Sample records for quantum chemical approach

  1. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    PubMed

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  2. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    PubMed Central

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603

  3. A quantum informational approach for dissecting chemical reactions

    NASA Astrophysics Data System (ADS)

    Duperrouzel, Corinne; Tecmer, Paweł; Boguslawski, Katharina; Barcza, Gergely; Legeza, Örs; Ayers, Paul W.

    2015-02-01

    We present a conceptionally different approach to dissect bond-formation processes in metal-driven catalysis using concepts from quantum information theory. Our method uses the entanglement and correlation among molecular orbitals to analyze changes in electronic structure that accompany chemical processes. As a proof-of-principle example, the evolution of nickel-ethene bond-formation is dissected, which allows us to monitor the interplay of back-bonding and π-donation along the reaction coordinate. Furthermore, the reaction pathway of nickel-ethene complexation is analyzed using quantum chemistry methods, revealing the presence of a transition state. Our study supports the crucial role of metal-to-ligand back-donation in the bond-forming process of nickel-ethene.

  4. Quantum Entanglement and Chemical Reactivity.

    PubMed

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  5. Quantum chemical approaches to [NiFe] hydrogenase.

    PubMed

    Vaissier, Valerie; Van Voorhis, Troy

    2017-05-09

    The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  7. Quantum chemical investigation of levofloxacin-boron complexes: A computational approach

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2018-04-01

    Quantum chemical calculations are performed over some boron complexes with levofloxacin. Boron complex with fluorine atoms are optimized at three different methods (HF, B3LYP and M062X) with 6-31 + G(d) basis set. The best level is determined as M062X/6-31 + G(d) by comparison of experimental and calculated results of complex (1). The other complexes are optimized by using the best level. Structural properties, IR and NMR spectrum are examined in detail. Biological activities of mentioned complexes are investigated by some quantum chemical descriptors and molecular docking analyses. As a result, biological activities of complex (2) and (4) are close to each other and higher than those of other complexes. Additionally, NLO properties of mentioned complexes are investigated by some quantum chemical parameters. It is found that complex (3) is the best candidate for NLO applications.

  8. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.

    PubMed

    Siegbahn, Per E M; Himo, Fahmi

    2009-06-01

    The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.

  9. Quantum-chemical insights from deep tensor neural networks

    PubMed Central

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221

  10. Quantum-chemical insights from deep tensor neural networks.

    PubMed

    Schütt, Kristof T; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre

    2017-01-09

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol -1 ) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  11. Quantum-chemical insights from deep tensor neural networks

    NASA Astrophysics Data System (ADS)

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  12. Quantum indistinguishability in chemical reactions.

    PubMed

    Fisher, Matthew P A; Radzihovsky, Leo

    2018-05-15

    Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.

  13. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    NASA Astrophysics Data System (ADS)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  14. Polynomial-time quantum algorithm for the simulation of chemical dynamics

    PubMed Central

    Kassal, Ivan; Jordan, Stephen P.; Love, Peter J.; Mohseni, Masoud; Aspuru-Guzik, Alán

    2008-01-01

    The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and interelectronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born–Oppenheimer approximation but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wave function is propagated on a grid with appropriately short time steps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with 100 qubits. PMID:19033207

  15. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    PubMed

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  16. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  17. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol using quantum chemical approach and its experimental verification

    NASA Astrophysics Data System (ADS)

    Mishra, Devendra P.; Srivastava, Anchal; Shukla, R. K.

    2017-07-01

    This paper describes the spectroscopic (^1H and ^{13}C NMR, FT-IR and UV-Visible), chemical, nonlinear optical and thermodynamic properties of D-Myo-Inositol using quantum chemical technique and its experimental verification. The structural parameters of the compound are determined from the optimized geometry by B3LYP method with 6 {-}311{+}{+}G(d,p) basis set. It was found that the optimized parameters thus obtained are almost in agreement with the experimental ones. A detailed interpretation of the infrared spectra of D-Myo-Inositol is also reported in the present work. After optimization, the proton and carbon NMR chemical shifts of the studied compound are calculated using GIAO and 6 {-}311{+}{+}G(d,p) basis set. The search of organic materials with improved charge transfer properties requires precise quantum chemical calculations of space-charge density distribution, state and transition dipole moments and HOMO-LUMO states. The nature of the transitions in the observed UV-Visible spectrum of the compound has been studied by the time-dependent density functional theory (TD-DFT). The global reactivity descriptors like chemical potential, electronegativity, hardness, softness and electrophilicity index, have been calculated using DFT. The thermodynamic calculation related to the title compound was also performed at B3LYP/ 6 {-}311{+}{+}G(d,p) level of theory. The standard statistical thermodynamic functions like heat capacity at constant pressure, entropy and enthalpy change were obtained from the theoretical harmonic frequencies of the optimized molecule. It is observed that the values of heat capacity, entropy and enthalpy increase with increase in temperature from 100 to 1000 K, which is attributed to the enhancement of molecular vibration with the increase in temperature.

  18. Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions.

    PubMed

    Himo, Fahmi

    2017-05-24

    The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.

  19. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  20. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less

  1. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    PubMed

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  2. Prediction of contaminant persistence in aqueous phase: a quantum chemical approach.

    PubMed

    Blotevogel, Jens; Mayeno, Arthur N; Sale, Tom C; Borch, Thomas

    2011-03-15

    At contaminated field sites where active remediation measures are not feasible, monitored natural attenuation is sometimes the only alternative for surface water or groundwater decontamination. However, due to slow degradation rates of some contaminants under natural conditions, attenuation processes and their performance assessment can take several years to decades to complete. Here, we apply quantum chemical calculations to predict contaminant persistence in the aqueous phase. For the test compound hexamethylphosphoramide (HMPA), P-N bond hydrolysis is the only thermodynamically favorable reaction that may lead to its degradation under reducing conditions. Through calculation of aqueous Gibbs free energies of activation for all potential reaction mechanisms, it is predicted that HMPA hydrolyzes via an acid-catalyzed mechanism at pH < 8.2, and an uncatalyzed mechanism at pH 8.2-8.5. The estimated half-lives of thousands to hundreds of thousands of years over the groundwater-typical pH range of 6.0 to 8.5 indicate that HMPA will be persistent in the absence of suitable oxidants. At pH 0, where the hydrolysis reaction is rapid enough to enable measurement, the experimentally determined rate constant and half-life are in excellent agreement with the predicted values. Since the quantum chemical methodology described herein can be applied to virtually any contaminant or reaction of interest, it is especially valuable for the prediction of persistence when slow reaction rates impede experimental investigations and appropriate QSARs are unavailable.

  3. Quantum chemical studies of estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  4. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  5. Use of statistical and neural net approaches in predicting toxicity of chemicals.

    PubMed

    Basak, S C; Grunwald, G D; Gute, B D; Balasubramanian, K; Opitz, D

    2000-01-01

    Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applied to the development of H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were used as the four levels of the hierarchical method. It is clear from both the statistical and neural network models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity data.

  6. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  7. Quantum-chemical Calculations in the Study of Antitumour Compounds

    NASA Astrophysics Data System (ADS)

    Luzhkov, V. B.; Bogdanov, G. N.

    1986-01-01

    The results of quantum-chemical calculations on antitumour preparations concerning the mechanism of their action at the electronic and molecular levels and structure-activity correlations are discussed in this review. Preparations whose action involves alkylating and free-radial mechanisms, complex-forming agents, and antimetabolites are considered. Modern quantum-chemical methods for calculations on biologically active substances are described. The bibliography includes 106 references.

  8. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.

    PubMed

    Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole

    2015-05-12

    Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.

  9. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.

    PubMed

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-07-26

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices.

  10. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  11. Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications.

    PubMed

    Dreuw, Andreas

    2006-11-13

    With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.

  12. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.

    PubMed

    Bratholm, Lars A; Jensen, Jan H

    2017-03-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ , 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1-0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural

  13. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications

    DOE PAGES

    Hu, Michael Z.; Zhu, Ting

    2015-12-04

    This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  14. Electron-beam generated porous dextran gels: experimental and quantum chemical studies.

    PubMed

    Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta

    2014-06-01

    The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.

  15. Ab initio Quantum Chemical and Experimental Reaction Kinetics Studies in the Combustion of Bipropellants

    DTIC Science & Technology

    2017-03-24

    NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for

  16. The quantum Hall effects: Philosophical approach

    NASA Astrophysics Data System (ADS)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  17. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  18. Quantum chaos: An entropy approach

    NASA Astrophysics Data System (ADS)

    Sl/omczyński, Wojciech; Życzkowski, Karol

    1994-11-01

    A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II

  19. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  20. Approaches to Measuring Entanglement in Chemical Magnetometers

    PubMed Central

    2013-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py–DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py–DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py–DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach. PMID:24372396

  1. Quantum approach to classical statistical mechanics.

    PubMed

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  2. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    PubMed

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  3. Portable open-path chemical sensor using a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Corrigan, Paul; Lwin, Maung; Huntley, Reuven; Chhabra, Amandeep; Moshary, Fred; Gross, Barry; Ahmed, Samir

    2009-05-01

    Remote sensing of enemy installations or their movements by trace gas detection is a critical but challenging military objective. Open path measurements over ranges of a few meters to many kilometers with sensitivity in the parts per million or billion regime are crucial in anticipating the presence of a threat. Previous approaches to detect ground level chemical plumes, explosive constituents, or combustion have relied on low-resolution, short range Fourier transform infrared spectrometer (FTIR), or low-sensitivity near-infrared differential optical absorption spectroscopy (DOAS). As mid-infrared quantum cascade laser (QCL) sources have improved in cost and performance, systems based on QCL's that can be tailored to monitor multiple chemical species in real time are becoming a viable alternative. We present the design of a portable, high-resolution, multi-kilometer open path trace gas sensor based on QCL technology. Using a tunable (1045-1047cm-1) QCL, a modeled atmosphere and link-budget analysis with commercial component specifications, we show that with this approach, accuracy in parts per billion ozone or ammonia can be obtained in seconds at path lengths up to 10 km. We have assembled an open-path QCL sensor based on this theoretical approach at City College of New York, and we present preliminary results demonstrating the potential of QCLs in open-path sensing applications.

  4. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation.

    PubMed

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2011-05-10

    We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.

  5. A Philosophical Approach to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-01-01

    Preface; Acknowledgements; 1. Approach to quantum field theory; 2. Scalar field theory; 3. Quantum electrodynamics; 4. Perspectives; Appendix A. An efficient perturbation scheme; Appendix B. Properties of Dirac matrices; Appendix C. Baker-Campbell-Hausdorff formulas; References; Author index; Subject index.

  6. Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation model

    NASA Astrophysics Data System (ADS)

    Tarumi, Moto; Nakai, Hiromi

    2018-05-01

    This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.

  7. Quantum transport under ac drive from the leads: A Redfield quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Purkayastha, Archak; Dubi, Yonatan

    2017-08-01

    Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.

  8. Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection

    NASA Astrophysics Data System (ADS)

    Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.

    2003-07-01

    The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.

  9. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    PubMed

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  10. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.

    PubMed

    Knizia, Gerald

    2013-11-12

    Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.

  11. Quantum chemical parameters in QSAR: what do I use when?

    USGS Publications Warehouse

    Hickey, James P.; Ostrander, Gary K.

    1996-01-01

    This chapter provides a brief overview of the numerous quantum chemical parameters that have been/are currently being used in quantitative structure activity relationships (QSAR), along with a representative bibliography. The parameters will be grouped according to their mechanistic interpretations, and representative biological and physical chemical applications will be mentioned. Parmater computation methods and the appropriate software are highlighted, as are sources for software.

  12. Numerical approach of the quantum circuit theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.J.B., E-mail: jaedsonfisica@hotmail.com; Duarte-Filho, G.C.; Almeida, F.A.G.

    2017-03-15

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency formore » a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.« less

  13. Quantum mechanical model for the anticarcinogenic effect of extremely-low-frequency electromagnetic fields on early chemical hepatocarcinogenesis

    NASA Astrophysics Data System (ADS)

    Godina-Nava, Juan José; Torres-Vega, Gabino; López-Riquelme, Germán Octavio; López-Sandoval, Eduardo; Samana, Arturo Rodolfo; García Velasco, Fermín; Hernández-Aguilar, Claudia; Domínguez-Pacheco, Arturo

    2017-02-01

    Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.

  14. Quantum chemical approaches in structure-based virtual screening and lead optimization

    NASA Astrophysics Data System (ADS)

    Cavasotto, Claudio N.; Adler, Natalia S.; Aucar, Maria G.

    2018-05-01

    Today computational chemistry is a consolidated tool in drug lead discovery endeavors. Due to methodological developments and to the enormous advance in computer hardware, methods based on quantum mechanics (QM) have gained great attention in the last 10 years, and calculations on biomacromolecules are becoming increasingly explored, aiming to provide better accuracy in the description of protein-ligand interactions and the prediction of binding affinities. In principle, the QM formulation includes all contributions to the energy, accounting for terms usually missing in molecular mechanics force-fields, such as electronic polarization effects, metal coordination, and covalent binding; moreover, QM methods are systematically improvable, and provide a greater degree of transferability. In this mini-review we present recent applications of explicit QM-based methods in small-molecule docking and scoring, and in the calculation of binding free-energy in protein-ligand systems. Although the routine use of QM-based approaches in an industrial drug lead discovery setting remains a formidable challenging task, it is likely they will increasingly become active players within the drug discovery pipeline.

  15. Quantum cryptography approaching the classical limit.

    PubMed

    Weedbrook, Christian; Pirandola, Stefano; Lloyd, Seth; Ralph, Timothy C

    2010-09-10

    We consider the security of continuous-variable quantum cryptography as we approach the classical limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10(4) times greater than the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.

  16. Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers.

    PubMed

    Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim

    2009-01-21

    The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.

  17. Can quantum approaches benefit biology of decision making?

    PubMed

    Takahashi, Taiki

    2017-11-01

    Human decision making has recently been focused in the emerging fields of quantum decision theory and neuroeconomics. The former discipline utilizes mathematical formulations developed in quantum theory, while the latter combines behavioral economics and neurobiology. In this paper, the author speculates on possible future directions unifying the two approaches, by contrasting the roles of quantum theory in the birth of molecular biology of the gene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quantum Logic: Approach a Child's Environment from "Inside."

    ERIC Educational Resources Information Center

    Rhodes, William C.

    1987-01-01

    With the advent of quantum mechanics, physics has merged with psychology, and cognitive science has been revolutionized. Quantum logic supports the notion of influencing the environment by increasing the child's capacity for cognitive processing. This special educational approach is theoretically more effective than social and political…

  19. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  20. Spectroscopic studies and quantum chemical investigations of (3,4-dimethoxybenzylidene) propanedinitrile

    NASA Astrophysics Data System (ADS)

    Gupta, Ujval; Kumar, Vinay; Singh, Vivek K.; Kant, Rajni; Khajuria, Yugal

    2015-04-01

    The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800 nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity.

  1. Nonequilibrium Langevin approach to quantum optics in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Portolan, S.; di Stefano, O.; Savasta, S.; Rossi, F.; Girlanda, R.

    2008-01-01

    Recently, the possibility of generating nonclassical polariton states by means of parametric scattering has been demonstrated. Excitonic polaritons propagate in a complex interacting environment and contain real electronic excitations subject to scattering events and noise affecting quantum coherence and entanglement. Here, we present a general theoretical framework for the realistic investigation of polariton quantum correlations in the presence of coherent and incoherent interaction processes. The proposed theoretical approach is based on the nonequilibrium quantum Langevin approach for open systems applied to interacting-electron complexes described within the dynamics controlled truncation scheme. It provides an easy recipe to calculate multitime correlation functions which are key quantities in quantum optics. As a first application, we analyze the buildup of polariton parametric emission in semiconductor microcavities including the influence of noise originating from phonon-induced scattering.

  2. Quantum Degeneracy in Atomic Point Contacts Revealed by Chemical Force and Conductance

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yoshiaki; Ondráček, Martin; Abe, Masayuki; Pou, Pablo; Morita, Seizo; Perez, Ruben; Flores, Fernando; Jelínek, Pavel

    2013-09-01

    Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.

  3. Green, Rapid, and Universal Preparation Approach of Graphene Quantum Dots under Ultraviolet Irradiation.

    PubMed

    Zhu, Jinli; Tang, Yanfeng; Wang, Gang; Mao, Jiarong; Liu, Zhiduo; Sun, Tongming; Wang, Miao; Chen, Da; Yang, Yucheng; Li, Jipeng; Deng, Yuan; Yang, Siwei

    2017-04-26

    It is of great significance and importance to explore a mild, clean, and highly efficient universal approach for the synthesis of graphene quantum dots. Herein, we introduced a new green, rapid, and universal preparation approach for graphene quantum dots via the free-radical polymerization of oxygen-containing aromatic compounds under ultraviolet irradiation. This approach had a high yield (86%), and the byproducts are only H 2 O and CO 2 . The obtained graphene quantum dots were well-crystallized and showed remarkable optical and biological properties. The colorful, different-sized graphene quantum dots can be used in fluorescent bioimaging in vitro and in vivo. This approach is suitable not only for the preparation of graphene quantum dots but also for heteroatom-doped graphene quantum dots.

  4. Optimal approach to quantum communication using dynamic programming.

    PubMed

    Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D

    2007-10-30

    Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.

  5. Quantum chemical study of methane oxidation species

    NASA Technical Reports Server (NTRS)

    Jackels, Charles F.

    1993-01-01

    The research funded by this project has focused on quantum chemical investigations of molecular species thought to be important in the chemistry of the earth's upper and lower atmospheres. The body of this report contains brief discussions of the results of the several phases of this investigation. In many instances these results have been presented at scientific meetings and/or published in refereed journals. Those bibliographic references are given. In addition to the study of specific chemical systems, there were several phases during the course of this investigation where much of the effort went into the development and modification of computer codes necessary to carry out these calculations on the wide range of computer equipment used during this study. This type of code maintenance and development work did not generally result in publications and presentations, but a brief review is given.

  6. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  7. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  8. Characterization of citrate capped gold nanoparticle-quercetin complex: Experimental and quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Pal, Rajat; Panigrahi, Swati; Bhattacharyya, Dhananjay; Chakraborti, Abhay Sankar

    2013-08-01

    Quercetin and several other bioflavonoids possess antioxidant property. These biomolecules can reduce the diabetic complications, but metabolize very easily in the body. Nanoparticle-mediated delivery of a flavonoid may further increase its efficacy. Gold nanoparticle is used by different groups as vehicle for drug delivery, as it is least toxic to human body. Prior to search for the enhanced efficacy, the gold nanoparticle-flavonoid complex should be prepared and well characterized. In this article, we report the interaction of gold nanoparticle with quercetin. The interaction is confirmed by different biophysical techniques, such as Scanning Electron Microscope (SEM), Circular Dichroism (CD), Fourier-Transform InfraRed (FT-IR) spectroscopy and Thermal Gravimetric Analysis (TGA) and cross checked by quantum chemical calculations. These studies indicate that gold clusters are covered by citrate groups, which are hydrogen bonded to the quercetin molecules in the complex. We have also provided evidences how capping is important in stabilizing the gold nanoparticle and further enhances its interaction with other molecules, such as drugs. Our finding also suggests that gold nanoparticle-quercetin complex can pass through the membranes of human red blood cells.

  9. Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method.

    PubMed

    Sorich, Michael J; McKinnon, Ross A; Miners, John O; Winkler, David A; Smith, Paul A

    2004-10-07

    This study aimed to evaluate in silico models based on quantum chemical (QC) descriptors derived using the electronegativity equalization method (EEM) and to assess the use of QC properties to predict chemical metabolism by human UDP-glucuronosyltransferase (UGT) isoforms. Various EEM-derived QC molecular descriptors were calculated for known UGT substrates and nonsubstrates. Classification models were developed using support vector machine and partial least squares discriminant analysis. In general, the most predictive models were generated with the support vector machine. Combining QC and 2D descriptors (from previous work) using a consensus approach resulted in a statistically significant improvement in predictivity (to 84%) over both the QC and 2D models and the other methods of combining the descriptors. EEM-derived QC descriptors were shown to be both highly predictive and computationally efficient. It is likely that EEM-derived QC properties will be generally useful for predicting ADMET and physicochemical properties during drug discovery.

  10. Towards scalable quantum communication and computation: Novel approaches and realizations

    NASA Astrophysics Data System (ADS)

    Jiang, Liang

    Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as

  11. Divide and conquer approach to quantum Hamiltonian simulation

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  12. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  13. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  14. Quantum Resonance Approach to Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1997-01-01

    It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.

  15. Spectroscopic studies and quantum chemical investigations of (3,4-dimethoxybenzylidene) propanedinitrile.

    PubMed

    Gupta, Ujval; Kumar, Vinay; Singh, Vivek K; Kant, Rajni; Khajuria, Yugal

    2015-04-05

    The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS) with Quantum Chemical Descriptors

    PubMed Central

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  17. Ab initio quantum chemistry: methodology and applications.

    PubMed

    Friesner, Richard A

    2005-05-10

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.

  18. A subgradient approach for constrained binary optimization via quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Karimi, Sahar; Ronagh, Pooya

    2017-08-01

    Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.

  19. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    PubMed Central

    Raković, Dejan; Dugić, Miroljub; Jeknić-Dugić, Jasmina; Plavšić, Milenko; Jaćimovski, Stevo; Šetrajčić, Jovan

    2014-01-01

    In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled) biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well). PMID:25028662

  20. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), 1H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1H-1H homonuclear dipolar couplings and narrow 1H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1H-1H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for

  1. Quantum Chemically Estimated Abraham Solute Parameters Using Multiple Solvent-Water Partition Coefficients and Molecular Polarizability.

    PubMed

    Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M

    2017-09-05

    Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.

  2. Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical.

    PubMed

    Haeri, Haleh Hashemi; Spindler, Philipp; Plackmeyer, Jörn; Prisner, Thomas

    2016-10-26

    Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ 1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ 2 ) does not significantly influence the dipolar coupling strength when compared to the allylic

  3. Nonequilibrium-thermodynamics approach to open quantum systems

    NASA Astrophysics Data System (ADS)

    Semin, Vitalii; Petruccione, Francesco

    2014-11-01

    Open quantum systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result of the unification is a non-Markovian and local-in-time master equation that provides a direct connection for dynamical and thermodynamical properties of open quantum systems. The power of the approach is illustrated by the application to the damped harmonic oscillator and the damped driven two-level system, resulting in analytical expressions for the non-Markovian and nonequilibrium entropy and inverse temperature.

