Sample records for quantum chemistry method

  1. UTChem - A Program for Ab Initio Quantum Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Takeshi; Nakano, Haruyuki; Nakajima, Takahito

    2003-06-18

    UTChem is a quantum chemistry software developed by Hirao's group at the University of Tokyo. UTChem is a research product of our work to develop new and better theoretical methods in quantum chemistry.

  2. Computing protein infrared spectroscopy with quantum chemistry.

    PubMed

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  3. From transistor to trapped-ion computers for quantum chemistry.

    PubMed

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  4. From transistor to trapped-ion computers for quantum chemistry

    PubMed Central

    Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.

    2014-01-01

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054

  5. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    ERIC Educational Resources Information Center

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…

  6. Per-Olov Löwdin - father of quantum chemistry

    NASA Astrophysics Data System (ADS)

    Brändas, Erkki J.

    2017-09-01

    During 2016, we celebrate the 100th anniversary of the birth of Per-Olov Löwdin. He was appointed to the first Lehrstuhl in quantum chemistry at Uppsala University in 1960. Löwdin introduced quantum chemistry as a field in its own right by formulating its goals, establishing fundamental concepts, like the correlation energy, the method of configuration interaction, reduced density matrices, natural spin orbitals, charge and bond order matrices, symmetric orthogonalisation, and generalised self-consistent fields. His exposition of partitioning technique and perturbation theory, wave and reaction operators and associated non-linear summation techniques, introduced mathematical rigour and deductive order in the interpretative organisation of the new field. He brought the first computer to Uppsala University and pioneered the initiation of 'electronic brains' and anticipated their significance for quantum chemistry. Perhaps his single most influential contribution to the field was his education of two generations of future faculty in quantum chemistry through Summer Schools in the Scandinavian Mountains, Winter Institutes at Sanibel Island in the Gulf of Mexico. Per-Olov Löwdin founded the book series Advances in Quantum Chemistry and the International Journal of Quantum Chemistry. The evolution of quantum chemistry is appraised, starting from a collection of cross-disciplinary applications of quantum mechanics to the technologically advanced and predominant field of today, virtually used in all branches of chemistry. The scientific work of Per-Olov Löwdin has been crucial for the development of this new important province of science.

  7. Computations and interpretations: The growth of quantum chemistry, 1927-1967

    NASA Astrophysics Data System (ADS)

    Park, Buhm Soon

    1999-10-01

    This dissertation is a contribution to the historical study of scientific disciplines in the twentieth century. It seeks to examine the development of quantum chemistry during the four decades after its inception in 1927. This development was manifest in theories, tools, scientists, and institutions, all of which constituted the disciplinary identity of quantum chemistry. To characterize its identity, I deal with the origins of key ideas and concepts; the change of computational tools from desk calculators to digital computers; the formation of a network among research groups and individuals; and the institutionalization of annual meetings. The dissertation's thesis is three-fold. First, in the pre- World War II years, there were individual contributions to the development of theories in quantum chemistry, but the founding fathers worked in their disciplinary contexts of physics or chemistry with little interest in building a quantum chemistry community. Second, the introduction of electronic digital computers in the postwar years affected the resurgence of the ab initio approach-the attempt to solve the Schrödinger equation without recourse to empirical data-and also the emergence of a community of quantum chemists. But the use of computers did not give rise to a consensus over the aims, methods, or content of the discipline. Third, quantum chemistry exerted a significant influence upon the transformation of chemical education and research in general, thanks to ``chemical translators,'' who sought to explain the gist of quantum chemistry in a language that chemists could understand. In sum, quantum chemistry has been a discipline characterized by diverse traditions, and the whole of chemistry has been under the influence of computations and interpretations made by quantum chemists.

  8. Using quantum chemistry muscle to flex massive systems: How to respond to something perturbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, Colleen

    Computational chemistry uses the theoretical advances of quantum mechanics and the algorithmic and hardware advances of computer science to give insight into chemical problems. It is currently possible to do highly accurate quantum chemistry calculations, but the most accurate methods are very computationally expensive. Thus it is only feasible to do highly accurate calculations on small molecules, since typically more computationally efficient methods are also less accurate. The overall goal of my dissertation work has been to try to decrease the computational expense of calculations without decreasing the accuracy. In particular, my dissertation work focuses on fragmentation methods, intermolecular interactionsmore » methods, analytic gradients, and taking advantage of new hardware.« less

  9. High-Level Spectroscopy, Quantum Chemistry, and Catalysis: Not just a Passing Fad.

    PubMed

    Neese, Frank

    2017-09-04

    Quantum chemistry can be used as a powerful link between theory and experiment for studying reactions in all areas of catalysis. The key feature of this approach is the combination of quantum chemistry with a range of high-level spectroscopic methods. This allows for conclusions to be reached that neither theory nor experiment would have been able to obtain in isolation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantum Chemistry in Great Britain: Developing a Mathematical Framework for Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Simões, Ana; Gavroglu, Kostas

    By 1935 quantum chemistry was already delineated as a distinct sub-discipline due to the contributions of Fritz London, Walter Heitler, Friedrich Hund, Erich Hückel, Robert Mulliken, Linus Pauling, John van Vleck and John Slater. These people are credited with showing that the application of quantum mechanics to the solution of chemical problems was, indeed, possible, especially so after the introduction of a number of new concepts and the adoption of certain approximation methods. And though a number of chemists had started talking of the formation of theoretical or, even, mathematical chemistry, a fully developed mathematical framework of quantum chemistry was still wanting. The work of three persons in particular-of John E. Lennard-Jones, Douglas R. Hartree, and Charles Alfred Coulson-has been absolutely crucial in the development of such a framework. In this paper we shall discuss the work of these three researchers who started their careers in the Cambridge tradition of mathematical physics and who at some point of their careers all became professors of applied mathematics. We shall argue that their work consisted of decisive contributions to the development of such a mathematical framework for quantum chemistry.

  11. Calculating Potential Energy Curves with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2014-06-01

    Quantum Monte Carlo (QMC) is a computational technique that can be applied to the electronic Schrödinger equation for molecules. QMC methods such as Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) have demonstrated the capability of capturing large fractions of the correlation energy, thus suggesting their possible use for high-accuracy quantum chemistry calculations. QMC methods scale particularly well with respect to parallelization making them an attractive consideration in anticipation of next-generation computing architectures which will involve massive parallelization with millions of cores. Due to the statistical nature of the approach, in contrast to standard quantum chemistry methods, uncertainties (error-bars) are associated with each calculated energy. This study focuses on the cost, feasibility and practical application of calculating potential energy curves for small molecules with QMC methods. Trial wave functions were constructed with the multi-configurational self-consistent field (MCSCF) method from GAMESS-US.[1] The CASINO Monte Carlo quantum chemistry package [2] was used for all of the DMC calculations. An overview of our progress in this direction will be given. References: M. W. Schmidt et al. J. Comput. Chem. 14, 1347 (1993). R. J. Needs et al. J. Phys.: Condensed Matter 22, 023201 (2010).

  12. Students' Levels of Explanations, Models, and Misconceptions in Basic Quantum Chemistry: A Phenomenographic Study

    ERIC Educational Resources Information Center

    Stefani, Christina; Tsaparlis, Georgios

    2009-01-01

    We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…

  13. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  14. Quantum chemistry in environmental pesticide risk assessment.

    PubMed

    Villaverde, Juan J; López-Goti, Carmen; Alcamí, Manuel; Lamsabhi, Al Mokhtar; Alonso-Prados, José L; Sandín-España, Pilar

    2017-11-01

    The scientific community and regulatory bodies worldwide, currently promote the development of non-experimental tests that produce reliable data for pesticide risk assessment. The use of standard quantum chemistry methods could allow the development of tools to perform a first screening of compounds to be considered for the experimental studies, improving the risk assessment. This fact results in a better distribution of resources and in better planning, allowing a more exhaustive study of the pesticides and their metabolic products. The current paper explores the potential of quantum chemistry in modelling toxicity and environmental behaviour of pesticides and their by-products by using electronic descriptors obtained computationally. Quantum chemistry has potential to estimate the physico-chemical properties of pesticides, including certain chemical reaction mechanisms and their degradation pathways, allowing modelling of the environmental behaviour of both pesticides and their by-products. In this sense, theoretical methods can contribute to performing a more focused risk assessment of pesticides used in the market, and may lead to higher quality and safer agricultural products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water

    ERIC Educational Resources Information Center

    Gergely, John Robert

    2009-01-01

    Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…

  16. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.

    PubMed

    Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole

    2015-05-12

    Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.

  17. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    PubMed

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  18. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.

  19. Semiempirical and ab initio Calculations of Charged Species Used in the Physical Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Gilliom, Richard D.

    1989-01-01

    Concentrates on the semiempirical methods MINDO/3, MNDO, and AMI available in the program AMPAC from the Quantum Chemistry Program Exchange at Indiana University. Uses charged ions in the teaching of computational chemistry. Finds that semiempirical methods are accurate enough for the general use of the bench chemist. (MVL)

  20. Quantum chemical studies of estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  1. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  2. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock.

