapidly track changes in operating parameters of the experimental system. The method is demonstrated using the Lorenz, Rossler chaos, and hyperchaos models. Its possible application in decoding communications using chaos is discussed.
Numerical test for hyperbolicity of chaotic dynamics in time-delay systems.
Kuptsov, Pavel V; Kuznetsov, Sergey P
2016-07-01
We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos.
Numerical test for hyperbolicity of chaotic dynamics in time-delay systems
NASA Astrophysics Data System (ADS)
Kuptsov, Pavel V.; Kuznetsov, Sergey P.
2016-07-01
We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos.
Numerical test for hyperbolicity of chaotic dynamics in time-delay systems.
Kuptsov, Pavel V; Kuznetsov, Sergey P
2016-07-01
We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos. PMID:27575062
Lian, K Y; Chiang, T S; Chiu, C S; Liu, P
2001-01-01
This paper presents synthesis approaches for synchronization and secure communications of chaotic systems by using fuzzy model-based design methods. Many well-known continuous and discrete chaotic systems can be exactly represented by T-S fuzzy models with only one premise variable. According to the applications on synchronization and signal modulation, the general fuzzy models may have either i) common bias terms; or ii) the same premise variable and driving signal. Then we propose two types of driving signals, namely, fuzzy driving signal and crisp driving signal, to deal with the asymptotical synchronization and secure communication problems for cases i) and ii), respectively. Based on these driving signals, the solutions are found by solving LMI problems. It is worthy to note that many well-known chaotic systems, such as Duffing system, Chua's circuit. Rassler's system, Lorenz system, Henon map, and Lozi map can achieve their applications on asymptotical synchronization and recovering messages in secure communication by using either the fuzzy driving signal or the crisp driving signal. Finally, several numerical simulations are shown to verify the results. PMID:18244768
Entropy rates of low-significance bits sampled from chaotic physical systems
NASA Astrophysics Data System (ADS)
Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.
2016-10-01
We examine the entropy of low-significance bits in analog-to-digital measurements of chaotic dynamical systems. We find the partition of measurement space corresponding to low-significance bits has a corrugated structure. Using simulated measurements of a map and experimental data from a circuit, we identify two consequences of this corrugated partition. First, entropy rates for sequences of low-significance bits more closely approach the metric entropy of the chaotic system, because the corrugated partition better approximates a generating partition. Second, accurate estimation of the entropy rate using low-significance bits requires long block lengths as the corrugated partition introduces more long-term correlation, and using only short block lengths overestimates the entropy rate. This second phenomenon may explain recent reports of experimental systems producing binary sequences that pass statistical tests of randomness at rates that may be significantly beyond the metric entropy rate of the physical source.
Observer of a class of chaotic systems: An application to Hindmarsh-Rose neuronal model
NASA Astrophysics Data System (ADS)
Luo, Run-Zi; Zhang, Chun-Hua
2015-03-01
This paper first investigates the observer of a class of chaotic systems, and then discusses the synchronization between two identical Hindmarsh-Rose (HR) neuronal chaotic systems. Both the drive and response systems are assumed to have only one state variable available. By constructing proper observers, some novel criteria for synchronization are proposed via a scalar input. Numerical simulations are given to demonstrate the efficiency of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11361043 and 61304161), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB201005), and the Scientific and Technological Project Foundation of Jiangxi Province Education Office, China (Grant No. GJJ14156).
Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training
NASA Astrophysics Data System (ADS)
Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei
Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.
Fuzzy modeling for chaotic systems via interval type-2 T-S fuzzy model with parametric uncertainty
NASA Astrophysics Data System (ADS)
Hasanifard, Goran; Gharaveisi, Ali Akbar; Vali, Mohammad Ali
2014-02-01
A motivation for using fuzzy systems stems in part from the fact that they are particularly suitable for processes when the physical systems or qualitative criteria are too complex to model and they have provided an efficient and effective way in the control of complex uncertain nonlinear systems. To realize a fuzzy model-based design for chaotic systems, it is mostly preferred to represent them by T-S fuzzy models. In this paper, a new fuzzy modeling method has been introduced for chaotic systems via the interval type-2 Takagi-Sugeno (IT2 T-S) fuzzy model. An IT2 fuzzy model is proposed to represent a chaotic system subjected to parametric uncertainty, covered by the lower and upper membership functions of the interval type-2 fuzzy sets. Investigating many well-known chaotic systems, it is obvious that nonlinear terms have a single common variable or they depend only on one variable. If it is taken as the premise variable of fuzzy rules and another premise variable is defined subject to parametric uncertainties, a simple IT2 T-S fuzzy dynamical model can be obtained and will represent many well-known chaotic systems. This IT2 T-S fuzzy model can be used for physical application, chaotic synchronization, etc. The proposed approach is numerically applied to the well-known Lorenz system and Rossler system in MATLAB environment.
Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field
NASA Technical Reports Server (NTRS)
Konkov, L. E.; Prants, S. V.
1996-01-01
Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.
Shinbrot, T.; Ditto, W.; Grebogi, C.; Ott, E.; Spano, M.; Yorke, J.A. Department of Physics, The College of Wooster, Wooster, Ohio 44691 Naval Surface Warfare Center, Silver Spring, Maryland 20902 )
1992-05-11
In this paper we present the first experimental verification that the sensitivity of a chaotic system to small perturbations (the butterfly effect'') can be used to rapidly direct orbits from an arbitrary initial state to an arbitrary accessible desired state.
NASA Astrophysics Data System (ADS)
Čelikovský, Sergej; Lynnyk, Volodymyr
This paper focuses on the design of the novel chaotic masking scheme via message embedded synchronization. A general class of the systems allowing the message embedded synchronization is presented here, moreover, it is shown that the generalized Lorenz system belongs to this class. Furthermore, the secure encryption scheme based on the message embedded synchronization is proposed. This scheme injects the embedded message into the dynamics of the transmitter as well, ensuring thereby synchronization with theoretically zero synchronization error. To ensure the security, the embedded message is a sum of the message and arbitrary bounded function of the internal transmitter states that is independent of the scalar synchronization signal. The hexadecimal alphabet will be used to form a ciphertext making chaotic dynamics of the transmitter even more complicated in comparison with the transmitter influenced just by the binary step-like function. All mentioned results and their security are tested and demonstrated by numerical experiments.
A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT
NASA Astrophysics Data System (ADS)
Yuxia, Zhao; Jingbo, Fan
A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.
Seeker optimization algorithm for parameter estimation of time-delay chaotic systems
NASA Astrophysics Data System (ADS)
Dai, Chaohua; Chen, Weirong; Li, Lixiang; Zhu, Yunfang; Yang, Yixian
2011-03-01
Time-delay chaotic systems have some very interesting properties, and their parameter estimation has received increasing interest in the recent years. It is well known that parameter estimation of a chaotic system is a nonlinear, multivariable, and multimodal optimization problem for which global optimization techniques are required in order to avoid local minima. In this work, a seeker-optimization-algorithm (SOA)-based method is proposed to address this issue. In the SOA, search direction is based on the empirical gradients by evaluating the response to the position changes, and step length is based on uncertainty reasoning by using a simple fuzzy rule. The performance of the algorithm is evaluated on two typical test systems. Moreover, two state-of-the-art algorithms (i.e., particle swarm optimization and differential evolution) are also considered for comparison. The simulation results show that the proposed algorithm is better than or at least as good as the other two algorithms and can effectively solve the parameter estimation problem of time-delay chaotic systems.
Decoherence, entanglement decay, and equilibration produced by chaotic environments.
Lemos, Gabriela Barreto; Toscano, Fabricio
2011-07-01
We investigate decoherence in quantum systems coupled via dephasing-type interactions to an arbitrary environment with chaotic underlying classical dynamics. The coherences of the reduced state of the central system written in the preferential energy eigenbasis are quantum Loschmidt echoes, which in the strong coupling regime are characterized at long time scales by fluctuations around a constant mean value. We show that due to the chaotic dynamics of the environment, the mean value and the width of the Loschmidt-echo fluctuations are inversely proportional to the quantity we define as the effective Hilbert-space dimension of the environment, which in general is smaller than the dimension of the entire available Hilbert space. Nevertheless, in the semiclassical regime this effective Hilbert-space dimension is in general large, in which case even a chaotic environment with few degrees of freedom produces decoherence without revivals. Moreover we show that in this regime the environment leads the central system to equilibrate to the time average of its reduced density matrix, which corresponds to a diagonal state in the preferential energy eigenbasis. For the case of two uncoupled, initially entangled central systems that interact with identical local quantum environments with chaotic underlying classical dynamics, we show that in the semiclassical limit the equilibration state is arbitrarily close to a separable state. We confirm our results with numerical simulations in which the environment is modeled by the quantum kicked rotor in the chaotic regime.
Influence of chaotic synchronization on mixing in the phase space of interacting systems
NASA Astrophysics Data System (ADS)
Astakhov, Sergey V.; Dvorak, Anton; Anishchenko, Vadim S.
2013-03-01
Using the concept of the relative metric entropy, we study the influence of the synchronization phenomenon on mixing rate in the phase space of deterministic and noisy chaotic systems. We show that transition to both complete and phase synchronization of chaos is accompanied by the decrease of the level of mixing induced by internal nonlinear mechanisms of interacting systems as well as by external noise influence. Therefore, the decrease of the mixing rate in the phase space of interacting systems may indicate transition to synchronization. The obtained results are important for time series analysis in various types of real noisy systems (e.g., biological, social, and financial systems).
NASA Astrophysics Data System (ADS)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Study on a new chaotic bitwise dynamical system and its FPGA implementation
NASA Astrophysics Data System (ADS)
Wang, Qian-Xue; Yu, Si-Min; Guyeux, C.; Bahi, J.; Fang, Xiao-Le
2015-06-01
In this paper, the structure of a new chaotic bitwise dynamical system (CBDS) is described. Compared to our previous research work, it uses various random bitwise operations instead of only one. The chaotic behavior of CBDS is mathematically proven according to the Devaney's definition, and its statistical properties are verified both for uniformity and by a comprehensive, reputed and stringent battery of tests called TestU01. Furthermore, a systematic methodology developing the parallel computations is proposed for FPGA platform-based realization of this CBDS. Experiments finally validate the proposed systematic methodology. Project supported by China Postdoctoral Science Foundation (Grant No. 2014M552175), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Chinese Education Ministry, the National Natural Science Foundation of China (Grant No. 61172023), and the Specialized Research Foundation of Doctoral Subjects of Chinese Education Ministry (Grant No. 20114420110003).
Hemmady, Sameer; Zheng, Xing; Hart, James; Antonsen, Thomas M. Jr.; Ott, Edward; Anlage, Steven M.
2006-09-15
Statistical fluctuations in the eigenvalues of the scattering, impedance, and admittance matrices of two-port wave-chaotic systems are studied experimentally using a chaotic microwave cavity. These fluctuations are universal in that their properties are dependent only upon the degree of loss in the cavity. We remove the direct processes introduced by the nonideally coupled driving ports through a matrix normalization process that involves the radiation-impedance matrix of the two driving ports. We find good agreement between the experimentally obtained marginal probability density functions (PDFs) of the eigenvalues of the normalized impedance, admittance, and scattering matrix and those from random matrix theory (RMT). We also experimentally study the evolution of the joint PDF of the eigenphases of the normalized scattering matrix as a function of loss. Experimental agreement with the theory by Brouwer and Beenakker for the joint PDF of the magnitude of the eigenvalues of the normalized scattering matrix is also shown.
Hemmady, Sameer; Zheng, Xing; Hart, James; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M
2006-09-01
Statistical fluctuations in the eigenvalues of the scattering, impedance, and admittance matrices of two-port wave-chaotic systems are studied experimentally using a chaotic microwave cavity. These fluctuations are universal in that their properties are dependent only upon the degree of loss in the cavity. We remove the direct processes introduced by the nonideally coupled driving ports through a matrix normalization process that involves the radiation-impedance matrix of the two driving ports. We find good agreement between the experimentally obtained marginal probability density functions (PDFs) of the eigenvalues of the normalized impedance, admittance, and scattering matrix and those from random matrix theory (RMT). We also experimentally study the evolution of the joint PDF of the eigenphases of the normalized scattering matrix as a function of loss. Experimental agreement with the theory by Brouwer and Beenakker for the joint PDF of the magnitude of the eigenvalues of the normalized scattering matrix is also shown.
On the Inherent Self-Excited Macroscopic Randomness of Chaotic Three-Body Systems
NASA Astrophysics Data System (ADS)
Liao, Shijun; Li, Xiaoming
What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human beings. In this paper, 10 000 samples of reliable (convergent), multiple-scale (from 10-60 to 102) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 10-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopic randomness (at the level O(1)) until t = T*, the so-called physical limit time of prediction, but propagates algebraically thereafter when accurate prediction of orbit is impossible. Note that these 10 000 samples use micro-level, inherent physical fluctuations of initial position, which have nothing to do with human beings. Especially, the differences of these 10 000 fluctuations are mathematically so small (in the level of 10-60) that they are physically the same since a distance shorter than a Planck length does not make physical sense according to the string theory. This indicates that the macroscopic randomness of the chaotic three-body system is self-excited, say, without any external force or disturbances, from the inherent micro-level uncertainty. It provides us the new concept "self-excited macroscopic randomness (uncertainty)". The macroscopic randomness is found to be dependent upon microscopic uncertainty, from the statistical viewpoint. In addition, it is found that, without any external disturbance, the chaotic three-body system might randomly disrupt with symmetry-breaking at t = 1000 in about 25% probability, which provides us new concepts "self-excited random disruption", "self-excited random escape" and "self-excited symmetry breaking" of the chaotic three-body system. Hence, it suggests that a chaotic three-body system might randomly evolve by itself, without any external forces or disturbance. Thus, the world is essentially uncertain, since such kind of self
Towards a Social Theory of School Administrative Practice in a Complex, Chaotic, Quantum World.
ERIC Educational Resources Information Center
Beavis, Allan K.
Educational administration, like many other social sciences, has traditionally followed the rubrics of classical science with its emphasis on prediction and control and attempts to understand the whole by understanding in ever finer detail how the parts fit together. However, the "new" science (especially quantum mechanics, complexity, and chaos…
Stability, delay, and chaotic behavior in a lotka-volterra predator-prey system.
Nakaoka, S; Saito, Y; Takeuchi, Y
2006-01-01
We consider the following Lotka-Volterra predator-prey system with two delays: x '( t ) = x ( t ) [ r(1) - ax ( t - tau(1) ) - by( t ) ] y '( t ) = y ( t ) [ - r(1) + cx ( t ) - dy( t - tau(2) ) ] ( E ) We show that a positive equilibrium of system ( E ) is globally asymptotically stable for small delays. Critical values of time delay through which system ( E ) undergoes a Hopf bifurcation are analytically determined. Some numerical simulations suggest an existence of subcritical Hopf bifurcation near the critical values of time delay. Further system (E) exhibits some chaotic behavior when tau(2) becomes large.