  4. Quantum mechanical approaches to in silico enzyme characterization and drug design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilmeier, J P; Fattebert, J L; Jacobson, M P

    2012-01-17

    substrate specificity. That is, we bring the power of quantum mechanics to bear on the problem of annotating enzyme function, which is a novel approach. Although it has been clear to us at the Jacobson group for some time that enzyme specificity may be encoded in transition states, rather than simply substrate recognition, the main limitation has always been computational expense. Using a hierarchy of different methods, they can reduce the list of plausible substrates of an enzyme to a small number in most cases, but even identifying the transition states for a dozen plausible substrates requires significant computational effort, beyond what is practical using standard QM/MM methods. For this project, they have chosen two enzyme superfamilies which they have used as 'model systems' for functional assignment. The enolase superfamily is a large group of {alpha}-{beta} barrel enzymes with highly diverse substrates and chemical transformations. Despite decades of work, over a third of the superfamily remains unassigned, which means that the remaining cases are by definition difficult to assign. They have focused on acid sugar dehydratases, and have considerable expertise on the matter. They are also interested in the isoprenoid synthase superfamily, which is of central interest to the synthetic biology community, because these enzymes are used by nature to create complex rare natural products of medicinal value. the most notable example of this is the artemisinin, an antimalarial compound that is found in trace amounts in the wormwod root. From the standpoint of enzyme function assignment, these enzymes are intriguing because they use a small number of chemically simple substrates to generate, potentially, tens of thousands of different products. Hence, substrate binding specificity is only a small part of the challenge; the key is determining how the enzyme directs the carbocation chemistry to specific products. These more complex modeling approaches clearly require quantum

  5. Neutrino oscillation processes in a quantum-field-theoretical approach

    NASA Astrophysics Data System (ADS)

    Egorov, Vadim O.; Volobuev, Igor P.

    2018-05-01

    It is shown that neutrino oscillation processes can be consistently described in the framework of quantum field theory using only the plane wave states of the particles. Namely, the oscillating electron survival probabilities in experiments with neutrino detection by charged-current and neutral-current interactions are calculated in the quantum field-theoretical approach to neutrino oscillations based on a modification of the Feynman propagator in the momentum representation. The approach is most similar to the standard Feynman diagram technique. It is found that the oscillating distance-dependent probabilities of detecting an electron in experiments with neutrino detection by charged-current and neutral-current interactions exactly coincide with the corresponding probabilities calculated in the standard approach.

  6. Semiclassical approach to finite-temperature quantum annealing with trapped ions

    NASA Astrophysics Data System (ADS)

    Raventós, David; Graß, Tobias; Juliá-Díaz, Bruno; Lewenstein, Maciej

    2018-05-01

    Recently it has been demonstrated that an ensemble of trapped ions may serve as a quantum annealer for the number-partitioning problem [Nat. Commun. 7, 11524 (2016), 10.1038/ncomms11524]. This hard computational problem may be addressed by employing a tunable spin-glass architecture. Following the proposal of the trapped-ion annealer, we study here its robustness against thermal effects; that is, we investigate the role played by thermal phonons. For the efficient description of the system, we use a semiclassical approach, and benchmark it against the exact quantum evolution. The aim is to understand better and characterize how the quantum device approaches a solution of an otherwise difficult to solve NP-hard problem.

  7. Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen; Typel, Stefan; Röpke, Gerd

    2011-11-01

    The formation of clusters in nuclear matter is investigated, which occurs, e.g., in low-energy heavy-ion collisions or core-collapse supernovae. In astrophysical applications, the excluded volume concept is commonly used for the description of light clusters. Here we compare a phenomenological excluded volume approach to two quantum many-body models, the quantum statistical model and the generalized relativistic mean-field model. All three models contain bound states of nuclei with mass number A≤4. It is explored to which extent the complex medium effects can be mimicked by the simpler excluded volume model, regarding the chemical composition and thermodynamic variables. Furthermore, the role of heavy nuclei and excited states is investigated by use of the excluded volume model. At temperatures of a few MeV the excluded volume model gives a poor description of the medium effects on the light clusters, but there the composition is actually dominated by heavy nuclei. At larger temperatures there is a rather good agreement, whereas some smaller differences and model dependencies remain.

  8. Cluster Quantum Chemical Study of the Grignard Reagent Formation

    NASA Astrophysics Data System (ADS)

    Tulub, A. V.; Porsev, V. V.

    The main stages of the Grignard reagent formation are described in a framework of quantum chemical cluster model. We have established two kinds of the adsorption of CH3Hal on Mgn clusters, one of which leads to radical formation and the second is responsible for radical free dissociate adsorption. The charge redistribution in cluster CH3MgnHal result to the strong electrostatic interaction with ether and Grignard reagent formation without any activation barrier.

  9. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    PubMed Central

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  10. Lighting up micromotors with quantum dots for smart chemical sensing.

    PubMed

    Jurado-Sánchez, B; Escarpa, A; Wang, J

    2015-09-25

    A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.

  11. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    DOE PAGES

    Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.

    2018-03-22

    Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less

  12. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    NASA Astrophysics Data System (ADS)

    Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.

    2018-05-01

    One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.

  13. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.

    Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less

  14. Universal freezing of quantum correlations within the geometric approach

    PubMed Central

    Cianciaruso, Marco; Bromley, Thomas R.; Roga, Wojciech; Lo Franco, Rosario; Adesso, Gerardo

    2015-01-01

    Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first principles that freezing of geometric quantum correlations is independent of the adopted distance and therefore universal. This finding paves the way to a deeper physical interpretation and future practical exploitation of the phenomenon for noisy quantum technologies. PMID:26053239

  15. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  16. Hybrid Quantum-Classical Approach to Quantum Optimal Control.

    PubMed

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu

    2017-04-14

    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  17. Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase.

    PubMed

    Sevastik, Robin; Himo, Fahmi

    2007-12-01

    The reaction mechanism of 4-oxalocrotonate tautomerase (4-OT) is studied using the density functional theory method B3LYP. This enzyme catalyzes the isomerisation of unconjugated alpha-keto acids to their conjugated isomers. Two different quantum chemical models of the active site are devised and the potential energy curves for the reaction are computed. The calculations support the proposed reaction mechanism in which Pro-1 acts as a base to shuttle a proton from the C3 to the C5 position of the substrate. The first step (proton transfer from C3 to proline) is shown to be the rate-limiting step. The energy of the charge-separated intermediate (protonated proline-deprotonated substrate) is calculated to be quite low, in accordance with measured pKa values. The results of the two models are used to evaluate the methodology employed in modeling enzyme active sites using quantum chemical cluster models.

  18. A Quantum Approach to Multi-Agent Systems (MAS), Organizations, and Control

    DTIC Science & Technology

    2003-06-01

    interdependent interactions between individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an organization fits ...A quantum approach to multi-agent systems (MAS), organizations , and control W.F. Lawless Paine College 1235 15th Street Augusta, GA 30901...AND SUBTITLE A quantum approach to multi-agent systems (MAS), organizations , and control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  19. Markovian master equations for quantum thermal machines: local versus global approach

    NASA Astrophysics Data System (ADS)

    Hofer, Patrick P.; Perarnau-Llobet, Martí; Miranda, L. David M.; Haack, Géraldine; Silva, Ralph; Bohr Brask, Jonatan; Brunner, Nicolas

    2017-12-01

    The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.

  20. Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex

    NASA Astrophysics Data System (ADS)

    Torreão, José R. A.

    2016-02-01

    It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.

  1. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-03-01

    The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.

  2. Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states

    PubMed Central

    Bonet-Luz, Esther

    2016-01-01

    The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest’s theorem is shown to be Lie–Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie–Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature. PMID:27279764

  3. Rhorix: An interface between quantum chemical topology and the 3D graphics program blender

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.

    Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less

  4. Rhorix: An interface between quantum chemical topology and the 3D graphics program blender

    PubMed Central

    Sale, Kenneth L.; Simmons, Blake A.; Popelier, Paul L. A.

    2017-01-01

    Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter‐free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition of mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add‐On” named Rhorix for the state‐of‐the‐art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. A number of examples are discussed. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28857244

  5. Rhorix: An interface between quantum chemical topology and the 3D graphics program blender

    DOE PAGES

    Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.; ...

    2017-08-31

    Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less

  6. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which rendermore » it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful

  7. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence ofmore » product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.« less

  8. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-02-01

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  9. Quantum-chemical investigations of spectroscopic properties of a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.

    2012-09-01

    The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.

  10. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  11. Quantum Chemical Mass Spectrometry: Verification and Extension of the Mobile Proton Model for Histidine

    NASA Astrophysics Data System (ADS)

    Cautereels, Julie; Blockhuys, Frank

    2017-06-01

    The quantum chemical mass spectrometry for materials science (QCMS2) method is used to verify the proposed mechanism for proton transfer - the Mobile Proton Model (MPM) - by histidine for ten XHS tripeptides, based on quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. The fragmentations of the different intermediate structures in the MPM mechanism are studied within the QCMS2 framework, and the energetics of the proposed mechanism itself and those of the fragmentations of the intermediate structures are compared, leading to the computational confirmation of the MPM. In addition, the calculations suggest that the mechanism should be extended from considering only the formation of five-membered ring intermediates to include larger-ring intermediates. [Figure not available: see fulltext.

  12. Radiation and quantum chemical studies of chalcone derivatives.

    PubMed

    Gaikwad, P; Priyadarsini, K I; Naumov, S; Rao, B S M

    2010-08-05

    The reactions of oxidizing radicals ((*)OH, Br(2)(*-), and SO(4)(*-)) with -OH-, -CH(3)-, or -NH(2)-substituted indole chalcones and hydroxy benzenoid chalcones were studied by radiation and quantum chemical methods. The (*)OH radical was found to react by addition at diffusion-controlled rates (k = 1.1-1.7 x 10(10) dm(3) mol(-1) s(-1)), but Br(2)(*-) radical reacted by 2 orders of magnitude lower. Quantum chemical calculations at the B3LYP/6-31+G(d,p) level of theory have shown that the (C2-OH)(*), (C11-OH)(*), and (C10-OH)(*) adducts of the indole chalcones and the (C7-OH)(*) and (C8-OH)(*) adducts of the hydroxy benzenoid chalcones are more stable with DeltaH = -39 to -28 kcal mol(-1) and DeltaG = -32 to -19 kcal mol(-1). This suggests that (*)OH addition to the alpha,beta-unsaturated bond is a major reaction channel in both types of chalcones and is barrierless. The stability and lack of dehydration of the (*)OH adducts arise from two factors: strong frontier orbital interaction due to the low energy gap between interacting orbitals and the negligible Coulombic repulsion due to small absolute values of Mulliken charges. The transient absorption spectrum measured in the (*)OH radical reaction with all the indole chalcone derivatives exhibited a maximum at 390 nm, which is in excellent agreement with the computed value (394 nm). The formation of three phenolic products under steady-state radiolysis is in line with the three stable (*)OH adducts predicted by theory. Independent of the substituent, identical spectra (lambda(max) = 330-360 and approximately 580 nm) were obtained on one-electron oxidation of the three indole chalcones. MO calculations predict the deprotonation from the -NH group is more efficient than from the substituent due to the larger electron density on the N1 atom forming the chalcone indolyl radical. Its reduction potential was determined to be 0.56 V from the ABTS(*-)/ABTS(2-) couple. In benzenoid chalcones, the (*)OH adduct spectrum is

  13. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  14. Characterization and intramolecular bonding patterns of busulfan: Experimental and quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Tandon, Poonam; Singh, Swapnil; Agarwal, Parag; Srivastava, Anubha

    2017-02-01

    The investigations of structural conformers, molecular interactions and vibrational characterization of pharmaceutical drug are helpful to understand their behaviour. In the present work, the 2D potential energy surface (PES) scan has been performed on the dihedral angles C6sbnd O4sbnd S1sbnd C5 and C25sbnd S22sbnd O19sbnd C16 to find the stable conformers of busulfan. In order to show the effects of long range interactions, the structures on the global minima of PES scan have been further optimized by B3LYP/6-311 ++G(d,p) method with and without empirical dispersion functional in Gaussian 09W package. The presence of n → σ* and σ → σ* interactions which lead to stability of the molecule have been predicted by natural bond orbital analysis. The strong and weak hydrogen bonds between the functional groups of busulfan were analyzed using quantum topological atoms in molecules analysis. In order to study the long-range forces, such as van der Waals interactions, steric effect in busulfan, the reduced density gradient as well as isosurface defining these interactions has been plotted using Multiwfn software. The spectroscopic characterization on the solid phase of busulfan has been studied by experimental FT-IR and FT-Raman spectra. From the 13C and 1H NMR spectra, the chemical shifts of individual C and H atoms of busulfan have been predicted. The maximum absorption wavelengths corresponding to the electronic transitions between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of busulfan have been found by UV-vis spectrum.

  15. Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.

    1997-07-01

    Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.

  16. Against the empirical viability of the Deutsch-Wallace-Everett approach to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dawid, Richard; Thébault, Karim P. Y.

    2014-08-01

    The subjective Everettian approach to quantum mechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettian quantum mechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from empirical data rather than decision theoretic arguments, avoids the problem faced by Deutsch and Wallace and is empirically viable. However, there is good reason to cast doubts on its scientific value.

  17. Concepts and Bounded Rationality: An Application of Niestegge's Approach to Conditional Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Blutner, Reinhard

    2009-03-01

    Recently, Gerd Niestegge developed a new approach to quantum mechanics via conditional probabilities developing the well-known proposal to consider the Lüders-von Neumann measurement as a non-classical extension of probability conditionalization. I will apply his powerful and rigorous approach to the treatment of concepts using a geometrical model of meaning. In this model, instances are treated as vectors of a Hilbert space H. In the present approach there are at least two possibilities to form categories. The first possibility sees categories as a mixture of its instances (described by a density matrix). In the simplest case we get the classical probability theory including the Bayesian formula. The second possibility sees categories formed by a distinctive prototype which is the superposition of the (weighted) instances. The construction of prototypes can be seen as transferring a mixed quantum state into a pure quantum state freezing the probabilistic characteristics of the superposed instances into the structure of the formed prototype. Closely related to the idea of forming concepts by prototypes is the existence of interference effects. Such inference effects are typically found in macroscopic quantum systems and I will discuss them in connection with several puzzles of bounded rationality. The present approach nicely generalizes earlier proposals made by authors such as Diederik Aerts, Andrei Khrennikov, Ricardo Franco, and Jerome Busemeyer. Concluding, I will suggest that an active dialogue between cognitive approaches to logic and semantics and the modern approach of quantum information science is mandatory.

  18. Quantum chemical study of a derivative of 3-substituted dithiocarbamic flavanone

    NASA Astrophysics Data System (ADS)

    Gosav, Steluta; Paduraru, Nicoleta; Maftei, Dan; Birsa, Mihail Lucian; Praisler, Mirela

    2017-02-01

    The aim of this work is to characterize a quite novel 3-dithiocarbamic flavonoid by vibrational spectroscopy in conjunction with Density Functional Theory (DFT) calculations. Quantum mechanics calculations of energies, geometries and vibrational wavenumbers in the ground state were carried out by using hybrid functional B3LYP with 6-311G(d,p) as basis set. The results indicate a remarkable agreement between the calculated molecular geometries, as well as vibrational frequencies, and the corresponding experimental data. In addition, a complete assignment of all the absorption bands present in the vibrational spectrum has been performed. In order to assess its chemical potential, quantum molecular descriptors characterizing the interactions between the 3-dithiocarbamic flavonoid and its biological receptors have been computed. The frontier molecular orbitals and the HOMO-LUMO energy gap have been used in order to explain the way in which the new molecule can interact with other species and to characterize its molecular chemical stability/reactivity. The molecular electrostatic potential (MEP) map, computed in order to identify the sites of the studied flavonoid that are most likely to interact with electrophilic and nucleophilic species, is discussed.

  19. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    NASA Astrophysics Data System (ADS)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  20. Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirjoosingh, Andrew; Pak, Michael V.; Brorsen, Kurt R.

    2015-06-07

    The nuclear-electronic orbital (NEO) approach treats select nuclei quantum mechanically on the same level as the electrons and includes nonadiabatic effects between the electrons and the quantum nuclei. The practical implementation of this approach is challenging due to the significance of electron-nucleus dynamical correlation. Herein, we present a general extension of the previously developed reduced NEO explicitly correlated Hartree-Fock (RXCHF) approach, in which only select electronic orbitals are explicitly correlated to each quantum nuclear orbital via Gaussian-type geminal functions. Approximations of the electronic exchange between the geminal-coupled electronic orbitals and the other electronic orbitals are also explored. This general approachmore » enables computationally tractable yet accurate calculations on molecular systems with quantum protons. The RXCHF method is applied to the hydrogen cyanide (HCN) and FHF{sup −} systems, where the proton and all electrons are treated quantum mechanically. For the HCN system, only the two electronic orbitals associated with the CH covalent bond are geminal-coupled to the proton orbital. For the FHF{sup −} system, only the four electronic orbitals associated with the two FH covalent bonds are geminal-coupled to the proton orbital. For both systems, the RXCHF method produces qualitatively accurate nuclear densities, in contrast to mean field-based NEO approaches. The development and implementation of the RXCHF method provide the framework to perform calculations on systems such as proton-coupled electron transfer reactions, where electron-proton nonadiabatic effects are important.« less

  1. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  2. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    PubMed

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  3. A multi target approach to control chemical reactions in their inhomogeneous solvent environment

    NASA Astrophysics Data System (ADS)

    Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P. P.; de Vivie-Riedle, Regina

    2015-12-01

    Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble.

  4. First-principles calculations of Ti and O NMR chemical shift tensors in ferroelectric perovskites

    NASA Astrophysics Data System (ADS)

    Pechkis, Daniel; Walter, Eric; Krakauer, Henry

    2011-03-01

    Complementary chemical shift calculations were carried out with embedded clusters, using quantum chemistry methods, and with periodic boundary conditions, using the GIPAW approach within the Quantum Espresso package. Compared to oxygen chemical shifts, δ̂ (O), cluster calculations for δ̂ (Ti) were found to be more sensitive to size effects, termination, and choice of gaussian-type atomic basis set, while GIPAW results were found to be more sensitive to the pseudopotential construction. The two approaches complemented each other in optimizing these factors. We show that the two approaches yield comparable chemical shifts for suitably converged simulations, and results are compared with available experimental measurements. Supported by ONR.

  5. QSTR of the toxicity of some organophosphorus compounds by using the quantum chemical and topological descriptors.

    PubMed

    Senior, Samir A; Madbouly, Magdy D; El massry, Abdel-Moneim

    2011-09-01

    Quantum chemical and topological descriptors of some organophosphorus compounds (OP) were correlated with their toxicity LD(50) as a dermal. The quantum chemical parameters were obtained using B3LYP/LANL2DZdp-ECP optimization. Using linear regression analysis, equations were derived to calculate the theoretical LD(50) of the studied compounds. The inclusion of quantum parameters, having both charge indices and topological indices, affects the toxicity of the studied compounds resulting in high correlation coefficient factors for the obtained equations. Two of the new four firstly supposed descriptors give higher correlation coefficients namely the Heteroatom Corrected Extended Connectivity Randic index ((1)X(HCEC)) and the Density Randic index ((1)X(Den)). The obtained linear equations were applied to predict the toxicity of some related structures. It was found that the sulfur atoms in these compounds must be replaced by oxygen atoms to achieve improved toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Quantum hydrodynamics: capturing a reactive scattering resonance.

    PubMed

    Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K

    2005-08-01

    The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.

  7. Physical approach to quantum networks with massive particles

    NASA Astrophysics Data System (ADS)

    Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas

    2018-04-01

    Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These

  8. Experimental metaphysics2 : The double standard in the quantum-information approach to the foundations of quantum theory

    NASA Astrophysics Data System (ADS)

    Hagar, Amit

    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.

  9. An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: A novel approach to mechanism.

    PubMed

    Malik, Reena; Dahiya, Shefali; Lata, Suman

    2017-05-01

    The present study explores the uptake capacity of low cost agricultural waste i.e.Unmodified Coconut (Cocos nucifera L.) Husk for the removal of heavy metal (Pb 2+ , Cu 2+ , Ni 2+ and Zn 2+ ) ions from industrial wastewater. The effect of various operational parameters such as adsorbent dose, high initial metal concentration (100mg/L-500mg/L), pH, temperature and agitation time on the removal of these ions has been investigated using batch experiments. The results showed that maximum uptake through adsorption occurred at 443.0mg/g (88.6%) for Cu, for Ni with 404.5mg/g (80.9%), 362.2mg/g (72.4%) for Pb 2+ and 338.0mg/g (67.6%) for Zn 2+ ion simultaneously. The adsorption capacity was found to be sensitive to the amount of adsorbent, heavy metal ion concentration, pH, temperature and contact time. The experimental statistics have been correlated and interpreted by a new proposed mechanism based upon quantum chemical study of the adsorbent. The theoretical study using quantum has provided the rich electron donation sites of Coconut Husk and hence proposed mechanism of removal. The various adsorption isotherms (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Flory-Huggins), SEM study and physico-chemical properties of the ions suit well to the observed data. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Microscopic approaches to quantum nonequilibriumthermodynamics and information

    DTIC Science & Technology

    2018-02-09

    Microscopic approaches to quantum non- equilibrium thermodynamics and information The views, opinions and/or findings contained in this report are... information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering...and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden estimate or any other

  11. Surface emitting ring quantum cascade lasers for chemical sensing

    NASA Astrophysics Data System (ADS)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  12. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  13. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use

  14. Simulating chemistry using quantum computers.

    PubMed

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  15. Quantum noise in the mirror-field system: A field theoretic approach

    NASA Astrophysics Data System (ADS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-02-01

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror.

  16. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    PubMed

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  17. On quantum integrable models related to nonlinear quantum optics. An algebraic Bethe ansatz approach

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-08-01

    A unified approach based on Bethe ansatz in a large variety of integrable models in quantum optics is given. Second harmonics generation, three-boson interaction, the Dicke model, and some cases of four-boson interaction as special cases of su(2)⊕su(1,1)-Gaudin models are included.

  18. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  19. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  20. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  1. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  2. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-08

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.

  3. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  4. Quantum information processing in phase space: A modular variables approach

    NASA Astrophysics Data System (ADS)

    Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.

    2016-08-01

    Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.

  5. Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence

    NASA Astrophysics Data System (ADS)

    Galitski, Victor

    2012-02-01

    I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.