    PubMed

    Tamayo-Mendoza, Teresa; Kreisbeck, Christoph; Lindh, Roland; Aspuru-Guzik, Alán

    2018-05-23

    Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult , a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

  3. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree–Fock

    PubMed Central

    2018-01-01

    Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult, a Hartree–Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

  4. Early contributions to theoretical chemistry: Inga Fischer-Hjalmars, a founder of the Swedish school

    NASA Astrophysics Data System (ADS)

    Johansson, Adam Johannes

    2017-09-01

    Inga Fischer-Hjalmars was one of the pioneers in the creation of the Swedish school of theoretical chemistry. She started her scientific endeavours in pharmacy and biochemistry, but soon sought a deeper understanding of molecules and chemistry. With a genuine experimental background and quantum chemical skills learned from Charles Coulson in the late 1940s, Inga was well prepared to continue her research and to contribute to the establishment of theoretical chemistry as it was later defined by Coulson; the use of quantum mechanics to explain experimental phenomena in all branches of chemistry. During the 1950s and 1960s Inga made important contributions to our understanding of chemical bonding and reactivity. For example, she made key insights into the dissociation of molecular hydrogen, the influence of heteroatoms on dipole moments in organic compounds, the electronic configuration of ozone and on the validity of different approximations in molecular theory. Inga Fischer-Hjalmars and her students developed extensions of the Pariser-Parr-Pople method and during the latter part of her career, she returned to the biomolecules that once had brought her into science, now applying quantum chemical methods to understand bonding and spectral properties of these molecules at greater depth.

  5. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Dateo, Christopher e.; Schwenke, David W.; Halicioglu, Timur; Huo, winifred M.

    2005-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. Study of the highly nonequilibrium rotational distribution of a nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into an atmosphere containing methane. A study of the etching of a Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  6. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dun-You; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Haliciogiu, Timur; Huo, Winifred

    2004-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. The study of the highly nonequilibrium rotational distribution of nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence the rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into a methane containing atmosphere. A study of the etching of Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  7. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turi, László, E-mail: turi@chem.elte.hu

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions withmore » n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.« less

  8. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    NASA Astrophysics Data System (ADS)

    Turi, László

    2016-04-01

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  9. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals

    ERIC Educational Resources Information Center

    Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

    2005-01-01

    The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

  10. Quantum Chemistry, 5th Edition by Ira N. Levine

    NASA Astrophysics Data System (ADS)

    Hinde, Robert J.

    2000-12-01

    Of course, there is no one- or two-week shortcut by which nonspecialists can master enough quantum mechanics to become informed users of quantum chemical techniques. Nevertheless, a text that integrated the fundamentals of quantum theory with a rigorous introduction to quantum chemistry could help instructors design a class that would benefit both these nonspecialists and graduate students in physical chemistry. Could such a class overcome the (undeserved) stigma associated with the physical chemistry curriculum? That remains to be seen.

  11. Self-consistent field for fragmented quantum mechanical model of large molecular systems.

    PubMed

    Jin, Yingdi; Su, Neil Qiang; Xu, Xin; Hu, Hao

    2016-01-30

    Fragment-based linear scaling quantum chemistry methods are a promising tool for the accurate simulation of chemical and biomolecular systems. Because of the coupled inter-fragment electrostatic interactions, a dual-layer iterative scheme is often employed to compute the fragment electronic structure and the total energy. In the dual-layer scheme, the self-consistent field (SCF) of the electronic structure of a fragment must be solved first, then followed by the updating of the inter-fragment electrostatic interactions. The two steps are sequentially carried out and repeated; as such a significant total number of fragment SCF iterations is required to converge the total energy and becomes the computational bottleneck in many fragment quantum chemistry methods. To reduce the number of fragment SCF iterations and speed up the convergence of the total energy, we develop here a new SCF scheme in which the inter-fragment interactions can be updated concurrently without converging the fragment electronic structure. By constructing the global, block-wise Fock matrix and density matrix, we prove that the commutation between the two global matrices guarantees the commutation of the corresponding matrices in each fragment. Therefore, many highly efficient numerical techniques such as the direct inversion of the iterative subspace method can be employed to converge simultaneously the electronic structure of all fragments, reducing significantly the computational cost. Numerical examples for water clusters of different sizes suggest that the method shall be very useful in improving the scalability of fragment quantum chemistry methods. © 2015 Wiley Periodicals, Inc.

  12. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development.

    PubMed

    Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David

    2018-06-11

    Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.

  13. Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    PubMed Central

    Santagati, Raffaele; Wang, Jianwei; Gentile, Antonio A.; Paesani, Stefano; Wiebe, Nathan; McClean, Jarrod R.; Morley-Short, Sam; Shadbolt, Peter J.; Bonneau, Damien; Silverstone, Joshua W.; Tew, David P.; Zhou, Xiaoqi; O’Brien, Jeremy L.; Thompson, Mark G.

    2018-01-01

    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an “eigenstate witness” and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers. PMID:29387796

  14. Disciplines, models, and computers: the path to computational quantum chemistry.

    PubMed

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  15. Quantum chemistry simulation on quantum computers: theories and experiments.

    PubMed

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  16. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    NASA Astrophysics Data System (ADS)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  17. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    ERIC Educational Resources Information Center

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  18. Quantum Chemistry via the Periodic Law.

    ERIC Educational Resources Information Center

    Blinder, S. M.

    1981-01-01

    Describes an approach to quantum mechanics exploiting the periodic structure of the elements as a foundation for the quantum theory of matter. Indicates that a quantum chemistry course can be developed using this approach. (SK)

  19. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  20. Experimental methods of molecular matter-wave optics.

    PubMed

    Juffmann, Thomas; Ulbricht, Hendrik; Arndt, Markus

    2013-08-01

    We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process.

  1. A quantum–quantum Metropolis algorithm

    PubMed Central

    Yung, Man-Hong; Aspuru-Guzik, Alán

    2012-01-01

    The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584

  2. International Journal of Quantum Chemistry. Quantum Chemistry Symposium Number 27: Proceedings of the International Symposium on Atomic, Molecular, and Condensed Matter Theory and Computational Methods Held in St. Augustine, Florida on 13-20 March 1993

    DTIC Science & Technology

    1993-03-20

    photochromic glasses, x - ray absorbing television glasses, extrudablc oriented ceramics, and the ultra-pure materials for optical fibers. While...quartz through the analysis of x - ray diffraction experiments. The repeating nature of the quartz crystal give, many diffraction peaks which allow the...fused silica, which serves as a backbone for most of the silicate glasses. Doris Evans, an x - ray crystallographer at Corning, built a model of fused

  3. A gist of comprehensive review of hadronic chemistry and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangde, Vijay M.

    20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustainedmore » research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.« less

  4. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical

  5. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.

    PubMed

    Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-12-16

    CONSPECTUS: Quantum chemistry and electronic structure theory have proven to be essential tools to the experimental chemist, in terms of both a priori predictions that pave the way for designing new experiments and rationalizing experimental observations a posteriori. Translating the well-established success of electronic structure theory in obtaining the structures and energies of small chemical systems to increasingly larger molecules is an exciting and ongoing central theme of research in quantum chemistry. However, the prohibitive computational scaling of highly accurate ab initio electronic structure methods poses a fundamental challenge to this research endeavor. This scenario necessitates an indirect fragment-based approach wherein a large molecule is divided into small fragments and is subsequently reassembled to compute its energy accurately. In our quest to further reduce the computational expense associated with the fragment-based methods and overall enhance the applicability of electronic structure methods to large molecules, we realized that the broad ideas involved in a different area, theoretical thermochemistry, are transferable to the area of fragment-based methods. This Account focuses on the effective merger of these two disparate frontiers in quantum chemistry and how new concepts inspired by theoretical thermochemistry significantly reduce the total number of electronic structure calculations needed to be performed as part of a fragment-based method without any appreciable loss of accuracy. Throughout, the generalized connectivity based hierarchy (CBH), which we developed to solve a long-standing problem in theoretical thermochemistry, serves as the linchpin in this merger. The accuracy of our method is based on two strong foundations: (a) the apt utilization of systematic and sophisticated error-canceling schemes via CBH that result in an optimal cutting scheme at any given level of fragmentation and (b) the use of a less expensive second layer of electronic structure method to recover all the missing long-range interactions in the parent large molecule. Overall, the work featured here dramatically decreases the computational expense and empowers the execution of very accurate ab initio calculations (gold-standard CCSD(T)) on large molecules and thereby facilitates sophisticated electronic structure applications to a wide range of important chemical problems.

  6. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie

    2015-08-06

    Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna–Matthews–Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbitalmore » (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution.« less

  7. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  8. Progesterone and testosterone studies by neutron scattering and nuclear magnetic resonance methods and quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2004-05-01

    Inelastic incoherent neutron scattering spectra of progesterone and testosterone measured at 20 and 290 K were compared with the IR spectra measured at 290 K. The Phonon Density of States spectra display well resolved peaks of low frequency internal vibration modes up to 1200 cm -1. The quantum chemistry calculations were performed by semiempirical PM3 method and by the density functional theory method with different basic sets for isolated molecule, as well as for the dimer system of testosterone. The proposed assignment of internal vibrations of normal modes enable us to conclude about the sequence of the onset of the torsion movements of the CH 3 groups. These conclusions were correlated with the results of proton molecular dynamics studies performed by NMR method. The GAUSSIAN program had been used for calculations.