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics. PMID:23619692
Quantum Effects in Biological Systems
NASA Astrophysics Data System (ADS)
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
NASA Astrophysics Data System (ADS)
Dudziak, Martin Joseph
Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Dynamics of the stochastic Lorenz chaotic system with long memory effects
Zeng, Caibin Yang, Qigui
2015-12-15
Little seems to be known about the ergodic dynamics of stochastic systems with fractional noise. This paper is devoted to discern such long time dynamics through the stochastic Lorenz chaotic system (SLCS) with long memory effects. By a truncation technique, the SLCS is proved to generate a continuous stochastic dynamical system Λ. Based on the Krylov-Bogoliubov criterion, the required Lyapunov function is further established to ensure the existence of the invariant measure of Λ. Meanwhile, the uniqueness of the invariant measure of Λ is proved by examining the strong Feller property, together with an irreducibility argument. Therefore, the SLCS has exactly one adapted stationary solution.
Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions
NASA Astrophysics Data System (ADS)
Chu, Chia-Chi
A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are
Statistical properties of chaotic dynamical systems which exhibit strange attractors
Jensen, R.V.; Oberman, C.R.
1981-07-01
A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping.
Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems
NASA Astrophysics Data System (ADS)
de Oliveira, Gilson F.; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; de Souza Cavalcante, Hugo L. D.
2015-11-01
Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.
Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems
Oliveira, Gilson F. de Chevrollier, Martine; Oriá, Marcos; Passerat de Silans, Thierry; Souza Cavalcante, Hugo L. D. de
2015-11-15
Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site]
Released 4 June 2003
Chaotic terrain on Mars is thought to form when there is a sudden removal of subsurface water or ice, causing the surface material to slump and break into blocks. The chaotic terrain in this THEMIS visible image is confined to a crater just south of Elysium Planitia. It is common to see chaotic terrain in the vicinity of the catastrophic outflow channels on Mars, but the terrain in this image is on the opposite side of the planet from these channels, making it somewhat of an oddity.
Image information: VIS instrument. Latitude -5.9, Longitude 108.1 East (251.9 West). 19 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Chaotic vibrations of the duffing system with fractional damping
Syta, Arkadiusz; Litak, Grzegorz; Lenci, Stefano; Scheffler, Michael
2014-03-15
We examined the Duffing system with a fractional damping term. Calculating the basins of attraction, we demonstrate a broad spectrum of non-linear behaviour connected with sensitivity to the initial conditions and chaos. To quantify dynamical response of the system, we propose the statistical 0-1 test as well as the maximal Lyapunov exponent; the application of the latter encounter a few difficulties because of the memory effect due to the fractional derivative. The results are confirmed by bifurcation diagrams, phase portraits, and Poincaré sections.
Chaotic vibrations of the duffing system with fractional damping.
Syta, Arkadiusz; Litak, Grzegorz; Lenci, Stefano; Scheffler, Michael
2014-03-01
We examined the Duffing system with a fractional damping term. Calculating the basins of attraction, we demonstrate a broad spectrum of non-linear behaviour connected with sensitivity to the initial conditions and chaos. To quantify dynamical response of the system, we propose the statistical 0-1 test as well as the maximal Lyapunov exponent; the application of the latter encounter a few difficulties because of the memory effect due to the fractional derivative. The results are confirmed by bifurcation diagrams, phase portraits, and Poincaré sections. PMID:24697369
Wang, Chenhui
2016-01-01
In this paper, control of uncertain fractional-order financial chaotic system with input saturation and external disturbance is investigated. The unknown part of the input saturation as well as the system’s unknown nonlinear function is approximated by a fuzzy logic system. To handle the fuzzy approximation error and the estimation error of the unknown upper bound of the external disturbance, fractional-order adaptation laws are constructed. Based on fractional Lyapunov stability theorem, an adaptive fuzzy controller is designed, and the asymptotical stability can be guaranteed. Finally, simulation studies are given to indicate the effectiveness of the proposed method. PMID:27783648
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
NASA Astrophysics Data System (ADS)
Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes
2015-01-01
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).
Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system
NASA Astrophysics Data System (ADS)
Marino, Francesco; Marin, Francesco
2013-05-01
The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system.
Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system.
Marino, Francesco; Marin, Francesco
2013-05-01
The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system. PMID:23767597
Castro-Ramírez, Joel; Martínez-Guerra, Rafael; Cruz-Victoria, Juan Crescenciano
2015-10-15
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.
Decoherence in infinite quantum systems
Blanchard, Philippe; Hellmich, Mario
2012-09-01
We review and discuss a notion of decoherence formulated in the algebraic framework of quantum physics. Besides presenting some sufficient conditions for the appearance of decoherence in the case of Markovian time evolutions we provide an overview over possible decoherence scenarios. The framework for decoherence we establish is sufficiently general to accommodate quantum systems with infinitely many degrees of freedom.
Adaptive sliding mode control for a class of chaotic systems
Farid, R.; Ibrahim, A.; Zalam, B.
2015-03-30
Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.
New taste sensor system combined with chaotic recognition
NASA Astrophysics Data System (ADS)
Hu, Jie; Wang, Ping; Li, Rong
2001-09-01
Taste sensor as a new kind of chemical sensor has been studied by many researchers. We have developed several types of taste sensor system and some new recognition methods for taste substance. Kiyoshi Toko et al proposed a new kind of chaos taste sensor that is based on sensor chaos dynamics. In this paper, we improve the taste sensor based on chaos dynamics and proposed a new method for the pattern recognition of tastes. We use three kinds of tastes, i.e., sweetness, salty taste, and sourness. They cause the membrane oscillate in different form, and the complexity is not the same. We can detect taste based on the new method.
Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A
2012-03-01
We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.
Hybrid information privacy system: integration of chaotic neural network and RSA coding
NASA Astrophysics Data System (ADS)
Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.
2005-03-01
Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.
Quantum dissipation in unbounded systems.
Maddox, Jeremy B; Bittner, Eric R
2002-02-01
In recent years trajectory based methodologies have become increasingly popular for evaluating the time evolution of quantum systems. A revival of the de Broglie--Bohm interpretation of quantum mechanics has spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using techniques similar to those found in computational fluid dynamics one can construct the wave function of a quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements (Bohm particles) which evolve according to nonclassical equations of motion. Until very recently these schemes have been limited to conservative systems. In this paper, we present our methodology for including the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approximation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspondence in the context of the Bohmian paths.
Harmonic resonance structure and chaotic dynamics in the earth-vibrator system
Walker, D.
1995-05-01
Source-generated energy in seismic vibrator records includes ultraharmonics, sub-harmonics, ultra-subharmonics and possibly chaotic oscillatory behavior. Non-linear behaviors can be modeled using a ``hard-spring`` form of the Duffing equation. Modeling indicates that a qualitatively similar harmonic resonance structure is present for a broad range of possible mathematical descriptions. Qualitative global system behaviors may be examined without knowledge of actual earth parameters. Non-linear resonances become stronger, relative to fundamental sweep frequencies, as the driving force increases or damping decreases. System response energy levels are highest when non-linear resonances are strong. The presence of chaotic energy can indicate the highest energy state of a system response. Field data examples are consistent with behaviors predicted by modeling. Conventional correlation and stack uses a fraction of the energy produced in the earth-vibrator system. A correlation and filtering process that uses a representation of the source dynamics based on the system response can reduce signal degradation due to non-linear resonance.
A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems
NASA Astrophysics Data System (ADS)
Shekofteh, Yasser; Jafari, Sajad; Sprott, Julien Clinton; Hashemi Golpayegani, S. Mohammad Reza; Almasganj, Farshad
2015-02-01
As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.
A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system
Kuznetsov, S. P. Seleznev, E. P.
2006-02-15
A nonautonomous nonlinear system is constructed and implemented as an experimental device. As represented by a 4D stroboscopic Poincare map, the system exhibits a Smale-Williams-type strange attractor. The system consists of two coupled van der Pol oscillators whose frequencies differ by a factor of two. The corresponding Hopf bifurcation parameters slowly vary as periodic functions of time in antiphase with one another; i.e., excitation is alternately transferred between the oscillators. The mechanisms underlying the system's chaotic dynamics and onset of chaos are qualitatively explained. A governing system of differential equations is formulated. The existence of a chaotic attractor is confirmed by numerical results. Hyperbolicity is verified numerically by performing a statistical analysis of the distribution of the angle between the stable and unstable subspaces of manifolds of the chaotic invariant set. Experimental results are in qualitative agreement with numerical predictions.
Neighborhoods of periodic orbits and the stationary distribution of a noisy chaotic system.
Heninger, Jeffrey M; Lippolis, Domenico; Cvitanović, Predrag
2015-12-01
The finest state-space resolution that can be achieved in a physical dynamical system is limited by the presence of noise. In the weak-noise approximation, the stochastic neighborhoods of deterministic periodic orbits can be computed from distributions stationary under the action of a local Fokker-Planck operator and its adjoint. We derive explicit formulas for widths of these distributions in the case of chaotic dynamics, when the periodic orbits are hyperbolic. The resulting neighborhoods form a basis for functions on the attractor. The global stationary distribution, needed for calculation of long-time expectation values of observables, can be expressed in this basis.
Dynamics of the Uranian and Saturnian satellite systems - A chaotic route to melting Miranda?
NASA Technical Reports Server (NTRS)
Dermott, Stanley F.; Malhotra, Renu; Murray, Carl D.
1988-01-01
Miranda's anomalously large inclination, in conjunction with the postaccretional resurfacing of both Miranda and Ariel and anomalously large eccentricities characterizing the inner Uranian satellites, are presently held to suggest the disruption of resonant configurations that once existed in this satellite system. Classical analytical methods for the dynamics of resonance are here used to demonstrate how temporary capture into a second- or higher-order resonance can generate large increases in eccentricity and inclination on comparatively short time-scales. Such capture into resonance may result in chaotic motion.
Ahmad, Israr Saaban, Azizan Bin Ibrahim, Adyda Binti; Shahzad, Mohammad
2015-12-11
This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.
NASA Astrophysics Data System (ADS)
Ahmad, Israr; Saaban, Azizan Bin; Ibrahim, Adyda Binti; Shahzad, Mohammad
2015-12-01
This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.
NASA Astrophysics Data System (ADS)
Hamel, Sarah; Boulkroune, Abdesselem
2016-08-01
In this paper, a modified generalized function projective synchronization scheme for a class of master-slave chaotic systems subject to dynamic disturbances and input nonlinearities (dead-zone and sector nonlinearities) is investigated. This synchronization system can be seen as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization and so on), in the sense that the master system has a scaling function matrix and the slave system has a scaling factor matrix. To practically achieve this generalized function synchronization, an adaptive fuzzy variable-structure control system is designed. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is employed to prove the boundedness of all signals of the closed-loop control system as well as the exponential convergence of the synchronization errors to an adjustable region. Simulations results are presented to illustrate the effectiveness of the proposed generalized function PS scheme.
Generalized correlation integral vectors: A distance concept for chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Hakkarainen, Janne; Haario, Heikki; Kalachev, Leonid
2016-04-01
It is difficult to distinguish systematic trends from natural variability of data in many important applications, such as weather or climate systems. The practical challenge of estimating parameters in chaotic systems is related to the fact that a fixed model parameter does not correspond to a unique model integration, but to a set of quite different solutions as obtained for example by setting slightly different initial values. But while all such trajectories are different, they approximate the same underlying attractor and should be considered in this sense equivalent. In this paper, we propose a statistical approach to quantify such "sameness" of trajectories, and to distinguish trajectories that are significantly different. Various formulations of fractal dimensions have been developed to characterize the geometry of such attractors. The aim of this paper is to modify one of these, the so-called correlation dimension, to develop a way to quantify the variability of samples of an attractor by mapping the respective phase space trajectories onto vectors, whose statistical distribution can be empirically estimated. The distributions turn out to be Gaussian, which provide us a well-defined statistical tool to compare the trajectories. We use the approach for the task of parameter estimation of chaotic systems. The methodology is illustrated using computational examples for both low and high dimensional systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.
Chaos in Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Mitchell, G. E.
1997-11-01
Recent developments have led to a new appreciation of the significance of Random Matrix Theory (RMT). The Bohigas conjecture(O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52), 1 (1984). assumes a generic connection between RMT and the spectral fluctuations of quantum analogs of classically chaotic systems. Level statistics are now used as a signature of chaos. RMT has been applied to a large number and variety of physical systems.(T. Guhr, A. Müller, and H. A. Weidenmüller, Phys. Reports (to be published).) The theory was originally developed by Wigner and Dyson to describe the fluctuation properties of nuclear resonances. It is impressive that a theory developed for the nucleus has been applied to complex atoms and molecules. The successful description of the properties of disordered solids is more surprising. The successful description of the elastomechanical eigenfrequencies of irregularly shaped quartz crystals and of the eigenmodes of microwaves in two-dimensional superconducting cavities suggests a near universality of RMT.
Bodruzzaman, M.; Essawy, M.A.
1996-02-27
Pressurized fluidized-bed combustors (FBC) are becoming very popular, efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants. In this paper, we present neural network-based methods for chaotic behavior monitoring and control in FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior. Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional control methods, due to its unpredictable nature. The performance, reliability, availability and operating cost of an FBC system will be significantly improved, if an appropriate control method is available to control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that the control methods would be applied before the system reaches a non-return point in its transients. It was found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching the system behavior from its high order chaos condition to low order chaos. It is to mention that most conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this is not the goal for the FBC case, further developments are needed. We propose neural network-based control methods which are known for their flexibility and capability to control both non-linear and chaotic systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be used for the monitoring and control purposes.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
A novel adaptive-impulsive synchronization of fractional-order chaotic systems
NASA Astrophysics Data System (ADS)
Leung, Y. T. Andrew; Li, Xian-Feng; Chu, Yan-Dong; Zhang, Hui
2015-10-01
A novel adaptive-impulsive scheme is proposed for synchronizing fractional-order chaotic systems without the necessity of knowing the attractors’ bounds in priori. The nonlinear functions in these systems are supposed to satisfy local Lipschitz conditions but which are estimated with adaptive laws. The novelty is that the combination of adaptive control and impulsive control offers a control strategy gathering the advantages of both. In order to guarantee the convergence is no less than an expected exponential rate, a combined feedback strength design is created such that the symmetric axis can shift freely according to the updated transient feedback strength. All of the unknown Lipschitz constants are also updated exponentially in the meantime of achieving synchronization. Two different fractional-order chaotic systems are employed to demonstrate the effectiveness of the novel adaptive-impulsive control scheme. Project supported by the National Natural Science Foundations of China (Grant Nos. 11161027 and 11262009), the Key Natural Science Foundation of Gansu Province, China (Grant No. 1104WCGA195), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136204110001).