  6. Dissipation equation of motion approach to open quantum systems

    NASA Astrophysics Data System (ADS)

    Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao

    2016-08-01

    This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.

  7. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications

    PubMed Central

    2016-01-01

    Semiempirical (SE) methods can be derived from either Hartree–Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems. PMID:27074247

  8. Quantum chemical modeling of enzymatic reactions: the case of histone lysine methyltransferase.

    PubMed

    Georgieva, Polina; Himo, Fahmi

    2010-06-01

    Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods. Copyright 2010 Wiley Periodicals, Inc.

  9. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  10. A quantum theoretical approach to information processing in neural networks

    NASA Astrophysics Data System (ADS)

    Barahona da Fonseca, José; Barahona da Fonseca, Isabel; Suarez Araujo, Carmen Paz; Simões da Fonseca, José

    2000-05-01

    A reinterpretation of experimental data on learning was used to formulate a law on data acquisition similar to the Hamiltonian of a mechanical system. A matrix of costs in decision making specifies values attributable to a barrier that opposed to hypothesis formation about decision making. The interpretation of the encoding costs as frequencies of oscillatory phenomena leads to a quantum paradigm based in the models of photoelectric effect as well as of a particle against a potential barrier. Cognitive processes are envisaged as complex phenomena represented by structures linked by valence bounds. This metaphor is used to find some prerequisites to certain types of conscious experience as well as to find an explanation for some pathological distortions of cognitive operations as they are represented in the context of the isolobal model. Those quantum phenomena are understood as representing an analogue programming for specific special purpose computations. The formation of complex chemical structures within the context of isolobal theory is understood as an analog quantum paradigm for complex cognitive computations.

  11. Novel Numerical Approaches to Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Diener, Peter

    2015-04-01

    Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.

  12. High Color-Purity Green, Orange, and Red Light-Emitting Didoes Based on Chemically Functionalized Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo

    2016-04-01

    Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A-1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.

  13. Solving the scalability issue in quantum-based refinement: Q|R#1.

    PubMed

    Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P

    2017-12-01

    Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.

  14. Valence atom with bohmian quantum potential: the golden ratio approach

    PubMed Central

    2012-01-01

    Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework). PMID:23146157

  15. Hidden Statistics Approach to Quantum Simulations

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the

  16. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  17. Characterization of heterocyclic rings through quantum chemical topology.

    PubMed

    Griffiths, Mark Z; Popelier, Paul L A

    2013-07-22

    Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.

  18. Conformational analysis, spectroscopic, structure-activity relations and quantum chemical simulation studies of 4-(trifluoromethyl)benzylamine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Devi, L.; Mohan, S.

    2018-05-01

    The FT-IR and FT-Raman spectra of 4-trifluoromethylbenzylamine (TFMBA) have been recorded in the range 4000-450 and 4000-100 cm-1 respectively. The conformational analysis of the compound has been carried out to attain stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers obtained theoretically from the B3LYP gradient calculations employing the standard high level 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The 1H (400 MHz; CDCl3) and 13C (100 MHz; CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. The electronic properties, highest occupied molecular orbital and lowest unoccupied molecular orbital energies are measured by DFT approach. The charges of the atoms by natural bond orbital (NBO) analysis are determined by B3LYP/cc-pVTZ method. The structure-chemical reactivity relations of the compound are determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods.

  19. Reexamination of strong subadditivity: A quantum-correlation approach

    NASA Astrophysics Data System (ADS)

    Taghiabadi, Razieh; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen

    2017-03-01

    The strong subadditivity inequality of von Neumann entropy relates the entropy of subsystems of a tripartite state ρA B C to that of the composite system. Here, we define T(a )(ρA B C) as the extent to which ρA B C fails to satisfy the strong subadditivity inequality S (ρB) +S (ρC) ≤S (ρA B) +S (ρA C) with equality and investigate its properties. In particular, by introducing auxiliary subsystem E , we consider any purification | ψA B C E> of ρA B C and formulate T(a )(ρA B C) as the extent to which the bipartite quantum correlations of ρA B and ρA C, measured by entanglement of formation and quantum discord, change under the transformation B →B E and C →C E . Invariance of quantum correlations of ρA B and ρA C under such transformation is shown to be a necessary and sufficient condition for vanishing T(a )(ρA B C) . Our approach allows one to characterize, intuitively, the structure of states for which the strong subadditivity is saturated. Moreover, along with providing a conservation law for quantum correlations of states for which the strong subadditivity inequality is satisfied with equality, we find that such states coincide with those that the Koashi-Winter monogamy relation is saturated.

  20. Towards quantum chemistry on a quantum computer.

    PubMed

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  1. Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen

    2013-12-01

    Photoacoustic (PA) effect is a sensitive spectroscopic technique for chemical sensing. In recent years, with the development of quantum cascade lasers (QCLs), significant progress has been achieved for PA sensing applications. Using high-power, tunable mid-IR QCLs as laser sources, PA chemical sensor systems have demonstrated parts-pertrillion- level detection sensitivity. Many of these high sensitivity measurements were demonstrated locally in PA cells. Recently, we have demonstrated standoff PA detection of isopropanol vapor for more than 41 feet distance using a quantum cascade laser and a microphone with acoustic reflectors. We also further demonstrated solid phase TNT detections at a standoff distance of 8 feet. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. Standoff detection of gas samples with calibrated concentration of 2.3 ppm was achieved at a detection distance of more than 2 feet. An extended detection distance up to 14 feet was observed for a higher gas concentration of 13.9 ppm. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated that the signal and noise spectra of the 4 microphone/4 reflector system with a combined SNR of 12.48 dB. For the 16-microphone and one reflector case, an SNR of 17.82 was achieved. These successful chemical sensing demonstrations will likely create new demands for widely tunable QCLs with ultralow threshold (for local fire-alarm size detection systems) and high-power (for standoff detection systems) performances.

  2. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations.

    PubMed

    Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S

    2013-04-15

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A Chemical Activity Approach to Exposure and Risk Assessment of Chemicals

    EPA Science Inventory

    To support the goals articulated in the vision for exposure and risk assessment in the twenty-first century, we highlight the application of a thermodynamic chemical activity approach for the exposure and risk assessment of chemicals in the environment. The present article descri...

  4. A random walk approach to quantum algorithms.

    PubMed

    Kendon, Vivien M

    2006-12-15

    The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems.

  5. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  6. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  7. Natural approach to quantum dissipation

    NASA Astrophysics Data System (ADS)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  8. Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility

    PubMed Central

    Pérez-Donoso, José M.; Monrás, Juan P.; Bravo, Denisse; Aguirre, Adam; Quest, Andrew F.; Osorio-Román, Igor O.; Aroca, Ricardo F.; Chasteen, Thomas G.; Vásquez, Claudio C.

    2012-01-01

    Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl2, K2TeO3 and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods. CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd+2 and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, “greener” methods to synthesize cadmium-containing QDs. PMID:22292028

  9. The application of quantum mechanics in structure-based drug design.

    PubMed

    Mucs, Daniel; Bryce, Richard A

    2013-03-01

    Computational chemistry has become an established and valuable component in structure-based drug design. However the chemical complexity of many ligands and active sites challenges the accuracy of the empirical potentials commonly used to describe these systems. Consequently, there is a growing interest in utilizing electronic structure methods for addressing problems in protein-ligand recognition. In this review, the authors discuss recent progress in the development and application of quantum chemical approaches to modeling protein-ligand interactions. The authors specifically consider the development of quantum mechanics (QM) approaches for studying large molecular systems pertinent to biology, focusing on protein-ligand docking, protein-ligand binding affinities and ligand strain on binding. Although computation of binding energies remains a challenging and evolving area, current QM methods can underpin improved docking approaches and offer detailed insights into ligand strain and into the nature and relative strengths of complex active site interactions. The authors envisage that QM will become an increasingly routine and valued tool of the computational medicinal chemist.

  10. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less

  11. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    PubMed

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  12. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  13. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins.

    PubMed

    Liu, Benguo; Li, Wei; Nguyen, Tien An; Zhao, Jian

    2012-09-15

    The inclusion complexation of (2-hydroxypropyl)-cyclodextrins with flavanones was investigated by phase solubility measurements, as well as thermodynamic and quantum chemical methods. Inclusion complexes were formed between (2-hydroxypropyl)-α-cyclodextrin (HP-α-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and β-cyclodextrin (β-CD) and four flavanones (naringenin, naringin, hesperetin and dihydromyricetin) in aqueous solutions and their phase solubility was determined. For all the flavanones, the stability constants of their complexes formed with different CDs followed the rank order: HP-β-CD (MW 1540)>HP-β-CD (MW 1460)>HP-β-CD (MW 1380)>β-CD>HP-γ-CD>HP-α-CD. Experimental results and quantum chemical calculations showed that the ability of flavanones to form inclusion complex with (2-hydroxypropyl)-cyclodextrins was determined by both the steric effect and hydrophobicity of the flavanones. For flavanones that have similar molecular volumes, the hydrophobicity of the molecule was the main determining factor of its ability to form inclusion complexes with HP-β-CD, and the hydrophobicity parameter Log P is highly correlated with the stability constant of the complexes. Results of thermodynamic study demonstrated that hydrophobic interaction is the main driving force for the formation process of the flavanone-CD inclusion complexes. Quantum chemical analysis of the most active hydroxyl groups and HOMO (the highest occupied molecular orbital) showed that the B ring of the flavanones was most likely involved in hydrogen bonding with the side groups in the cavity of the CDs, through which the inclusion complex was stabilised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Teaching quantum physics by the sum over paths approach and GeoGebra simulations

    NASA Astrophysics Data System (ADS)

    Malgieri, M.; Onorato, P.; De Ambrosis, A.

    2014-09-01

    We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.

  15. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    PubMed Central

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II. PMID:29863177

  16. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    PubMed

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  17. Quantum Dot and Polymer Composite Cross-Reactive Array for Chemical Vapor Detection.

    PubMed

    Bright, Collin J; Nallon, Eric C; Polcha, Michael P; Schnee, Vincent P

    2015-12-15

    A cross-reactive chemical sensing array was made from CdSe Quantum Dots (QDs) and five different organic polymers by inkjet printing to create segmented fluorescent composite regions on quartz substrates. The sensor array was challenged with exposures from two sets of analytes, including one set of 14 different functionalized benzenes and one set of 14 compounds related to security concerns, including the explosives trinitrotoluene (TNT) and ammonium nitrate. The array was broadly responsive to analytes with different chemical functionalities due to the multiple sensing mechanisms that altered the QDs' fluorescence. The sensor array displayed excellent discrimination between members within both sets. Classification accuracy of more than 93% was achieved, including the complete discrimination of very similar dinitrobenzene isomers and three halogenated, substituted benzene compounds. The simple fabrication, broad responsivity, and high discrimination capacity of this type of cross-reactive array are ideal qualities for the development of sensors with excellent sensitivity to chemical and explosive threats while maintaining low false alarm rates.

  18. Advances in Quantum Trajectory Approaches to Dynamics

    NASA Astrophysics Data System (ADS)

    Askar, Attila

    2001-03-01

    The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)

  19. Unifying Approach to Analytical Chemistry and Chemical Analysis: Problem-Oriented Role of Chemical Analysis.

    ERIC Educational Resources Information Center

    Pardue, Harry L.; Woo, Jannie

    1984-01-01

    Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)

  20. Approaches to chemical synthetic biology.

    PubMed

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  2. Contrasting grading approaches in introductory physics and quantum mechanics: The case of graduate teaching assistants

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha

    2017-06-01

    At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics and quantum mechanics using different criteria and if so, why they may be inclined to do so. To investigate possible discrepancies in TAs' grading approaches in courses at different levels, we implemented a sequence of instructional activities in a TA professional development course that asked TAs to grade student solutions of introductory physics and upper-level quantum mechanics problems and explain why, if at all, their grading approaches were different or similar in the two contexts. We analyzed the differences in TAs' grading approaches in the two contexts and discuss the reasons they provided for the differences in their grading approaches in introductory physics and quantum mechanics in individual interviews, class discussions, and written responses. We find that a majority of the TAs graded solutions to quantum mechanics problems differently than solutions to introductory physics problems. In quantum mechanics, the TAs focused more on physics concepts and reasoning and penalized students for not showing evidence of understanding. The findings of the study have implications for TA professional development programs, e.g., the importance of helping TAs think about the difficulty of a problem from an introductory students' perspective and reflecting on the benefits of formative assessment.

  3. Chemical potentials and thermodynamic characteristics of ideal Bose- and Fermi-gases in the region of quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.

    2017-01-01

    Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.

  4. Dissipative quantum computing with open quantum walks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinayskiy, Ilya; Petruccione, Francesco

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  5. A quantum annealing approach for fault detection and diagnosis of graph-based systems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.

    2015-02-01

    Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

  6. New approach in the quantum statistical parton distribution

    NASA Astrophysics Data System (ADS)

    Sohaily, Sozha; Vaziri (Khamedi), Mohammad

    2017-12-01

    An attempt to find simple parton distribution functions (PDFs) based on quantum statistical approach is presented. The PDFs described by the statistical model have very interesting physical properties which help to understand the structure of partons. The longitudinal portion of distribution functions are given by applying the maximum entropy principle. An interesting and simple approach to determine the statistical variables exactly without fitting and fixing parameters is surveyed. Analytic expressions of the x-dependent PDFs are obtained in the whole x region [0, 1], and the computed distributions are consistent with the experimental observations. The agreement with experimental data, gives a robust confirm of our simple presented statistical model.

  7. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    PubMed Central

    2015-01-01

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys.2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. PMID:25516726

  8. Reliable quantum communication over a quantum relay channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  9. Quantum Chemical and Docking Insights into Bioavailability Enhancement of Curcumin by Piperine in Pepper.

    PubMed

    Patil, Vaishali M; Das, Sukanya; Balasubramanian, Krishnan

    2016-05-26

    We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin.

  10. An investigation into the effective surface passivation of quantum dots by a photo-assisted chemical method

    NASA Astrophysics Data System (ADS)

    Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung

    2018-01-01

    In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.

  11. Quantum chemical study of the inhibition of the corrosion of mild steel in H2SO4 by some antibiotics.

    PubMed

    Eddy, Nnabuk O; Ibok, Udo J; Ebenso, Eno E; El Nemr, Ahmed; El Ashry, El Sayed H

    2009-09-01

    The inhibition efficiency of some antibiotics against mild steel corrosion was studied using weight loss and quantum chemical techniques. Values of inhibition efficiency obtained from weight loss measurements correlated strongly with theoretical values obtained through semi empirical calculations. High correlation coefficients were also obtained between inhibition efficiency of the antibiotics and some quantum chemical parameters, including frontier orbital (E (HOMO) and E (LUMO)), dipole moment, log P, TNC and LSER parameters (critical volume and dipolar-polarisability factor), which indicated that these parameters affect the inhibition efficiency of the compounds. It was also found that quantitative structure activity relation can be used to adequately predict the inhibition effectiveness of these compounds.

  12. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    PubMed

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  13. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    PubMed

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  14. Network-Forming Nanoclusters in Binary As-S/Se Glasses: From Ab Initio Quantum Chemical Modeling to Experimental Evidences.

    PubMed

    Hyla, M

    2017-12-01

    Network-forming As 2 (S/Se) m nanoclusters are employed to recognize expected variations in a vicinity of some remarkable compositions in binary As-Se/S glassy systems accepted as signatures of optimally constrained intermediate topological phases in earlier temperature-modulated differential scanning calorimetry experiments. The ab initio quantum chemical calculations performed using the cation-interlinking network cluster approach show similar oscillating character in tendency to local chemical decomposition but obvious step-like behavior in preference to global phase separation on boundary chemical compounds (pure chalcogen and stoichiometric arsenic chalcogenides). The onsets of stability are defined for chalcogen-rich glasses, these being connected with As 2 Se 5 (Z = 2.29) and As 2 S 6 (Z = 2.25) nanoclusters for As-Se and As-S glasses, respectively. The physical aging effects result preferentially from global phase separation in As-S glass system due to high localization of covalent bonding and local demixing on neighboring As 2 Se m+1 and As 2 Se m-1 nanoclusters in As-Se system. These nanoclusters well explain the lower limits of reversibility windows in temperature-modulated differential scanning calorimetry, but they cannot be accepted as signatures of topological phase transitions in respect to the rigidity theory.

  15. Graphene-based quantum Hall resistance standards grown by chemical vapor deposition on silicon carbide

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, Rebeca; Lafont, Fabien; Kazazis, Dimitris; Michon, Adrien; Couturaud, Olivier; Consejo, Christophe; Jouault, Benoit; Poirier, Wilfrid; Schopfer, Felicien

    2015-03-01

    Replace GaAs-based quantum Hall resistance standards (GaAs-QHRS) by a more convenient one, based on graphene (Gr-QHRS), is an ongoing goal in metrology. The new Gr-QHRS are expected to work in less demanding experimental conditions than GaAs ones. It will open the way to a broad dissemination of quantum standards, potentially towards industrial end-users, and it will support the implementation of a new International System of Units based on fixed fundamental constants. Here, we present accurate quantum Hall resistance measurements in large graphene Hall bars, grown by the hybrid scalable technique of propane/hydrogen chemical vapor deposition (CVD) on silicon carbide (SiC). This new Gr-QHRS shows a relative accuracy of 1 ×10-9 of the Hall resistance under the lowest magnetic field ever achieved in graphene. These experimental conditions surpass those of the most wildely used GaAs-QHRS. These results confirm the promises of graphene for resistance metrology applications and emphasizes the quality of the graphene produced by the CVD on SiC for applications as demanding as the resistance metrology.

  16. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    PubMed

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  17. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells

    PubMed Central

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei

    2018-01-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm−2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method—chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density–voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs. PMID:29657776

  18. Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Härtle, R.; Cohen, G.; Reichman, D. R.; Millis, A. J.

    2013-12-01

    The interplay between interference effects and electron-electron interactions in electron transport through an interacting double quantum dot system is investigated using a hierarchical quantum master equation approach which becomes exact if carried to infinite order and converges well if the temperature is not too low. Decoherence due to electron-electron interactions is found to give rise to pronounced negative differential resistance, enhanced broadening of structures in current-voltage characteristics, and an inversion of the electronic population. Dependence on gate voltage is shown to be a useful method of distinguishing decoherence-induced phenomena from effects induced by other mechanisms such as the presence of a blocking state. Comparison of results obtained by the hierarchical quantum master equation approach to those obtained from the Born-Markov approximation to the Nakajima-Zwanzig equation and from the noncrossing approximation to the nonequilibrium Green's function reveals the importance of an interdot coupling that originates from the energy dependence of the conduction bands in the leads and the need for a systematic perturbative expansion.

  19. Ensemble Density Functional Approach to the Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Heinonen, O.

    1997-03-01

    The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.

  20. An extrapolation scheme for solid-state NMR chemical shift calculations

    NASA Astrophysics Data System (ADS)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  1. Quantum Effects in Biology

    NASA Astrophysics Data System (ADS)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  2. Quantum games as quantum types

    NASA Astrophysics Data System (ADS)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  3. Quantum Chemical Prediction of Equilibrium Acidities of Ureas, Deltamides, Squaramides, and Croconamides.

    PubMed

    Ho, Junming; Zwicker, Vincent E; Yuen, Karen K Y; Jolliffe, Katrina A

    2017-10-06

    Robust quantum chemical methods are employed to predict the pK a 's of several families of dual hydrogen-bonding organocatalysts/anion receptors, including deltamides and croconamides as well as their thio derivatives. The average accuracy of these predictions is ∼1 pK a unit and allows for a comparison of the acidity between classes of receptors and for quantitative studies of substituent effects. These computational insights further explain the relationship between pK a and chloride anion affinity of these receptors that will be important for designing future anion receptors and organocatalysts.

  4. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile.

    PubMed

    Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S

    2014-07-15

    The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Experimental and quantum-chemical studies on the three-particle fragmentation of neutral triatomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galster, Ulrich; Baumgartner, Frank; Mueller, Ulrich

    2005-12-15

    Dissociation of well-defined H{sub 3} Rydberg states into three ground state hydrogen atoms reveals characteristic correlation patterns in the center-of-mass motion of the three fragments. We present an extensive experimental dataset of momentum correlation maps for all lower Rydberg states of H{sub 3} and D{sub 3}. In particular the states with principal quantum number n=2 feature simple correlation patterns with regular occurence of mutual affinities. Energetically higher-lying states typically show more complex patterns which are unique for each state. Quantum-chemical calculations on adiabatic potential energy surfaces of H{sub 3} Rydberg states are presented to illuminate the likely origin of thesemore » differences. We discuss the likely dissociation mechanisms and paths which are responsible for the observed continuum correlation.« less

  6. Studies of quantum dots in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  7. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    DOE PAGES

    Kale, Seyit; Sode, Olaseni; Weare, Jonathan; ...

    2014-11-07

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum undermore » DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.« less

  8. Quantum Physics for Beginners.

    ERIC Educational Resources Information Center

    Strand, J.

    1981-01-01

    Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)

  9. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  10. Fritz London and the scale of quantum mechanisms

    NASA Astrophysics Data System (ADS)

    Monaldi, Daniela

    2017-11-01

    Fritz London's seminal idea of ;quantum mechanisms of macroscopic scale;, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts-the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space-that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics.

  11. Quantum chemical determination of young?s modulus of lignin. Calculations on ß-O-4' model compound

    Treesearch

    Thomas Elder

    2007-01-01

    The calculation of Young?s modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in...

  12. Computational studies of thermal and quantum phase transitions approached through non-equilibrium quenching

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Wei

    Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the

  13. The Spin-Foam Approach to Quantum Gravity.

    PubMed

    Perez, Alejandro

    2013-01-01

    This article reviews the present status of the spin-foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently-introduced new models for four-dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.

  14. Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG

    NASA Astrophysics Data System (ADS)

    Stoudenmire, Edwin Miles; White, Steven

    We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.

  15. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning.

    PubMed

    Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2017-06-22

    Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation

  16. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    PubMed Central

    Zhang, Yanjie; Clapp, Aaron

    2011-01-01

    Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands. PMID:22247651

  17. Biosensing with Quantum Dots: A Microfluidic Approach

    PubMed Central

    Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J.

    2011-01-01

    Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. PMID:22163723

  18. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Conformational, structural, vibrational and quantum chemical analysis on 4-aminobenzohydrazide and 4-hydroxybenzohydrazide--a comparative study.

    PubMed

    Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S

    2013-05-01

    Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Quantum chemistry simulation on quantum computers: theories and experiments.