  9. Using Q-Chem on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    initio quantum chemistry package with special strengths in excited state methods, non-adiabatic coupling , solvation models, explicitly correlated wavefunction methods, and cutting-edge DFT. Running Q-Chem on

  10. International Journal of Quantum Chemistry. Quantum Chemistry Symposium Number 26: Proceedings of the International Symposium on Atomic, Molecular, and Condensed Matter Theory and Computational Methods Held in St. Augustine, Florida on 14-21 March 1992

    DTIC Science & Technology

    1993-02-01

    Spectrum The vibrational IR spectra of formaldeh.de and its deuterated species have been measured by a number of groups and analyzed in several studies ... studies [23-28]. The order of the frontier (r) orbitals, a textbook example for simple group theory arguments, is determined by the high symmetry (Dy...simplexes will give a structure with octahedral symmetr\\ since the subgroup of the Coxeter group which leaves one component of a four -vector invariant

  11. The QSAR study of flavonoid-metal complexes scavenging rad OH free radical

    NASA Astrophysics Data System (ADS)

    Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun

    2014-10-01

    Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.

  12. Understanding Quantum Numbers in General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Fernandez, Ramon

    2008-01-01

    Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…

  13. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less

  14. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  15. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  16. Elementary and brief introduction of hadronic chemistry

    NASA Astrophysics Data System (ADS)

    Tangde, Vijay M.

    2013-10-01

    The discipline, today known as Quantum Chemistry for atomic and subatomic level interactions has no doubt made a significant historical contributions to the society. Despite of its significant achievements, quantum chemistry is also known for its widespread denial of insufficiencies it inherits. An Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustained research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures without any quantitative scientific contents. Professor R M Santilli first formulated the iso-, geno- and hyper-mathematics [1-4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli's mathematics[3-5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6-8]. In the present discussion, we have briefly reviewed the conceptual foundations of Hadronic Chemistry that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary and its application in development of a new chemical species called Magnecules.

  17. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  18. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  19. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    PubMed

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  20. Los Alamos Quantum Dots for Solar, Display Technology

    ScienceCinema

    Klimov, Victor

    2018-05-01

    Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.

  1. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    NASA Astrophysics Data System (ADS)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  2. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay, Raymond C.; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550; Morales, Miguel A., E-mail: moralessilva2@llnl.gov

    2015-06-21

    Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the applicationmore » of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.« less

  3. Inverse problems in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Karwowski, Jacek

    Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.

  4. Preface: Special Topic: From Quantum Mechanics to Force Fields.

    PubMed

    Piquemal, Jean-Philip; Jordan, Kenneth D

    2017-10-28

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  5. Preface: Special Topic: From Quantum Mechanics to Force Fields

    NASA Astrophysics Data System (ADS)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  6. Learning Quantum Chemistry via a Visual-Conceptual Approach: Students' Bidirectional Textual and Visual Understanding

    ERIC Educational Resources Information Center

    Dangur, Vered; Avargil, Shirly; Peskin, Uri; Dori, Yehudit Judy

    2014-01-01

    Most undergraduate chemistry courses and a few high school honors courses, which focus on physical chemistry and quantum mechanics, are highly mathematically-oriented. At the Technion, Israel Institute of Technology, we developed a new module for high school students, titled "Chemistry--From 'the Hole' to 'the Whole': From the Nanoscale to…

  7. Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.

    1987-02-15

    For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. Themore » usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation.« less

  8. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  9. Bohm's Quantum Potential and the Visualization of Molecular Structure

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.

  10. The journey from forensic to predictive materials science using density functional theory

    DOE PAGES

    Schultz, Peter A.

    2017-09-12

    Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

  11. The journey from forensic to predictive materials science using density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter A.

    Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

  12. The Bravyi-Kitaev transformation for quantum computation of electronic structure

    NASA Astrophysics Data System (ADS)

    Seeley, Jacob T.; Richard, Martin J.; Love, Peter J.

    2012-12-01

    Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002), 10.1006/aphy.2002.6254; e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.

  13. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    PubMed Central

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603

  14. Introducing Relativity into Quantum Chemistry

    ERIC Educational Resources Information Center

    Li, Wai-Kee; Blinder, S. M.

    2011-01-01

    It is not often realized by chemists that the special theory of relativity is behind several aspects of quantum chemistry. The Schrdinger equation itself is based on relations between space-time and energy-momentum four vectors. Electron spin is, of course, the most obvious manifestation of relativity. The chemistry of some heavy elements is…

  15. Application of fermionic marginal constraints to hybrid quantum algorithms

    NASA Astrophysics Data System (ADS)

    Rubin, Nicholas C.; Babbush, Ryan; McClean, Jarrod

    2018-05-01

    Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic n-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic n-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments.

  16. Drama in Dynamics: Boom, Splash, and Speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Netzloff, Heather Marie

    2004-12-19

    The full nature of chemistry and physics cannot be captured by static calculations alone. Dynamics calculations allow the simulation of time-dependent phenomena. This facilitates both comparisons with experimental data and the prediction and interpretation of details not easily obtainable from experiments. Simulations thus provide a direct link between theory and experiment, between microscopic details of a system and macroscopic observed properties. Many types of dynamics calculations exist. The most important distinction between the methods and the decision of which method to use can be described in terms of the size and type of molecule/reaction under consideration and the type andmore » level of accuracy required in the final properties of interest. These considerations must be balanced with available computational codes and resources as simulations to mimic ''real-life'' may require many time steps. As indicated in the title, the theme of this thesis is dynamics. The goal is to utilize the best type of dynamics for the system under study while trying to perform dynamics in the most accurate way possible. As a quantum chemist, this involves some level of first principles calculations by default. Very accurate calculations of small molecules and molecular systems are now possible with relatively high-level ab initio quantum chemistry. For example, a quantum chemical potential energy surface (PES) can be developed ''on-the-fly'' with dynamic reaction path (DRP) methods. In this way a classical trajectory is developed without prior knowledge of the PES. In order to treat solvation processes and the condensed phase, large numbers of molecules are required, especially in predicting bulk behavior. The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute and an ''effective fragment'' region that contains the remaining solvent molecules. But, despite the reduced cost relative to fully QM calculations, the EFP method, due to its complex, QM-based potential, does require more computation time than simple interaction potentials, especially when the method is used for large scale molecular dynamics simulations. Thus, the EFP method was parallelized to facilitate these calculations within the quantum chemistry program GAMESS. The EFP method provides relative energies and structures that are in excellent agreement with the analogous fully quantum results for small water clusters. The ability of the method to predict bulk water properties with a comparable accuracy is assessed by performing EFP molecular dynamics simulations. Molecular dynamics simulations can provide properties that are directly comparable with experimental results, for example radial distribution functions. The molecular PES is a fundamental starting point for chemical reaction dynamics. Many methods can be used to obtain a PES; for example, assuming a global functional form for the PES or, as mentioned above, performing ''on-the-fly'' dynamics with Al or semi-empirical calculations at every molecular configuration. But as the size of the system grows, using electronic structure theory to build a PES and, therefore, study reaction dynamics becomes virtually impossible. The program Grow builds a PES as an interpolation of Al data; the goal is to attempt to produce an accurate PES with the smallest number of Al calculations. The Grow-GAMESS interface was developed to obtain the Al data from GAMESS. Classical or quantum dynamics can be performed on the resulting surface. The interface includes the novel capability to build multi-reference PESs; these types of calculations are applicable to problems ranging from atmospheric chemistry to photochemical reaction mechanisms in organic and inorganic chemistry to fundamental biological phenomena such as photosynthesis.« less

  17. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  18. [Mass spectrometric and quantum chemical study of dimeric associates of nucleosides].

    PubMed

    Sukhodub, L F; Aksenov, S A; Boldeskul, A I

    1995-01-01

    Deoxyribonucleosides H-bonded pairs were investigated using fast atom bombardment mass spectrometry and MNDO/H quantum chemistry method. It was shown that "rare" (enol or imin) forms of the nitrogen bases could form pairs with energy comparable with "canonical" base pair energy. It was shown that pair stability rows, which are measured using different experimental techniques, were in conformity each with other.

  19. In vitro uptake of apoptotic body mimicking phosphatidylserine-quantum dot micelles by monocytic cell line

    NASA Astrophysics Data System (ADS)

    Maiseyeu, Andrei; Bagalkot, Vaishali

    2014-04-01

    A new quantum dot (QD) PEGylated micelle laced with phosphatidylserine (PS) for specific scavenger receptor-mediated uptake by macrophages is reported. The size and surface chemistry of PS-QD micelles were characterized by standard methods and the effects of their physicochemical properties on specific targeting and uptake were comprehensively studied in a monocytic cell line (J774A.1).

  20. General properties of the Foldy-Wouthuysen transformation and applicability of the corrected original Foldy-Wouthuysen method

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2016-02-01

    General properties of the Foldy-Wouthuysen transformation which is widely used in quantum mechanics and quantum chemistry are considered. Merits and demerits of the original Foldy-Wouthuysen transformation method are analyzed. While this method does not satisfy the Eriksen condition of the Foldy-Wouthuysen transformation, it can be corrected with the use of the Baker-Campbell-Hausdorff formula. We show a possibility of such a correction and propose an appropriate algorithm of calculations. An applicability of the corrected Foldy-Wouthuysen method is restricted by the condition of convergence of a series of relativistic corrections.