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.
A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System
Wu, Xiangjun; Li, Yang; Kurths, Jürgen
2015-01-01
The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602
Generalized correlation integral vectors: A distance concept for chaotic dynamical systems
Haario, Heikki; Kalachev, Leonid; Hakkarainen, Janne
2015-06-15
Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. We modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.
NASA Astrophysics Data System (ADS)
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
A new color image encryption scheme using CML and a fractional-order chaotic system.
Wu, Xiangjun; Li, Yang; Kurths, Jürgen
2015-01-01
The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks.
NASA Astrophysics Data System (ADS)
Peng, Shi-Guo; Yu, Si-Min
2009-09-01
A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov-Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.
Quantum walk public-key cryptographic system
NASA Astrophysics Data System (ADS)
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Duality quantum algorithm efficiently simulates open quantum systems
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-28
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Chaotic transport in Hamiltonian systems perturbed by a weak turbulent wave field
Abdullaev, S. S.
2011-08-15
Chaotic transport in a Hamiltonian system perturbed by a weak turbulent wave field is studied. It is assumed that a turbulent wave field has a wide spectrum containing up to thousands of modes whose phases are fluctuating in time with a finite correlation time. To integrate the Hamiltonian equations a fast symplectic mapping is derived. It has a large time-step equal to one full turn in angle variable. It is found that the chaotic transport across tori caused by the interactions of small-scale resonances have a fractal-like structure with the reduced or zero values of diffusion coefficients near low-order rational tori thereby forming transport barriers there. The density of rational tori is numerically calculated and its properties are investigated. It is shown that the transport barriers are formed in the gaps of the density of rational tori near the low-order rational tori. The dependencies of the depth and width of transport barriers on the wave field spectrum and the correlation time of fluctuating turbulent field (or the Kubo number) are studied. These numerical findings may have importance in understanding the mechanisms of transport barrier formation in fusion plasmas.
Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard
2009-07-31
The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.
Zhou, Ping; Bai, Rongji
2014-01-01
Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207
Zhou, Ping; Bai, Rongji
2014-01-01
Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207
Lou, Der-Chyuan; Lee, Tian-Fu; Lin, Tsung-Hung
2015-05-01
Authenticated key agreements for telecare medicine information systems provide patients, doctors, nurses and health visitors with accessing medical information systems and getting remote services efficiently and conveniently through an open network. In order to have higher security, many authenticated key agreement schemes appended biometric keys to realize identification except for using passwords and smartcards. Due to too many transmissions and computational costs, these authenticated key agreement schemes are inefficient in communication and computation. This investigation develops two secure and efficient authenticated key agreement schemes for telecare medicine information systems by using biometric key and extended chaotic maps. One scheme is synchronization-based, while the other nonce-based. Compared to related approaches, the proposed schemes not only retain the same security properties with previous schemes, but also provide users with privacy protection and have fewer transmissions and lower computational cost.
NASA Astrophysics Data System (ADS)
Bruzzone, Agostino G.; Revetria, Roberto; Simeoni, Simone; Viazzo, Simone; Orsoni, Alessandra
2004-08-01
In logistics and industrial production managers must deal with the impact of stochastic events to improve performances and reduce costs. In fact, production and logistics systems are generally designed considering some parameters as deterministically distributed. While this assumption is mostly used for preliminary prototyping, it is sometimes also retained during the final design stage, and especially for estimated parameters (i.e. Market Request). The proposed methodology can determine the impact of stochastic events in the system by evaluating the chaotic threshold level. Such an approach, based on the application of a new and innovative methodology, can be implemented to find the condition under which chaos makes the system become uncontrollable. Starting from problem identification and risk assessment, several classification techniques are used to carry out an effect analysis and contingency plan estimation. In this paper the authors illustrate the methodology with respect to a real industrial case: a production problem related to the logistics of distributed chemical processing.
Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm
NASA Astrophysics Data System (ADS)
Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.
2016-03-01
A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO-ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO-ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO-ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO-ACO is a very powerful tool for parameter estimation with high accuracy and low deviations.
NASA Astrophysics Data System (ADS)
Sivaganesh, G.; Daniel Sweetlin, M.; Arulgnanam, A.
2016-07-01
In this paper, we present a numerical investigation on the robust synchronization phenomenon observed in a unidirectionally-coupled quasiperiodically-forced simple nonlinear electronic circuit system exhibiting strange non-chaotic attractors (SNAs) in its dynamics. The SNA obtained in the simple quasiperiodic system is characterized for its SNA behavior. Then, we studied the nature of the synchronized state in unidirectionally coupled SNAs by using the Master-Slave approach. The stability of the synchronized state is studied through the master stability functions (MSF) obtained for coupling different state variables of the drive and response system. The property of robust synchronization is analyzed for one type of coupling of the state variables through phase portraits, conditional lyapunov exponents and the Kaplan-Yorke dimension. The phenomenon of complete synchronization of SNAs via a unidirectional coupling scheme is reported for the first time.
Quantum energy teleportation in a quantum Hall system
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
NASA Technical Reports Server (NTRS)
Touma, Jihad; Wisdom, Jack
1993-01-01
The discovery (by Laskar, 1989, 1990) that the evolution of the solar system is chaotic, made in a numerical integration of the averaged secular approximation of the equations of motions for the planets, was confirmed by Sussman and Wisdom (1992) by direct numerical integration of the whole solar system. This paper presents results of direct integrations of the rotation of Mars in the chaotically evolved planetary system, made using the same model as that used by Sussman and Wisdom. The numerical integration shows that the obliquity of Mars undergoes large chaotic variations, which occur as the system evolves in the chaotic zone associated with a secular spin-orbit resonance.
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems
NASA Astrophysics Data System (ADS)
Zeeb, Steffen; Dahms, Thomas; Flunkert, Valentin; Schöll, Eckehard; Kanter, Ido; Kinzel, Wolfgang
2013-04-01
The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated.
Construction of the Lyapunov Spectrum in a Chaotic System Displaying Phase Synchronization
NASA Astrophysics Data System (ADS)
De Carlo, Leonardo; Gentile, Guido; Giuliani, Alessandro
2016-06-01
We consider a three-dimensional chaotic system consisting of the suspension of Arnold's cat map coupled with a clock via a weak dissipative interaction. We show that the coupled system displays a synchronization phenomenon, in the sense that the relative phase between the suspension flow and the clock locks to a special value, thus making the motion fall onto a lower dimensional attractor. More specifically, we construct the attractive invariant manifold, of dimension smaller than three, using a convergent perturbative expansion. Moreover, we compute via convergent series the Lyapunov exponents, including notably the central one. The result generalizes a previous construction of the attractive invariant manifold in a similar but simpler model. The main novelty of the current construction relies in the computation of the Lyapunov spectrum, which consists of non-trivial analytic exponents. Some conjectures about a possible smoothening transition of the attractor as the coupling is increased are also discussed.
Engineering synchronization of chaotic oscillators
Padmanaban, E.; Dana, Syamal K.
2011-04-19
We propose a controller based coupling design for engineering synchronization in chaotic oscillators for unidirectional as well as bi-directional mode. In the synchronization regimes, it is possible to amplify/ attenuate a chaotic attractor with respect to other chaotic attractors. Numerical examples are presented for a Lorenz system, a Roessler oscillator, and a Sprott system. Physical implementation of the scheme is done in electronic circuit to design the controller for verification of the theory.
Quantum Entanglement and Quantum Discord in Gaussian Open Systems
Isar, Aurelian
2011-10-03
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.
Quantum cloning attacks against PUF-based quantum authentication systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Quantum chaos of a mixed open system of kicked cold atoms
Krivolapov, Yevgeny; Fishman, Shmuel; Ott, Edward; Antonsen, Thomas M.
2011-01-15
The quantum and classical dynamics of particles kicked by a Gaussian attractive potential are studied. Classically, it is an open mixed system (the motion in some parts of the phase space is chaotic, and in some parts it is regular). The fidelity (Loschmidt echo) is found to exhibit oscillations that can be determined from classical considerations but are sensitive to phase space structures that are smaller than Planck's constant. Families of quasienergies are determined from classical phase space structures. Substantial differences between the classical and quantum dynamics are found for time-dependent scattering. It is argued that the system can be experimentally realized by cold atoms kicked by a Gaussian light beam.
Review: Characterizing and quantifying quantum chaos with quantum tomography
NASA Astrophysics Data System (ADS)
Madhok, Vaibhav; Riofrío, Carlos A.; Deutsch, Ivan H.
2016-11-01
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under application of the Floquet operator of a quantum map that possesses (or lacks) time reversal symmetry. We find that the rate of information gain, and hence the fidelity of quantum state reconstruction, depends on the symmetry class of the quantum map involved. Moreover, we find an increase in information gain and hence higher reconstruction fidelities when the Floquet maps employed increase in chaoticity. We make predictions for the information gain and show that these results are well described by random matrix theory in the fully chaotic regime. We derive analytical expressions for bounds on information gain using random matrix theory for different class of maps and show that these bounds are realized by fully chaotic quantum systems.
Statistics of chaotic resonances in an optical microcavity
NASA Astrophysics Data System (ADS)
Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng
2016-04-01
Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems.
Statistics of chaotic resonances in an optical microcavity.
Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng
2016-04-01
Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems. PMID:27176237
Statistics of chaotic resonances in an optical microcavity.
Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng
2016-04-01
Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems.
Control of the quantum open system via quantum generalized measurement
Zhang Ming; Zhu Xiaocai; Li Xingwei; Hu Dewen; Dai Hongyi
2006-03-15
For any specified pure state of quantum open system, we can construct a kind of quantum generalized measurement (QGM) that the state of the system after measurement will be deterministically collapsed into the specified pure state from any initial state. In other words, any pure state of quantum open system is reachable by QGM. Subsequently, whether the qubit is density matrix controllable is discussed in the case of pure dephasing. Our results reveal that combining QGM with coherent control will enhance the ability of controlling the quantum open system. Furthermore, it is found that the ability to perform QGM on the quantum open system, combined with the ability of coherence control and conditions of decoherence-free subspace, allows us to suppress quantum decoherence.
NASA Astrophysics Data System (ADS)
Dembiński, S. T.; Makowski, A. J.; Pepłowski, P.
1993-02-01
We report for the first time quantum calculations for the so-called bouncer model, the classical analog of which is well known to manifest a chaotic behavior. Three versions of our model are fully tractable quantum mechanically and are potentially a rich source of data for establishing properties of a quantum system of which the classical mechanics can be chaotic. Among the results presented here, consequences of the varying bandwidth of infinite-dimensional transition matrices on the use of the correspondence between classical chaos and non-Poissonian quasienergy statistics are discussed.
Optimal inference with chaotic dynamics
NASA Technical Reports Server (NTRS)
Harger, R. O.
1983-01-01
Nonlinear mappings that exhibit chaotic, seemingly random, evolution have appeal as models of dynamic systems. Their deterministic evolution, vis-a-vis Markov evolutions, results in much simpler optimal detection and estimation algorithms. The variation of a chaotic parameter (mu) results in diverse evolutions, suggesting a simple but rich source of model variations. For the specific mapping examined, this latter possibility is problematic due to the extreme sensitivity on mu of the evolution in the chaotic regime.
Bodruzzaman, M.
1996-10-30
We have developed techniques to control the chaotic behavior in Fluidized Bed Systems (FBC) systems using recurrent neural networks. For the sake of comparison of the techniques we have developed with the traditional chaotic system control methods, in the past three months we have been investigating the most popular and first known chaotic system control technique known as the OGY method. This method was developed by Edward Ott, Celso Grebogi and James York in 1990. In the past few years this method was further developed and applied by many researchers in the field. It was shown that this method has potential applications to a large cross section of problems in many fields. The only remaining question is whether it will prove possible to move from laboratory demonstrations on model systems to real world situations of engineering importance. We have developed computer programs to compute the OGY parameters from a chaotic time series, to control a chaotic system to a desired periodic orbit, using small perturbations to an accessible system parameter. We have tested those programs on the logistic map and the Henon map. We were able to control the chaotic behavior in such typical chaotic systems to period 1, 2, 3, 5..., as shown in some sample results below. In the following sections a brief discussion for the OGY method will be introduced, followed by results for the logistic map and Henon map control.
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
NASA Astrophysics Data System (ADS)
Ratowsky, Ricky Paul
We investigate quantum or wave dynamics for a system which is stochastic in the classical or eikonal (ray) limit. This system is a mapping which couples the standard mapping to an additional degree of freedom. We observe numerically, in most but not all cases, the asymptotic (in time) limitation of diffusion in the classically strongly chaotic regime, and the inhibition of Arnold diffusion when there exist KAM surfaces classically. We present explicitly the two-dimensional asymptotic localized distributions for each case, when they exist. The scaling of the characteristic widths of the localized distributions with coupling strength has been determined. A simple model accounts for the observed behavior in the limit of weak coupling, and we derive a scaling law for the diffusive time scale in the system. We explore some implications of the wave mapping for a class of optical or acoustical systems: a parallel plate waveguide or duct with a periodically perturbed boundary (a grating), and a lens waveguide with nonlinear focusing elements. We compute the ray trajectories of each system, using a Poincare surface of section to study the dynamics. Each system leads to a near-integrable ray Hamiltonian: the study the dynamics. Each system leads to a near-integrable ray Hamiltonian: the phase space splits into regions showing regular or chaotic behavior. The solutions to the scalar Helmholtz equation are found via a secular equation determining the eigenfrequencies. A wave mapping is derived for the system in the paraxial regime. We find that localization should occur, limiting the beam spread in both wavevector and configuration space. In addition, we consider the effect of retaining higher order terms in the paraxial expansion. Although we focus largely on the two dimensional case, we make some remarks concerning the four dimensional mapping for this system.
NASA Astrophysics Data System (ADS)
Wei, Qing-Lai; Song, Rui-Zhuo; Sun, Qiu-Ye; Xiao, Wen-Dong
2015-09-01
This paper estimates an off-policy integral reinforcement learning (IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton-Jacobi-Bellman (HJB) equation, an off-policy IRL algorithm is proposed. It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61304079 and 61374105), the Beijing Natural Science Foundation, China (Grant Nos. 4132078 and 4143065), the China Postdoctoral Science Foundation (Grant No. 2013M530527), the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-14-119A2), and the Open Research Project from State Key Laboratory of Management and Control for Complex Systems, China (Grant No. 20150104).
Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability
NASA Astrophysics Data System (ADS)
Li, Chunlai; Zhang, Jing
2016-07-01
The issue of synchronisation for a fractional-order chaotic system with uncertainties and disturbance is studied in this paper. The finite-time input-to-state stable theory of fractional-order dynamical system is presented for the first time. A linear feedback controller is proposed to achieve synchronisation of this fractional-order system and guarantee the bounded state error for any bounded interference in finite time. Since the chaotic system displays special dynamical behaviours as invariable Lyapunov exponent spectrums and controllable signal amplitude, one can achieve complete synchronisation and projective synchronisation by only adjusting the system parameter. Numerical simulations are shown to verify the feasibility of the presented synchronisation scheme.
Yeh, Jen-Hao; Hart, James A; Bradshaw, Elliott; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M
2010-10-01
Predicting the statistics of realistic wave-chaotic scattering systems requires, in addition to random matrix theory, introduction of system-specific information. This paper investigates experimentally one aspect of system-specific behavior, namely, the effects of short ray trajectories in wave-chaotic systems open to outside scattering channels. In particular, we consider ray trajectories of limited length that enter a scattering region through a channel (port) and subsequently exit through a channel (port). We show that a suitably averaged value of the impedance can be computed from these trajectories and that this can improve the ability to describe the statistical properties of the scattering systems. We illustrate and test these points through experiments on a realistic two-port microwave scattering billiard.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Yau, Wei-Chuen; Phan, Raphael C-W
2013-12-01
Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system.
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. PMID:25816968
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants.
Yau, Wei-Chuen; Phan, Raphael C-W
2013-12-01
Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system. PMID:24194093
Topological degree in analysis of chaotic behavior in singularly perturbed systems
NASA Astrophysics Data System (ADS)
Pokrovskii, A.; Zhezherun, A.
2008-06-01
A scheme of applying topological degree theory to the analysis of chaotic behavior in singularly perturbed systems is suggested. The scheme combines one introduced by Zgliczyński [Topol. Methods Nonlinear Anal. 8, 169 (1996)] with the method of topological shadowing, but does not rely on computer based proofs. It is illustrated by a three-dimensional system with piecewise linear slow surface. This approach, when applicable, guarantees abundance of periodic orbits with arbitrarily large periods, each of which is a canard-type trajectory: at first it passes along, and close to, an attractive part of the slow surface of the singularly perturbed system and then continues for a while along the repulsive part of the slow surface. These periodic trajectories are robust in a topological sense with respect to small disturbances in the right-hand sides of the system under consideration, but typically not stable in the Lyapunov sense. Methods of localization of such periodic trajectories are briefly discussed, and numerical examples of localizations are given. The periodic trajectories that are useful from the applications point of view can be stabilized via an appropriate feedback control, for instance, the Pyragas control.
NASA Astrophysics Data System (ADS)
Zhang, Fangfang; Liu, Shutang
2014-10-01
Considering the time lag produced by the transmission in chaos-communication, we present self-time-delay synchronization (STDS) of complex chaotic systems. STDS implies that the synchronization between the time-delay system (the receiver) and the original system (the transmitter) while maintaining the structure and parameters of systems unchanged, thus these various problems produced by time-delay in practice are avoided. It is more suitable to simulate real communication situation. Aimed to time-delay coupled complex chaotic systems, the control law is derived by active control technique. Based on STDS, a novel communication scheme is further designed according to chaotic masking. In simulation, we take time-delay coupled complex Lorenz system transmitting actual speech signal (analog signal) and binary signal as examples. The speech signal contains two components, which are transmitted by the real part and imaginary part of one complex state variable. Two sequences of binary bits are converted into analog signals by 2M-ary and zero-order holder, then added into the real part and imaginary part of one complex state variable. Therefore, the STDS controller is realized by one critical state variable. It is simple in principle and easy to implement in engineering. Moreover, the communication system is robust to noise. It is possible to adopt cheap circuits with time-delay, which is economical and practical for communication.
Coexistence of anticipated and layered chaotic synchronization in time-delay systems.
Wang, H J; Huang, H B; Qi, G X
2005-09-01
We study the dynamic stabilities of unidirectionally coupled linear arrays of chaotic oscillators with time-delay feedbacks in star configuration, and find that if all oscillators in the network are identical, then the oscillators in the linear arrays can anticipate the driving oscillators, and simultaneously the oscillators in the linear arrays with the same position with respect to the central one are in synchronous chaotic state. Compared with the anticipated synchronization, the layered synchronization is first generated and last destroyed as the coupling constant is increased. This coexistence of anticipated and layered chaotic synchronization is destroyed by long time feedback. If the driving and driven oscillators are different, then only layered chaotic synchronization is possible.
Perturbative approach to Markovian open quantum systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2014-05-01
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-02-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-01-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Application of Iterative Time-Reversal for Electromagnetic Wave Focusing in a Wave Chaotic System
NASA Astrophysics Data System (ADS)
Taddese, Biniyam; Antonsen, Thomas; Ott, Edward; Anlage, Steven
2011-03-01
Time-reversal mirrors exploit the time-reversal invariance of the wave equation to achieve spatial and temporal focusing, and they have been shown to be very effective sensors of perturbations to wave chaotic systems. The sensing technique is based on a classical analogue of the Loschmidt echo. However, dissipation results in an imperfect focusing, hence we created a sensing technique employing exponential amplification to overcome this limitation [1,2]. We now apply the technique of iterative time-reversal, which had been demonstrated in a dissipative acoustic system, to an electromagnetic time-reversal mirror, and experimentally demonstrate improved temporal focusing. We also use a numerical model of a network of transmission lines to demonstrate improved focusing by the iterative technique for various degrees and statistical distributions of loss in the system. The application of the iterative technique to improve the performance and practicality of our sensor is explored. This work is supported by an ONR MURI Grant No. N000140710734, AFOSR Grant No. FA95501010106, and the Maryland CNAM.
The Role of Chaotic Dynamics in the Cooling of Magmatic Systems in Subduction Related Environment
NASA Astrophysics Data System (ADS)
Petrelli, M.; El Omari, K.; Le Guer, Y.; Perugini, D.
2015-12-01
Understanding the dynamics occurring during the thermo-chemical evolution of igneous bodies is of crucial importance in both petrology and volcanology. This is particularly true in subduction related systems where large amount of magmas start, and sometime end, their differentiation histories at mid and lower crust levels. These magmas play a fundamental role in the evolution of both plutonic and volcanic systems but several key questions are still open about their thermal and chemical evolution: 1) what are the dynamics governing the development of these magmatic systems, 2) what are the timescales of cooling, crystallization and chemical differentiation; 4) how these systems contribute to the evolution of shallower magmatic systems? Recent works shed light on the mechanisms acting during the growing of new magmatic bodies and it is now accepted that large crustal igneous bodies result from the accretion and/or amalgamation of smaller ones. What is lacking now is how fluid dynamics of magma bodies can influence the evolution of these igneous systems. In this contribution we focus on the thermo-chemical evolution of a subduction related magmatic system at pressure conditions corresponding to mid-crustal levels (0.7 GPa, 20-25 km). In order to develop a robust model and address the Non-Newtonian behavior of crystal bearing magmas, we link the numerical formulation of the problem to experimental results and rheological modeling. We define quantitatively the thermo-chemical evolution of the system and address the timing required to reach the maximum packing fraction. We will shows that the development of chaotic dynamics significantly speed up the crystallization process decreasing the time needed to reach the maximum packing fraction. Our results have important implications for both the rheological history of the magmatic body and the refilling of shallower magmatic systems.
Quantum-information processing in disordered and complex quantum systems
Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2006-12-15
We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations.
Supersymmetric biorthogonal quantum systems
Curtright, Thomas; Mezincescu, Luca; Schuster, David
2007-09-15
We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V{sub {+-}}(z)=-U(z){sup 2}{+-}z(d/dz)U(z) where U(z){identical_to}{sigma}{sub k>0}{upsilon}{sub k}z{sup k}. In particular, we consider the cases generated by U(z)=z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.
Dissipative Properties of Quantum Systems
Grecos, A. P.; Prigogine, I.
1972-01-01
We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large “volume,” becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration. PMID:16591994
Learning, Exploration and Chaotic Policies
NASA Astrophysics Data System (ADS)
Potapov, Alexei B.; Ali, M. K.
We consider different versions of exploration in reinforcement learning. For the test problem, we use navigation in a shortcut maze. It is shown that chaotic ɛ-greedy policy may be as efficient as a random one. The best results were obtained with a model chaotic neuron. Therefore, exploration strategy can be implemented in a deterministic learning system such as a neural network.
Benet, L.; Chadderton, L. T.; Kun, S. Yu.; Qi Wang
2007-06-15
We study coherent superpositions of clockwise and anticlockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of a famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D{sub 2} chemical reaction. Thus we demonstrate the quantum-classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.
NASA Astrophysics Data System (ADS)
Potapov, A.; Ali, M. K.
2001-04-01
We consider the problem of stabilizing unstable equilibria by discrete controls (the controls take discrete values at discrete moments of time). We prove that discrete control typically creates a chaotic attractor in the vicinity of an equilibrium. Artificial neural networks with reinforcement learning are known to be able to learn such a control scheme. We consider examples of such systems, discuss some details of implementing the reinforcement learning to controlling unstable equilibria, and show that the arising dynamics is characterized by positive Lyapunov exponents, and hence is chaotic. This chaos can be observed both in the controlled system and in the activity patterns of the controller.
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
NASA Astrophysics Data System (ADS)
Bonenberger, Theresa S.; Baumgart, Jörg; Neumann, Cornelius
2016-04-01
For mixing light from different colored LEDs, an optical color mixing system is required to avoid colored shadows and color fringes. Concerning the different color mixing systems, mixing rods are widespread as they provide very good spatial color mixing with high efficiency. The essential disadvantage of mixing rods, so far, is the lack of angular color mixing. The solution presented in this publication is the application of a chaotic-dispersive billiard's geometry on the cross section of the mixing rod. To show both the spatial and the angular mixing properties of a square and a chaotic-dispersive mixing rod, simulations generated by the raytracing software ASAP are provided. All results are validated with prototype measurements.
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
Maxwell's demons in multipartite quantum correlated systems
NASA Astrophysics Data System (ADS)
Braga, Helena C.; Rulli, Clodoaldo C.; de Oliveira, Thiago R.; Sarandy, Marcelo S.
2014-10-01
We investigate the extraction of thermodynamic work by a Maxwell's demon in a multipartite quantum correlated system. We begin by adopting the standard model of a Maxwell's demon as a Turing machine, either in a classical or quantum setup depending on its ability to implement classical or quantum conditional dynamics. Then, for an n -partite system (A1,A2,⋯,An) , we introduce a protocol of work extraction that bounds the advantage of the quantum demon over its classical counterpart through the amount of multipartite quantum correlation present in the system, as measured by a thermal version of the global quantum discord. This result is illustrated for an arbitrary n -partite pure state of qubits with Schmidt decomposition, where it is shown that the thermal global quantum discord exactly quantifies the quantum advantage. Moreover, we also consider the work extraction via mixed multipartite states, where examples of tight upper bounds can be obtained.
Simulation of n-qubit quantum systems. III. Quantum operations
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Enhanced autocompensating quantum cryptography system.
Bethune, Donald S; Navarro, Martha; Risk, William P
2002-03-20
We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice's station to allow them to be distinguished from backscattered noise photons is also described.
NASA Astrophysics Data System (ADS)
Al-Sawalha, M. Mossa; Al-Sawalha, Ayman
2016-08-01
The objective of this article is to implement and extend applications of adaptive control to anti-synchronize different fractional order chaotic and hyperchaotic dynamical systems. The sufficient conditions for achieving anti-synchronization are derived by using the Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. Theoretical analysis and numerical simulations are shown to verify the results.
Global quantum discord in multipartite systems
Rulli, C. C.; Sarandy, M. S.
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
Chaotic behavior of nuclear spectra
NASA Astrophysics Data System (ADS)
Mitchell, G. E.; Bilpuch, E. G.; Endt, P. M.; Shriner, J. F.; von Egidy, T.
1991-05-01
Bohigas, Giannoni and Schmit conjectured that quantum analogs of classically chaotic systems have level statistics which are consistent with the Gaussian orthogonal ensemble (GOE) of random matrix theory. This suggests that the fluctuation properties of nuclear levels may be used as a signature for chaos or regularity. Resonance data are known to display the long and short range order predicted by GOE. In one nucleus, 26Al, all levels are known from the ground state to the resonance region. This provides the first experimental test of the behavior of fluctuation properties as a function of symmetry breaking — in this case, isospin. In addition there are many nuclides where level schemes are complete over a more limited range of energies and spins. Our analysis of a large data set (~ 160 sequences in 60 nuclides) reveals a strong dependence on the mass number A.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.
Das, Ashok Kumar; Goswami, Adrijit
2014-06-01
Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme.
Das, Ashok Kumar; Goswami, Adrijit
2014-06-01
Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme. PMID:24888983
An enhanced mobile-healthcare emergency system based on extended chaotic maps.