    PubMed

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  1. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that themore » contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.« less

  2. Quantum dots for GaAs-based surface emitting lasers at 1300 nm

    NASA Astrophysics Data System (ADS)

    Grundmann, M.; Ledentsov, N. N.; Hopfer, F.; Heinrichsdorff, F.; Guffarth, F.; Bimberg, D.; Ustinov, V. M.; Zhukov, A. E.; Kovsh, A. R.; Maximov, M. V.; Musikhin, Yu. G.; Alferov, Zh. I.; Lott, J. A.; Zhakharov, N. D.; Werner, P.

    InGaAs quantum dots (QD's) on GaAs substrate have been fabricated using metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) for the use in vertical cavity surface emitting laser diodes. Similar recombination spectra are obtained by employing the two different approaches of seeding and overgrowth with a quantum well. Despite the shift to larger wavelengths a large separation (=80 meV) between excited states is maintained. The introduction of such QD's into a vertical cavity leads to strong narrowing of the emission spectrum. Lasing from a 1300 nm InGaAs quantum dot VCSEL is reported.

  3. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    PubMed

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  4. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics

    PubMed Central

    Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3 JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900

  5. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    PubMed Central

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-01-01

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080

  6. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    PubMed

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  7. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.

    PubMed

    Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas

    2012-04-10

    The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.

  8. Coherent control of diamond defects for quantum information science and quantum sensing

    NASA Astrophysics Data System (ADS)

    Maurer, Peter

    Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells

  9. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  10. QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl.

    PubMed

    Eddy, Nnabuk O; Ita, Benedict I

    2011-02-01

    Experimental aspects of the inhibition of the corrosion of mild steel in HCl solutions by some carbozones were studied using gravimetric, thermometric and gasometric methods, while a theoretical study was carried out using density functional theory, a quantitative structure-activity relation, and quantum chemical principles. The results obtained indicated that the studied carbozones are good adsorption inhibitors for the corrosion of mild steel in HCl. The inhibition efficiencies of the studied carbozones were found to increase with increasing concentration of the respective inhibitor. A strong correlation was found between the average inhibition efficiency and some quantum chemical parameters, and also between the experimental and theoretical inhibition efficiencies (obtained from the quantitative structure-activity relation).

  11. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and

  12. Two-time quantum transport and quantum diffusion.

    PubMed

    Kleinert, P

    2009-05-01

    Based on the nonequilibrium Green's function technique, a unified theory is developed that covers quantum transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is applicable to transport via extended and localized states, extends previous semiphenomenological studies and puts them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the existence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.

  13. A quantum approach to homomorphic encryption

    PubMed Central

    Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.

    2016-01-01

    Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security. PMID:27658349

  14. Quantum Approach to Cournot-type Competition

    NASA Astrophysics Data System (ADS)

    Frąckiewicz, Piotr

    2018-02-01

    The aim of this paper is to investigate Cournot-type competition in the quantum domain with the use of the Li-Du-Massar scheme for continuous-variable quantum games. We derive a formula which, in a simple way, determines a unique Nash equilibrium. The result concerns a large class of Cournot duopoly problems including the competition, where the demand and cost functions are not necessary linear. Further, we show that the Nash equilibrium converges to a Pareto-optimal strategy profile as the quantum correlation increases. In addition to illustrating how the formula works, we provide the readers with two examples.

  15. Significant Quantum Effects in Hydrogen Activation

    DOE PAGES

    Kyriakou, Georgios; Davidson, Erlend R. M.; Peng, Guowen; ...

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature revealmore » completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H 2 up to ~190 K and for D 2 up to ~140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H 2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D 2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Here, examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.« less

  16. Computations and interpretations: The growth of quantum chemistry, 1927-1967

    NASA Astrophysics Data System (ADS)

    Park, Buhm Soon

    1999-10-01

    This dissertation is a contribution to the historical study of scientific disciplines in the twentieth century. It seeks to examine the development of quantum chemistry during the four decades after its inception in 1927. This development was manifest in theories, tools, scientists, and institutions, all of which constituted the disciplinary identity of quantum chemistry. To characterize its identity, I deal with the origins of key ideas and concepts; the change of computational tools from desk calculators to digital computers; the formation of a network among research groups and individuals; and the institutionalization of annual meetings. The dissertation's thesis is three-fold. First, in the pre- World War II years, there were individual contributions to the development of theories in quantum chemistry, but the founding fathers worked in their disciplinary contexts of physics or chemistry with little interest in building a quantum chemistry community. Second, the introduction of electronic digital computers in the postwar years affected the resurgence of the ab initio approach-the attempt to solve the Schrödinger equation without recourse to empirical data-and also the emergence of a community of quantum chemists. But the use of computers did not give rise to a consensus over the aims, methods, or content of the discipline. Third, quantum chemistry exerted a significant influence upon the transformation of chemical education and research in general, thanks to ``chemical translators,'' who sought to explain the gist of quantum chemistry in a language that chemists could understand. In sum, quantum chemistry has been a discipline characterized by diverse traditions, and the whole of chemistry has been under the influence of computations and interpretations made by quantum chemists.

  17. Towards a quantum internet

    NASA Astrophysics Data System (ADS)

    Dür, Wolfgang; Lamprecht, Raphael; Heusler, Stefan

    2017-07-01

    A long-range quantum communication network is among the most promising applications of emerging quantum technologies. We discuss the potential of such a quantum internet for the secure transmission of classical and quantum information, as well as theoretical and experimental approaches and recent advances to realize them. We illustrate the involved concepts such as error correction, teleportation or quantum repeaters and consider an approach to this topic based on catchy visualizations as a context-based, modern treatment of quantum theory at high school.

  18. Epitaxial Zn quantum dots coherently grown on Si(1 1 1): growth mechanism, nonlinear optical and chemical states analyses

    NASA Astrophysics Data System (ADS)

    Huang, Bo-Jia; Kao, Li-Chi; Brahma, Sanjaya; Jeng, Yu-En; Chiu, Shang-Jui; Ku, Ching-Shun; Lo, Kuang-Yao

    2017-05-01

    Oxide- and defect-free metal/semiconductor interface is important to improve Ohmic contact for the suppression of electron scattering and the avoidance of an extrinsic surface state in estimating the barrier of the Schottky contact at the nanodevice interface. This study reports the growth mechanism of Zn quantum dots coherently grown on Si(1 1 1) and the physical phenomena of the crystalline, nonlinear optics, and the chemical states of Zn quantum dots. Epitaxial Zn quantum dots were coherently formed on a non-oxide Si(1 1 1) surface through the liquid- to solid-phase transformation as a result of pattern matching between the Zn(0 0 2) and Si(1 1 1) surfaces. The growth mechanism of constrained Zn quantum dots grown through strategic magnetron radio frequency sputtering is complex. Some factors, such as substrate temperature, hydrogen gas flow, and negative DC bias, influence the configuration of epitaxial Zn quantum dots. In particular, hydrogen gas plays an important role in reducing the ZnO+ and native oxide that is bombarded by accelerated ions, thereby enhancing the Zn ion surface diffusion. The reduction reaction can be inspected by distinguishing the chemical states of ZnO/Zn quantum dots from natural oxidation or the states of Zn 3d through the analysis of x-ray absorption near the edge structure spectrum. The complex growth mechanism can be systematically understood by analyzing a noncancelled anisotropic 3 m dipole from reflective second harmonic generation and inspecting the evolution between the Zn(0 0 2) and Zn(1 1 1) peaks of the collective ZnO/Zn quantum dots in synchrotron XRD.

  19. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  20. Effects-based chemical category approach for prioritization of low affinity estrogenic chemicals.

    PubMed

    Hornung, M W; Tapper, M A; Denny, J S; Kolanczyk, R C; Sheedy, B R; Hartig, P C; Aladjov, H; Henry, T R; Schmieder, P K

    2014-01-01

    Regulatory agencies are charged with addressing the endocrine disrupting potential of large numbers of chemicals for which there is often little or no data on which to make decisions. Prioritizing the chemicals of greatest concern for further screening for potential hazard to humans and wildlife is an initial step in the process. This paper presents the collection of in vitro data using assays optimized to detect low affinity estrogen receptor (ER) binding chemicals and the use of that data to build effects-based chemical categories following QSAR approaches and principles pioneered by Gilman Veith and colleagues for application to environmental regulatory challenges. Effects-based chemical categories were built using these QSAR principles focused on the types of chemicals in the specific regulatory domain of concern, i.e. non-steroidal industrial chemicals, and based upon a mechanistic hypothesis of how these non-steroidal chemicals of seemingly dissimilar structure to 17ß-estradiol (E2) could interact with the ER via two distinct binding types. Chemicals were also tested to solubility thereby minimizing false negatives and providing confidence in determination of chemicals as inactive. The high-quality data collected in this manner were used to build an ER expert system for chemical prioritization described in a companion article in this journal.

  1. Quantum chemical characterization of zwitterionic structures: Supramolecular complexes for modifying the wettability of oil-water-limestone system.

    PubMed

    Lopez-Chavez, Ernesto; Garcia-Quiroz, Alberto; Gonzalez-Garcia, Gerardo; Orozco-Duran, Gabriela E; Zamudio-Rivera, Luis S; Martinez-Magadan, José M; Buenrostro-Gonzalez, Eduardo; Hernandez-Altamirano, Raul

    2014-06-01

    In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices. In this work, electrochemical comparison was realized with cocamidopropyl betaine (CPB), which is a structure zwitterionic liquid type, nowadays widely applied in enhanced recovery processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Engineering electrical properties of graphene: chemical approaches

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  3. Quantum canonical ensemble: A projection operator approach

    NASA Astrophysics Data System (ADS)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  4. Fast Infrared Chemical Imaging with a Quantum Cascade Laser

    PubMed Central

    2015-01-01

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546

  5. Fast infrared chemical imaging with a quantum cascade laser.

    PubMed

    Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit

    2015-01-06

    Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues.

  6. High-School Students' Conceptual Difficulties and Attempts at Conceptual Change: The Case of Basic Quantum Chemical Concepts

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Papaphotis, Georgios

    2009-01-01

    This study tested for deep understanding and critical thinking about basic quantum chemical concepts taught at 12th grade (age 17-18). Our aim was to achieve conceptual change in students. A quantitative study was conducted first (n = 125), and following this 23 selected students took part in semi-structured interviews either individually or in…

  7. Chemical Potential for the Interacting Classical Gas and the Ideal Quantum Gas Obeying a Generalized Exclusion Principle

    ERIC Educational Resources Information Center

    Sevilla, F. J.; Olivares-Quiroz, L.

    2012-01-01

    In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…

  8. Chemical potential and compressibility of quantum Hall bilayer excitons,.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Brian

    2016-02-25

    I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment andmore » an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.« less

  9. QUANTUM: The Exhibition - quantum at the museum

    NASA Astrophysics Data System (ADS)

    Laforest, Martin; Olano, Angela; Day-Hamilton, Tobi

    Distilling the essence of quantum phenomena, and how they are being harnessed to develop powerful quantum technologies, into a series of bite-sized, elementary-school-level pieces is what the scientific outreach team at the University of Waterloo's Institute for Quantum Computing was tasked with. QUANTUM: The Exhibition uses a series of informational panels, multimedia and interactive displays to introduce visitors to quantum phenomena and how they will revolutionize computing, information security and sensing. We'll discuss some of the approaches we took to convey the essence and impact of quantum mechanics and technologies to a lay audience while ensuring scientific accuracy.

  10. Compensation effects in molecular interactions and the quantum chemical le Chatelier principle.

    PubMed

    Mezey, Paul G

    2015-05-28

    Components of molecular interactions and various changes in the components of total energy changes during molecular processes typically exhibit some degrees of compensation. This may be as prominent as the over 90% compensation of the electronic energy and nuclear repulsion energy components of the total energy in some conformational changes. Some of these compensations are enhanced by solvent effects. For various arrangements of ions in a solvent, however, not only compensation but also a formal, mutual enhancement between the electronic energy and nuclear repulsion energy components of the total energy may also occur, when the tools of nuclear charge variation are applied to establish quantum chemically rigorous energy inequalities.

  11. A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration.

    PubMed

    Sampson, Chris; Fox, Thomas; Tautermann, Christofer S; Woods, Christopher; Skylaris, Chris-Kriton

    2015-06-11

    We present a method which uses DFT (quantum, QM) calculations to improve free energies of binding computed with classical force fields (classical, MM). To overcome the incomplete overlap of configurational spaces between MM and QM, we use a hybrid Monte Carlo approach to generate quickly correct ensembles of structures of intermediate states between a MM and a QM/MM description, hence taking into account a great fraction of the electronic polarization of the quantum system, while being able to use thermodynamic integration to compute the free energy of transition between the MM and QM/MM. Then, we perform a final transition from QM/MM to full QM using a one-step free energy perturbation approach. By using QM/MM as a stepping stone toward the full QM description, we find very small convergence errors (<1 kJ/mol) in the transition to full QM. We apply this method to compute hydration free energies, and we obtain consistent improvements over the MM values for all molecules we used in this study. This approach requires large-scale DFT calculations as the full QM systems involved the ligands and all waters in their simulation cells, so the linear-scaling DFT code ONETEP was used for these calculations.

  12. Ab initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Symonds, Christopher; Fernandez-Alberti, Sebastian; Shalashilin, Dmitrii V.

    2017-08-01

    The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous ;on the fly; ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined.

  13. Chemical named entities recognition: a review on approaches and applications

    PubMed Central

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132

  14. Chemical named entities recognition: a review on approaches and applications.

    PubMed

    Eltyeb, Safaa; Salim, Naomie

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.

  15. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  16. The Nature of the Chemical Bond--1990.

    ERIC Educational Resources Information Center

    Ogilvie, J. F.

    1990-01-01

    Three aspects of quantum mechanics in modern chemistry are stressed: the fundamental structure of quantum mechanics as a basis of chemical applications, the relationship of quantum mechanics to atomic and molecular structure, and the consequent implications for chemical education. A list of 64 references is included. (CW)

  17. Hyperspherical Slater determinant approach to few-body fractional quantum Hall states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Bin, E-mail: yanbin@purdue.edu; Wooten, Rachel E.; Daily, Kevin M.

    2017-05-15

    In a recent study (Daily et al., 2015), a hyperspherical approach has been developed to study few-body fractional quantum Hall states. This method has been successfully applied to the exploration of few boson and fermion problems in the quantum Hall region, as well as the study of inter-Landau level collective excitations (Rittenhouse et al., 2016; Wooten et al., 2016). However, the hyperspherical method as it is normally implemented requires a subsidiary (anti-)symmetrization process, which limits its computational effectiveness. The present work overcomes these difficulties and extends the power of this method by implementing a representation of the hyperspherical many-body basismore » space in terms of Slater determinants of single particle eigenfunctions. A clear connection between the hyperspherical representation and the conventional single particle picture is presented, along with a compact operator representation of the theoretical framework. - Highlights: • A hyperspherical method has been implemented to study the quantum Hall effect. • The hyperspherical many-body basis space is represented with Slater determinants. • Example numerical studies of the 4- and 8-electron systems are presented.« less

  18. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on

  19. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    NASA Astrophysics Data System (ADS)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  20. One-way quantum repeaters with quantum Reed-Solomon codes

    NASA Astrophysics Data System (ADS)

    Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang

    2018-05-01

    We show that quantum Reed-Solomon codes constructed from classical Reed-Solomon codes can approach the capacity on the quantum erasure channel of d -level systems for large dimension d . We study the performance of one-way quantum repeaters with these codes and obtain a significant improvement in key generation rate compared to previously investigated encoding schemes with quantum parity codes and quantum polynomial codes. We also compare the three generations of quantum repeaters using quantum Reed-Solomon codes and identify parameter regimes where each generation performs the best.

  1. Locally Compact Quantum Groups. A von Neumann Algebra Approach

    NASA Astrophysics Data System (ADS)

    Van Daele, Alfons

    2014-08-01

    In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique

  2. Single colloidal quantum dots as sources of single photons for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo

    2011-02-01

    Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.

  3. Quantum Speed Limits across the Quantum-to-Classical Transition

    NASA Astrophysics Data System (ADS)

    Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A.

    2018-02-01

    Quantum speed limits set an upper bound to the rate at which a quantum system can evolve. Adopting a phase-space approach, we explore quantum speed limits across the quantum-to-classical transition and identify equivalent bounds in the classical world. As a result, and contrary to common belief, we show that speed limits exist for both quantum and classical systems. As in the quantum domain, classical speed limits are set by a given norm of the generator of time evolution.

  4. Graph-theoretic approach to quantum correlations.

    PubMed

    Cabello, Adán; Severini, Simone; Winter, Andreas

    2014-01-31

    Correlations in Bell and noncontextuality inequalities can be expressed as a positive linear combination of probabilities of events. Exclusive events can be represented as adjacent vertices of a graph, so correlations can be associated to a subgraph. We show that the maximum value of the correlations for classical, quantum, and more general theories is the independence number, the Lovász number, and the fractional packing number of this subgraph, respectively. We also show that, for any graph, there is always a correlation experiment such that the set of quantum probabilities is exactly the Grötschel-Lovász-Schrijver theta body. This identifies these combinatorial notions as fundamental physical objects and provides a method for singling out experiments with quantum correlations on demand.

  5. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    NASA Astrophysics Data System (ADS)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in

  6. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells.

    PubMed

    Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein

    2016-01-07

    We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.

  7. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    PubMed

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  8. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    PubMed

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  9. What is quantum in quantum randomness?

    PubMed

    Grangier, P; Auffèves, A

    2018-07-13

    It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of 'What is quantum in quantum randomness?', i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to be answered. In a first part, we make explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programmes inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyse quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness that have opened up in the emerging field of quantum thermodynamics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  10. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis.

    PubMed

    Stauch, Tim; Dreuw, Andreas

    2016-11-23

    In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.

  11. Quantum sequencing: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    di Ventra, Massimiliano

    Personalized or precision medicine refers to the ability of tailoring drugs to the specific genome and transcriptome of each individual. It is however not yet feasible due the high costs and slow speed of present DNA sequencing methods. I will discuss a sequencing protocol that requires the measurement of the distributions of transverse tunneling currents during the translocation of single-stranded DNA into nanochannels. I will show that such a quantum sequencing approach can reach unprecedented speeds, without requiring any chemical preparation, amplification or labeling. I will discuss recent experiments that support these theoretical predictions, the advantages of this approach over other sequencing methods, and stress the challenges that need to be overcome to render it commercially viable.

  12. Perturbation approach for nuclear magnetic resonance solid-state quantum computation

    DOE PAGES

    Berman, G. P.; Kamenev, D. I.; Tsifrinovich, V. I.

    2003-01-01

    A dynmore » amics of a nuclear-spin quantum computer with a large number ( L = 1000 ) of qubits is considered using a perturbation approach. Small parameters are introduced and used to compute the error in an implementation of an entanglement between remote qubits, using a sequence of radio-frequency pulses. The error is computed up to the different orders of the perturbation theory and tested using exact numerical solution.« less

  13. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    PubMed

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  14. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    NASA Astrophysics Data System (ADS)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  15. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  16. Quantum memory Quantum memory

    NASA Astrophysics Data System (ADS)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  17. Information transmission in microbial and fungal communication: from classical to quantum.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2018-06-01

    Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.

  18. An approach to quantum-computational hydrologic inverse analysis.

    PubMed

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.

  19. Emergent mechanics, quantum and un-quantum

    NASA Astrophysics Data System (ADS)

    Ralston, John P.

    2013-10-01

    There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications

  20. Quantum state estimation when qubits are lost: a no-data-left-behind approach

    DOE PAGES

    Williams, Brian P.; Lougovski, Pavel

    2017-04-06

    We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.

  1. Studies on the Conformational Landscape of Tert-Butyl Acetate Using Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle

    2014-06-01

    The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.

  2. Control of noisy quantum systems: Field-theory approach to error mitigation

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Goldbart, Paul M.

    2016-04-01

    We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model

  3. Facile synthesis of corticosteroids prodrugs from isolated hydrocortisone acetate and their quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Singh, Ranvijay Pratap; Prakash, Rohit; Amandeep

    2017-02-01

    In the present research paper corticosteroids prodrugs of hydrocortisone acetate (1) have been synthesized, which was isolated from the flowers of Allamanda Violacea. The hydrocortisone acetate (1) was hydrolyzed to hydrocortisone (2) which was subsequently converted to prednisolone (3). Both the hydrocortisone (1) and prednisolone (2) underwent Steglich esterification with naproxen and Ibuprofen yielding compounds 11, 17 dihydroxy-21-(2-(6-methoxynaphthalene-2yl) propionoxy)-pregn-4-ene-3, 20-dione (4), 11, 17-dihydroxy-21-(2-(4-isobutylphenyl) propionoxy)-pregn-4-ene-3, 20-dione (5), 21-(2-(6-methoxynaphthalene-2-yl) propionoxy) 11,17-di-hydroxy-3,20-diketo-pregn-1,4-diene (6) and 11,17-di-hydroxy-3,20-diketo-pregn-1,4-diene-21-yl-2-(4-isobutylphenyl) propanoate (7). The synthesized compounds have been characterized with the help of spectroscopic techniques like 1H, 13C NMR, FT-IR spectroscopy and mass spectrometry. Density functional theory (DFT) with B3LYP functional and 6-31G (d, p) basis set has been used for the Quantum chemical calculations. The electronic properties such as frontier orbitals and band gap energies were calculated by TD-DFT approach. Intramolecular interactions have been identified by AIM (Atoms in Molecule) approach and vibrational wavenumbers have been calculated using DFT method. The reactivity and reactive site within the synthesized prodrugs have been examined with the help of reactivity descriptors. Dipole moment, polarizability and first static hyperpolarizability have been calculated to get a better insight of the properties of synthesized prodrugs. The molecular electrostatic potential (MEP) surface analysis has also been carried out.

  4. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    PubMed

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  5. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  6. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS

    PubMed Central

    Tipikin, Dmitriy S.; Swarts, Steven G.; Sidabras, Jason W.; Trompier, François; Swartz, Harold M.

    2016-01-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation–reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable

  7. Chemical reaction CO+OH • → CO 2+H • autocatalyzed by carbon dioxide: Quantum chemical study of the potential energy surfaces

    DOE PAGES

    Masunov, Artem E.; Wait, Elizabeth; Vasu, Subith S.