  1. Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG

    NASA Astrophysics Data System (ADS)

    Stoudenmire, Edwin Miles; White, Steven

    We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.

  2. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less

  3. Applications of Quantum Chemistry to the Study of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2005-01-01

    For several years, scientists at NASA Ames have been studying the properties of carbon nanotubes using various experimental and computational methods. In this talk, I will compare different strategies for using quantum chemistry calculations to describe the electronic structure, deformation and chemical functionalization of single wall carbon nanotubes (SWNT) and the physisorption of small molecules on nanotube surfaces. The SWNT can be treated as an infinite (periodic) or finite length carbon cylinder or as a polycyclic aromatic hydrocarbon (PAH) molecule with an imposed curvature maintained by external constraints (as if it were cut out of the SWNT surface). Calculations are carried out using DFT and MP2 methods and a variety of atomic orbital basis sets from minimal (STO-3G) to valence triple zeta. The optimal approach is based on the particular SWNT property of interest. Examples to be discussed include: nanotube fluorination and other functionalization reactions; coating of nanotubes by water vapor and low-molecular weight organic molecules; and the nature of the interface between SWNT and liquids such as water and amines. In many cases, the quantum chemistry calculations are used to parameterize or validate force fields for molecular dynamics simulations. The results of these calculations have helped explain experimental data and contributed to the design of novel materials and sensors based on carbon nanotubes. Some of this research is described in the following papers:

  4. Time-Dependent Density Functional Theory for Open Systems and Its Applications.

    PubMed

    Chen, Shuguang; Kwok, YanHo; Chen, GuanHua

    2018-02-20

    Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent dynamics. Given the rapid development in ultrafast experiments with atomic resolution in recent years, time dependent simulation of open electronic systems will be useful to gain insight and understanding of such experiments. This Account will mainly focus on the practical aspects of the TDDFT-OS method, describing the numerical implementation and demonstrating the method with applications.

  5. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  6. Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.

    PubMed

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-05-16

    We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects.

  7. A quantum informational approach for dissecting chemical reactions

    NASA Astrophysics Data System (ADS)

    Duperrouzel, Corinne; Tecmer, Paweł; Boguslawski, Katharina; Barcza, Gergely; Legeza, Örs; Ayers, Paul W.

    2015-02-01

    We present a conceptionally different approach to dissect bond-formation processes in metal-driven catalysis using concepts from quantum information theory. Our method uses the entanglement and correlation among molecular orbitals to analyze changes in electronic structure that accompany chemical processes. As a proof-of-principle example, the evolution of nickel-ethene bond-formation is dissected, which allows us to monitor the interplay of back-bonding and π-donation along the reaction coordinate. Furthermore, the reaction pathway of nickel-ethene complexation is analyzed using quantum chemistry methods, revealing the presence of a transition state. Our study supports the crucial role of metal-to-ligand back-donation in the bond-forming process of nickel-ethene.

  8. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  9. O+OH-->O(2)+H: A key reaction for interstellar chemistry. New theoretical results and comparison with experiment.

    PubMed

    Lique, F; Jorfi, M; Honvault, P; Halvick, P; Lin, S Y; Guo, H; Xie, D Q; Dagdigian, P J; Kłos, J; Alexander, M H

    2009-12-14

    We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei

    Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution thatmore » can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.« less

  11. Quantum effects in the understanding of consciousness.

    PubMed

    Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A

    2014-06-01

    This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.

  12. Efficient Variational Quantum Simulator Incorporating Active Error Minimization

    NASA Astrophysics Data System (ADS)

    Li, Ying; Benjamin, Simon C.

    2017-04-01

    One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.

  13. Efficient linear algebra routines for symmetric matrices stored in packed form.

    PubMed

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  14. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  15. Human development VIII: a theory of "deep" quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organisms consciousness and complex behavior.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav

    2006-11-14

    Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it "sees", and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occam's razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules' orbitals make one huge "cell-orbital", which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants) and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness.

  16. Human Development VIII: A Theory of “Deep” Quantum Chemistry and Cell Consciousness: Quantum Chemistry Controls Genes and Biochemistry to Give Cells and Higher Organisms Consciousness and Complex Behavior

    PubMed Central

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav

    2006-01-01

    Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it “sees”, and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occams razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules orbitals make one huge “cell-orbital”, which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants) and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness. PMID:17115084

  17. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    PubMed

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  18. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  19. Applying Quantum Monte Carlo to the Electronic Structure Problem

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2016-06-01

    Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).

  20. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  1. Bias-Free Chemically Diverse Test Sets from Machine Learning.

    PubMed

    Swann, Ellen T; Fernandez, Michael; Coote, Michelle L; Barnard, Amanda S

    2017-08-14

    Current benchmarking methods in quantum chemistry rely on databases that are built using a chemist's intuition. It is not fully understood how diverse or representative these databases truly are. Multivariate statistical techniques like archetypal analysis and K-means clustering have previously been used to summarize large sets of nanoparticles however molecules are more diverse and not as easily characterized by descriptors. In this work, we compare three sets of descriptors based on the one-, two-, and three-dimensional structure of a molecule. Using data from the NIST Computational Chemistry Comparison and Benchmark Database and machine learning techniques, we demonstrate the functional relationship between these structural descriptors and the electronic energy of molecules. Archetypes and prototypes found with topological or Coulomb matrix descriptors can be used to identify smaller, statistically significant test sets that better capture the diversity of chemical space. We apply this same method to find a diverse subset of organic molecules to demonstrate how the methods can easily be reapplied to individual research projects. Finally, we use our bias-free test sets to assess the performance of density functional theory and quantum Monte Carlo methods.

  2. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry

    PubMed Central

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko

    2017-01-01

    In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter–photon problems. We analyze model systems in optical cavities, where the matter–photon interaction is considered from the weak- to the strong-coupling limit and for individual photon modes as well as for the multimode case. We identify fundamental changes in Born–Oppenheimer surfaces, spectroscopic quantities, conical intersections, and efficiency for quantum control. We conclude by applying our recently developed quantum-electrodynamical density-functional theory to spontaneous emission and show how a straightforward approximation accurately describes the correlated electron–photon dynamics. This work paves the way to describe matter–photon interactions from first principles and addresses the emergence of new states of matter in chemistry and material science. PMID:28275094

  3. Chemistry in the News: 1998 Nobel Prizes in Chemistry and Medicine

    NASA Astrophysics Data System (ADS)

    Miller, Jennifer B.

    1999-01-01

    The Royal Swedish Academy of Sciences has awarded the 1998 Nobel Prize in Chemistry to Walter Kohn (University of California at Santa Barbara) for his development of the density-functional theory and to John A. Pople (Northwestern University at Evanston, Illinois) for his development of computational methods in quantum chemistry. The Nobel Assembly at the Karolinska Institute has awarded the 1998 Nobel Prize in Physiology or Medicine jointly to Robert F. Fuchgott (State University of New York Health Science Center at Brooklyn), Louis J. Ignarro (University of California at Los Angeles), and Ferid Murad (University of Texas Medical School at Houston) for identifying nitric oxide as a key biological signaling molecule in the cardiovascular system.

  4. Direct conversion of hydride- to siloxane-terminated silicon quantum dots

    DOE PAGES

    Anderson, Ryan T.; Zang, Xiaoning; Fernando, Roshan; ...

    2016-10-20

    Here, peripheral surface functionalization of hydride-terminated silicon quantum dots (SiQD) is necessary in order to minimize their oxidation/aggregation and allow for solution processability. Historically thermal hydrosilylation addition of alkenes and alkynes across the Si-H surface to form Si-C bonds has been the primary method to achieve this. Here we demonstrate a mild alternative approach to functionalize hydride-terminated SiQDs using bulky silanols in the presence of free-radical initiators to form stable siloxane (~Si-O-SiR 3) surfaces with hydrogen gas as a byproduct. This offers an alternative to existing methods of forming siloxane surfaces that require corrosive Si-Cl based chemistry with HCl byproducts.more » A 52 nm blue shift in the photoluminescent spectra of siloxane versus alkyl-functionalized SiQDs is observed that we explain using computational theory. Model compound synthesis of silane and silsesquioxane analogues is used to optimize surface chemistry and elucidate reaction mechanisms. Thorough characterization on the extent of siloxane surface coverage is provided using FTIR and XPS. As a result, TEM is used to demonstrate SiQD size and integrity after surface chemistry and product isolation.« less

  5. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds.

    PubMed

    Ryan, Robert G; Stacey, Alastair; O'Donnell, Kane M; Ohshima, Takeshi; Johnson, Brett C; Hollenberg, Lloyd C L; Mulvaney, Paul; Simpson, David A

    2018-04-18

    Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp 2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.

  6. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE PAGES

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...