Lee, Cheng-Chi; Hsu, Che-Wei; Lai, Yan-Ming; Vasilakos, Athanasios
2013-10-01
Mobile Healthcare (m-Healthcare) systems, namely smartphone applications of pervasive computing that utilize wireless body sensor networks (BSNs), have recently been proposed to provide smartphone users with health monitoring services and received great attentions. An m-Healthcare system with flaws, however, may leak out the smartphone user's personal information and cause security, privacy preservation, or user anonymity problems. In 2012, Lu et al. proposed a secure and privacy-preserving opportunistic computing (SPOC) framework for mobile-Healthcare emergency. The brilliant SPOC framework can opportunistically gather resources on the smartphone such as computing power and energy to process the computing-intensive personal health information (PHI) in case of an m-Healthcare emergency with minimal privacy disclosure. To balance between the hazard of PHI privacy disclosure and the necessity of PHI processing and transmission in m-Healthcare emergency, in their SPOC framework, Lu et al. introduced an efficient user-centric privacy access control system which they built on the basis of an attribute-based access control mechanism and a new privacy-preserving scalar product computation (PPSPC) technique. However, we found out that Lu et al.'s protocol still has some secure flaws such as user anonymity and mutual authentication. To fix those problems and further enhance the computation efficiency of Lu et al.'s protocol, in this article, the authors will present an improved mobile-Healthcare emergency system based on extended chaotic maps. The new system is capable of not only providing flawless user anonymity and mutual authentication but also reducing the computation cost. PMID:24018958
Orbital stability analysis and chaotic dynamics of exoplanets in multi-stellar systems
NASA Astrophysics Data System (ADS)
Satyal, Suman
The advancement in detection technology has substantially increased the discovery rate of exoplanets in the last two decades. The confirmation of thousands of exoplanets orbiting the solar type stars has raised new astrophysical challenges, including the studies of orbital dynamics and long-term stability of such planets. Continuous orbital stability of the planet in stellar habitable zone is considered vital for life to develop. Hence, these studies furthers one self-evident aim of mankind to find an answer to the century old question: Are we alone?. This dissertation investigates the planetary orbits in single and binary star systems. Within binaries, a planet could orbit either one or both stars as S-type or P-type, respectively. I have considered S-type planets in two binaries, gamma Cephei and HD 196885, and compute their orbits by using various numerical techniques to assess their periodic, quasi-periodic or chaotic nature. The Hill stability (HS) function, which measures the orbital perturbation induced by the nearby companion, is calculated for each system and then its efficacy as a new chaos indicator is tested against Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth factor of Nearby Orbits (MEGNO). The dynamics of HD 196885 AB is further explored with an emphasis on the planet's higher orbital inclination relative to the binary plane. I have quantitatively mapped out the chaotic and quasi-periodic regions of the system's phase space, which indicates a likely regime of the planet's inclination. In, addition, the resonant angle is inspected to determine whether alternation between libration and circulation occurs as a consequence of Kozai oscillations, a probable mechanism that can drive the planetary orbit to a large inclination. The studies of planetary system in GJ 832 shows potential of hosting multiple planets in close orbits. The phase space of GJ 832c (inner planet) and the Earth-mass test planet(s) are analyzed for periodic
Robust quantum correlations in out-of-equilibrium matter-light systems
NASA Astrophysics Data System (ADS)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2015-09-01
High precision macroscopic quantum control in interacting light-matter systems remains a significant goal toward novel information processing and ultra-precise metrology. We show that the out-of-equilibrium behavior of a paradigmatic light-matter system (Dicke model) reveals two successive stages of enhanced quantum correlations beyond the traditional schemes of near-adiabatic and sudden quenches. The first stage features magnification of matter-only and light-only entanglement and squeezing due to effective nonlinear self-interactions. The second stage results from a highly entangled light-matter state, with enhanced superradiance and signatures of chaotic and highly quantum states. We show that these new effects scale up consistently with matter system size, and are reliable even in dissipative environments.
NASA Astrophysics Data System (ADS)
Chen, Yushu; Zhou, Liangqiang; Chen, Fangqi
2010-05-01
A lot of chaotic motions in nonlinear dynamical systems take place arising from the homoclinic/heteroclinic intersections. However, it is difficult to solve the homoclinic or heteroclinic orbits in most nonlinear dynamical systems. One method for solving the homoclinic/heteroclinic orbits of nonlinear dynamical systems, named undetermined coefficient method, is presented in this paper. With this method, the series expansion of the heteroclinic orbit for a new nonlinear system are obtained. It analytically demonstrates that there exists one heteroclinic orbit of the Si'lnikov type that connects the two equilibrium points, therefore Smale horseshoe chaos may occur for this system via the Sil'nikov criterion.
NASA Astrophysics Data System (ADS)
Simpson, D. J. W.
2016-09-01
An attractor of a piecewise-smooth continuous system of differential equations can bifurcate from a stable equilibrium to a more complicated invariant set when it collides with a switching manifold under parameter variation. Here numerical evidence is provided to show that this invariant set can be chaotic. The transition occurs locally (in a neighbourhood of a point) and instantaneously (for a single critical parameter value). This phenomenon is illustrated for the normal form of a boundary equilibrium bifurcation in three dimensions using parameter values adapted from of a piecewise-linear model of a chaotic electrical circuit. The variation of a secondary parameter reveals a period-doubling cascade to chaos with windows of periodicity. The dynamics is well approximated by a one-dimensional unimodal map which explains the bifurcation structure. The robustness of the attractor is also investigated by studying the influence of nonlinear terms.
Mohammadzadeh, Ardashir; Ghaemi, Sehraneh
2015-09-01
This paper proposes a novel approach for training of proposed recurrent hierarchical interval type-2 fuzzy neural networks (RHT2FNN) based on the square-root cubature Kalman filters (SCKF). The SCKF algorithm is used to adjust the premise part of the type-2 FNN and the weights of defuzzification and the feedback weights. The recurrence property in the proposed network is the output feeding of each membership function to itself. The proposed RHT2FNN is employed in the sliding mode control scheme for the synchronization of chaotic systems. Unknown functions in the sliding mode control approach are estimated by RHT2FNN. Another application of the proposed RHT2FNN is the identification of dynamic nonlinear systems. The effectiveness of the proposed network and its learning algorithm is verified by several simulation examples. Furthermore, the universal approximation of RHT2FNNs is also shown.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics. PMID:26967399
Thermodynamics of Weakly Measured Quantum Systems
NASA Astrophysics Data System (ADS)
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-01
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Visibility graphlet approach to chaotic time series.
Mutua, Stephen; Gu, Changgui; Yang, Huijie
2016-05-01
Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems. Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.
Ciszak, M.; Marino, F.; Ortolan, A.; Canton, T. Dal
2009-08-15
Phase space and attractor dimensions in a gravitational wave detector output can be estimated in order to identify chaotic (deterministic) signals in the presence of additive Gaussian noise. These quantities are evaluated, respectively, by means of conditional probabilities and the Grassberger-Procaccia algorithm, both methods relying on embedding in a suitable space of dimension d. By testing with different embedding dimensions, a deterministic--though erratic--signal can be detected by comparing the corresponding conditional probabilities via Kolmogorov-Smirnoff test and checking whether the correlation (fractal) dimension differs from d. Results of the two approaches are eventually compared, both for chaotic and periodic trajectories.
Quasiequilibria in open quantum systems
Walls, Jamie D.
2010-03-15
In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian of an open quantum system, L-circumflex-circumflex(t), is investigated. It is shown that differences between the quasiequilibrium and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the instantaneous eigenstates of L-circumflex-circumflex(t) to a fixed basis. These nonadiabatic contributions are shown to result in an additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.
Zeno dynamics in quantum open systems
Zhang, Yu-Ran; Fan, Heng
2015-01-01
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840
Zeno dynamics in quantum open systems.
Zhang, Yu-Ran; Fan, Heng
2015-06-23
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states.
My chaotic trajectory: A brief (personalized) history of solar-system dynamics.
NASA Astrophysics Data System (ADS)
Burns, Joseph A.
2014-05-01
I will use this opportunity to recall my professional career. Like many, I was drawn into the space program during the mid-60s and early 70s when the solar system’s true nature was being revealed. Previously, dynamical astronomy discussed the short-term, predictable motions of point masses; simultaneously, small objects (e.g., satellites, asteroids, dust) were thought boring rather than dynamically rich. Many of today’s most active research subjects were unknown: TNOs, planetary rings, exoplanets and debris disks. The continuing stream of startling findings by spacecraft, ground-based surveys and numerical simulations forced a renaissance in celestial mechanics, incorporating new dynamical paradigms and additional physics (e.g., energy loss, catastrophic events, radiation forces). My interests evolved as the space program expanded outward: dust, asteroids, natural satellites, rings; rotations, orbital evolution, origins. Fortunately for me, in the early days, elementary models with simple solutions were often adequate to gain a first-order explanation of many puzzles. One could be a generalist, always learning new things.My choice of research subjects was influenced greatly by: i) Cornell colleagues involved in space missions who shared results: the surprising diversity of planetary satellites, the unanticipated orbital and rotational dynamics of asteroids, the chaotic histories of solar system bodies, the non-intuitive behavior of dust and planetary rings, irregular satellites. ii) Teaching introductory courses in applied math, dynamics and planetary science encouraged understandable models. iii) The stimulation of new ideas owing to service at Icarus and on space policy forums. iv) Most importantly, excellent students and colleagues who pushed me into new research directions, and who then stimulated and educated me about those topics.If time allows, I will describe some of today’s puzzles for me and point out similarities between the past development in our
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian
2015-06-01
The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments. PMID:25900328
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian
2015-06-01
The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.
Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho
2016-03-01
Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties.
Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho
2016-03-01
Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties. PMID:26743628
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
NASA Astrophysics Data System (ADS)
Kul'minskii, D. D.; Ponomarenko, V. I.; Karavaev, A. S.; Prokhorov, M. D.
2016-05-01
We propose a system of concealed information transfer based on a delayed feedback oscillator with switchable chaotic regimes. The proposed system is analyzed numerically and experimentally. The dependences of the bit error rate during transmission of a binary information signal on the signal-to-noise ratio, attenuation of the signal in the communication channel, and the duration of the time interval during which a bit is transferred are constructed. The high stability of the system to noise and amplitude distortions of a signal in the communication channel is demonstrated.
Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.
ERIC Educational Resources Information Center
Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis
This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…
Mantegna, R.N. )
1993-02-01
We perform a detailed study of the time evolution of the probability distribution for two processes displaying enhanced diffusion: a stochastic process named the Levy walk and a deterministic chaotic process, the amplified climbing-sine map. The time evolution of the probability distribution differs in the two cases and carries information which is peculiar to the investigated process.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Tailoring superradiance to design artificial quantum systems
NASA Astrophysics Data System (ADS)
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-03-24
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Adiabatic Quantum Search in Open Systems
NASA Astrophysics Data System (ADS)
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
NASA Astrophysics Data System (ADS)
Zhang, Xu
This paper introduces a class of polynomial maps in Euclidean spaces, investigates the conditions under which there exist Smale horseshoes and uniformly hyperbolic invariant sets, studies the chaotic dynamical behavior and strange attractors, and shows that some maps are chaotic in the sense of Li-Yorke or Devaney. This type of maps includes both the Logistic map and the Hénon map. For some diffeomorphisms with the expansion dimension equal to one or two in three-dimensional spaces, the conditions under which there exist Smale horseshoes and uniformly hyperbolic invariant sets on which the systems are topologically conjugate to the two-sided fullshift on finite alphabet are obtained; for some expanding maps, the chaotic region is analyzed by using the coupled-expansion theory and the Brouwer degree theory. For three types of higher-dimensional polynomial maps with degree two, the conditions under which there are Smale horseshoes and uniformly hyperbolic invariant sets are given, and the topological conjugacy between the maps on the invariant sets and the two-sided fullshift on finite alphabet is obtained. Some interesting maps with chaotic attractors and positive Lyapunov exponents in three-dimensional spaces are found by using computer simulations. In the end, two examples are provided to illustrate the theoretical results.
Measurement theory for closed quantum systems
NASA Astrophysics Data System (ADS)
Wouters, Michiel
2015-07-01
We introduce the concept of a “classical observable” as an operator with vanishingly small quantum fluctuations on a set of density matrices. Their study provides a natural starting point to analyse the quantum measurement problem. In particular, it allows to identify Schrödinger cats and the associated projection operators intrinsically, without the need to invoke an environment. We discuss how our new approach relates to the open system analysis of quantum measurements and to thermalization studies in closed quantum systems.
Cryptosystems based on chaotic dynamics
McNees, R.A.; Protopopescu, V.; Santoro, R.T.; Tolliver, J.S.
1993-08-01
An encryption scheme based on chaotic dynamics is presented. This scheme makes use of the efficient and reproducible generation of cryptographically secure pseudo random numbers from chaotic maps. The result is a system which encrypts quickly and possesses a large keyspace, even in small precision implementations. This system offers an excellent solution to several problems including the dissemination of key material, over the air rekeying, and other situations requiring the secure management of information.
Understanding electronic systems in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2013-11-01
Systems of confined electrons are found everywhere in nature in the form of atoms where the orbiting electrons are confined by the Coulomb attraction of the nucleus. Advancement of nanotechnology has, however, provided us with an alternative way to confine electrons by using artificial confining potentials. A typical structure of this nature is the quantum dot, a nanoscale system which consists of few confined electrons. There are many types of quantum dots ranging from self-assembled to miniaturized semiconductor quantum dots. In this work we are interested in electrostatically confined semiconductor quantum dot systems where the electrostatic confining potential that traps the electrons is generated by external electrodes, doping, strain or other factors. A large number of semiconductor quantum dots of this type are fabricated by applying lithographically patterned gate electrodes or by etching on two-dimensional electron gases in semiconductor heterostructures. Because of this, the whole structure can be treated as a confined two-dimensional electron system. Quantum confinement profoundly affects the way in which electrons interact with each other, and external parameters such as a magnetic field. Since a magnetic field affects both the orbital and the spin motion of the electrons, the interplay between quantum confinement, electron-electron correlation effects and the magnetic field gives rise to very interesting physical phenomena. Thus, confined systems of electrons in a semiconductor quantum dot represent a unique opportunity to study fundamental quantum theories in a controllable atomic-like setup. In this work, we describe some common theoretical models which are used to study confined systems of electrons in a two-dimensional semiconductor quantum dot. The main emphasis of the work is to draw attention to important physical phenomena that arise in confined two-dimensional electron systems under various quantum regimes.
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Self-pulsing effect in chaotic scattering
NASA Astrophysics Data System (ADS)
Jung, C.; Mejía-Monasterio, C.; Merlo, O.; Seligman, T. H.
2004-05-01
We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in situations for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. Such situations are quite common as they correspond typically to the near-integrable domain in the transition from integrable to chaotic scattering. Both classical and quantum dynamics are analysed and in both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one-dimensional models and in open billiards.
NASA Astrophysics Data System (ADS)
Chao-Xia, Zhang; Si-Min, Yu
2016-05-01
This paper aims at developing a novel method of constructing a class of multi-wing chaotic and hyperchaotic system by introducing a unified step function. In order to overcome the essential difficulties in iteratively adjusting multiple parameters of conventional multi-parameter control, this paper introduces a unified step function controlled by a single parameter for constructing various multi-wing chaotic and hyperchaotic systems. In particular, to the best of the authors’ knowledge, this is also the first time to find a non-equilibrium multi-wing hyperchaotic system by means of the unified step function control. According to the heteroclinic loop Shilnikov theorem, some properties for multi-wing attractors and its chaos mechanism are further discussed and analyzed. A circuit for multi-wing systems is designed and implemented for demonstration, which verifies the effectiveness of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant No. 61403143), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313739), the Science and Technology Foundation Program of Guangzhou City, China (Grant No. 201510010124), and the Excellent Doctorial Dissertation Foundation of Guangdong Province, China (Grant No. XM080054).
Simulation of n-qubit quantum systems. V. Quantum measurements
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun
Accidental degeneracies in nonlinear quantum deformed systems
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2011-09-01
We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.
Recovering chaotic properties from small data.