    2016-06-28

    The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO 2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO 2 to OH radical and CO molecule, hydrogen transfer frommore » oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO 2 medium. Furthermore, tt may open a new venue for controlling reaction rates for chemical manufacturing.« less

  8. An approach to quantum-computational hydrologic inverse analysis

    DOE PAGES

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  9. An approach to quantum-computational hydrologic inverse analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Daniel

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  10. Intramolecular hydrogen bonding in myricetin and myricitrin. Quantum chemical calculations and vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Vojta, Danijela; Dominković, Katarina; Miljanić, Snežana; Spanget-Larsen, Jens

    2017-03-01

    The molecular structures of myricetin (3,3‧,4‧,5,5‧,7-hexahydroxyflavone; MCE) and myricitrin (myricetin 3-O-rhamnoside; MCI) are investigated by quantum chemical calculations (B3LYP/6-311G**). Two preferred molecular rotamers of MCI are predicted, corresponding to different conformations of the O-rhamnoside subunit. The rotamers are characterized by different hydrogen bonded cross-links between the hydroxy groups of the rhamnoside substituent and the parent MCE moiety. The predicted OH stretching frequencies are compared with vibrational spectra of MCE and MCI recorded for the sake of this investigation (IR and Raman). In addition, a reassignment of the Cdbnd O stretching bands is suggested.

  11. Wavy carbon: A new series of carbon structures explored by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Satoh, Hiroko; Iwamoto, Takeaki; Tokoyama, Hiroaki; Yamakado, Hideo

    2015-10-01

    A new carbon family adopting wavy structures has been found by quantum chemical calculations. The key motif of this family is a condensed four-membered ring. Periodically wavy-carbon sheets (wavy-Cn sheets, n = 2, 6, and 8) as well as wavy-C36 tube were found to be very similar to the previously reported prism-Cn carbon tubes (n = 5, 6, and 8) in several respects, including the relative energies per one carbon atom with respect to graphene, CC bond lengths, and CCC bond angles. Because of very high relative energies with respect to graphene (206-253 kJ mol-1), the wavy-carbons may behave as energy reserving materials.

  12. Quantum Physics

    NASA Astrophysics Data System (ADS)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  13. Optical hybrid quantum teleportation and its applications

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Okada, Masanori; Furusawa, Akira

    2017-08-01

    Quantum teleportation, a transfer protocol of quantum states, is the essence of many sophisticated quantum information protocols. There have been two complementary approaches to optical quantum teleportation: discrete variables (DVs) and continuous variables (CVs). However, both approaches have pros and cons. Here we take a "hybrid" approach to overcome the current limitations: CV quantum teleportation of DVs. This approach enabled the first realization of deterministic quantum teleportation of photonic qubits without post-selection. We also applied the hybrid scheme to several experiments, including entanglement swapping between DVs and CVs, conditional CV teleportation of single photons, and CV teleportation of qutrits. We are now aiming at universal, scalable, and fault-tolerant quantum computing based on these hybrid technologies.

  14. Protein structure refinement using a quantum mechanics-based chemical shielding predictor† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04344e Click here for additional data file.

    PubMed Central

    2017-01-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1–0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large

  15. Efficient Online Optimized Quantum Control for Adiabatic Quantum Computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Adiabatic quantum computation (AQC) relies on controlled adiabatic evolution to implement a quantum algorithm. While control evolution can take many forms, properly designed time-optimal control has been shown to be particularly advantageous for AQC. Grover's search algorithm is one such example where analytically-derived time-optimal control leads to improved scaling of the minimum energy gap between the ground state and first excited state and thus, the well-known quadratic quantum speedup. Analytical extensions beyond Grover's search algorithm present a daunting task that requires potentially intractable calculations of energy gaps and a significant degree of model certainty. Here, an in situ quantum control protocol is developed for AQC. The approach is shown to yield controls that approach the analytically-derived time-optimal controls for Grover's search algorithm. In addition, the protocol's convergence rate as a function of iteration number is shown to be essentially independent of system size. Thus, the approach is potentially scalable to many-qubit systems.

  16. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

    NASA Astrophysics Data System (ADS)

    Lafont, F.; Ribeiro-Palau, R.; Kazazis, D.; Michon, A.; Couturaud, O.; Consejo, C.; Chassagne, T.; Zielinski, M.; Portail, M.; Jouault, B.; Schopfer, F.; Poirier, W.

    2015-04-01

    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10-9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices.

  17. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

    PubMed Central

    Lafont, F.; Ribeiro-Palau, R.; Kazazis, D.; Michon, A.; Couturaud, O.; Consejo, C.; Chassagne, T.; Zielinski, M.; Portail, M.; Jouault, B.; Schopfer, F.; Poirier, W.

    2015-01-01

    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10−9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices. PMID:25891533

  18. Quantum Chemical Molecular Dynamics Simulations of 1,3-Dichloropropene Combustion.

    PubMed

    Ahubelem, Nwakamma; Shah, Kalpit; Moghtaderi, Behdad; Page, Alister J

    2015-09-03

    Oxidative decomposition of 1,3-dichloropropene was investigated using quantum chemical molecular dynamics (QM/MD) at 1500 and 3000 K. Thermal oxidation of 1,3-dichloropropene was initiated by (1) abstraction of allylic H/Cl by O2 and (2) intra-annular C-Cl bond scission and elimination of allylic Cl. A kinetic analysis shows that (2) is the more dominant initiation pathway, in agreement with QM/MD results. These QM/MD simulations reveal new routes to the formation of major products (H2O, CO, HCl, CO2), which are propagated primarily by the chloroperoxy (ClO2), OH, and 1,3-dichloropropene derived radicals. In particular, intra-annular C-C/C-H bond dissociation reactions of intermediate aldehydes/ketones are shown to play a dominant role in the formation of CO and CO2. Our simulations demonstrate that both combustion temperature and radical concentration can influence the product yield, however not the combustion mechanism.

  19. Low-Dimensional Nanostructures and a Semiclassical Approach for Teaching Feynman's Sum-over-Paths Quantum Theory

    ERIC Educational Resources Information Center

    Onorato, P.

    2011-01-01

    An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P. Feynman and developed by E. F. Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of…

  20. Exploring Do-It-Yourself Approaches in Computational Quantum Chemistry: The Pedagogical Benefits of the Classical Boys Algorithm

    ERIC Educational Resources Information Center

    Orsini, Gabriele

    2015-01-01

    The ever-increasing impact of molecular quantum calculations over chemical sciences implies a strong and urgent need for the elaboration of proper teaching strategies in university curricula. In such perspective, this paper proposes an extensive project for a student-driven, cooperative, from-scratch implementation of a general Hartree-Fock…

  1. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.

    PubMed

    Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J

    2015-05-13

    Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.

  2. A survey of existing and proposed classical and quantum approaches to the photon mass

    NASA Astrophysics Data System (ADS)

    Spavieri, G.; Quintero, J.; Gillies, G. T.; Rodríguez, M.

    2011-02-01

    Over the past twenty years, there have been several careful experimental, observational and phenomenological investigations aimed at searching for and establishing ever tighter bounds on the possible mass of the photon. There are many fascinating and paradoxical physical implications that would arise from the presence of even a very small value for it, and thus such searches have always been well motivated in terms of the new physics that would result. We provide a brief overview of the theoretical background and classical motivations for this work and the early tests of the exactness of Coulomb's law that underlie it. We then go on to address the modern situation, in which quantum physics approaches come to attention. Among them we focus especially on the implications that the Aharonov-Bohm and Aharonov-Casher class of effects have on searches for a photon mass. These arise in several different ways and can lead to experiments that might involve the interaction of magnetic dipoles, electric dipoles, or charged particles with suitable potentials. Still other quantum-based approaches employ measurements of the g-factor of the electron. Plausible target sensitivities for limits on the photon mass as sought by the various quantum approaches are in the range of 10-53 to 10-54 g. Possible experimental arrangements for the associated experiments are discussed. We close with an assessment of the state of the art and a prognosis for future work.

  3. Developing chemical criteria for wildlife: The benchmark dose versus NOAEL approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder, G.

    1995-12-31

    Wildlife may be exposed to a wide variety of chemicals in their environment, and various strategies for evaluating wildlife risk for these chemicals have been developed. One, a ``no-observable-adverse-effects-level`` or NOAEL-approach has increasingly been applied to develop chemical criteria for wildlife. In this approach, the NOAEL represents the highest experimental concentration at which there is no statistically significant change in some toxicity endpoint relative to a control. Another, the ``benchmark dose`` or BMD-approach relies on the lower confidence limit for a concentration that corresponds to a small, but statistically significant, change in effect over some reference condition. Rather than correspondingmore » to a single experimental concentration as does the NOAEL, the BMD-approach considers the full concentration response curve for derivation of the BMD. Here, using a variety of vertebrates and an assortment of chemicals (including carbofuran, paraquat, methylmercury, cadmium, zinc, and copper), the NOAEL-approach will be critically evaluated relative to the BMD approach. Statistical models used in the BMD approach suggest these methods are potentially available for eliminating safety factors in risk calculations. A reluctance to recommend this, however, stems from the uncertainty associated with the shape of concentration-response curves at low concentrations. Also, with existing data the derivation of BMDs has shortcomings when sample size is small (10 or fewer animals per treatment). The success of BMD models clearly depends upon the continued collection of wildlife data in the field and laboratory, the design of toxicity studies sufficient for BMD calculations, and complete reporting of these results in the literature. Overall, the BMD approach for developing chemical criteria for wildlife should be given further consideration, since it more fully evaluates concentration-response data.« less

  4. An Adynamical, Graphical Approach to Quantum Gravity and Unification

    NASA Astrophysics Data System (ADS)

    Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy

    We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum

  5. Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation.

    PubMed

    Zheng, Shi-Biao

    2005-08-19

    We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.

  6. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance.

    PubMed

    Jiang, Min; Wu, Teng; Blanchard, John W; Feng, Guanru; Peng, Xinhua; Budker, Dmitry

    2018-06-01

    Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13 C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.

  7. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance

    PubMed Central

    Feng, Guanru

    2018-01-01

    Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information–inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics. PMID:29922714

  8. Quantum Chemistry via the Periodic Law.

    ERIC Educational Resources Information Center

    Blinder, S. M.

    1981-01-01

    Describes an approach to quantum mechanics exploiting the periodic structure of the elements as a foundation for the quantum theory of matter. Indicates that a quantum chemistry course can be developed using this approach. (SK)

  9. Molecular nanomagnets with switchable coupling for quantum simulation

    DOE PAGES

    Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...

    2014-12-11

    Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less

  10. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reducemore » effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.« less

  11. On the origin of the gauche effect. A quantum chemical study of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Engkvist, O.; Karlström, G.; Widmark, P.-O.

    1997-01-01

    The conformational equilibrium of 1,2-difluoroethane has been investigated using ab initio quantum chemical calculations at the SCF, MP2 and CCSD(T) levels, with ANO basis sets. The relative stability of the gauche-conformation of 1,2-difluoroethane is found to be a consequence of the nodal structure of the singly occupied orbital in the CFH 2 radical. It is also shown that the nodal structure of the singly occupied orbitals in the CFH biradical can explain the stability of the cis conformation of 1,2-difluoroethene.

  12. Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Elizaga Navascués, Beatriz; Martín de Blas, Daniel; Mena Marugán, Guillermo A.

    2018-02-01

    Loop quantum cosmology has recently been applied in order to extend the analysis of primordial perturbations to the Planck era and discuss the possible effects of quantum geometry on the cosmic microwave background. Two approaches to loop quantum cosmology with admissible ultraviolet behavior leading to predictions that are compatible with observations are the so-called hybrid and dressed metric approaches. In spite of their similarities and relations, we show in this work that the effective equations that they provide for the evolution of the tensor and scalar perturbations are somewhat different. When backreaction is neglected, the discrepancy appears only in the time-dependent mass term of the corresponding field equations. We explain the origin of this difference, arising from the distinct quantization procedures. Besides, given the privileged role that the big bounce plays in loop quantum cosmology, e.g. as a natural instant of time to set initial conditions for the perturbations, we also analyze the positivity of the time-dependent mass when this bounce occurs. We prove that the mass of the tensor perturbations is positive in the hybrid approach when the kinetic contribution to the energy density of the inflaton dominates over its potential, as well as for a considerably large sector of backgrounds around that situation, while this mass is always nonpositive in the dressed metric approach. Similar results are demonstrated for the scalar perturbations in a sector of background solutions that includes the kinetically dominated ones; namely, the mass then is positive for the hybrid approach, whereas it typically becomes negative in the dressed metric case. More precisely, this last statement is strictly valid when the potential is quadratic for values of the inflaton mass that are phenomenologically favored.

  13. Chemical bonding in TiSb(2) and VSb(2): a quantum chemical and experimental study.

    PubMed

    Armbrüster, Marc; Schnelle, Walter; Schwarz, Ulrich; Grin, Yuri

    2007-08-06

    The chemical bonding in the isostructural intermetallic compounds TiSb2 and VSb2, crystallizing in the CuAl2 type, was investigated by means of quantum chemical calculations, particularly the electron localization function (ELF), as well as by Raman spectroscopy, Hall effect and conductivity measurements on oriented single crystals, and high-pressure X-ray powder diffraction. The homogeneity ranges of the compounds were determined by powder X-ray diffraction, WDXS, and DSC measurements. TiSb2 exhibits no significant homogeneity range, while VSb2 shows a small homogeneity range of approximately 0.3 at. %. According to the ELF calculations, the Sb atoms form dumbbells via a two-center two-electron bond, while the T atoms (T = Ti, V) build up chains along the crystallographic c-axis. Both building units are connected by covalent T-Sb-T three-center bonds, thus forming a three-dimensional network. The strength of the bonds involving Sb was determined by fitting a force constant model to the vibrational mode frequencies observed by polarized Raman measurements on oriented single crystals. The resulting bond order of the Sb2 dumbbells is 1, while the strength of the three-center bonds resembles a bond order of 1.5. The weak pressure dependence of the c/a ratio confirms the slightly different bonding picture in TiSb2 compared to that in CuAl2. Electrical transport measurements show the presence of free charge carriers, as well as a metal-like temperature dependence of the electrical resistivity.

  14. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    NASA Astrophysics Data System (ADS)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  15. Preface of the special issue quantum foundations: information approach

    PubMed Central

    2016-01-01

    This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161

  16. Nanophotonic enhanced quantum emitters

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Zhang-Kai; Yu, Ying; Gather, Malte; Di Falco, Andrea

    2017-08-01

    Quantum dots are excellent solid-state quantum sources, because of their stability, their narrow spectral linewidth, and radiative lifetime in the range of 1ns. Most importantly, they can be integrated into more complex nanophononics devices, to realize high quality quantum emitters of single photons or entangled photon sources. Recent progress in nanotechnology materials and devices has opened a number of opportunities to increase, optimize and ultimately control the emission property of single quantum dot. In this work, we present an approach that combines the properties of quantum dots with the flexibility of light control offered by nanoplasmonics and metamaterials structuring. Specifically, we show the nanophotonic enhancement of two types of quantum dots devices. The quantum dots are inserted into optical-positioned micropillar cavities, or decorated on the facets of core-shell GaAs/AlGaAs nanowires, fabricated with a bottom-up approach. In both cases, the metallic nanofeatures, which are designed to control the emission and the polarization state of the emitted light, are realized via direct electron-beam-induced deposition. This approach permits to create three-dimensional features with nanometric resolution and positional accuracy, and does not require wet lithographic steps and previous knowledge of the exact spatial arrangement of the quantum devices.

  17. Adsorption, Thermodynamic and Quantum Chemical Studies of 1-hexyl-3-methylimidazolium Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in HCl

    PubMed Central

    Mashuga, Motsie E.; Olasunkanmi, Lukman O.; Adekunle, Abolanle S.; Yesudass, Sasikumar; Kabanda, Mwadham M.; Ebenso, Eno E.

    2015-01-01

    The inhibition of mild steel corrosion in 1 M HCl solution by some ionic liquids (ILs) namely, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate [HMIM][TfO], 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], and 1-hexyl-3-methylimidazolium iodide [HMIM][I] was investigated using electrochemical measurements, spectroscopic analyses and quantum chemical calculations. All the ILs showed appreciably high inhibition efficiency. At 303 K, the results of electrochemical measurements indicated that the studied ILs are mixed-type inhibitors. The adsorption studies showed that all the four ILs adsorb spontaneously on steel surface with [HMIM][TfO], [HMIM][BF4] and [HMIM][I] obeying Langmuir adsorption isotherm, while [HMIM][PF6] conformed better with Temkin adsorption isotherm. Spectroscopic analyses suggested the formation of Fe/ILs complexes. Some quantum chemical parameters were calculated to corroborate experimental results.

  18. Vibrational, electronic and quantum chemical studies of 1,2,4-benzenetricarboxylic-1,2-anhydride.

    PubMed

    Arjunan, V; Raj, Arushma; Subramanian, S; Mohan, S

    2013-06-01

    The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets. The structural parameters, energies, thermodynamic parameters, vibrational frequencies and the NBO charges of BTCA were determined by the DFT method. The (1)H and (13)C isotropic chemical shifts (δ ppm) of BTCA with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. The delocalization energies of different types of interactions were determined. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The operator algebra approach to quantum groups

    PubMed Central

    Kustermans, Johan; Vaes, Stefaan

    2000-01-01

    A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory. PMID:10639116

  20. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  1. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  2. ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Laloo, Jalal Z. A.; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-07-01

    The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.

  3. ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations.

    PubMed

    Laloo, Jalal Z A; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-07-01

    The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.

  4. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  5. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-05-12

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  6. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C 7H 10O 2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  7. Quantum simulation of a quantum stochastic walk

    NASA Astrophysics Data System (ADS)

    Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.

    2017-03-01

    The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.

  8. Device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hänggi, Esther

    2010-12-01

    In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.

  9. Molecular mechanism of NDMA formation from N,N-dimethylsulfamide during ozonation: quantum chemical insights into a bromide-catalyzed pathway.

    PubMed

    Trogolo, Daniela; Mishra, Brijesh Kumar; Heeb, Michèle B; von Gunten, Urs; Arey, J Samuel

    2015-04-07

    During ozonation of drinking water, the fungicide metabolite N,N-dimethylsulfamide (DMS) can be transformed into a highly toxic product, N-nitrosodimethylamine (NDMA). We used quantum chemical computations and stopped-flow experiments to evaluate a chemical mechanism proposed previously to describe this transformation. Stopped-flow experiments indicate a pK(a) = 10.4 for DMS. Experiments show that hypobromous acid (HOBr), generated by ozone oxidation of naturally occurring bromide, brominates the deprotonated DMS(-) anion with a near-diffusion controlled rate constant (7.1 ± 0.6 × 10(8) M(-1) s(-1)), forming Br-DMS(-) anion. According to quantum chemical calculations, Br-DMS has a pK(a) ∼ 9.0 and thus remains partially deprotonated at neutral pH. The anionic Br-DMS(-) bromamine can react with ozone with a high rate constant (10(5 ± 2.5) M(-1) s(-1)), forming the reaction intermediate (BrNO)(SO2)N(CH3)2(-). This intermediate resembles a loosely bound complex between an electrophilic nitrosyl bromide (BrNO) molecule and an electron-rich dimethylaminosulfinate ((SO2)N(CH3)2(-)) fragment, based on inspection of computed natural charges and geometric parameters. This fragile complex undergoes immediate (10(10 ± 2.5) s(-1)) reaction by two branches: an exothermic channel that produces NDMA, and an entropy-driven channel giving non-NDMA products. Computational results bring new insights into the electronic nature, chemical equilibria, and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.

  10. Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides

    NASA Astrophysics Data System (ADS)

    Masteri-Farahani, M.; Mahdavi, S.; Khanmohammadi, H.

    2018-03-01

    Surface chemical functionalization of ZnS quantum dots (ZnS-QDs) with cysteamine hydrochloride resulted in the preparation of an optical nanosensor for detection of herbicides. Characterization of the functionalized ZnS-QDs was performed with physicochemical methods such as x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive x-ray (EDX) analysis, ultraviolet-visible (UV–vis) and photoluminescence (PL) spectroscopies. The optical band gap of the functionalized ZnS-QDs was determined by using Tauc plot as 4.1 eV. Addition of various herbicides resulted in the linearly fluorescence quenching of the functionalized ZnS-QDs according to the Stern-Volmer equation. The functionalized ZnS-QDs can be used as simple, rapid, and inexpensive nanosensor for practical detection and measurement of various herbicides.

  11. Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.

    PubMed

    Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet

    2011-04-26

    Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.

  12. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    PubMed

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  13. Reveal quantum correlation in complementary bases

    PubMed Central

    Wu, Shengjun; Ma, Zhihao; Chen, Zhihua; Yu, Sixia

    2014-01-01

    An essential feature of genuine quantum correlation is the simultaneous existence of correlation in complementary bases. We reveal this feature of quantum correlation by defining measures based on invariance under a basis change. For a bipartite quantum state, the classical correlation is the maximal correlation present in a certain optimum basis, while the quantum correlation is characterized as a series of residual correlations in the mutually unbiased bases. Compared with other approaches to quantify quantum correlation, our approach gives information-theoretical measures that directly reflect the essential feature of quantum correlation. PMID:24503595

  14. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    NASA Astrophysics Data System (ADS)

    Asplund, Erik; Klüner, Thorsten

    2012-03-01

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)], 10.1063/1.473950. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998), 10.1063/1.475576; Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)], 10.1063/1.1650297. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = me = e = a0 = 1, have been used unless otherwise stated.

  15. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  16. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots.

    PubMed

    Dohnalová, Kateřina; Fučíková, Anna; Umesh, Chinnaswamy P; Humpolíčková, Jana; Paulusse, Jos M J; Valenta, Jan; Zuilhof, Han; Hof, Martin; Gregorkiewicz, Tom

    2012-10-22

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl-terminated Si-QDs of 2-3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano-object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron-hole pairs confined in the Si-QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si-QDs with tunable sizes and bandgaps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives.

    PubMed

    Grimm, Fabian A; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A; Wright, Fred A; Reif, David M; Braisted, John; Gerhold, David L; Yeakley, Joanne M; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M; Rusyn, Ivan

    2016-08-21

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of U nknown or V ariable composition, C omplex reaction products, and B iological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health

  18. Neural network approach to quantum-chemistry data: accurate prediction of density functional theory energies.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2009-08-21

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6+/-0.2 kcal mol(-1). In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  19. On the group theoretical approach to the Quantum Theory of an interacting spin-0 particle

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2016-01-01

    We point out a difficulty that arises in extending the group theoretical approach that deductively establish the quantum theory of a free particle to the case of an interacting particle. Then we develop an approach which overcomes this difficulty. The result is a theory of an interacting particle where the standard theory is characterized by specific covariance properties related to the interaction.