    2017-05-16

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  7. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  8. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    PubMed Central

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-01-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866

  9. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    NASA Astrophysics Data System (ADS)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-05-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

  10. Spectroscopy and Chemistry of Cold Molecules

    NASA Astrophysics Data System (ADS)

    Momose, Takamasa

    2012-06-01

    Molecules at low temperatures are expected to behave quite differently from those at high temperatures because pronounced quantum effects emerge from thermal averages. Even at 10 K, a significant enhancement of reaction cross section is expected due to tunneling and resonance effects. Chemistry at this temperature is very important in order to understand chemical reactions in interstellar molecular clouds. At temperatures lower than 1 K, collisions and intermolecular interactions become qualitatively different from those at high temperatures because of the large thermal de Broglie wavelength of molecules. Collisions at these temperatures must be treated as the interference of molecular matter waves, but not as hard sphere collisions. A Bose-Einstein condensate is a significant state of matter as a result of coherent matter wave interaction. Especially, dense para-H_2 molecules are predicted to become a condensate even around 1 K. A convenient method to investigate molecules around 1 K is to dope molecules in cold matrices. Among various matrices, quantum hosts such as solid para-H_2 and superfluid He nano-droplets have been proven to be an excellent host for high-resolution spectroscopy. Rovibrational motion of molecules in these quantum hosts is well quantized on account of the weak interactions and the softness of quantum environment. The linewidths of infrared spectra of molecules in the quantum hosts are extremely narrow compared with those in other matrices. The sharp linewidths allow us to resolve fine spectral structures originated in subtle interactions between guest and host molecules. In this talk, I will describe how the splitting and lineshape of high-resolution spectra of molecules in quantum hosts give us new information on the static and dynamical interactions of molecules in quantum medium. The topics include dynamical response of superfluid environment upon rotational excitation, and possible superfluid phase of para-H_2 clusters. I will also describe our current efforts to make free cold molecules for the study of cold chemistry.

  11. Electron-Phonon Systems on a Universal Quantum Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James

    We present an algorithm that extends existing quantum algorithms forsimulating fermion systems in quantum chemistry and condensed matter physics toinclude phonons. The phonon degrees of freedom are represented with exponentialaccuracy on a truncated Hilbert space with a size that increases linearly withthe cutoff of the maximum phonon number. The additional number of qubitsrequired by the presence of phonons scales linearly with the size of thesystem. The additional circuit depth is constant for systems with finite-rangeelectron-phonon and phonon-phonon interactions and linear for long-rangeelectron-phonon interactions. Our algorithm for a Holstein polaron problem wasimplemented on an Atos Quantum Learning Machine (QLM) quantum simulatoremployingmore » the Quantum Phase Estimation method. The energy and the phonon numberdistribution of the polaron state agree with exact diagonalization results forweak, intermediate and strong electron-phonon coupling regimes.« less

  12. Chemical calculations on Cray computers

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1989-01-01

    The influence of recent developments in supercomputing on computational chemistry is discussed with particular reference to Cray computers and their pipelined vector/limited parallel architectures. After reviewing Cray hardware and software the performance of different elementary program structures are examined, and effective methods for improving program performance are outlined. The computational strategies appropriate for obtaining optimum performance in applications to quantum chemistry and dynamics are discussed. Finally, some discussion is given of new developments and future hardware and software improvements.

  13. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less

  15. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.

    PubMed

    Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon

    2017-08-03

    Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.

  16. On the Making of Quantum Chemistry in Germany

    NASA Astrophysics Data System (ADS)

    Karachalios, Andreas

    During the 1990s several historians of science have studied the emergence of quantum chemistry as an autonomous discipline in different national contexts (Nye, 1993; Simões, 1993; Simões, forthcoming; Gavroglu and Simões, 1994; Karachalios, 1997a). Beyond these disciplinary studies, a number of contributions to special aspects of this theme have appeared (Schweber, 1990; Gavroglu, 1995; Simões and Gavroglu, 1997, 1999a,b; Schwarz et al., 1999). In this literature the birth of quantum chemistry has generally been associated with two dates: the 1927 paper of Walter Heitler and Fritz London and the year 1931 in which Linus Pauling and John Clarke Slater independently explained the tetrahedral orientation of the four bonds of the carbon atom. To these dates we might also add a third: in 1928 London published a paper, 'Zur Quantentheorie der homöopolaren Valenzzahlen' (London, 1928), in which he gave a quantum mechanical explanation of the classical chemical notion of valency. There he showed a relationship between the valency numbers and the spectroscopical multiplicity, namely that valency=multiplicity-1. This relation established a bridge between physical and chemical facts. Taken together, these developments constitute important events for the international development of quantum chemistry.

  17. FermiLib v0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCCLEAN, JARROD; HANER, THOMAS; STEIGER, DAMIAN

    FermiLib is an open source software package designed to facilitate the development and testing of algorithms for simulations of fermionic systems on quantum computers. Fermionic simulations represent an important application of early quantum devices with a lot of potential high value targets, such as quantum chemistry for the development of new catalysts. This software strives to provide a link between the required domain expertise in specific fermionic applications and quantum computing to enable more users to directly interface with, and develop for, these applications. It is an extensible Python library designed to interface with the high performance quantum simulator, ProjectQ,more » as well as application specific software such as PSI4 from the domain of quantum chemistry. Such software is key to enabling effective user facilities in quantum computation research.« less

  18. Extending Halogen-based Medicinal Chemistry to Proteins

    PubMed Central

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B.; Smith, Brian J.; Menting, John G.; Whittaker, Jonathan; Lawrence, Michael C.; Meuwly, Markus; Weiss, Michael A.

    2016-01-01

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-TyrB26]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (TyrB16, PheB24, PheB25, 3-I-TyrB26, and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-TyrB26]insulin analog (determined as an R6 zinc hexamer). Given that residues B24–B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a “micro-receptor” complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such “halogen engineering” promises to extend principles of medicinal chemistry to proteins. PMID:27875310

  19. International Conference on Low Temperature Chemistry (6th) Held in Chernogolovka, Russia on 27 August - 1 September 2006

    DTIC Science & Technology

    2006-09-20

    The stabilized free radicals FC60 (or FC70) were generated in sold argon by means of chemical reaction of the photogenerated fluorine atoms with...strong electrophile . Using quantum chemistry methods stability and structure of homoleptic Xe-containing molecules XeM2 and MXen with transition metal...apart from the main CH...F interaction, secondary interactions are present in which the fluorine of the chlorine atoms located in the haloform

  20. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  1. Ab initio quantum chemistry: methodology and applications.

    PubMed

    Friesner, Richard A

    2005-05-10

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.

  2. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  3. Cold molecules: Progress in quantum engineering of chemistry and quantum matter

    NASA Astrophysics Data System (ADS)

    Bohn, John L.; Rey, Ana Maria; Ye, Jun

    2017-09-01

    Cooling atoms to ultralow temperatures has produced a wealth of opportunities in fundamental physics, precision metrology, and quantum science. The more recent application of sophisticated cooling techniques to molecules, which has been more challenging to implement owing to the complexity of molecular structures, has now opened the door to the longstanding goal of precisely controlling molecular internal and external degrees of freedom and the resulting interaction processes. This line of research can leverage fundamental insights into how molecules interact and evolve to enable the control of reaction chemistry and the design and realization of a range of advanced quantum materials.

  4. Genetic training of network using chaos concept: application to QSAR studies of vibration modes of tetrahedral halides.

    PubMed

    Lu, Qingzhang; Shen, Guoli; Yu, Ruqin

    2002-11-15

    The chaotic dynamical system is introduced in genetic algorithm to train ANN to formulate the CGANN algorithm. Logistic mapping as one of the most important chaotic dynamic mappings provides each new generation a high chance to hold GA's population diversity. This enhances the ability to overcome overfitting in training an ANN. The proposed CGANN has been used for QSAR studies to predict the tetrahedral modes (nu(1)(A1) and nu(2)(E)) of halides [MX(4)](epsilon). The frequencies predicted by QSAR were compared with those calculated by quantum chemistry methods including PM3, AM1, and MNDO/d. The possibility of improving the predictive ability of QSAR by including quantum chemistry parameters as feature variables has been investigated using tetrahedral tetrahalide examples. Copyright 2002 Wiley Periodicals, Inc.

  5. Teaching Chemistry with Electron Density Models.

    ERIC Educational Resources Information Center

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-01-01

    Describes a method for teaching electronic structure and its relevance to chemical phenomena that relies on computer-generated three-dimensional models of electron density distributions. Discusses the quantum mechanical background needed and presents ways of using models of electronic ground states to teach electronic structure, bonding concepts,…

  6. Quantum kernel applications in medicinal chemistry.

    PubMed

    Huang, Lulu; Massa, Lou

    2012-07-01

    Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design.

  7. Perspective: Ring-polymer instanton theory

    NASA Astrophysics Data System (ADS)

    Richardson, Jeremy O.

    2018-05-01

    Since the earliest explorations of quantum mechanics, it has been a topic of great interest that quantum tunneling allows particles to penetrate classically insurmountable barriers. Instanton theory provides a simple description of these processes in terms of dominant tunneling pathways. Using a ring-polymer discretization, an efficient computational method is obtained for applying this theory to compute reaction rates and tunneling splittings in molecular systems. Unlike other quantum-dynamics approaches, the method scales well with the number of degrees of freedom, and for many polyatomic systems, the method may provide the most accurate predictions which can be practically computed. Instanton theory thus has the capability to produce useful data for many fields of low-temperature chemistry including spectroscopy, atmospheric and astrochemistry, as well as surface science. There is however still room for improvement in the efficiency of the numerical algorithms, and new theories are under development for describing tunneling in nonadiabatic transitions.