Shao, Chenxi; Fang, Fang; Liu, Qingqing; Wang, Tingting; Wang, Binghong; Yin, Peifeng
2014-12-01
Physical properties are obviously essential to study a chaotic system that generates discrete-time signals, but recovering chaotic properties of a signal source from small data is a very troublesome work. Existing chaotic models are weak in dealing with such case in that most of them need big data to exploit those properties. In this paper, geometric theory is considered to solve this problem. We build a smooth trajectory from series to implicitly exhibit the chaotic properties with series-nonuniform rational B-spline (S-NURBS) modeling method, which is presented by our team to model slow-changing chaotic time series. As for the part of validation, we reveal how well our model recovers the properties from both the statistical and the chaotic aspects to confirm the effectiveness of the model. Finally a practical chaotic model is built up to recover the chaotic properties contained in the Musa standard dataset, which is used in analyzing software reliability, thereby further proves the high credibility of this model in practical time series. The effectiveness of the S-NURBS modeling leads us to believe that it is really a feasible and worthy research area to study chaotic systems from geometric perspective. For this reason, we reckon that we have opened up a new horizon for chaotic system research.
Quantum chaos in nuclear physics
NASA Astrophysics Data System (ADS)
Bunakov, V. E.
2016-07-01
A definition of classical and quantum chaos on the basis of the Liouville-Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.
NASA Astrophysics Data System (ADS)
Gu, Huaguang
2013-06-01
The transition from chaotic bursting to chaotic spiking has been simulated and analyzed in theoretical neuronal models. In the present study, we report experimental observations in a neural pacemaker of a transition from chaotic bursting to chaotic spiking within a bifurcation scenario from period-1 bursting to period-1 spiking. This was induced by adjusting extracellular calcium or potassium concentrations. The bifurcation scenario began from period-doubling bifurcations or period-adding sequences of bursting pattern. This chaotic bursting is characterized by alternations between multiple continuous spikes and a long duration of quiescence, whereas chaotic spiking is comprised of fast, continuous spikes without periods of quiescence. Chaotic bursting changed to chaotic spiking as long interspike intervals (ISIs) of quiescence disappeared within bursting patterns, drastically decreasing both ISIs and the magnitude of the chaotic attractors. Deterministic structures of the chaotic bursting and spiking patterns are also identified by a short-term prediction. The experimental observations, which agree with published findings in theoretical neuronal models, demonstrate the existence and reveal the dynamics of a neuronal transition from chaotic bursting to chaotic spiking in the nervous system.
Gu, Huaguang
2013-06-01
The transition from chaotic bursting to chaotic spiking has been simulated and analyzed in theoretical neuronal models. In the present study, we report experimental observations in a neural pacemaker of a transition from chaotic bursting to chaotic spiking within a bifurcation scenario from period-1 bursting to period-1 spiking. This was induced by adjusting extracellular calcium or potassium concentrations. The bifurcation scenario began from period-doubling bifurcations or period-adding sequences of bursting pattern. This chaotic bursting is characterized by alternations between multiple continuous spikes and a long duration of quiescence, whereas chaotic spiking is comprised of fast, continuous spikes without periods of quiescence. Chaotic bursting changed to chaotic spiking as long interspike intervals (ISIs) of quiescence disappeared within bursting patterns, drastically decreasing both ISIs and the magnitude of the chaotic attractors. Deterministic structures of the chaotic bursting and spiking patterns are also identified by a short-term prediction. The experimental observations, which agree with published findings in theoretical neuronal models, demonstrate the existence and reveal the dynamics of a neuronal transition from chaotic bursting to chaotic spiking in the nervous system.
NASA Astrophysics Data System (ADS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-08-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
2006-11-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
1995-04-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
Wave-Chaotic Optical Resonators and Lasers
NASA Astrophysics Data System (ADS)
Stone, A. Douglas
2001-10-01
Deformed cylindrical and spherical dielectric optical resonators and lasers are analyzed from the perspective of non-linear dynamics and quantum chaos theory. In the short-wavelength limit such resonators behave like billiard systems with non-zero escape probability due to refraction. A ray model is introduced to predict the resonance lifetimes and emission patterns from such a cavity. A universal wavelength-independent broadening is predicted and found for large deformations of the cavity. However there are significant wave-chaotic corrections to the model which arise from chaos-assisted tunneling and dynamical localization effects. Highly directional emission from lasers based on these resonators is predicted from chaotic "whispering gallery" modes for index of refraction less than two. The detailed nature of the emission pattern can be understood from the nature of the phase-space flow in the billiard, and a dramatic variation of this pattern with index of refraction is found due to an effect we term "dynamical eclipsing". Semiconductor lasers of this type also show highly directional emission and high output power but from different modes associated with periodic orbits, both stable and unstable. A semiclassical approach to these modes is briefly reviewed. These asymmetric resonant cavities (ARCs) show promise as components in future integrated optical devices, providing perhaps the first application of quantum chaos theory.
Avoiding irreversible dynamics in quantum systems
NASA Astrophysics Data System (ADS)
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with
Experimental investigation of linear and nonlinear wave systems: A quantum chaos approach
NASA Astrophysics Data System (ADS)
Neicu, Toni
2002-09-01
An experimental and numerical study of linear and nonlinear wave systems using methods and ideas developed from quantum chaos is presented. We exploit the analogy of the wave equation for the flexural modes of a thin clover-shaped acoustic plate to the stationary solutions of the Schrodinger wave equation for a quantum clover-shaped billiard, a generic system that has regular and chaotic regions in its phase space. We observed periodic orbits in the spectral properties of the acoustic plate, the first such definitive acoustic experiment. We also solved numerically the linear wave equation of the acoustic plate for the first few hundred eigenmodes. The Fourier transform of the eigenvalues show peaks corresponding to the principal periodic orbits of the classical billiard. The signatures of the periodic orbits in the spectra were unambiguously verified by deforming one edge of the plate and observing that only the peaks corresponding to the orbits that hit this edge changed. The statistical measures of the eigenvalues are intermediate between universal forms for completely integrable and chaotic systems. The density distribution of the eigenfunctions agrees with the Porter-Thomas formula of chaotic systems. The viscosity dependence and effects of nonlinearity on the Faraday surface wave patterns in a stadium geometry were also investigated. The ray dynamics inside the stadium, a paradigm of quantum chaos, is completely chaotic. The majority of the observed patterns of the orbits resemble three eigenstates of the stadium: the bouncing ball, longitudinal, and bowtie patterns. We observed many disordered patterns that increase with the viscosity. The experimental results were analyzed using recent theoretical work that explains the suppression of certain modes. The theory also predicts that the perimeter dissipation is too strong for whispering gallery modes, which contradicts our observations of these modes for a fluid with low viscosity. Novel vortex patterns were
Irreversibility with quantum trajectories.
Wisniacki, D A; Borondo, F; Benito, R M
2005-10-01
Irreversibility is an important issue for many quantum processes. Loschmidt echoes, originally introduced as a way to gauge sensitivity to perturbations in quantum mechanics, have turned out to be a useful tool for its investigation. Following the philosophy supporting this idea, and using quantum trajectories as defined in the causal interpretation of quantum mechanics due to Bohm, we introduce in this paper a more informative alternative measure for irreversibility. The method is applied to the Bunimovich stadium billiard, a paradigmatic example of chaotic system, that constitutes an excellent model for mesoscopic devices.
Quantum Simulation for Open-System Dynamics
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
NASA Astrophysics Data System (ADS)
Páez, Rocío Isabel; Efthymiopoulos, Christos
2015-02-01
The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, . , called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while contains only terms depending trigonometrically on slow (secular) angles. is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of `modulational diffusion'. In the paper's numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the
Multiplexed encryption using chaotic systems with multiple stochastic-delayed feedbacks.
Rontani, D; Sciamanna, M; Locquet, A; Citrin, D S
2009-12-01
We propose an efficient and fast bit-multiplexed encryption scheme exploiting hyperchaotic regimes of a single nonlinear oscillator with multiple time-delay feedback loops. Each data stream is encrypted by digitally modulating the values of the various time delays and decrypted using chaos synchronization and cross-correlation measurements. We have numerically applied our approach to an optoelectronic chaotic oscillator based on standard semiconductor lasers subjected to multiple feedbacks and have demonstrated successful data transmission and recovery between multiple users at several Gbits/s on a single communication channel.
Novaes, Marcel
2015-06-15
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
NASA Astrophysics Data System (ADS)
Welch, Kyle; Liebman-Pelaez, Alexander; Corwin, Eric
Equilibrium statistical mechanics is traditionally limited to thermal systems. Can it be applied to athermal, non-equilibrium systems that nonetheless satisfy the basic criteria of steady-state chaos and isotropy? We answer this question using a macroscopic system of chaotic surface waves which is, by all measures, non-equilibrium. The waves are generated in a dish of water that is vertically oscillated above a critical amplitude. We have constructed a rheometer that actively measures the drag imparted by the waves on a buoyant particle, a quantity entirely divorced in origin from the drag imparted by the fluid in which the particle floats. We also perform a separate, passive measurement, extracting a diffusion constant and effective temperature. Having directly measured all three properties (temperature, diffusion constant, and drag coefficient) we go on to show that our macroscopic, non-equilibrium case is wholly consistent with the Einstein relation, a classic result for equilibrium thermal systems.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly
Quantum entanglement in condensed matter systems
NASA Astrophysics Data System (ADS)
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones. PMID:24799958
Characteristic Energy Scales of Quantum Systems.
ERIC Educational Resources Information Center
Morgan, Michael J.; Jakovidis, Greg
1994-01-01
Provides a particle-in-a-box model to help students understand and estimate the magnitude of the characteristic energy scales of a number of quantum systems. Also discusses the mathematics involved with general computations. (MVL)
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2013-01-01
We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.
A Low-Dimensional Principal Manifold as the "Attractor Backbone" of a Chaotic Beam System
NASA Astrophysics Data System (ADS)
Bollt, Erik M.; Skufca, Joseph D.
We model an elastic beam subject to a contact load which displaces under a chaotic external forcing, motivated by application of a ship carrying either a crane, or fluids in internal tanks. This model not only has rich dynamics and relevance in its own right, it gives rise to a Partial Differential Equation (PDE) whose solutions are chaotic, with an attractor whose points lie "near" a low-dimensional curve. This form identifies a data-driven dimensionality reduction which encapsulates a Cartesian product, approximately, of a principal manifold, corresponding to spatial regularity, against a temporal complex dynamics of the intrinsic variable of the manifold. The principal manifold element serves to translate the complex information at one site to all other sites on the beam. Although points of the attractor do not lie on the principal manifold, they lie sufficiently close that we describe that manifold as a "backbone" running through the attractor, allowing the manifold to serve as a suitable space to approximate behaviors.
Open quantum systems and error correction
NASA Astrophysics Data System (ADS)
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
Intermittent chaotic chimeras for coupled rotators.
Olmi, Simona; Martens, Erik A; Thutupalli, Shashi; Torcini, Alessandro
2015-09-01
Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite lifetimes diverging as a power law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.
Spectrum analysis with quantum dynamical systems
NASA Astrophysics Data System (ADS)
Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei
2016-04-01
Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
Tunable entanglement resource in elastic electron-exchange collisions out of chaotic spin systems
NASA Astrophysics Data System (ADS)
Lohmann, B.; Blum, K.; Langer, B.
2016-09-01
Elastic collisions between initially unpolarized electrons and hydrogenlike atoms are discussed aiming to analyze the entanglement properties of the correlated final spin system. Explicit spin-dependent interactions are neglected and electron exchange only is taken into account. We show the final spin system to be completely characterized by a single spin correlation parameter depending on scattering angle and energy. Its numerical value identifies the final spins of the collision partners to be either in the separable, entangled, or Bell correlated regions. The symmetry of the scattering process allows for the construction of explicit examples applying methods of classical communication and local operations for illustrating the concepts of nonlocality versus separability. It is shown that strong correlations can be produced violating Bell's inequalities significantly. Furthermore, the degree of entanglement can be continuously varied simply by changing either the scattering angle and/or energy. This allows for the generation of tunable spin pairs with any desired degree of entanglement. It is suggested to use such nonlocally entangled spin pairs as a resource for further experiments, for example in quantum information processes.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2014-01-01
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.
Entanglement and dephasing of quantum dissipative systems
Stauber, T.; Guinea, F.
2006-04-15
The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.
Characterizing chaotic melodies in automatic music composition.
Coca, Andrés E; Tost, Gerard O; Zhao, Liang
2010-09-01
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.
Characterizing chaotic melodies in automatic music composition
NASA Astrophysics Data System (ADS)
Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang
2010-09-01
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.
Superconducting circuitry for quantum electromechanical systems
NASA Astrophysics Data System (ADS)
LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.
2015-05-01
Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.
Robust observer for uncertain linear quantum systems
Yamamoto, Naoki
2006-09-15
In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analog due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.
Quantum annealing in a kinetically constrained system.
Das, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B
2005-08-01
Classical and quantum annealing is discussed in the case of a generalized kinetically constrained model, where the relaxation dynamics of a system with trivial ground state is retarded by the appearance of energy barriers in the relaxation path, following a local kinetic rule. Effectiveness of thermal and quantum fluctuations in overcoming these kinetic barriers to reach the ground state are studied. It has been shown that for certain barrier characteristics, quantum annealing might by far surpass its thermal counter part in reaching the ground state faster.
NASA Astrophysics Data System (ADS)
García-Vellisca, M. A.; Pisarchik, A. N.; Jaimes-Reátegui, R.
2016-07-01
We present the experimental evidence of deterministic coherence resonance in unidirectionally coupled two and three Rössler electronic oscillators with mismatch between their natural frequencies. The regularity in both the amplitude and the phase of chaotic fluctuations is experimentally proven by the analyses of normalized standard deviations of the peak amplitude and interpeak interval and Lyapunov exponents. The resonant chaos suppression appears when the coupling strength is increased and the oscillators are in phase synchronization. In two coupled oscillators, the coherence enhancement is associated with negative third and fourth Lyapunov exponents, while the largest first and second exponents remain positive. Distinctly, in three oscillators coupled in a ring, all exponents become negative, giving rise to periodicity. Numerical simulations are in good agreement with the experiments.
Novaes, Marcel
2015-06-15
We consider S-matrix correlation functions for a chaotic cavity having M open channels, in the absence of time-reversal invariance. Relying on a semiclassical approximation, we compute the average over E of the quantities Tr[S{sup †}(E − ϵ) S(E + ϵ)]{sup n}, for general positive integer n. Our result is an infinite series in ϵ, whose coefficients are rational functions of M. From this, we extract moments of the time delay matrix Q = − iħS{sup †}dS/dE and check that the first 8 of them agree with the random matrix theory prediction from our previous paper [M. Novaes, J. Math. Phys. 56, 062110 (2015)].
Studies in Chaotic adiabatic dynamics
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Strong local passivity in finite quantum systems.
Frey, Michael; Funo, Ken; Hotta, Masahiro
2014-07-01
Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.
Note on quantum groups and integrable systems
NASA Astrophysics Data System (ADS)
Popolitov, A.