  20. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  1. General Approach to Quantum Channel Impossibility by Local Operations and Classical Communication.

    PubMed

    Cohen, Scott M

    2017-01-13

    We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that the set of quantum channels that are not LOCC is not closed and that there exist channels that can be implemented by LOCC either in one round or in three rounds that are on the boundary of the set of all LOCC channels. Although every LOCC protocol must implement a separable quantum channel, it is a very difficult task to determine whether or not a given channel is separable. Fortunately, prior knowledge that the channel is separable is not required for application of our method.

  2. An Informatics Approach to Evaluating Combined Chemical Exposures from Consumer Products: A Case Study of Asthma-Associated Chemicals and Potential Endocrine Disruptors

    PubMed Central

    Gabb, Henry A.; Blake, Catherine

    2016-01-01

    Background: Simultaneous or sequential exposure to multiple environmental stressors can affect chemical toxicity. Cumulative risk assessments consider multiple stressors but it is impractical to test every chemical combination to which people are exposed. New methods are needed to prioritize chemical combinations based on their prevalence and possible health impacts. Objectives: We introduce an informatics approach that uses publicly available data to identify chemicals that co-occur in consumer products, which account for a significant proportion of overall chemical load. Methods: Fifty-five asthma-associated and endocrine disrupting chemicals (target chemicals) were selected. A database of 38,975 distinct consumer products and 32,231 distinct ingredient names was created from online sources, and PubChem and the Unified Medical Language System were used to resolve synonymous ingredient names. Synonymous ingredient names are different names for the same chemical (e.g., vitamin E and tocopherol). Results: Nearly one-third of the products (11,688 products, 30%) contained ≥ 1 target chemical and 5,229 products (13%) contained > 1. Of the 55 target chemicals, 31 (56%) appear in ≥ 1 product and 19 (35%) appear under more than one name. The most frequent three-way chemical combination (2-phenoxyethanol, methyl paraben, and ethyl paraben) appears in 1,059 products. Further work is needed to assess combined chemical exposures related to the use of multiple products. Conclusions: The informatics approach increased the number of products considered in a traditional analysis by two orders of magnitude, but missing/incomplete product labels can limit the effectiveness of this approach. Such an approach must resolve synonymy to ensure that chemicals of interest are not missed. Commonly occurring chemical combinations can be used to prioritize cumulative toxicology risk assessments. Citation: Gabb HA, Blake C. 2016. An informatics approach to evaluating combined chemical

  3. An Informatics Approach to Evaluating Combined Chemical Exposures from Consumer Products: A Case Study of Asthma-Associated Chemicals and Potential Endocrine Disruptors.

    PubMed

    Gabb, Henry A; Blake, Catherine

    2016-08-01

    Simultaneous or sequential exposure to multiple environmental stressors can affect chemical toxicity. Cumulative risk assessments consider multiple stressors but it is impractical to test every chemical combination to which people are exposed. New methods are needed to prioritize chemical combinations based on their prevalence and possible health impacts. We introduce an informatics approach that uses publicly available data to identify chemicals that co-occur in consumer products, which account for a significant proportion of overall chemical load. Fifty-five asthma-associated and endocrine disrupting chemicals (target chemicals) were selected. A database of 38,975 distinct consumer products and 32,231 distinct ingredient names was created from online sources, and PubChem and the Unified Medical Language System were used to resolve synonymous ingredient names. Synonymous ingredient names are different names for the same chemical (e.g., vitamin E and tocopherol). Nearly one-third of the products (11,688 products, 30%) contained ≥ 1 target chemical and 5,229 products (13%) contained > 1. Of the 55 target chemicals, 31 (56%) appear in ≥ 1 product and 19 (35%) appear under more than one name. The most frequent three-way chemical combination (2-phenoxyethanol, methyl paraben, and ethyl paraben) appears in 1,059 products. Further work is needed to assess combined chemical exposures related to the use of multiple products. The informatics approach increased the number of products considered in a traditional analysis by two orders of magnitude, but missing/incomplete product labels can limit the effectiveness of this approach. Such an approach must resolve synonymy to ensure that chemicals of interest are not missed. Commonly occurring chemical combinations can be used to prioritize cumulative toxicology risk assessments. Gabb HA, Blake C. 2016. An informatics approach to evaluating combined chemical exposures from consumer products: a case study of asthma

  4. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.

  5. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  6. The IINS/quantum chemical studies of 17α- and 21-hydroxy-derivatives of progesterone

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2003-05-01

    The inelastic incoherent neutron scattering and quantum chemical studies have been performed on 17 and 21 hydroxy progesterone and the assignment of internal modes have been proposed in the range up to 700 cm -1. The lattice branch of PDS reveals modes which could be attributed to torsions of rings A and D (cyclohexane and cyclopentane) of the pregnane skeleton. An assignment of the torsional vibrations of methyl groups in the range 150-300 cm -1 and the deformation and out-of plane vibrations of CCOH groups has been proposed. An analysis of the effect of hydrogen bonds on PDS spectra has been performed.

  7. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  8. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  9. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO4 and LiCoPO4.

    PubMed

    Mondal, Arobendo; Kaupp, Martin

    2018-04-05

    A novel protocol to compute and analyze NMR chemical shifts for extended paramagnetic solids, accounting comprehensively for Fermi-contact (FC), pseudocontact (PC), and orbital shifts, is reported and applied to the important lithium ion battery cathode materials LiFePO 4 and LiCoPO 4 . Using an EPR-parameter-based ansatz, the approach combines periodic (hybrid) DFT computation of hyperfine and orbital-shielding tensors with an incremental cluster model for g- and zero-field-splitting (ZFS) D-tensors. The cluster model allows the use of advanced multireference wave function methods (such as CASSCF or NEVPT2). Application of this protocol shows that the 7 Li shifts in the high-voltage cathode material LiCoPO 4 are dominated by spin-orbit-induced PC contributions, in contrast with previous assumptions, fundamentally changing interpretations of the shifts in terms of covalency. PC contributions are smaller for the 7 Li shifts of the related LiFePO 4 , where FC and orbital shifts dominate. The 31 P shifts of both materials finally are almost pure FC shifts. Nevertheless, large ZFS contributions can give rise to non-Curie temperature dependences for both 7 Li and 31 P shifts.

  10. Quantum Metropolis sampling.

    PubMed

    Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F

    2011-03-03

    The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.

  11. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    PubMed

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  12. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  13. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    NASA Astrophysics Data System (ADS)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  14. Toward the realization of a compact chemical sensor platform using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2015-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while maintaining a minimal package size. Current sensors, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy, employed in a sensor format, has shown enormous potential to address these ever-changing threats, while maintaining a compact sensor design. In order to realize the advantage of photoacoustic sensor miniaturization, light sources of comparable size are required. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. Results have demonstrated that utilizing a tunable QCL with a MEMS-scale photoacoustic cell produces favorable detection limits (ppb levels) for chemical targets (e.g., dimethyl methyl phosphonate (DMMP), vinyl acetate, 1,4-dioxane). Although our chemical sensing research has benefitted from the broad tuning capabilities of QCLs, the limitations of these sources must be considered. Current commercially available tunable systems are still expensive and obviously geared more toward laboratory operation, not fielding. Although the laser element itself is quite small, the packaging, power supply, and controller remain logistical burdens. Additionally, operational features such as continuous wave (CW) modulation and laser output powers while maintaining wide tunability are not yet ideal for a variety of sensing applications. In this paper, we will discuss our continuing evaluation of QCL technology as it matures

  15. A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors.

    PubMed

    Ye, Yixing; Wang, Panpan; Dai, Enmei; Liu, Jun; Tian, Zhenfei; Liang, Changhao; Shao, Guosheng

    2014-05-21

    Quantum-sized SnO2 nanocrystals can be well dispersed on reduced graphene oxide (rGO) nanosheets through a convenient one-pot in situ reduction route without using any other chemical reagent or source. Highly reactive metastable tin oxide (SnO(x)) nanoparticles (NPs) were used as reducing agents and composite precursors derived by the laser ablation in liquid (LAL) technique. Moreover, the growth and phase transition of LAL-induced SnO(x) NPs and graphene oxide (GO) were examined by optical absorption, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy. Highly dispersed SnO(x) NPs can also prevent rGO from being restacked into a multilayer structure during GO reduction. Given the good electron transfer ability and unsaturated dangling bonds of rGO, as well as the ample electrocatalytic active sites of quantum-sized SnO2 NPs on unfolded rGO sheets, the fabricated SnO2-rGO nanocomposite exhibited excellent performance in the non-enzymatic electrochemical detection of glucose molecules. The use of LAL-induced reactive NPs for in situ GO reduction is also expected to be a universal and environmentally friendly approach for the formation of various rGO-based nanocomposites.

  16. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.

  17. Quantum interpolation for high-resolution sensing.

    PubMed

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  18. Supervised extensions of chemography approaches: case studies of chemical liabilities assessment

    PubMed Central

    2014-01-01

    Chemical liabilities, such as adverse effects and toxicity, play a significant role in modern drug discovery process. In silico assessment of chemical liabilities is an important step aimed to reduce costs and animal testing by complementing or replacing in vitro and in vivo experiments. Herein, we propose an approach combining several classification and chemography methods to be able to predict chemical liabilities and to interpret obtained results in the context of impact of structural changes of compounds on their pharmacological profile. To our knowledge for the first time, the supervised extension of Generative Topographic Mapping is proposed as an effective new chemography method. New approach for mapping new data using supervised Isomap without re-building models from the scratch has been proposed. Two approaches for estimation of model’s applicability domain are used in our study to our knowledge for the first time in chemoinformatics. The structural alerts responsible for the negative characteristics of pharmacological profile of chemical compounds has been found as a result of model interpretation. PMID:24868246

  19. Life-times of quantum resonances through the Geometrical Phase Propagator Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, G.E.; Karanikas, A.I.; Diakonos, F.K., E-mail: fdiakono@phys.uoa.gr

    We employ the recently introduced Geometric Phase Propagator Approach (GPPA) (Diakonos et al., 2012) to develop an improved perturbative scheme for the calculation of life times in driven quantum systems. This incorporates a resummation of the contributions of virtual processes starting and ending at the same state in the considered time interval. The proposed procedure allows for a strict determination of the conditions leading to finite life times in a general driven quantum system by isolating the resummed terms in the perturbative expansion contributing to their generation. To illustrate how the derived conditions apply in practice, we consider the effect ofmore » driving in a system with purely discrete energy spectrum, as well as in a system for which the eigenvalue spectrum contains a continuous part. We show that in the first case, when the driving contains a dense set of frequencies acting as a noise to the system, the corresponding bound states acquire a finite life time. When the energy spectrum contains also a continuum set of eigenvalues then the bound states, due to the driving, couple to the continuum and become quasi-bound resonances. The benchmark of this change is the appearance of a Fano-type peak in the associated transmission profile. In both cases the corresponding life-time can be efficiently estimated within the reformulated GPPA approach.« less

  20. Robust Learning Control Design for Quantum Unitary Transformations.

    PubMed

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  1. Quantum Dots for Molecular Diagnostics of Tumors

    PubMed Central

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD. PMID:22649672

  2. Standoff detection of explosives and chemical agents using broadly tuned external-cavity quantum cascade lasers (EC-QCLs)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Rayner, Timothy; Weida, Miles; Crivello, Salvatore; Day, Timothy

    2007-10-01

    Civilian soft targets such as transportation systems are being targeted by terrorists using IEDs and suicide bombers. Having the capability to remotely detect explosives, precursors and other chemicals would enable these assets to be protected with minimal interruption of the flow of commerce. Mid-IR laser technology offers the potential to detect explosives and other chemicals in real-time and from a safe standoff distance. While many of these agents possess "fingerprint" signatures in the mid-IR (i.e. in the 3-20 micron regime), their effective interrogation by a practical, field-deployable system has been limited by size, complexity, reliability and cost constraints of the base laser technology. Daylight Solutions has addressed these shortcomings by developing compact, portable, broadly tunable mid-IR laser sources based upon external-cavity quantum cascade technology. This technology is now being applied by Daylight in system level architectures for standoff and remote detection of explosives, precursors and chemical agents. Several of these architectures and predicted levels of performance will be presented.

  3. A modified gradient approach for the growth of low-density InAs quantum dot molecules by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, Nandlal; Reuter, Dirk

    2017-11-01

    Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.

  4. Quantum population and entanglement evolution in photosynthetic process

    NASA Astrophysics Data System (ADS)

    Zhu, Jing

    Applications of the concepts of quantum information theory are usually related to the powerful and counter-intuitive quantum mechanical effects of superposition, interference and entanglement. In this thesis, I examine the role of coherence and entanglement in complex chemical systems. The research has focused mainly on two related projects: The first project is developing a theoretical model to explain the recent ultrafast experiments on excitonic migration in photosynthetic complexes that show long-lived coherence of the order of hundreds of femtoseconds and the second project developing the Grover algorithm for global optimization of complex systems. The first part can be divided into two sections. The first section is investigating the theoretical frame about the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex. The new developed modified scaled hierarchical equation of motion (HEOM) approach is employed for simulating the open quantum system. The second section is investigating the evolution of entanglement in the FMO complex based on the simulation result via scaled HEOM approach. We examine the role of multipartite entanglement in the FMO complex by direct computation of the convex roof optimization for a number of different measures, including pairwise, triplet, quadruple and quintuple sites entanglement. Our results support the hypothesis that multipartite entanglement is maximum primary along the two distinct electronic energy transfer pathways. The second part of this thesis can be separated into two sections. The first section demonstrated that a modified Grover's quantum algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits. Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on a quantum computer simulator using a modified Grover's algorithm. The second section is implementing the basic

  5. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-09

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction.

  6. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots

    PubMed Central

    Wang, Yan; Liu, Yang; Zhang, Jianfang; Wu, Jingjie; Xu, Hui; Wen, Xiewen; Zhang, Xiang; Tiwary, Chandra Sekhar; Yang, Wei; Vajtai, Robert; Zhang, Yong; Chopra, Nitin; Odeh, Ihab Nizar; Wu, Yucheng; Ajayan, Pulickel M.

    2017-01-01

    Atomically thin quantum dots from layered materials promise new science and applications, but their scalable synthesis and separation have been challenging. We demonstrate a universal approach for the preparation of quantum dots from a series of materials, such as graphite, MoS2, WS2, h-BN, TiS2, NbS2, Bi2Se3, MoTe2, Sb2Te3, etc., using a cryo-mediated liquid-phase exfoliation and fracturing process. The method relies on liquid nitrogen pretreatment of bulk layered materials before exfoliation and breakdown into atomically thin two-dimensional quantum dots of few-nanometer lateral dimensions, exhibiting size-confined optical properties. This process is efficient for a variety of common solvents with a wide range of surface tension parameters and eliminates the use of surfactants, resulting in pristine quantum dots without surfactant covering or chemical modification. PMID:29250597

  7. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  8. Strain-Driven Approach to Quantum Criticality in AFe 2As 2 with A=K, Rb, and Cs

    DOE PAGES

    Eilers, Felix; Grube, Kai; Zocco, Diego A.; ...

    2016-06-08

    The iron-based superconductors AFe 2As 2 with A = K, Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. In conclusion, the critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconductingmore » state.« less

  9. [DIFFERENT APPROACHES FOR CHEMICAL RISK ASSESSMENT IN LABORATORIES].

    PubMed

    Caporossi, Lidia; Papaleo, Bruno; Capanna, Silvia; Calicchia, Sara; Marcellini, Laura; De Rosa, Mariangela; Castellano, Paola

    2015-01-01

    The aim of this study was to compare the different approaches used for chemical risk assessment, in relation to the perception of riskfor operators, in some research laboratories of a hospital in Rome. All information regarding the chemicals used for the application of three algorithmic models for chemical risk assessment ("Movarisch", "Inforisk", "Archimede") were collected. An environmental and biological monitoring and a study on the combined exposure to multiple chemicals using the World Health Organization proposed steps were carried out. A questionnaire was prepared for the identification of risk perception. An estimation of chemical risk with algorithms was compared with data from monitoring: findings showed that estimated risk was higher than those identified with airborne or urine concentrations, always under their limit values. The study of multiple exposure showed a possible cumulative risk, in some cases, but the conditions of use (volume and time) often bring to a reduced one. The perception of risk attributed to the monitored hazardous substances showed a correct perception in all laboratories and for all workers, with regard to the substances manipulated.

  10. Bond Order and Chemical Properties of BF, CO, and N[subscript 2

    ERIC Educational Resources Information Center

    Martinie, Ryan J.; Bultema, Jarred J.; Vander Wal, Mark N.; Burkhart, Brandon J.; Vander Griend, Douglas A.; DeKock, Roger L.

    2011-01-01

    The traditional chemical approaches, Lewis electron dot structures and molecular orbital theory, predict the relative bond orders of boron monofluoride, carbon monoxide, and dinitrogen to be BF less than CO less than N[subscript 2]. This is quantified by quantum mechanical, theoretical studies that show the bond orders to be approximately 1.4,…

  11. Optical quantum memory based on electromagnetically induced transparency

    PubMed Central

    Ma, Lijun; Slattery, Oliver

    2017-01-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems. PMID:28828172

  12. Optical quantum memory based on electromagnetically induced transparency.

    PubMed

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2017-04-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.

  13. Quantum chemical study on the stability of honeybee queen pheromone against atmospheric factors.

    PubMed

    Shi, Rongwei; Liu, Fanglin

    2016-06-01

    The managed honeybee, Apis mellifera, has been experienced a puzzling event, termed as colony collapse disorder (CCD), in which worker bees abruptly disappear from their hives. Potential factors include parasites, pesticides, malnutrition, and environmental stresses. However, so far, no definitive relationship has been established between specific causal factors and CCD events. Here we theoretically test whether atmospheric environment could disturb the chemical communication between the queen and their workers in a colony. A quantum chemistry method has been used to investigate for the stability of the component of A. mellifera queen mandibular pheromone (QMP), (E)-9-keto-2-decenoic acid (9-ODA), against atmospheric water and free radicals. The results show that 9-ODA is less likely to react with water due to the high barrier heights (~36.5 kcal · mol(-1)) and very low reaction rates. However, it can easily react with triplet oxygen and hydroxyl radicals because of low or negative energy barriers. Thus, the atmospheric free radicals may disturb the chemical communication between the queen and their daughters in a colony. Our pilot study provides new insight for the cause of CCD, which has been reported throughout the world.

  14. A fragmentation-based approach for evaluating the intra-chain excitonic couplings in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Ma, Haibo

    2017-07-01

    For computing the intra-chain excitonic couplings in polymeric systems, here we propose a new fragmentation approach. A comparison for the energetic and spatial properties of the low-lying excited states in PPV between our scheme and full quantum chemical calculations, reveals that our scheme can nicely reproduce full quantum chemical results in weakly coupled systems. Further wavefunction analysis indicate that improved description for strongly coupled system can be achieved by the inclusion of the higher excited states within each fragments. Our proposed scheme is helpful for building the bridge linking the phenomenological descriptions of excitons and microscopic modeling for realistic polymers.

  15. The Conceptual Change Approach to Teaching Chemical Equilibrium

    ERIC Educational Resources Information Center

    Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer

    2006-01-01

    This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…

  16. Individuation in Quantum Mechanics and Space-Time

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  17. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  18. Quantum interpolation for high-resolution sensing

    PubMed Central

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-01-01

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy. PMID:28196889

  19. Quantum-to-classical crossover near quantum critical point

    DOE PAGES

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less

  20. An in fiber experimental approach to photonic quantum digital signatures that does not require quantum memory

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Donaldon, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2014-10-01

    Classical digital signatures are commonly used in e-mail, electronic financial transactions and other forms of electronic communications to ensure that messages have not been tampered with in transit, and that messages are transferrable. The security of commonly used classical digital signature schemes relies on the computational difficulty of inverting certain mathematical functions. However, at present, there are no such one-way functions which have been proven to be hard to invert. With enough computational resources certain implementations of classical public key cryptosystems can be, and have been, broken with current technology. It is nevertheless possible to construct information-theoretically secure signature schemes, including quantum digital signature schemes. Quantum signature schemes can be made information theoretically secure based on the laws of quantum mechanics, while classical comparable protocols require additional resources such as secret communication and a trusted authority. Early demonstrations of quantum digital signatures required quantum memory, rendering them impractical at present. Our present implementation is based on a protocol that does not require quantum memory. It also uses the new technique of unambiguous quantum state elimination, Here we report experimental results for a test-bed system, recorded with a variety of different operating parameters, along with a discussion of aspects of the system security.

  1. Experimental and Quantum-Chemical Study of Electronically Excited States of Protolytic Isovanillin Species

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.

    2014-05-01

    Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.

  2. A pedestrian approach to the measurement problem in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen; Reginatto, Marcel

    2013-09-01

    The quantum theory of measurement has been a matter of debate for over eighty years. Most of the discussion has focused on theoretical issues with the consequence that other aspects (such as the operational prescriptions that are an integral part of experimental physics) have been largely ignored. This has undoubtedly exacerbated attempts to find a solution to the "measurement problem". How the measurement problem is defined depends to some extent on how the theoretical concepts introduced by the theory are interpreted. In this paper, we fully embrace the minimalist statistical (ensemble) interpretation of quantum mechanics espoused by Einstein, Ballentine, and others. According to this interpretation, the quantum state description applies only to a statistical ensemble of similarly prepared systems rather than representing an individual system. Thus, the statistical interpretation obviates the need to entertain reduction of the state vector, one of the primary dilemmas of the measurement problem. The other major aspect of the measurement problem, the necessity of describing measurements in terms of classical concepts that lay outside of quantum theory, remains. A consistent formalism for interacting quantum and classical systems, like the one based on ensembles on configuration space that we refer to in this paper, might seem to eliminate this facet of the measurement problem; however, we argue that the ultimate interface with experiments is described by operational prescriptions and not in terms of the concepts of classical theory. There is no doubt that attempts to address the measurement problem have yielded important advances in fundamental physics; however, it is also very clear that the measurement problem is still far from being resolved. The pedestrian approach presented here suggests that this state of affairs is in part the result of searching for a theoretical/mathematical solution to what is fundamentally an experimental/observational question. It

  3. Quantum reinforcement learning.

    PubMed

    Dong, Daoyi; Chen, Chunlin; Li, Hanxiong; Tarn, Tzyh-Jong

    2008-10-01

    The key approaches for machine learning, particularly learning in unknown probabilistic environments, are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement learning (RL). Inspired by the state superposition principle and quantum parallelism, a framework of a value-updating algorithm is introduced. The state (action) in traditional RL is identified as the eigen state (eigen action) in QRL. The state (action) set can be represented with a quantum superposition state, and the eigen state (eigen action) can be obtained by randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The probability of the eigen action is determined by the probability amplitude, which is updated in parallel according to rewards. Some related characteristics of QRL such as convergence, optimality, and balancing between exploration and exploitation are also analyzed, which shows that this approach makes a good tradeoff between exploration and exploitation using the probability amplitude and can speedup learning through the quantum parallelism. To evaluate the performance and practicability of QRL, several simulated experiments are given, and the results demonstrate the effectiveness and superiority of the QRL algorithm for some complex problems. This paper is also an effective exploration on the application of quantum computation to artificial intelligence.