  8. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  9. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    USDA-ARS?s Scientific Manuscript database

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  10. Molecular Orbitals of NO, NO[superscript+], and NO[superscript-]: A Computational Quantum Chemistry Experiment

    ERIC Educational Resources Information Center

    Orenha, Renato P.; Galembeck, Sérgio E.

    2014-01-01

    This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…

  11. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  12. Interactively Applying the Variational Method to the Dihydrogen Molecule: Exploring Bonding and Antibonding

    ERIC Educational Resources Information Center

    Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian; Polfer, Nicolas C.

    2016-01-01

    In this work we are going to present how an interactive platform can be used as a powerful tool to allow students to better explore a foundational problem in quantum chemistry: the application of the variational method to the dihydrogen molecule using simple Gaussian trial functions. The theoretical approach for the hydrogen atom is quite…

  13. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  14. The effects of molecular structure on the electrical conductivity of polymers

    NASA Technical Reports Server (NTRS)

    Burke, Luke A.

    1992-01-01

    The role of Quantum Theoretical Methods is both predictive and supportive of experimental results in Chemistry. Present day methods are able to calculate vibrational spectra and stereochemical interactions for molecules of moderate size (up to 20 atoms). As for the predictive side, the electronic structure of molecules and polymers can be calculated in order to narrow down the field of many potential candidates, which would have the novel properties looked for. The following has been accomplished at the Rutgers Camden Chemistry Department as results of calculations on molecular and polymeric systems of interest to the Polymers Branch of the NASA Lewis Research Center, under Grant NAG3-956.

  15. Compressed Sensing for Chemistry

    NASA Astrophysics Data System (ADS)

    Sanders, Jacob Nathan

    Many chemical applications, from spectroscopy to quantum chemistry, involve measuring or computing a large amount of data, and then compressing this data to retain the most chemically-relevant information. In contrast, compressed sensing is an emergent technique that makes it possible to measure or compute an amount of data that is roughly proportional to its information content. In particular, compressed sensing enables the recovery of a sparse quantity of information from significantly undersampled data by solving an ℓ 1-optimization problem. This thesis represents the application of compressed sensing to problems in chemistry. The first half of this thesis is about spectroscopy. Compressed sensing is used to accelerate the computation of vibrational and electronic spectra from real-time time-dependent density functional theory simulations. Using compressed sensing as a drop-in replacement for the discrete Fourier transform, well-resolved frequency spectra are obtained at one-fifth the typical simulation time and computational cost. The technique is generalized to multiple dimensions and applied to two-dimensional absorption spectroscopy using experimental data collected on atomic rubidium vapor. Finally, a related technique known as super-resolution is applied to open quantum systems to obtain realistic models of a protein environment, in the form of atomistic spectral densities, at lower computational cost. The second half of this thesis deals with matrices in quantum chemistry. It presents a new use of compressed sensing for more efficient matrix recovery whenever the calculation of individual matrix elements is the computational bottleneck. The technique is applied to the computation of the second-derivative Hessian matrices in electronic structure calculations to obtain the vibrational modes and frequencies of molecules. When applied to anthracene, this technique results in a threefold speed-up, with greater speed-ups possible for larger molecules. The implementation of the method in the Q-Chem commercial software package is described. Moreover, the method provides a general framework for bootstrapping cheap low-accuracy calculations in order to reduce the required number of expensive high-accuracy calculations.

  16. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.

    PubMed

    Crespo-Otero, Rachel; Barbatti, Mario

    2018-05-16

    Nonadiabatic mixed quantum-classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the molecular system into two subsystems: one to be treated quantum mechanically (usually but not restricted to electrons) and another to be dealt with classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms to enforce self-consistency. A local approximation underlies the classical subsystem, implying that direct dynamics can be simulated, without needing precomputed potential energy surfaces. The NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular systems in diverse fields. Starting from the three most well-established methods-mean-field Ehrenfest, trajectory surface hopping, and multiple spawning-this review focuses on the NA-MQC dynamics methods and programs developed in the last 10 years. It stresses the relations between approaches and their domains of application. The electronic structure methods most commonly used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-MQC simulations are critically discussed, and general guidelines to choose an adequate method for each application are delivered.

  17. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    ERIC Educational Resources Information Center

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  18. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  19. Artificial Intelligence Support for Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Duch, Wlodzislaw

    Possible forms of artificial intelligence (AI) support for quantum chemistry are discussed. Questions addressed include: what kind of support is desirable, what kind of support is feasible, what can we expect in the coming years. Advantages and disadvantages of current AI techniques are presented and it is argued that at present the memory-based systems are the most effective for large scale applications. Such systems may be used to predict the accuracy of calculations and to select the least expensive methods and basis sets belonging to the same accuracy class. Advantages of the Feature Space Mapping as an improvement on the memory based systems are outlined and some results obtained in classification problems given. Relevance of such classification systems to computational chemistry is illustrated with two examples showing similarity of results obtained by different methods that take electron correlation into account.

  20. Electronic-topological study of the structure-activity relationships in a series of steroids with mineralocorticoid binding affinity.

    PubMed

    Kandemirli, Fatma; Tokay, Nesrin; Shvets, Nataly M; Dimoglo, Anatoly S

    2003-01-01

    Conformational analysis and quantum chemical calculations were carried out using molecular mechanics (MMP2) and semi-empirical quantum chemistry (CNDO/2) methods for 51 steroid homologues belonging to a series of 17-spirolactones. Matrices called Electronic-Topological Matrices of Conjunction (ETMCs) were formed using data obtained from quantum chemical calculations. A structural fragment of activity was identified in the series of steroids. As seen from the fragment's properties, active compounds are characterized by the presence of two atoms of oxygen, O1 and O3, which are situated at a distance of 13.5 A and possess high negative charges (-0.29 to -0.31 e).

  1. The Harvard organic photovoltaic dataset

    DOE PAGES

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; ...

    2016-09-27

    Presented in this work is the Harvard Organic Photovoltaic Dataset (HOPV15), a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  2. In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells

    NASA Astrophysics Data System (ADS)

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya

    2009-07-01

    Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.

  3. The Harvard organic photovoltaic dataset

    PubMed Central

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  4. The Harvard organic photovoltaic dataset.

    PubMed

    Lopez, Steven A; Pyzer-Knapp, Edward O; Simm, Gregor N; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-09-27

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  5. Molecular Structure of Humin and Melanoidin via Solid State NMR

    PubMed Central

    Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena

    2011-01-01

    Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563

  6. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-09

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction.

  7. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    PubMed

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  8. Combined use of computational chemistry and chemoinformatics methods for chemical discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Manabu, E-mail: sugimoto@kumamoto-u.ac.jp; Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012

    2015-12-31

    Data analysis on numerical data by the computational chemistry calculations is carried out to obtain knowledge information of molecules. A molecular database is developed to systematically store chemical, electronic-structure, and knowledge-based information. The database is used to find molecules related to a keyword of “cancer”. Then the electronic-structure calculations are performed to quantitatively evaluate quantum chemical similarity of the molecules. Among the 377 compounds registered in the database, 24 molecules are found to be “cancer”-related. This set of molecules includes both carcinogens and anticancer drugs. The quantum chemical similarity analysis, which is carried out by using numerical results of themore » density-functional theory calculations, shows that, when some energy spectra are referred to, carcinogens are reasonably distinguished from the anticancer drugs. Therefore these spectral properties are considered of as important measures for classification.« less

  9. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry.

    PubMed

    Tavares, Ana Beatriz M L A; Lima Neto, José X; Fulco, Umberto L; Albuquerque, Eudenilson L

    2018-01-30

    Much of the recent excitement in the cancer immunotherapy approach has been generated by the recognition that immune checkpoint proteins, like the receptor PD-1, can be blocked by antibody-based drugs with profound effects. Promising clinical data have already been released pointing to the efficiency of the drug pembrolizumab to block the PD-1 pathway, triggering the T-lymphocytes to destroy the cancer cells. Thus, a deep understanding of this drug/receptor complex is essential for the improvement of new drugs targeting the protein PD-1. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT), we investigate in silico the binding energy features of the receptor PD-1 in complex with its drug inhibitor. Our computational results give a better understanding of the binding mechanisms, being also an efficient alternative towards the development of antibody-based drugs, pointing to new treatments for cancer therapy.

  10. Quantum chemistry-assisted synthesis route development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hori, Kenji; Sumimoto, Michinori; Murafuji, Toshihiro

    2015-12-31

    We have been investigating “quantum chemistry-assisted synthesis route development” using in silico screenings and applied the method to several targets. Another example was conducted to develop synthesis routes for a urea derivative, namely 1-(4-(trifluoromethyl)-2-oxo-2H-chromen-7-yl)urea. While five synthesis routes were examined, only three routes passed the second in silico screening. Among them, the reaction of 7-amino-4-(trifluoromethyl)-2H-chromen-2-one and O-methyl carbamate with BF{sub 3} as an additive was ranked as the first choice for synthetic work. We were able to experimentally obtain the target compound even though its yield was as low as 21 %. The theoretical result was thus consistent with thatmore » observed. The summary of transition state data base (TSDB) is also provided. TSDB is the key to reducing time of in silico screenings.« less

  11. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest

    NASA Astrophysics Data System (ADS)

    McCaffery, Anthony J.