2016-01-01
The free-field formalism for quantum groups [preprint ITEP-M3/94, CRM-2202 hep-th/9409093] provides a special choice of coordinates on a quantum group. In these coordinates the construction of associated integrable system [arXiv:1207.1869] is especially simple. This choice also fits into general framework of cluster varieties [math.AG/0311245]—natural changes in coordinates are cluster mutations.
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Quantum Information with Continuous Variable systems
NASA Astrophysics Data System (ADS)
Rodó, Carles
2010-05-01
This thesis deals with the study of quantum communication protocols with Continuous Variable (CV) systems. Continuous Variable systems are those described by canonical conjugated coordinates x and p endowed with infinite dimensional Hilbert spaces, thus involving a complex mathematical structure. A special class of CV states, are the so-called Gaussian states. With them, it has been possible to implement certain quantum tasks as quantum teleportation, quantum cryptography and quantum computation with fantastic experimental success. The importance of Gaussian states is two-fold; firstly, its structural mathematical description makes them much more amenable than any other CV system. Secondly, its production, manipulation and detection with current optical technology can be done with a very high degree of accuracy and control. Nevertheless, it is known that in spite of their exceptional role within the space of all Continuous Variable states, in fact, Gaussian states are not always the best candidates to perform quantum information tasks. Thus non-Gaussian states emerge as potentially good candidates for communication and computation purposes.
Quantum hacking: attacking practical quantum key distribution systems
NASA Astrophysics Data System (ADS)
Qi, Bing; Fung, Chi-Hang Fred; Zhao, Yi; Ma, Xiongfeng; Tamaki, Kiyoshi; Chen, Christine; Lo, Hoi-Kwong
2007-09-01
Quantum key distribution (QKD) can, in principle, provide unconditional security based on the fundamental laws of physics. Unfortunately, a practical QKD system may contain overlooked imperfections and violate some of the assumptions in a security proof. Here, we report two types of eavesdropping attacks against a practical QKD system. The first one is "time-shift" attack, which is applicable to QKD systems with gated single photon detectors (SPDs). In this attack, the eavesdropper, Eve, exploits the time mismatch between the open windows of the two SPDs. She can acquire a significant amount of information on the final key by simply shifting the quantum signals forwards or backwards in time domain. Our experimental results in [9] with a commercial QKD system demonstrate that, under this attack, the original QKD system is breakable. This is the first experimental demonstration of a feasible attack against a commercial QKD system. This is a surprising result. The second one is "phase-remapping" attack [10]. Here, Eve exploits the fact that a practical phase modulator has a finite response time. In principle, Eve could change the encoded phase value by time-shifting the signal pulse relative to the reference pulse.
Quantum dynamics of nonlinear cavity systems
NASA Astrophysics Data System (ADS)
Nation, Paul David
In this work we investigate the quantum dynamics of three different configurations of nonlinear cavity systems. We begin by carrying out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprising a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing an external flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we consider the use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. We will show that biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. As a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process. Finally, we investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviation occurs once the pump mode (black hole) has released nearly half of its initial energy in the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum
Incoherent control of locally controllable quantum systems
Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.
2008-10-21
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.
The path integral picture of quantum systems
NASA Astrophysics Data System (ADS)
Ceperley, David
2011-03-01
The imaginary time path integral ``formalism'' was introduced in 1953 by Feynman to understand the superfluid transition in liquid helium. The equilibrium properties of quantum many body systems is isomorphic to the classical statistical mechanics of cross-linking polymer-like objects. With the Markov Chain Monte Carlo method, invented by Metropolis et al., also in 1953, a potential way of calculating properties of correlated quantum systems was in place. But calculations for many-body quantum systems did not become routine until computers and algorithms had become sufficiently powerful three decades later. Once such simulations could happen, it was realized that simulations provided a deeper insight into boson superfluids, in particular the relation of bose condensation to the polymer end-to-end distance, and the superfluid density to the polymer ``winding number.'' Some recent developments and applications to supersolids, and helium droplets will be given. Finally, limitations of the methodology e.g. to fermion systems are discussed.
Distribution of Quantum Coherence in Multipartite Systems.
Radhakrishnan, Chandrashekar; Parthasarathy, Manikandan; Jambulingam, Segar; Byrnes, Tim
2016-04-15
The distribution of coherence in multipartite systems is examined. We use a new coherence measure with entropic nature and metric properties, based on the quantum Jensen-Shannon divergence. The metric property allows for the coherence to be decomposed into various contributions, which arise from local and intrinsic coherences. We find that there are trade-off relations between the various contributions of coherence, as a function of parameters of the quantum state. In bipartite systems the coherence resides on individual sites or is distributed among the sites, which contribute in a complementary way. In more complex systems, the characteristics of the coherence can display more subtle changes with respect to the parameters of the quantum state. In the case of the XXZ Heisenberg model, the coherence changes from a monogamous to a polygamous nature. This allows us to define the shareability of coherence, leading to monogamy relations for coherence. PMID:27127948
CHAOTIC ZONES AROUND GRAVITATING BINARIES
Shevchenko, Ivan I.
2015-01-20
The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.
Quantum signatures of chaos in a kicked top.
Chaudhury, S; Smith, A; Anderson, B E; Ghose, S; Jessen, P S
2009-10-01
Chaotic behaviour is ubiquitous and plays an important part in most fields of science. In classical physics, chaos is characterized by hypersensitivity of the time evolution of a system to initial conditions. Quantum mechanics does not permit a similar definition owing in part to the uncertainty principle, and in part to the Schrödinger equation, which preserves the overlap between quantum states. This fundamental disconnect poses a challenge to quantum-classical correspondence, and has motivated a long-standing search for quantum signatures of classical chaos. Here we present the experimental realization of a common paradigm for quantum chaos-the quantum kicked top- and the observation directly in quantum phase space of dynamics that have a chaotic classical counterpart. Our system is based on the combined electronic and nuclear spin of a single atom and is therefore deep in the quantum regime; nevertheless, we find good correspondence between the quantum dynamics and classical phase space structures. Because chaos is inherently a dynamical phenomenon, special significance attaches to dynamical signatures such as sensitivity to perturbation or the generation of entropy and entanglement, for which only indirect evidence has been available. We observe clear differences in the sensitivity to perturbation in chaotic versus regular, non-chaotic regimes, and present experimental evidence for dynamical entanglement as a signature of chaos. PMID:19812668
Heisenberg picture approach to the stability of quantum Markov systems
Pan, Yu E-mail: zibo.miao@anu.edu.au; Miao, Zibo E-mail: zibo.miao@anu.edu.au; Amini, Hadis; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-06-15
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2005-12-01
During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible
Quantum Hall effect in semiconductor systems with quantum dots and antidots
Beltukov, Ya. M.; Greshnov, A. A.
2015-04-15
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
Quantum temporal probabilities in tunneling systems
NASA Astrophysics Data System (ADS)
Anastopoulos, Charis; Savvidou, Ntina
2013-09-01
We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines 'classical' time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems.
Constraint algebra for interacting quantum systems
NASA Astrophysics Data System (ADS)
Fubini, S.; Roncadelli, M.
1988-04-01
We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.
NASA Technical Reports Server (NTRS)
Gills, Zelda; Roy, Rajarshi
1995-01-01
Irregular fluctuations in intensity have long plagued the operation of a wide variety of solid-state lasers. We are exploring the possibility of exploiting rather than avoiding a laser's chaotic output. As an important step in that direction, we have applied a novel control technique to stabilize a solid state laser. By making small periodic changes in only one input parameter of the laser, we are able to stabilize complex periodic waveforms and steady state behavior in the laser output. We demonstrate the application of this approach in a diode pumped Nd:/YAG laser system.
Nonequilibrium quantum dynamics in optomechanical systems
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Sabavath, Gopi Kishan; Banerjee, I.; Mahapatra, S. K.; Shaw, Pankaj Kumar; Sekar Iyengar, A. N.
2015-08-15
Floating potential fluctuations from a direct current magnetron sputtering plasma have been analysed using time series analysis techniques like phase space plots, power spectra, frequency bifurcation plot, etc. The system exhibits quasiperiodic-chaotic-quasiperiodic-chaotic transitions as the discharge voltage was increased. The transitions of the fluctuations, quantified using the largest Lyapunov exponent, have been corroborated by Hurst exponent and the Shannon entropy. The Shannon entropy is high for quasiperiodic and low for chaotic oscillations.
Quantum temporal probabilities in tunneling systems
Anastopoulos, Charis Savvidou, Ntina
2013-09-15
We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling.
Chaotic advection of immiscible fluids
NASA Astrophysics Data System (ADS)
Vollmayr-Lee, Benjamin; Beller, Daniel; Yasuda, Sohei
2012-02-01
We consider a system of two immiscible fluids advected by a chaotic flow field. A nonequilibrium steady state arises from the competition between the coarsening of the immiscible fluids and the domain bursting caused by the chaotic flow. It has been established that the average domain size in this steady state scales as a inverse power of the Lyapunov exponent. We examine the issue of local structure and look for correlations between the local domain size and the finite-time Lyapunov exponent (FTLE) field. For a variety of chaotic flows, we consistently find the domains to be smallest in regions where the FTLE field is maximal. This raises the possibility of making universal predictions of steady-state characteristics based on Lyapunov analysis of the flow field.
Quantum statistical ensemble for emissive correlated systems.
Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems. PMID:27415223
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
NASA Astrophysics Data System (ADS)
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Lyapunov Control of Quantum Systems with Impulsive Control Fields
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method. PMID:23766712
Thermal Phase Transitions in Finite Quantum Systems
Dean, D.J.
2001-10-18
In this Proceedings, the author will describe the behavior of two different quantum-mechanical systems as a function of increasing temperature. While these systems are somewhat different, the questions addressed are very similar, namely, how does one describe transitions in phase of a finite many-body system; how does one recognize these transitions in practical calculations; and how may one obtain the order of the transition.
Classical system boundaries cannot be determined within quantum Darwinism
NASA Astrophysics Data System (ADS)
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
NASA Astrophysics Data System (ADS)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Optimal control of complex atomic quantum systems
NASA Astrophysics Data System (ADS)
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Coherent control in simple quantum systems
NASA Technical Reports Server (NTRS)
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Hidden supersymmetry in quantum bosonic systems
Correa, Francisco Plyushchay, Mikhail S.
2007-10-15
We show that some simple well-studied quantum mechanical systems without fermion (spin) degrees of freedom display, surprisingly, a hidden supersymmetry. The list includes the bound state Aharonov-Bohm, the Dirac delta and the Poeschl-Teller potential problems, in which the unbroken and broken N = 2 supersymmetry of linear and nonlinear (polynomial) forms is revealed.
Lee, Tian-Fu
2014-12-01
Telecare medicine information systems provide a communicating platform for accessing remote medical resources through public networks, and help health care workers and medical personnel to rapidly making correct clinical decisions and treatments. An authentication scheme for data exchange in telecare medicine information systems enables legal users in hospitals and medical institutes to establish a secure channel and exchange electronic medical records or electronic health records securely and efficiently. This investigation develops an efficient and secure verified-based three-party authentication scheme by using extended chaotic maps for data exchange in telecare medicine information systems. The proposed scheme does not require server's public keys and avoids time-consuming modular exponential computations and scalar multiplications on elliptic curve used in previous related approaches. Additionally, the proposed scheme is proven secure in the random oracle model, and realizes the lower bounds of messages and rounds in communications. Compared to related verified-based approaches, the proposed scheme not only possesses higher security, but also has lower computational cost and fewer transmissions.
Chaotic scattering in the regime of weakly overlapping resonances.
Dietz, B; Friedrich, T; Harney, H L; Miski-Oglu, M; Richter, A; Schäfer, F; Weidenmüller, H A
2008-11-01
We measure the transmission and reflection amplitudes of microwaves in a resonator coupled to two antennas at room temperature in the regime of weakly overlapping resonances and in a frequency range of 3-16GHz . Below 10.1GHz the resonator simulates a chaotic quantum system. The distribution of the elements of the scattering matrix S is not Gaussian. The Fourier coefficients of S are used for a best fit of the autocorrelation function of S to a theoretical expression based on random-matrix theory. We find very good agreement below but not above 10.1GHz .
Connectivity analysis of controlled quantum systems
NASA Astrophysics Data System (ADS)
Wu, Rong; Rabitz, Herschel; Turinici, Gabriel; Sola, Ignacio
2004-11-01
A connectivity analysis of controlled quantum systems assesses the feasibility of a field existing that can transfer at least some amplitude between any specified pair of states. Although Hamiltonians with special structure or symmetry may not produce full connectivity, it is argued and demonstrated that virtually any Hamiltonian is expected to be connected. The connectivity of any particular system is generally revealed in the quantum evolution over a single or at most a few time steps. A connectivity analysis is inexpensive to perform and it can also identify statistically significant intermediate states linking a specified initial and final state. These points are illustrated with several simple systems. The likelihood of an arbitrary system being connected implies that at least some product yield can be expected in the laboratory for virtually all systems subjected to a suitable control.
Quantum cryptographic system with reduced data loss
Lo, Hoi-Kwong; Chau, Hoi Fung
1998-01-01
A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.
Quantum cryptographic system with reduced data loss
Lo, H.K.; Chau, H.F.
1998-03-24
A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.
An impurity-induced gap system as a quantum data bus for quantum state transfer
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
From quantum correlations in dissipative quantum walk to two-qubit systems
NASA Astrophysics Data System (ADS)
Nizama, Marco; Cáceres, Manuel O.
2014-04-01
A dissipative quantum walk (according to the semigroup approach) has been used as the starting point from which to study quantum correlations in an open system. This system is a fruitful model that allows the definition of several bipartite systems (sets of qubits). Thus the quantum correlations and the decoherence properties induced by a phonon bath can be investigated analytically using tools from quantum information. In particular we have studied the negativity, concurrence and quantum discord for different bipartitions in our dissipative system, and we have found analytical expression for these measures, using a local initial condition for the density matrix of the walker. In general quantum correlations are affected by dissipation in a complex non-monotonic way, showing at long time an expected asymptotic decrease with the increase of the dissipation. In addition, our results for the quantum correlations can be used as an indicator of the transition from the quantum to the classical regimen, as has recently been shown experimentally.
Field Theory of the Quantum Kicked Rotor
Altland, A.; Zirnbauer, M.R.
1996-11-01
The quantum kicked rotor is investigated by field theoretical methods. It is shown that the effective theory describing the long wavelength physics of the system is precisely the supersymmetric nonlinear {sigma} model for quasi-one-dimensional metallic wires. This proves that the analogy between chaotic systems with dynamical localization and disordered metals can indeed be exact. The role of symmetries is discussed.