  4. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.

    PubMed

    Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi

    2017-09-05

    An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    NASA Astrophysics Data System (ADS)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  6. Small Atomic Orbital Basis Set First‐Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources

    PubMed Central

    Sure, Rebecca; Brandenburg, Jan Gerit

    2015-01-01

    Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221

  7. Quantum group structure and local fields in the algebraic approach to 2D gravity

    NASA Astrophysics Data System (ADS)

    Schnittger, J.

    1995-07-01

    This review contains a summary of the work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables — the Liouville exponentials and the Liouville field itself — and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.

  8. A topological quantum optics interface

    NASA Astrophysics Data System (ADS)

    Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo

    2018-02-01

    The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing.

  9. Interacting lattice systems with quantum dissipation: A quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Pollet, Lode; Lou, Jie; Wang, Xiaoqun; Chen, Yan; Cai, Zi

    2018-01-01

    Quantum dissipation arises when a large system can be split in a quantum system and an environment to which the energy of the former flows. Understanding the effect of dissipation on quantum many-body systems is of particular importance due to its potential relationship with quantum information. We propose a conceptually simple approach to introduce dissipation into interacting quantum systems in a thermodynamical context, in which every site of a one-dimensional (1D) lattice is coupled off-diagonally to its own bath. The interplay between quantum dissipation and interactions gives rise to counterintuitive interpretations such as a compressible zero-temperature state with spontaneous discrete symmetry breaking and a thermal phase transition in a 1D dissipative quantum many-body system as revealed by quantum Monte Carlo path-integral simulations.

  10. Photonic quantum technologies (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy L.

    2015-09-01

    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  11. Quantum-Enhanced Machine Learning

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  12. Performance of the density matrix functional theory in the quantum theory of atoms in molecules.

    PubMed

    García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A

    2012-02-02

    The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.

  13. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantum chemistry in environmental pesticide risk assessment.

    PubMed

    Villaverde, Juan J; López-Goti, Carmen; Alcamí, Manuel; Lamsabhi, Al Mokhtar; Alonso-Prados, José L; Sandín-España, Pilar

    2017-11-01

    The scientific community and regulatory bodies worldwide, currently promote the development of non-experimental tests that produce reliable data for pesticide risk assessment. The use of standard quantum chemistry methods could allow the development of tools to perform a first screening of compounds to be considered for the experimental studies, improving the risk assessment. This fact results in a better distribution of resources and in better planning, allowing a more exhaustive study of the pesticides and their metabolic products. The current paper explores the potential of quantum chemistry in modelling toxicity and environmental behaviour of pesticides and their by-products by using electronic descriptors obtained computationally. Quantum chemistry has potential to estimate the physico-chemical properties of pesticides, including certain chemical reaction mechanisms and their degradation pathways, allowing modelling of the environmental behaviour of both pesticides and their by-products. In this sense, theoretical methods can contribute to performing a more focused risk assessment of pesticides used in the market, and may lead to higher quality and safer agricultural products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Approach to equilibrium of a quantum system and generalization of the Montroll-Shuler equation for vibrational relaxation of a molecular oscillator

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.; Chase, M.

    2017-08-01

    The approach to equilibrium of a quantum mechanical system in interaction with a bath is studied from a practical as well as a conceptual point of view. Explicit memory functions are derived for given models of bath couplings. If the system is a harmonic oscillator representing a molecule in interaction with a reservoir, the generalized master equation derived becomes an extension into the coherent domain of the well-known Montroll-Shuler equation for vibrational relaxation and unimolecular dissociation. A generalization of the Bethe-Teller result regarding energy relaxation is found for short times. The theory has obvious applications to relaxation dynamics at ultra-short times as in observations on the femtosecond time scale and to the investigation of quantum coherence at those short times. While vibrational relaxation in chemical physics is a primary target of the study, another system of interest in condensed matter physics, an electron or hole in a lattice subjected to a strong DC electric field that gives rise to well-known Wannier-Stark ladders, is naturally addressed with the theory. Specific system-bath interactions are explored to obtain explicit details of the dynamics. General phenomenological descriptions of the reservoir are considered rather than specific microscopic realizations.

  16. Universal quantum gates for Single Cooper Pair Box based quantum computing

    NASA Technical Reports Server (NTRS)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  17. Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior.

    PubMed

    Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W

    2016-09-16

    Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

  18. Low temperature regulated growth of PbS quantum dots by wet chemical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Hitanshu, E-mail: hitanshuminhas@gmail.com; Barman, P. B.; Singh, Ragini Raj

    2015-08-28

    Narrow size distribution with regulated synthesis of lead sulfide (PbS) quantum dots (QDs) was achieved through wet chemical method. Different concentrations of 2-mercaptoethanol (capping agent) were used for tailoring the QDs size. Transmission electron microscopy and X-ray diffraction studies revealed that the QDs have mean diameters between 6 to 15 nm. The optical absorption spectra were compared to the predictions of a theoretical model for the electronic structure. The theory agrees well with experiment for QDs larger than 7 nm, but for smaller dots there is some deviation from the theoretical predictions. Consequently, the produced particles are having monodispersity, good water solubility,more » stability and may be good arguments to be biologically compatible due to the use of 2-mercaptoethanol.« less

  19. Test-state approach to the quantum search problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehrawat, Arun; Nguyen, Le Huy; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597

    2011-05-15

    The search for 'a quantum needle in a quantum haystack' is a metaphor for the problem of finding out which one of a permissible set of unitary mappings - the oracles - is implemented by a given black box. Grover's algorithm solves this problem with quadratic speedup as compared with the analogous search for 'a classical needle in a classical haystack'. Since the outcome of Grover's algorithm is probabilistic - it gives the correct answer with high probability, not with certainty - the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These testmore » states can also be used to realize 'a classical search for the quantum needle' which is deterministic - it always gives a definite answer after a finite number of steps - and 3.41 times as fast as the purely classical search. Since the test-state search and Grover's algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grover's algorithm.« less

  20. Generation of stimulated noncoherent radiation in light-scattering media exhibiting chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izmailov, I.A.; Kochelap, V.A.; Mel'nikov, L.Y.

    1982-05-01

    It is proposed that a feedback resulting from scattering be used to achieve lasing in a disperse reactive medium. The example of a simple two-level system shows that under advanced lasing conditions the quantum efficiency of the radiation emission approaches the quantum efficiency of the excitation of the upper level, and the emission spectrum becomes much narrower. Feasibility of chemical pumping of such a laser is estimated on the basis of calculations of heterophase burning of a drop of a fuel in an oxidizing atmosphere. The growth increment of light is calculated and the threshold conditions for the excitation ofmore » lasing are found. Examples are given to illustrate the feasibility of purely chemical pumping of a laser with a nonresonant feedback. It is shown that dense reactive media can be used in such lasers.« less

  1. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  2. Analysis of quantum information processors using quantum metrology

    NASA Astrophysics Data System (ADS)

    Kandula, Mark J.; Kok, Pieter

    2018-06-01

    Physical implementations of quantum information processing devices are generally not unique, and we are faced with the problem of choosing the best implementation. Here, we consider the sensitivity of quantum devices to variations in their different components. To measure this, we adopt a quantum metrological approach and find that the sensitivity of a device to variations in a component has a particularly simple general form. We use the concept of cost functions to establish a general practical criterion to decide between two different physical implementations of the same quantum device consisting of a variety of components. We give two practical examples of sensitivities of quantum devices to variations in beam splitter transmittivities: the Knill-Laflamme-Milburn (KLM) and reverse nonlinear sign gates for linear optical quantum computing with photonic qubits, and the enhanced optical Bell detectors by Grice and Ewert and van Loock. We briefly compare the sensitivity to the diamond distance and find that the latter is less suited for studying the behavior of components embedded within the larger quantum device.

  3. Resonant transition-based quantum computation

    NASA Astrophysics Data System (ADS)

    Chiang, Chen-Fu; Hsieh, Chang-Yu

    2017-05-01

    In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians' spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.

  4. A quantum–quantum Metropolis algorithm

    PubMed Central

    Yung, Man-Hong; Aspuru-Guzik, Alán

    2012-01-01

    The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584

  5. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects.

    PubMed

    Maji, Kaushik; Kouri, Donald J

    2011-03-28

    We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.

  6. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001; Gupta, Shikha

    Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models wasmore » performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and

  7. Semihierarchical quantum repeaters based on moderate lifetime quantum memories

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Zhou, Zong-Quan; Hua, Yi-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    The construction of large-scale quantum networks relies on the development of practical quantum repeaters. Many approaches have been proposed with the goal of outperforming the direct transmission of photons, but most of them are inefficient or difficult to implement with current technology. Here, we present a protocol that uses a semihierarchical structure to improve the entanglement distribution rate while reducing the requirement of memory time to a range of tens of milliseconds. This protocol can be implemented with a fixed distance of elementary links and fixed requirements on quantum memories, which are independent of the total distance. This configuration is especially suitable for scalable applications in large-scale quantum networks.

  8. Fast non-Abelian geometric gates via transitionless quantum driving.

    PubMed

    Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-12-21

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.

  9. Fast non-Abelian geometric gates via transitionless quantum driving

    PubMed Central

    Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-01-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580

  10. A Decision Analytic Approach to Exposure-Based Chemical Prioritization

    PubMed Central

    Mitchell, Jade; Pabon, Nicolas; Collier, Zachary A.; Egeghy, Peter P.; Cohen-Hubal, Elaine; Linkov, Igor; Vallero, Daniel A.

    2013-01-01

    The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies. PMID:23940664

  11. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  12. Quantum chemical calculations of Cr2O3/SnO2 using density functional theory method

    NASA Astrophysics Data System (ADS)

    Jawaher, K. Rackesh; Indirajith, R.; Krishnan, S.; Robert, R.; Das, S. Jerome

    2018-03-01

    Quantum chemical calculations have been employed to study the molecular effects produced by Cr2O3/SnO2 optimised structure. The theoretical parameters of the transparent conducting metal oxides were calculated using DFT / B3LYP / LANL2DZ method. The optimised bond parameters such as bond lengths, bond angles and dihedral angles were calculated using the same theory. The non-linear optical property of the title compound was calculated using first-order hyperpolarisability calculation. The calculated HOMO-LUMO analysis explains the charge transfer interaction between the molecule. In addition, MEP and Mulliken atomic charges were also calculated and analysed.

  13. Approach for describing spatial dynamics of quantum light-matter interaction in dispersive dissipative media

    NASA Astrophysics Data System (ADS)

    Zyablovsky, A. A.; Andrianov, E. S.; Nechepurenko, I. A.; Dorofeenko, A. V.; Pukhov, A. A.; Vinogradov, A. P.

    2017-05-01

    Solving the challenging problem of the amplification and generation of an electromagnetic field in nanostructures enables us to implement many properties of the electromagnetic field at the nanoscale in practical applications. A first-principles quantum-mechanical consideration of such a problem is sufficiently restricted by the exponentially large number of degrees of freedom and does not allow the electromagnetic-field dynamics to be described if it involves a high number of interacting atoms and modes of the electromagnetic field. Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop a framework with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in a metallic subwavelength groove and demonstrate that a spontaneously excited electromagnetic pulse propagates with the group velocity. The developed approach may be exploited to describe nonuniform amplification and propagation of electromagnetic fields in arbitrary dispersive dissipative systems.

  14. Molecular basis of quantitative structure-properties relationships (QSPR): a quantum similarity approach.

    PubMed

    Ponec, R; Amat, L; Carbó-Dorca, R

    1999-05-01

    Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett sigma constants and the logarithm of the octanol-water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.

  15. Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach

    NASA Astrophysics Data System (ADS)

    Ponec, Robert; Amat, Lluís; Carbó-dorca, Ramon

    1999-05-01

    Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett σ constants and the logarithm of the octanol- water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.

  16. Covariant Approach of the Dynamics of Particles in External Gauge Fields, Killing Tensors and Quantum Gravitational Anomalies

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2011-04-01

    We give an overview of the first integrals of motion of particles in the presence of external gauge fields in a covariant Hamiltonian approach. The special role of Stäckel-Killing and Killing-Yano tensors is pointed out. Some nontrivial examples involving Runge-Lenz type conserved quantities are explicitly worked out. A condition of the electromagnetic field to maintain the hidden symmetry of the system is stated. A concrete realization of this condition is given by the Killing-Maxwell system and exemplified with the Kerr metric. Quantum symmetry operators for the Klein-Gordon and Dirac equations are constructed from Killing tensors. The transfer of the classical conserved quantities to the quantum mechanical level is analyzed in connection with quantum anomalies.

  17. Approaches to Learning in a Second Year Chemical Engineering Course.

    ERIC Educational Resources Information Center

    Case, Jennifer M.; Gunstone, Richard F.

    2003-01-01

    Investigates student approaches to learning in a second year chemical engineering course by means of a qualitative research project which utilized interview and journal data from a group of 11 students. Identifies three approaches to learning: (1) conceptual; (2) algorithmic; and (3) information-based. Presents student responses to a series of…

  18. Soviet chemical laser research: pulsed lasers. Report for 1963--1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ksander, Y.

    1971-11-01

    The document reviews Soviet work on pulsed chemical lasers published in the open litarature in 1963-1970. Whereas U. S. research combines the approaches of physics, quantum electrodynamics, and aerodynamics, Soviet laser research is heavily (and expertly) oriented to understanding the chemical reactions. They prefer pulsed to cw systems, concentrating on kinetics of vibrationally excited diatomic systems. The documents describe gas lasers with discharge, photolytic, and other initiation and includes research on HN/sub 3/ + CO/sub 2/ mixtures, and means of controlling reaction rates by resonant coupling and selective heating. The report also proposes a laser based on photorecombination of atoms.

  19. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions.

    PubMed

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-10

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, (13)C and (1)H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  1. Quantum theory of the far-off-resonance continuous-wave Raman laser: Heisenberg-Langevin approach

    NASA Astrophysics Data System (ADS)

    Roos, P. A.; Murphy, S. K.; Meng, L. S.; Carlsten, J. L.; Ralph, T. C.; White, A. G.; Brasseur, J. K.

    2003-07-01

    We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump ↔ pump, Stokes ↔ signal, and Raman coherence ↔ idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

  2. Chemical proteomics approaches for identifying the cellular targets of natural products

    PubMed Central

    Sieber, S. A.

    2016-01-01

    Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed. PMID:27098809

  3. Chemical proteomics approaches for identifying the cellular targets of natural products.

    PubMed

    Wright, M H; Sieber, S A

    2016-05-04

    Covering: 2010 up to 2016Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.

  4. Hybrid bioinorganic approach to solar-to-chemical conversion.

    PubMed

    Nichols, Eva M; Gallagher, Joseph J; Liu, Chong; Su, Yude; Resasco, Joaquin; Yu, Yi; Sun, Yujie; Yang, Peidong; Chang, Michelle C Y; Chang, Christopher J

    2015-09-15

    Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for ≥ 7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion.

  5. Hybrid bioinorganic approach to solar-to-chemical conversion

    PubMed Central

    Nichols, Eva M.; Gallagher, Joseph J.; Liu, Chong; Su, Yude; Resasco, Joaquin; Yu, Yi; Sun, Yujie; Yang, Peidong; Chang, Michelle C. Y.; Chang, Christopher J.

    2015-01-01

    Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, α-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for ≥7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion. PMID:26305947

  6. Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots.

    PubMed

    Douglas-Gallardo, Oscar A; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban

    2018-04-14

    Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.

  7. Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Douglas-Gallardo, Oscar A.; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban

    2018-04-01

    Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.

  8. Quantum approach of mesoscopic magnet dynamics with spin transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Sham, L. J.

    2013-05-01

    We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.

  9. Neural-network quantum state tomography

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe

    2018-05-01

    The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.

  10. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    NASA Astrophysics Data System (ADS)

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-12-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates.

  11. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    PubMed Central

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-01-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. PMID:27991584

  12. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  13. The quantum phase-transitions of water

    NASA Astrophysics Data System (ADS)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  14. Robust scoring functions for protein-ligand interactions with quantum chemical charge models.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin; Chen, Chung-Ming; Perryman, Alex L; Olson, Arthur J

    2011-10-24

    Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 Å. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).

  15. Elucidating reaction mechanisms on quantum computers.

    PubMed

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  16. Elucidating reaction mechanisms on quantum computers

    PubMed Central

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  17. Elucidating reaction mechanisms on quantum computers

    NASA Astrophysics Data System (ADS)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  18. Elucidating Reaction Mechanisms on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Wiebe, Nathan; Reiher, Markus; Svore, Krysta; Wecker, Dave; Troyer, Matthias

    We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant.

  19. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    PubMed

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.

  20. Predicting the carcinogenicity of chemicals with alternative approaches: recent advances.

    PubMed

    Benigni, Romualdo

    2014-09-01

    Alternative approaches to the rodent bioassay are necessary for early identification of problematic drugs and biocides during the development process, and are the only practicable tool for assessing environmental chemicals with no or adequate safety documentation. This review informs on: i) the traditional prescreening through genotoxicity testing; ii) an integrative approach that assesses DNA-reactivity and ability to disorganize tissues; iii) new applications of omics technologies (ToxCast/Tox21 project); iv) a pragmatic approach aimed at filling data gaps by intrapolating/extrapolating from similar chemicals (read-across, category formation). The review also approaches the issue of the concerns about false-positive and false-negative results that prevents a wider acceptance and use of alternatives. The review addresses strengths and limitations of various proposals, and concludes on the need of differential approaches to the issue of false negatives and false positives. False negatives can be eliminated or reduced below the variability of the animal assay with conservative quantitative structure-activity relationships or in vitro tests; false positives can be cleared with ad hoc mechanistically based follow-ups. This framework can permit a reduction of animal testing and a better protection of human health.

  1. Quantum speed limits in open system dynamics.

    PubMed

    del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F

    2013-02-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

  2. Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.

    PubMed

    Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C

    2011-06-02

    Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.

  3. Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline

    NASA Astrophysics Data System (ADS)

    Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.

    2017-12-01

    Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.

  4. Quantum Zeno and anti-Zeno effects in open quantum systems

    NASA Astrophysics Data System (ADS)

    Zhou, Zixian; Lü, Zhiguo; Zheng, Hang; Goan, Hsi-Sheng

    2017-09-01

    The traditional approach to the quantum Zeno effect (QZE) and quantum anti-Zeno effect (QAZE) in open quantum systems (implicitly) assumes that the bath (environment) state returns to its original state after each instantaneous projective measurement on the system and thus ignores the cross-correlations of the bath operators between different Zeno intervals. However, this assumption is not generally true, especially for a bath with a considerably nonnegligible memory effect and for a system repeatedly projected into an initial general superposition state. We find that, in stark contrast to the result of a constant value found in the traditional approach, the scaled average decay rate in unit Zeno interval of the survival probability is generally time dependent or shows an oscillatory behavior. In the case of a strong bath correlation, the transition between the QZE and the QAZE depends sensitively on the number of measurements N . For a fixed N , a QZE region predicted by the traditional approach may in fact already be in the QAZE region. We illustrate our findings using an exactly solvable open qubit system model with a Lorentzian bath spectral density, which is directly related to realistic circuit cavity quantum electrodynamics systems. Thus the results and dynamics presented here can be verified with current superconducting circuit technology.

  5. Application of the Interacting Quantum Atoms Approach to the S66 and Ionic-Hydrogen-Bond Datasets for Noncovalent Interactions.

    PubMed

    Suárez, Dimas; Díaz, Natalia; Francisco, Evelio; Martín Pendás, Angel

    2018-04-17

    The interacting quantum atoms (IQA) method can assess, systematically and in great detail, the strength and physics of both covalent and noncovalent interactions. The lack of a pair density in density functional theory (DFT), which precludes the direct IQA decomposition of the characteristic exchange-correlation energy, has been recently overcome by means of a scaling technique, which can largely expand the applicability of the method. To better assess the utility of the augmented IQA methodology to derive quantum chemical decompositions at the atomic and molecular levels, we report the results of Hartree-Fock (HF) and DFT calculations on the complexes included in the S66 and the ionic H-bond databases of benchmark geometry and binding energies. For all structures, we perform single-point and geometry optimizations using HF and selected DFT methods with triple-ζ basis sets followed by full IQA calculations. Pairwise dispersion energies are accounted for by the D3 method. We analyze the goodness of the HF-D3 and DFT-D3 binding energies, the magnitude of numerical errors, the fragment and atomic distribution of formation energies, etc. It is shown that fragment-based IQA decomposes the formation energies in comparable terms to those of perturbative approaches and that the atomic IQA energies hold the promise of rigorously quantifying atomic and group energy contributions in larger biomolecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  7. Low Temperature Synthesis of CdSe Quantum Dots with Amine Derivative and Their Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Seongmi Hwang,; Youngmin Choi,; Sunho Jeong,; Hakyun Jung,; Chang Gyoun Kim,; Teak-Mo Chung,; Beyong-Hwan Ryu,

    2010-05-01

    The chemical kinetics of growing CdSe nanocrystals was studied in order to investigate the effects of amine capping agents on the size of resulting quantum dots (QDs). CdSe QDs were prepared in phenyl ether, and the amine ligand dependence of QD size was determined. The results show that the size of CdSe nanocrystals can be regulated by controlling reaction rate, with smaller QDs being formed in slower processes. The results of photoluminescence (PL) studies show that the emission wavelengths of the QDs well correlate with particle size. This simple process for forming different-sized QDs, which uses a cheap solvent and various capping agents, has the potential for preparing CdSe nanocrystals more economically.