    2018-03-01

    This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.

  12. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization.

    PubMed

    Mazack, Michael J M; Gao, Jiali

    2014-05-28

    The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.

  13. Quantum theory and chemistry: Two propositions

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    Two propositions concerning quantum chemistry are proposed. First, it is proposed that the nonrelativistic Schroedinger equation, where the Hamiltonian operator is associated with an assemblage of nuclei and electrons, can never be arranged to yield specific molecules in the chemists' sense. It is argued that this result is a necessary condition if the Schroedinger has relevancy to chemistry. Second, once a system is in a particular state with regard to interactions among its components (the assemblage of nuclei and electrons), it cannot spontaneously eliminate any of those interactions. This leads to a subtle form of irreversibility.

  14. Nontrivial Quantum Effects in Biology: A Skeptical Physicists' View

    NASA Astrophysics Data System (ADS)

    Wiseman, Howard; Eisert, Jens

    The following sections are included: * Introduction * A Quantum Life Principle * A quantum chemistry principle? * The anthropic principle * Quantum Computing in the Brain * Nature did everything first? * Decoherence as the make or break issue * Quantum error correction * Uselessness of quantum algorithms for organisms * Quantum Computing in Genetics * Quantum search * Teleological aspects and the fast-track to life * Quantum Consciousness * Computability and free will * Time scales * Quantum Free Will * Predictability and free will * Determinism and free will * Acknowledgements * References

  15. Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.

    Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.

  16. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    NASA Astrophysics Data System (ADS)

    Shao, Yihan; Gan, Zhengting; Epifanovsky, Evgeny; Gilbert, Andrew T. B.; Wormit, Michael; Kussmann, Joerg; Lange, Adrian W.; Behn, Andrew; Deng, Jia; Feng, Xintian; Ghosh, Debashree; Goldey, Matthew; Horn, Paul R.; Jacobson, Leif D.; Kaliman, Ilya; Khaliullin, Rustam Z.; Kuś, Tomasz; Landau, Arie; Liu, Jie; Proynov, Emil I.; Rhee, Young Min; Richard, Ryan M.; Rohrdanz, Mary A.; Steele, Ryan P.; Sundstrom, Eric J.; Woodcock, H. Lee, III; Zimmerman, Paul M.; Zuev, Dmitry; Albrecht, Ben; Alguire, Ethan; Austin, Brian; Beran, Gregory J. O.; Bernard, Yves A.; Berquist, Eric; Brandhorst, Kai; Bravaya, Ksenia B.; Brown, Shawn T.; Casanova, David; Chang, Chun-Min; Chen, Yunqing; Chien, Siu Hung; Closser, Kristina D.; Crittenden, Deborah L.; Diedenhofen, Michael; DiStasio, Robert A., Jr.; Do, Hainam; Dutoi, Anthony D.; Edgar, Richard G.; Fatehi, Shervin; Fusti-Molnar, Laszlo; Ghysels, An; Golubeva-Zadorozhnaya, Anna; Gomes, Joseph; Hanson-Heine, Magnus W. D.; Harbach, Philipp H. P.; Hauser, Andreas W.; Hohenstein, Edward G.; Holden, Zachary C.; Jagau, Thomas-C.; Ji, Hyunjun; Kaduk, Benjamin; Khistyaev, Kirill; Kim, Jaehoon; Kim, Jihan; King, Rollin A.; Klunzinger, Phil; Kosenkov, Dmytro; Kowalczyk, Tim; Krauter, Caroline M.; Lao, Ka Un; Laurent, Adèle D.; Lawler, Keith V.; Levchenko, Sergey V.; Lin, Ching Yeh; Liu, Fenglai; Livshits, Ester; Lochan, Rohini C.; Luenser, Arne; Manohar, Prashant; Manzer, Samuel F.; Mao, Shan-Ping; Mardirossian, Narbe; Marenich, Aleksandr V.; Maurer, Simon A.; Mayhall, Nicholas J.; Neuscamman, Eric; Oana, C. Melania; Olivares-Amaya, Roberto; O'Neill, Darragh P.; Parkhill, John A.; Perrine, Trilisa M.; Peverati, Roberto; Prociuk, Alexander; Rehn, Dirk R.; Rosta, Edina; Russ, Nicholas J.; Sharada, Shaama M.; Sharma, Sandeep; Small, David W.; Sodt, Alexander; Stein, Tamar; Stück, David; Su, Yu-Chuan; Thom, Alex J. W.; Tsuchimochi, Takashi; Vanovschi, Vitalii; Vogt, Leslie; Vydrov, Oleg; Wang, Tao; Watson, Mark A.; Wenzel, Jan; White, Alec; Williams, Christopher F.; Yang, Jun; Yeganeh, Sina; Yost, Shane R.; You, Zhi-Qiang; Zhang, Igor Ying; Zhang, Xing; Zhao, Yan; Brooks, Bernard R.; Chan, Garnet K. L.; Chipman, Daniel M.; Cramer, Christopher J.; Goddard, William A., III; Gordon, Mark S.; Hehre, Warren J.; Klamt, Andreas; Schaefer, Henry F., III; Schmidt, Michael W.; Sherrill, C. David; Truhlar, Donald G.; Warshel, Arieh; Xu, Xin; Aspuru-Guzik, Alán; Baer, Roi; Bell, Alexis T.; Besley, Nicholas A.; Chai, Jeng-Da; Dreuw, Andreas; Dunietz, Barry D.; Furlani, Thomas R.; Gwaltney, Steven R.; Hsu, Chao-Ping; Jung, Yousung; Kong, Jing; Lambrecht, Daniel S.; Liang, WanZhen; Ochsenfeld, Christian; Rassolov, Vitaly A.; Slipchenko, Lyudmila V.; Subotnik, Joseph E.; Van Voorhis, Troy; Herbert, John M.; Krylov, Anna I.; Gill, Peter M. W.; Head-Gordon, Martin

    2015-01-01

    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

  17.  The application of computational chemistry to lignin

    Treesearch

    Thomas Elder; Laura Berstis; Nele Sophie Zwirchmayr; Gregg T. Beckham; Michael F. Crowley

    2017-01-01

    Computational chemical methods have become an important technique in the examination of the structure and reactivity of lignin. The calculations can be based either on classical or quantum mechanics, with concomitant differences in computational intensity and size restrictions. The current paper will concentrate on results developed from the latter type of calculations...

  18. Progesterone and testosterone studies by neutron-scattering methods and quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Holderna-Natkaniec, K.; Szyczewski, A.; Natkaniec, I.; Khavryutchenko, V. D.; Pawlukojc, A.

    Inelastic incoherent neutron scattering (IINS) and neutron diffraction spectra of progesterone and testosterone were measured simultaneously on the NERA spectrometer at the IBR-2 pulsed reactor in Dubna. Both studied samples do not indicate any phase transition in the temperature range from 20 to 290K. The IINS spectra have been transformed to the phonon density of states (PDS) in the one-phonon scattering approximation. The PDS spectra display well-resolved peaks of low-frequency internal vibration modes up to 600cm-1. The assignment of these modes was proposed taking into account the results of calculations of the structure and dynamics of isolated molecules of the investigated substances. The quantum chemistry calculations were performed by the semi-empirical PM3 method and at the restricted Hartree-Fock level with the 6-31* basis set. The lower internal modes assigned to torsional vibration of the androstane skeleton mix with the lattice vibrations. The intense bands in the PDS spectra in the frequency range from 150 to 300cm-1 are related to librations of structurally inequivalent methyl groups.

  19. Quantum Dynamics in Biological Systems

    NASA Astrophysics Data System (ADS)

    Shim, Sangwoo

    In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.

  20. Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSexTe1-x quantum dots

    NASA Astrophysics Data System (ADS)

    Szeremeta, Janusz; Lamch, Lukasz; Wawrzynczyk, Dominika; Wilk, Kazimiera A.; Samoc, Marek; Nyk, Marcin

    2015-07-01

    Hydrophobic CdSexTe1-x quantum dots with near infrared emission in the 700-750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSexTe1-x quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.

  1. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  2. Autonomy, explanation, and theoretical values: physicists and chemists on molecular quantum mechanics.

    PubMed

    Hendry, Robin Findlay

    2003-05-01

    The emergence of quantum chemistry in the early twentieth century was an international as well as an interdisciplinary affair, involving dialogue between physicists and chemists in Germany, the United States, and Britain. Historians of science have recently documented both the causes and effects of this internationalism and interdisciplinarity. Chemists and physicists involved in the development of quantum chemistry in its first few decades tended to argue for opposing views on acceptable standards of explanation in their field, although the debate did not divide along disciplinary lines. The purpose of this paper is to investigate these different positions, through the methodological reflections of John Clarke Slater, Linus Pauling, and Charles Coulson. Slater tended to argue for quantum-mechanical rigor and the application of fundamental principles as the values guiding models of molecular bonding. Although they were on different sides of the debate between the valence-bond and molecular-orbital approaches, Pauling and Coulson both emphasized the recovery of traditional chemical explanations and systematic explanatory power within chemistry.