Powerlaw Decays and Thermalization in Isolated Many-Body Quantum Systems
NASA Astrophysics Data System (ADS)
Tavora, Marco; Torres-Herrera, E. J.; Santos, Lea
2016-05-01
We propose a new criterion for thermalization in isolated many-body quantum systems. It is based on the powerlaw behavior of the survival probability at long times. The value of the powerlaw exponent depends on the shape and filling of the energy distribution of the initial state. Exponents larger than or equal to 2 correspond to ergodic filling and consequent thermalization. We show that the algebraic behavior, which occurs in both integrable and chaotic systems, may be caused by bounds in the spectrum or by the presence of correlations between the eigenstates of the Hamiltonian. Numerical and analytical results as well as comparisons with existing rigorous mathematical derivations are presented. Our focus are on initial states that can be prepared experimentally using cold atoms in optical lattices. NSF Grant No. DMR-1147430.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. PMID:27415235
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
Thermoelectric energy harvesting with quantum dots.
Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N
2015-01-21
We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.
Chaotic Map Construction from Common Nonlinearities and Microcontroller Implementations
NASA Astrophysics Data System (ADS)
Ablay, Günyaz
2016-06-01
This work presents novel discrete-time chaotic systems with some known physical system nonlinearities. Dynamic behaviors of the models are examined with numerical methods and Arduino microcontroller-based experimental studies. Many new chaotic maps are generated in the form of x(k + 1) = rx(k) + f(x(k)) and high-dimensional chaotic systems are obtained by weak coupling or cross-coupling the same or different chaotic maps. An application of the chaotic maps is realized with Arduino for chaotic pulse width modulation to drive electrical machines. It is expected that the new chaotic maps and their microcontroller implementations will facilitate practical chaos-based applications in different fields.
Onset of quantum chaos in molecular systems and the zeros of the Husimi function
NASA Astrophysics Data System (ADS)
Arranz, F. J.; Seidel, L.; Giralda, C. G.; Benito, R. M.; Borondo, F.
2013-06-01
The distribution of zeros of the Husimi function has proven a useful tool in the characterization of regular and chaotic quantum states of dynamical systems. In a previous paper [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.026201 82, 026201 (2010)], we showed how the quantum transition from order to chaos in three different molecular systems (LiCN, HCN, and HO2) can be understood by means of the correlation diagram of eigenenergies versus the Planck's constant. An order-chaos frontier of scars (eigenstates localized over unstable and stable complementary, in the sense of the Poincaré-Birkhoff theorem, periodic orbits) was observed. In this paper, we show how the distribution of zeros of the Husimi function can be related to the onset of chaos in these molecular systems, showing a very interesting feature at the frontier of scars; namely, some zeros of the Husimi function localize over the stable and unstable fixed points corresponding to the two complementary periodic orbits, this representing the quantum equivalent to the Poincaré-Birkhoff theorem.
Uncertainty relation for non-Hamiltonian quantum systems
Tarasov, Vasily E.
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
Bodruzzaman, M.; Essawy, M.A.
1996-07-30
We have developed techniques to control the chaotic behavior in the Fluidized Bed (FBC) Systems using Artificial Neural Networks (ANNs). For those techniques to cross from theory to implementation, the computer programs we are developing have to be interfaced with the outside world, as a necessary step towards the actual interface with an FBC system or its experimental mock up. For this reason we are working on a Data Acquisition Board setup that will enable communication between our programs and external systems. Communication is planned to be enabled in both ways to deliver feedback signals from a system to the control programs in one way, and the control signals from the control programs to the controlled system in the other way. On the other hand, since most of our programs are PC based, they have to follow the revolutionary progress in the PC technology. Our programs were developed in the DOS environment using an early version of Microsoft C compiler. For those programs to meet the current needs of most PC users, we are working on converting those programs to the Windows environment, using a very advanced and up to date C++ compiler. This compiler is known as the Microsoft Visual C++ Version 4.0. This compiler enables the implementation of very professional and sophisticated Windows 95, 32 bit applications. It also allows a simple utilization of the Object Oriented Programming (OOP) techniques, and lots of powerful graphical and communication tools known as the Microsoft Foundation Classes (MFC). This compiler also allows creating Dynamic Link Libraries (DLLS) that can be liked together or with other Windows programs. These two main aspects, the computer-system interface and the DOS-Windows migration will give our programs a leap frog towards their real implementation.
Observable Measure of Quantum Coherence in Finite Dimensional Systems
NASA Astrophysics Data System (ADS)
Girolami, Davide
2014-10-01
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes. PMID:25379903
Focus on coherent control of complex quantum systems
NASA Astrophysics Data System (ADS)
Whaley, Birgitta; Milburn, Gerard
2015-10-01
The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.
Regular transport dynamics produce chaotic travel times
NASA Astrophysics Data System (ADS)
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F.; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
NASA Astrophysics Data System (ADS)
Li, Chien-Ming; Du, Yi-Chun; Wu, Jian-Xing; Lin, Chia-Hung; Ho, Yueh-Ren; Chen, Tainsong
2013-08-01
Lower-extremity peripheral arterial disease (PAD) is caused by narrowing or occlusion of vessels in patients like type 2 diabetes mellitus, the elderly and smokers. Patients with PAD are mostly asymptomatic; typical early symptoms of this limb-threatening disorder are intermittent claudication and leg pain, suggesting the necessity for accurate diagnosis by invasive angiography and ankle-brachial pressure index. This index acts as a gold standard reference for PAD diagnosis and categorizes its severity into normal, low-grade and high-grade, with respective cut-off points of ≥0.9, 0.9-0.5 and <0.5. PAD can be assessed using photoplethysmography as a diagnostic screening tool, displaying changes in pulse transit time and shape, and dissimilarities of these changes between lower limbs. The present report proposed photoplethysmogram with fractional-order chaotic system to assess PAD in 14 diabetics and 11 healthy adults, with analysis of dynamic errors based on various butterfly motion patterns, and color relational analysis as classifier for pattern recognition. The results show that the classification of PAD severity among these testees was achieved with high accuracy and efficiency. This noninvasive methodology potentially provides timing and accessible feedback to patients with asymptomatic PAD and their physicians for further invasive diagnosis or strict management of risk factors to intervene in the disease progression.
Jiang, Qi; Ma, Jianfeng; Lu, Xiang; Tian, Youliang
2014-02-01
To ensure only authorized access to medical services, several authentication schemes for telecare medicine information systems (TMIS) have been proposed in the literature. Due to its better performance than traditional cryptography, Hao et al. proposed an authentication scheme for TMIS using chaotic map based cryptography. They claimed that their scheme could resist various attacks, including the smart card stolen attack. However, we identify that their scheme is vulnerable to the stolen smart card attack. The reason causing the stolen smart card attack is that the scheme is designed based on the assumption that the scheme itself achieves user untraceability. Then, we propose a robust authentication and key agreement scheme. Compared with the previous schemes, our scheme not only enjoys more security features, but also has better efficiency. Our analysis indicates that designing a two-factor authentication scheme based on the assumption that privacy protection is achieved in the scheme itself may pose potential security risks. The lesson learned is that, we should avoid this situation in the future design of two-factor authentication schemes. PMID:24493073
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
ERIC Educational Resources Information Center
Chenery, Gordon
1991-01-01
Uses chaos theory to investigate the nonlinear phenomenon of population growth fluctuation. Illustrates the use of computers and computer programs to make calculations in a nonlinear difference equation system. (MDH)
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to
Inversion of Quantum Jumps in Quantum Optical Systems under Continuous Observation
NASA Astrophysics Data System (ADS)
Mabuchi, H.; Zoller, P.
1996-04-01
We formulate conditions for invertibility of quantum jumps in systems that decay by emission of quanta into a continuously monitored reservoir. We propose proof-of-principle experiments using techniques from cavity quantum electrodynamics and ion trapping, and briefly discuss the relevance of such methods for error correction in quantum computation.
Short- and long-time dynamics of isolated many-body quantum systems
NASA Astrophysics Data System (ADS)
Tavora, Marco; Torres-Herrera, Jonathan; Ferreira Dos Santos, Lea
We show our results for the relaxation process of isolated interacting quantum spin chains in the integrable and chaotic regimes. The dynamics of the survival probability (the probability for finding the system still in its initial state at later times) and of few-body observables are analyzed. Different time scales are considered. While the short-time evolution is determined by the shape of the weighted energy distribution of the initial state, the long-time behavior depends on the bounds of the spectrum. Both numerical and analytical results are presented as well as comparisons with existing rigorous mathematical derivations. We consider initial states that can be prepared in experiments with cold atoms in optical lattices. Nsf Grant No. DMR-1147430.
On Mathematical Modeling Of Quantum Systems
Achuthan, P.; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
On Mathematical Modeling Of Quantum Systems
NASA Astrophysics Data System (ADS)
Achuthan, P.; Narayanankutty, Karuppath
2009-07-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Exchange fluctuation theorem for correlated quantum systems.
Jevtic, Sania; Rudolph, Terry; Jennings, David; Hirono, Yuji; Nakayama, Shojun; Murao, Mio
2015-10-01
We extend the exchange fluctuation theorem for energy exchange between thermal quantum systems beyond the assumption of molecular chaos, and describe the nonequilibrium exchange dynamics of correlated quantum states. The relation quantifies how the tendency for systems to equilibrate is modified in high-correlation environments. In addition, a more abstract approach leads us to a "correlation fluctuation theorem". Our results elucidate the role of measurement disturbance for such scenarios. We show a simple application by finding a semiclassical maximum work theorem in the presence of correlations. We also present a toy example of qubit-qudit heat exchange, and find that non-classical behaviour such as deterministic energy transfer and anomalous heat flow are reflected in our exchange fluctuation theorem. PMID:26565174
The Quantum as an Emergent System
NASA Astrophysics Data System (ADS)
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2012-05-01
Double slit interference is explained with the aid of what we call "21st century classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.
NASA Astrophysics Data System (ADS)
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Preparing ground states of quantum many-body systems on a quantum computer
NASA Astrophysics Data System (ADS)
Poulin, David
2009-03-01
The simulation of quantum many-body systems is a notoriously hard problem in condensed matter physics, but it could easily be handled by a quantum computer [4,1]. There is however one catch: while a quantum computer can naturally implement the dynamics of a quantum system --- i.e. solve Schr"odinger's equation --- there was until now no general method to initialize the computer in a low-energy state of the simulated system. We present a quantum algorithm [5] that can prepare the ground state and thermal states of a quantum many-body system in a time proportional to the square-root of its Hilbert space dimension. This is the same scaling as required by the best known algorithm to prepare the ground state of a classical many-body system on a quantum computer [3,2]. This provides strong evidence that for a quantum computer, preparing the ground state of a quantum system is in the worst case no more difficult than preparing the ground state of a classical system. 1 D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theo. Comp., (2003), p. 20. F. Barahona, On the computational complexity of ising spin glass models, J. Phys. A. Math. Gen., 15 (1982), p. 3241. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknessess of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510--1523, quant-ph/9701001. S. Lloyd, Universal quantum simulators, Science, 273 (1996), pp. 1073--1078. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, 2008, arXiv:0809.2705.
Assaraf, Roland; Caffarel, Michel; Kollias, A C
2011-04-15
We present a method to efficiently evaluate small energy differences of two close N-body systems by employing stochastic processes having a stability versus chaos property. By using the same random noise, energy differences are computed from close trajectories without reweighting procedures. The approach is presented for quantum systems but can be applied to classical N-body systems as well. It is exemplified with diffusion Monte Carlo simulations for long chains of hydrogen atoms and molecules for which it is shown that the long-standing problem of computing energy derivatives is solved. PMID:21568537
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
Quantum entanglement in multiparticle systems of two-level atoms
Deb, Ram Narayan
2011-09-15
We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Decoherence, chaos, the quantum and the classical
Zurek, W.H.; Paz, J.P.
1994-04-01
The key ideas of the environment-induced decoherence approach are reviewed. Application of decoherence to the transition from quantum to classical in open quantum systems with chaotic classical analogs is described. The arrow of time is, in this context, a result of the information loss to the correlations with the environment. The asymptotic rate of entropy production (which is reached quickly, on the dynamical timescale) is independent of the details of the coupling of the quantum system to the environment, and is set by the Lyapunov exponents. We also briefly outline the existential interpretation of quantum mechanics, justifying the slogan ``No information without representation.``
Quantum manifestations of classical stochasticity. I. Energetics of some nonlinear systems
NASA Astrophysics Data System (ADS)
Weissman, Yitzhak; Jortner, Joshua
1982-08-01
In this paper we present the results of a semiclassical investigation and a quantum mechanical study of the bound energy spectrum of the Henon-Heiles Hamiltonian (HHH) and of the Barbanis Hamiltonian (BH). We have derived a simple semiclassical formula for the energy levels E, and for their sensitivity dE/dɛ with respect to the strength ɛ of the nonlinear coupling for the HHH, and established general relations between E and its derivatives dnE/dɛn (n⩾1). Numerical quantum mechanical computations of the energy levels were conducted for the HHH and for the BH. The nonlinear coupling constant was adjusted so that for the HHH there will be ˜150 states up to the classical critical energy Ec and ˜300 states up to the dissociation energy ED. The E values were obtained by direct diagonalization using a basis containing 760 states, while the values of dE/dɛ were computed utilizing the Hellmann-Feynman theorem. Good agreement between the semiclassical and the quantum mechanical spectra was observerd well above Ec. These results raise the distict possibility that the semiclassical approxmation for these nonlinear systems does not break down in the vicinity of Ec and that the bound level structure does not provide a manifestation of the classical transition from quasiperiodic to chaotic motion.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
NASA Astrophysics Data System (ADS)
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196
Quartz-superconductor quantum electromechanical system
NASA Astrophysics Data System (ADS)
Woolley, Matt; Emzir, Muhammad; Milburn, Gerard; Jerger, Markus; Goryachev, Maxim; Tobar, Mike; Fedorov, Arkady
Quartz bulk acoustic wave oscillators support mechanical modes with very high resonance frequencies and extremely high quality factors. As such, they provide an appealing platform for quantum optics experiments with phonons, gravitational wave detection, and tests of quantum mechanics. We propose to cool and measure the motion of a quartz oscillator using a transmon, with the coupling mediated by a tuneable superconducting LC circuit. The mechanical motion (~250MHz) is resonantly coupled to the LC circuit (~250MHz) by a piezoelectric interaction, the LC circuit is coupled to the transmon (~8GHz) via sideband transitions, and there is a smaller direct coupling between the quartz oscillator and the transmon. By driving the transmon on its red sideband, the mechanical and electrical oscillators may be cooled close to their quantum ground state. By observing the fluorescence of the qubit, the occupations of the oscillators may be determined via the motional sidebands they induce. A minimal model of this system consists of a qubit coupled to two oscillators, which are themselves mutually coupled. The steady-state of the system and the qubit fluorescence spectrum are evaluated analytically using a perturbative projection operator technique, and verified numerically.