  8. Spiers Memorial Lecture. Quantum chemistry: the first seventy years.

    PubMed

    McWeeny, Roy

    2007-01-01

    Present-day theoretical chemistry is rooted in Quantum Mechanics. The aim of the opening lecture is to trace the evolution of Quantum Chemistry from the Heitler-London paper of 1927 up to the end of the last century, emphasizing concepts rather than calculations. The importance of symmetry concepts became evident in the early years: one thinks of the necessary anti-symmetry of the wave function under electron permutations, the Pauli principle, the aufbau scheme, and the classification of spectroscopic states. But for chemists perhaps the key concept is embodied in the Hellmann-Feynman theorem, which provides a pictorial interpretation of chemical bonding in terms of classical electrostatic forces exerted on the nuclei by the electron distribution. Much of the lecture is concerned with various electron distribution functions--the electron density, the current density, the spin density, and other 'property densities'--and with their use in interpreting both molecular structure and molecular properties. Other topics touched upon include Response theory and propagators; Chemical groups in molecules and the group function approach; Atoms in molecules and Bader's theory; Electron correlation and the 'pair function'. Finally, some long-standing controversies, in particular the EPR paradox, are re-examined in the context of molecular dissociation. By admitting the concept of symmetry breaking, along with the use of the von Neumann-Dirac statistical ensemble, orthodox quantum mechanics can lead to a convincing picture of the dissociation mechanism.

  9. Coriolis coupling and nonadiabaticity in chemical reaction dynamics.

    PubMed

    Wu, Emilia L

    2010-12-01

    The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context. © 2010 Wiley Periodicals, Inc.

  10. High fidelity quantum teleportation assistance with quantum neural network

    NASA Astrophysics Data System (ADS)

    Huang, Chunhui; Wu, Bichun

    2014-09-01

    In this paper, a high fidelity scheme of quantum teleportation based on quantum neural network (QNN) is proposed. The QNN is composed of multi-bit control-not gates. The quantum teleportation of a qubit state via two-qubit entangled channels is investigated by solving the master equation in Lindblad operators with a noisy environment. To ensure the security of quantum teleportation, the indirect training of QNN is employed. Only 10% of teleported information is extracted for the training of QNN parameters. Then the outputs are corrected by the other QNN at Bob's side. We build a random series of numbers ranged in [0, π] as inputs and simulate the properties of our teleportation scheme. The results show that the fidelity of quantum teleportation system is significantly improved to approach 1 by the error-correction of QNN. It illustrates that the distortion can be eliminated perfectly and the high fidelity of quantum teleportation could be implemented.

  11. Testing quantum gravity through dumb holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7

    We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogs for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate thatmore » such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.« less

  12. AI AND SAR APPROACHES FOR PREDICTING CHEMICAL CARCINOGENICITY: SURVEY AND STATUS REPORT

    EPA Science Inventory

    A wide variety of artificial intelligence (AI) and structure-activity relationship (SAR approaches have been applied to tackling the general problem of predicting rodent chemical carcinogenicity. Given the diversity of chemical structures and mechanisms relative to this endpoin...

  13. Sliding mode control: an approach to regulate nonlinear chemical processes

    PubMed

    Camacho; Smith

    2000-01-01

    A new approach for the design of sliding mode controllers based on a first-order-plus-deadtime model of the process, is developed. This approach results in a fixed structure controller with a set of tuning equations as a function of the characteristic parameters of the model. The controller performance is judged by simulations on two nonlinear chemical processes.

  14. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    PubMed

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Holistic Watershed-Scale Approach for Studying Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Capel, P. D.; Domagalski, J. L.

    2006-05-01

    The USGS National Water-Quality Assessment (NAWQA) Program studied the water quality of 51 areas across the United States during its first decade (1991-2001). Analyses of results from that phase of the NAWQA Program indicated that detailed studies of the processes affecting water quality could aid in the interpretation of these data, help to determine the direction and scope of future monitoring studies, and add to the understanding of the sources, transport and fate of non-point source chemicals, such as from agriculture. Now in the second decade of investigations, the NAWQA Program has initiated new process-based detailed studies to increase our understanding at the scale of a small watershed (about 3-15 square kilometers), nested within the larger basins studied during the first decade. The holistic, mass-budget approach for small agricultural watersheds that was adopted includes processes, and measures water and chemicals in the atmosphere, surface water, tile drains, overland flow, and within various sub-surface environments including the vadose, saturated, and hyporheic zones. The primary chemicals of interest were nutrients (nitrogen and phosphorous), the triazine and acetanilide herbicides, and the organophosphorus insecticides. Extensive field observations were made, and numerical models were developed to simulate important environmental compartments and interfaces associated with the transport and fate of agricultural chemicals. It is well recognized that these field measurements and simulations cannot fully achieve a full mass budget at this scale, but the approach provides a useful means for comparisons of various processes in different environmental settings. The results gained using this approach will add to the general knowledge of environmental transport and fate processes, and have transfer value to unstudied areas and different scales of investigation. The five initial study areas started in 2002, included watersheds in California, Indiana

  16. Some new reaction pathways for the formation of cytosine in interstellar space - A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Gupta, V. P.; Tandon, Poonam; Mishra, Priti

    2013-03-01

    The detection of nucleic acid bases in carbonaceous meteorites suggests that their formation and survival is possible outside of the Earth. Small N-heterocycles, including pyrimidine, purines and nucleobases, have been extensively sought in the interstellar medium. It has been suggested theoretically that reactions between some interstellar molecules may lead to the formation of cytosine, uracil and thymine though these processes involve significantly high potential barriers. We attempted therefore to use quantum chemical techniques to explore if cytosine can possibly form in the interstellar space by radical-radical and radical-molecule interaction schemes, both in the gas phase and in the grains, through barrier-less or low barrier pathways. Results of DFT calculations for the formation of cytosine starting from some of the simple molecules and radicals detected in the interstellar space are being reported. Global and local descriptors such as molecular hardness, softness and electrophilicity, and condensed Fukui functions and local philicity indices were used to understand the mechanistic aspects of chemical reaction. The presence and nature of weak bonds in the molecules and transition states formed during the reaction process have been ascertained using Bader's quantum theory of atoms in molecules (QTAIMs). Two exothermic reaction pathways starting from propynylidyne (CCCH) and cyanoacetylene (HCCCN), respectively, have been identified. While the first reaction path is found to be totally exothermic, it involves a barrier of 12.5 kcal/mol in the gas phase against the lowest value of about 32 kcal/mol reported in the literature. The second path is both exothermic and barrier-less. The later has, therefore, a greater probability of occurrence in the cold interstellar clouds (10-50 K).

  17. Quantum work and the thermodynamic cost of quantum measurements

    DOE PAGES

    Deffner, Sebastian; Paz, Juan Pablo; Zurek, Wojciech H.

    2016-07-07

    Quantum work is usually determined from two projective measurements of the energy at the beginning and at the end of a thermodynamic process. However, this paradigm cannot be considered thermodynamically consistent as it does not account for the thermodynamic cost of these measurements. To remedy this conceptual inconsistency we introduce a paradigm that relies only on the expected change of the average energy given the initial energy eigenbasis. In particular, we completely omit quantum measurements in the definition of quantum work, and hence quantum work is identified as a thermodynamic quantity of only the system. As main results we derivemore » a modified quantum Jarzynski equality and a sharpened maximum work theorem in terms of the information free energy. Lastly, a comparison of our results with the standard approach allows one to quantify the informational cost of projective measurements.« less

  18. Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng

    2018-05-01

    In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

  19. Quantum internet using code division multiple access

    PubMed Central

    Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  20. A formulation of a matrix sparsity approach for the quantum ordered search algorithm

    NASA Astrophysics Data System (ADS)

    Parmar, Jupinder; Rahman, Saarim; Thiara, Jaskaran

    One specific subset of quantum algorithms is Grovers Ordered Search Problem (OSP), the quantum counterpart of the classical binary search algorithm, which utilizes oracle functions to produce a specified value within an ordered database. Classically, the optimal algorithm is known to have a log2N complexity; however, Grovers algorithm has been found to have an optimal complexity between the lower bound of ((lnN-1)/π≈0.221log2N) and the upper bound of 0.433log2N. We sought to lower the known upper bound of the OSP. With Farhi et al. MITCTP 2815 (1999), arXiv:quant-ph/9901059], we see that the OSP can be resolved into a translational invariant algorithm to create quantum query algorithm restraints. With these restraints, one can find Laurent polynomials for various k — queries — and N — database sizes — thus finding larger recursive sets to solve the OSP and effectively reducing the upper bound. These polynomials are found to be convex functions, allowing one to make use of convex optimization to find an improvement on the known bounds. According to Childs et al. [Phys. Rev. A 75 (2007) 032335], semidefinite programming, a subset of convex optimization, can solve the particular problem represented by the constraints. We were able to implement a program abiding to their formulation of a semidefinite program (SDP), leading us to find that it takes an immense amount of storage and time to compute. To combat this setback, we then formulated an approach to improve results of the SDP using matrix sparsity. Through the development of this approach, along with an implementation of a rudimentary solver, we demonstrate how matrix sparsity reduces the amount of time and storage required to compute the SDP — overall ensuring further improvements will likely be made to reach the theorized lower bound.

  1. Automating quantum experiment control

    NASA Astrophysics Data System (ADS)

    Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.

    2017-03-01

    The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

  2. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency

    NASA Astrophysics Data System (ADS)

    Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.; Burke, Sven; Ziffer, Mark E.; Ginger, David S.; Hillhouse, Hugh W.

    2018-06-01

    Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in light-emitting and photovoltaic applications. Here, we characterize both external and internal photoluminescence quantum efficiency and quasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NH3PbI3) thin films. With respect to the material bandgap, these passivated films exhibit the highest quasi-Fermi-level splitting measured to date, reaching 97.1 ± 0.7% of the radiative limit, approaching that of the highest performing GaAs solar cells. We confirm these values with independent measurements of internal photoluminescence quantum efficiency of 91.9 ± 2.7% under 1 Sun illumination intensity, setting a new benchmark for these materials. These results suggest hybrid perovskite solar cells are inherently capable of further increases in power conversion efficiency if surface passivation can be combined with optimized charge carrier selective interfaces.

  3. Hybrid quantum computing with ancillas

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy J.; Kendon, Viv

    2016-10-01

    In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.

  4. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  5. A topological quantum optics interface.

    PubMed

    Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo

    2018-02-09

    The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Topics in quantum cryptography, quantum error correction, and channel simulation

    NASA Astrophysics Data System (ADS)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel

  7. Simulated quantum computation of molecular energies.

    PubMed

    Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin

    2005-09-09

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  8. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions.

    PubMed

    Dibetsoe, Masego; Olasunkanmi, Lukman O; Fayemi, Omolola E; Yesudass, Sasikumar; Ramaganthan, Baskar; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-08-28

    The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the

  9. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  10. Replicating effective pedagogical approaches from introductory physics to improve student learning of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sayer, Ryan Thomas

    Upper-level undergraduate students entering a quantum mechanics (QM) course are in many ways similar to students entering an introductory physics course. Numerous studies have investigated the difficulties that novices face in introductory physics as well as the pedagogical approaches that are effective in helping them overcome those difficulties. My research focuses on replicating effective approaches and instructional strategies used in introductory physics courses to help advanced students in an upper-level QM course. I have investigated the use of Just-in-time Teaching (JiTT) and peer discussion involving clicker questions in an upper-level quantum mechanics course. The JiTT approach including peer discussions was effective in helping students overcome their difficulties and improve their understanding of QM concepts. Learning tools, such as a Quantum Interactive Learning Tutorial (QuILT) based on the Doubleslit Experiment (DSE) which I helped develop, have been successful in helping upper-level undergraduate students improve their understanding of QM. Many students have also demonstrated the ability to transfer knowledge from a QuILT based on the Mach-Zehnder interferometer while working on the DSE QuILT. In addition, I have been involved in implementing research-based activities during our semester-long professional development course for teaching assistants (TAs). In one intervention, TAs were asked to grade student solutions to introductory physics problems first using their choice of method, then again using a rubric designed to promote effective problem-solving approaches, then once more at the end of the semester using their choice of method. This intervention found that many TAs have ingrained beliefs about the purposes of grading which include placing the burden of proof on the instructor as well as a belief that grading cannot serve as a formative assessment. I also compared TAs grading practices and considerations when grading student solutions to QM

  11. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    NASA Astrophysics Data System (ADS)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  12. Contact geometry and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel; Waldron, Andrew

    2018-06-01

    We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.

  13. Quantum effects in the understanding of consciousness.

    PubMed

    Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A

    2014-06-01

    This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.

  14. Quantum entanglement helps in improving economic efficiency

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Ju, Chenyong; Li, Hui

    2005-02-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.

  15. Are Quantum Models for Order Effects Quantum?

    NASA Astrophysics Data System (ADS)

    Moreira, Catarina; Wichert, Andreas

    2017-12-01

    The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.

  16. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFETY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  17. A TIERED APPROACH TO LIFE STAGES TESTING FOR AGRICULTURAL CHEMICAL SAFERY ASSESSMENT

    EPA Science Inventory

    A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studie...

  18. A multi-scaled approach for simulating chemical reaction systems.

    PubMed

    Burrage, Kevin; Tian, Tianhai; Burrage, Pamela

    2004-01-01

    In this paper we give an overview of some very recent work, as well as presenting a new approach, on the stochastic simulation of multi-scaled systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and present a new approach which couples the three regimes mentioned above. We then apply this approach to a biologically inspired problem involving the expression and activity of LacZ and LacY proteins in E. coli, and conclude with a discussion on the significance of this work. Copyright 2004 Elsevier Ltd.

  19. On the no-signaling approach to quantum nonlocality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Méndez, J. M., E-mail: manolo@ifisica.uaslp.mx; Urías, Jesús, E-mail: jurias@ifisica.uaslp.mx

    2015-03-15

    The no-signaling approach to nonlocality deals with separable and inseparable multiparty correlations in the same set of probability states without conflicting causality. The set of half-spaces describing the polytope of no-signaling probability states that are admitted by the most general class of Bell scenarios is formulated in full detail. An algorithm for determining the skeleton that solves the no-signaling description is developed upon a new strategy that is partially pivoting and partially incremental. The algorithm is formulated rigorously and its implementation is shown to be effective to deal with the highly degenerate no-signaling descriptions. Several applications of the algorithm asmore » a tool for the study of quantum nonlocality are mentioned. Applied to a large set of bipartite Bell scenarios, we found that the corresponding no-signaling polytopes have a striking high degeneracy that grows up exponentially with the size of the Bell scenario.« less

  20. Topological approach to quantum Hall effects and its important applications: higher Landau levels, graphene and its bilayer

    NASA Astrophysics Data System (ADS)

    Jacak, Janusz; Łydżba, Patrycja; Jacak, Lucjan

    2017-05-01

    In this paper the topological approach to quantum Hall effects is carefully described. Commensurability conditions together with proposed generators of a system braid group are employed to establish the fractional quantum Hall effect hierarchies of conventional semiconductors, monolayer and bilayer graphene structures. Obtained filling factors are compared with experimental data and a very good agreement is achieved. Preliminary constructions of ground-state wave functions in the lowest Landau level are put forward. Furthermore, this work explains why pyramids of fillings from higher bands are not counterparts of the well-known composite-fermion hierarchy - it provides with the cause for an intriguing robustness of ν = 7/3 , 8/3 and 5/2 states (also in graphene). The argumentation why paired states can be developed in two-subband systems (wide quantum wells) only when the Fermi energy lies in the first Landau level is specified. Finally, the paper also clarifies how an additional surface in bilayer systems contributes to an observation of the fractional quantum Hall effect near half-filling, ν = 1/2 .

  1. Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure

    NASA Astrophysics Data System (ADS)

    Bashir, A.; Gallacher, K.; Millar, R. W.; Paul, D. J.; Ballabio, A.; Frigerio, J.; Isella, G.; Kriegner, D.; Ortolani, M.; Barthel, J.; MacLaren, I.

    2018-01-01

    A Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%-90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge.

  2. Discrete-time Quantum Walks via Interchange Framework and Memory in Quantum Evolution

    NASA Astrophysics Data System (ADS)

    Dimcovic, Zlatko

    One of the newer and rapidly developing approaches in quantum computing is based on "quantum walks," which are quantum processes on discrete space that evolve in either discrete or continuous time and are characterized by mixing of components at each step. The idea emerged in analogy with the classical random walks and stochastic techniques, but these unitary processes are very different even as they have intriguing similarities. This thesis is concerned with study of discrete-time quantum walks. The original motivation from classical Markov chains required for discrete-time quantum walks that one adds an auxiliary Hilbert space, unrelated to the one in which the system evolves, in order to be able to mix components in that space and then take the evolution steps accordingly (based on the state in that space). This additional, "coin," space is very often an internal degree of freedom like spin. We have introduced a general framework for construction of discrete-time quantum walks in a close analogy with the classical random walks with memory that is rather different from the standard "coin" approach. In this method there is no need to bring in a different degree of freedom, while the full state of the system is still described in the direct product of spaces (of states). The state can be thought of as an arrow pointing from the previous to the current site in the evolution, representing the one-step memory. The next step is then controlled by a single local operator assigned to each site in the space, acting quite like a scattering operator. This allows us to probe and solve some problems of interest that have not had successful approaches with "coined" walks. We construct and solve a walk on the binary tree, a structure of great interest but until our result without an explicit discrete time quantum walk, due to difficulties in managing coin spaces necessary in the standard approach. Beyond algorithmic interests, the model based on memory allows one to explore

  3. A quantum mechanics-based approach to model incident-induced dynamic driver behavior

    NASA Astrophysics Data System (ADS)

    Sheu, Jiuh-Biing

    2008-08-01

    A better understanding of the psychological factors influencing drivers, and the resulting driving behavior responding to incident-induced lane traffic phenomena while passing by an incident site is vital to the improvement of road safety. This paper presents a microscopic driver behavior model to explain the dynamics of the instantaneous driver decision process under lane-blocking incidents on adjacent lanes. The proposed conceptual framework decomposes the corresponding driver decision process into three sequential phases: (1) initial stimulus, (2) glancing-around car-following, and (3) incident-induced driving behavior. The theorem of quantum mechanics in optical flows is applied in the first phase to explain the motion-related perceptual phenomena while vehicles approach the incident site in adjacent lanes, followed by the incorporation of the effect of quantum optical flows in modeling the induced glancing-around car-following behavior in the second phase. Then, an incident-induced driving behavior model is formulated to reproduce the dynamics of driver behavior conducted in the process of passing by an incident site in the adjacent lanes. Numerical results of model tests using video-based incident data indicate the validity of the proposed traffic behavior model in analyzing the incident-induced lane traffic phenomena. It is also expected that such a proposed quantum-mechanics based methodology can throw more light if applied to driver psychology and response in anomalous traffic environments in order to improve road safety.

  4. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    NASA Technical Reports Server (NTRS)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  5. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    PubMed

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  6. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE PAGES

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco; ...

    2018-03-15

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  7. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  8. Quantum microbiology.

    PubMed

    Trevors, J T; Masson, L

    2011-01-01

    During his famous 1943 lecture series at Trinity College Dublin, the reknown physicist Erwin Schrodinger discussed the failure and challenges of interpreting life by classical physics alone and that a new approach, rooted in Quantum principles, must be involved. Quantum events are simply a level of organization below the molecular level. This includes the atomic and subatomic makeup of matter in microbial metabolism and structures, as well as the organic, genetic information code of DNA and RNA. Quantum events at this time do not elucidate, for example, how specific genetic instructions were first encoded in an organic genetic code in microbial cells capable of growth and division, and its subsequent evolution over 3.6 to 4 billion years. However, due to recent technological advances, biologists and physicists are starting to demonstrate linkages between various quantum principles like quantum tunneling, entanglement and coherence in biological processes illustrating that nature has exerted some level quantum control to optimize various processes in living organisms. In this article we explore the role of quantum events in microbial processes and endeavor to show that after nearly 67 years, Schrödinger was prophetic and visionary in his view of quantum theory and its connection with some of the fundamental mechanisms of life.

  9. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  10. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

    DOE PAGES

    Yan, Yong; Crisp, Ryan W.; Gu, Jing; ...

    2017-04-03

    Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na 2S solution with a peak external quantum efficiency exceeding 100%. QDmore » photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Finally, our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.« less

  11. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A single-atom quantum memory.

    PubMed

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  13. Entanglement-enhanced quantum metrology in a noisy environment

    NASA Astrophysics Data System (ADS)

    Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng

    2018-04-01

    Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.

  14. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation

    DOE PAGES

    Orfield, Noah J.; McBride, James R.; Wang, Feng; ...

    2016-02-05

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. In this paper, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking “giant” CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging,more » rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive “dark” fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be “dark”. Finally and therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  15. Bohm's Quantum Potential and the Visualization of Molecular Structure

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.

  16. The structure and photochemical transformation of cyclopropylacetylene radical cation as revealed by matrix EPR and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.

    2012-05-01

    The primary radical cation of cyclopropylacetylene was first characterized by EPR spectroscopy in low-temperature freon matrices. The assignment was confirmed by specific deuteration and quantum-chemical calculations at PBE0 and CCSD(T) levels. Photolysis with visible light led to irreversible transformation of the initial species to a ring-open structure. Detailed computational analysis of energy and magnetic resonance parameters of possible reaction products justified formation of pent-3-en-1-yne radical cation (presumably, a (Z)-isomer). This conclusion was also supported by the effect of specific deuteration.

  17. Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate-graphite interface.

    PubMed

    Li, H; Atkin, R; Page, A J

    2015-06-28

    The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.

  18. The New Quantum Logic

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2014-06-01

    It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.

  19. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  20. Autonomy, explanation, and theoretical values: physicists and chemists on molecular quantum mechanics.

    PubMed

    Hendry, Robin Findlay

    2003-05-01

    The emergence of quantum chemistry in the early twentieth century was an international as well as an interdisciplinary affair, involving dialogue between physicists and chemists in Germany, the United States, and Britain. Historians of science have recently documented both the causes and effects of this internationalism and interdisciplinarity. Chemists and physicists involved in the development of quantum chemistry in its first few decades tended to argue for opposing views on acceptable standards of explanation in their field, although the debate did not divide along disciplinary lines. The purpose of this paper is to investigate these different positions, through the methodological reflections of John Clarke Slater, Linus Pauling, and Charles Coulson. Slater tended to argue for quantum-mechanical rigor and the application of fundamental principles as the values guiding models of molecular bonding. Although they were on different sides of the debate between the valence-bond and molecular-orbital approaches, Pauling and Coulson both emphasized the recovery of traditional chemical explanations and systematic explanatory power within chemistry.