  3. Making a molecular gas in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ni, Kang-Kuen

    2017-04-01

    Ultracold molecules are exciting systems for a large range of scientific explorations including studies of novel phases of matter and precision measurement. In this talk, I will present a brief story of the first quantum gas of molecules, KRb, created under my PhD advisor, Deborah Jin, in 2008. A complete surprise was finding ultracold chemistry in such a system through measurements of reactant losses. In particular, long-range physics that determines KRb reactant collision rates, including van der Waals interactions, quantum statistics, and dipolar interactions, were studied extensively. However, the short-range behavior of these chemical reactions remains unknown. A legacy of her work is carried out in my lab at Harvard, where we are integrating physical chemistry tools with cold atom techniques to study ultracold chemistry with KRb molecules. In particular, we aim to elucidate the four-center reaction 2 KRb ->K2 + Rb2 by detecting the reaction products through ionization - both identify the product species and mapping out their complete quantum states.

  4. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  5. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    PubMed

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  6. Teaching Introductory Quantum Physics and Chemistry: Caveats from the History of Science and Science Teaching to the Training of Modern Chemists

    ERIC Educational Resources Information Center

    Greca, Ileana M.; Freire, Olival, Jr.

    2014-01-01

    Finding the best ways to introduce quantum physics to undergraduate students in all scientific areas, in particular for chemistry students, is a pressing, but hardly a simple task. In this paper, we discuss the relevance of taking into account lessons from the history of the discipline and the ongoing controversy over its interpretations and…

  7. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.

    PubMed

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A

    2016-12-30

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr B26 ) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr B26 ]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr B16 , Phe B24 , Phe B25 , 3-I-Tyr B26 , and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr B26 ]insulin analog (determined as an R 6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr B26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr B26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitez, Juan A.; Sanchez, Morella; Ruette, Fernando

    Application of simulated annealing (SA) and simplified GSA (SGSA) techniques for parameter optimization of parametric quantum chemistry method (CATIVIC) was performed. A set of organic molecules were selected for test these techniques. Comparison of the algorithms was carried out for error function minimization with respect to experimental values. Results show that SGSA is more efficient than SA with respect to computer time. Accuracy is similar in both methods; however, there are important differences in the final set of parameters.

  9. Controlled multistep synthesis in a three-phase droplet reactor

    PubMed Central

    Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.

    2014-01-01

    Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034

  10. Hybrid quantum and molecular mechanics embedded cluster models for chemistry on silicon and silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Shoemaker, James Richard

    Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC by oxidation is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schrodinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption sites on C- terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.

  11. Old Wine in New Bottles: Quantum Theory in Historical Perspective.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1984-01-01

    Discusses similarities between chemistry and three central concepts of quantum physics: (1) stationary states; (2) wave functions; and (3) complementarity. Based on these and other similarities, it is indicated that quantum physics is a chemical physics. (JN)

  12. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations

    PubMed Central

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-kang

    2013-01-01

    Aim: To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Methods: Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Results: Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π–π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. Conclusion: The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met. PMID:24056705

  13. Synthesis of Cesium Lead Halide Perovskite Quantum Dots

    ERIC Educational Resources Information Center

    Shekhirev, Mikhail; Goza, John; Teeter, Jacob D.; Lipatov, Alexey; Sinitskii, Alexander

    2017-01-01

    Synthesis of quantum dots is a valuable experiment for demonstration and discussion of quantum phenomena in undergraduate chemistry curricula. Recently, a new class of all-inorganic perovskite quantum dots (QDs) with a formula of CsPbX[subscript 3] (X = Cl, Br, I) was presented and attracted tremendous attention. Here we adapt the synthesis of…

  14. Comparison of Oxygen Gauche Effects in Poly(Oxyethylene) and Poly(ethylene terephtylene) Based on Quantum Chemistry Calculations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The so-called oxygen gauche effect in poly(oxyethylene) (POE) and its model molecules such as 1,2-dimethoxyethane (DME) and diglyme (CH3OC2H4OC2H4OCH3) is manifested in the preference for gauche C-C bond conformations over trans. This has also been observed for poly(ethylene terephthalate) (PET). Our previous quantum chemistry calculations demonstrated that the large C-C gauche population in DME is due, in part, to a low-lying tg +/- g+ conformer that exhibits a substantial 1,5 CH ... O attraction. New calculations will be described that demonstrate the accuracy of the original quantum chemistry calculations. In addition, an extension of this work to model molecules for PET will be presented. It is seen that the C-C gauche preference is much stronger in 1,2 diacetoxyethane than in DME. In addition, there exist low-lying tg +/- g+/- and g+/-g+/-g+/- conformers that exhibit 1,5 CH ... O attractions involving the carbonyl oxygens. It is expected that the -O-C-C-O- torsional properties will be quite different in these two polymers. The quantum chemistry results are used to parameterize rotational isomeric states models (RIS) and force fields for molecular dynamics simulations of these polymers.

  15. High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Lam; Stanton, John F.

    2017-10-01

    Hydrogen abstraction from NH3 by OH to produce H2O and NH2—an important reaction in combustion of NH3 fuel—was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5%-20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.

  16. High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K.

    PubMed

    Nguyen, Thanh Lam; Stanton, John F

    2017-10-21

    Hydrogen abstraction from NH 3 by OH to produce H 2 O and NH 2 -an important reaction in combustion of NH 3 fuel-was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5%-20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.

  17. Remote detection of single emitters via optical waveguides

    NASA Astrophysics Data System (ADS)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  18. Possibilities of the free-complement methodology for solving the Schrödinger equation of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nakatsuji, Hiroshi

    Chemistry is a science of complex subjects that occupy this universe and biological world and that are composed of atoms and molecules. Its essence is diversity. However, surprisingly, whole of this science is governed by simple quantum principles like the Schrödinger and the Dirac equations. Therefore, if we can find a useful general method of solving these quantum principles under the fermionic and/or bosonic constraints accurately in a reasonable speed, we can replace somewhat empirical methodologies of this science with purely quantum theoretical and computational logics. This is the purpose of our series of studies - called ``exact theory'' in our laboratory. Some of our documents are cited below. The key idea was expressed as the free complement (FC) theory (originally called ICI theory) that was introduced to solve the Schrödinger and Dirac equations analytically. For extending this methodology to larger systems, order N methodologies are essential, but actually the antisymmetry constraints for electronic wave functions become big constraints. Recently, we have shown that the antisymmetry rule or `dogma' can be very much relaxed when our subjects are large molecular systems. In this talk, I want to present our recent progress in our FC methodology. The purpose is to construct ``predictive quantum chemistry'' that is useful in chemical and physical researches and developments in institutes and industries

  19. Free Energies of Quantum Particles: The Coupled-Perturbed Quantum Umbrella Sampling Method.

    PubMed

    Glover, William J; Casey, Jennifer R; Schwartz, Benjamin J

    2014-10-14

    We introduce a new simulation method called Coupled-Perturbed Quantum Umbrella Sampling that extends the classical umbrella sampling approach to reaction coordinates involving quantum mechanical degrees of freedom. The central idea in our method is to solve coupled-perturbed equations to find the response of the quantum system's wave function along a reaction coordinate of interest. This allows for propagation of the system's dynamics under the influence of a quantum biasing umbrella potential and provides a method to rigorously undo the effects of the bias to compute equilibrium ensemble averages. In this way, one can drag electrons into regions of high free energy where they would otherwise not go, thus enabling chemistry by fiat. We demonstrate the applicability of our method for two condensed-phase systems of interest. First, we consider the interaction of a hydrated electron with an aqueous sodium cation, and we calculate a potential of mean force that shows that an e(-):Na(+) contact pair is the thermodynamically favored product starting from either a neutral sodium atom or the separate cation and electron species. Second, we present the first determination of a hydrated electron's free-energy profile relative to an air/water interface. For the particular model parameters used, we find that the hydrated electron is more thermodynamically stable in the bulk rather than at the interface. Our analysis suggests that the primary driving force keeping the electron away from the interface is the long-range electron-solvent polarization interaction rather than the short-range details of the chosen pseudopotential.

  20. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.

  1. The Promise of Quantum Simulation.

    PubMed

    Muller, Richard P; Blume-Kohout, Robin

    2015-08-25

    Quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH(+) molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  2. Understanding the HIV-1 protease reactivity with DFT: what do we gain from recent functionals?

    PubMed

    Garrec, J; Sautet, P; Fleurat-Lessard, P

    2011-07-07

    The modeling of HIV-1 plays a crucial role in the understanding of its reactivity and its interactions with specific drugs. In this work, we propose a medium sized model to test the ability of a variety of quantum chemistry approaches to provide reasonable geometric parameters and energetics for this system. Although our model is large enough to include the main polarizing groups of the active site, it is small enough to be used within full quantum studies up to the second order Møller-Plesset (MP2) level with extrapolations to coupled cluster CCSD(T) level. These high level calculations are used as reference to assess the ability of electronic structure methods (semiempirical and DFT) to provide accurate geometries and energies for the HIV-1 protease reaction. All semiempirical methods fail to describe the geometry of the protease active site. Within DFT, pure generalized gradient approximation (GGA) functionals have difficulty in reproducing the reaction energy and underestimate the barrier. Hybrid and/or meta GGA approaches do not yield a consistent improvement. The best results are obtained with hybrid GGA B3LYP or X3LYP and with hybrid meta GGA functionals with a fraction of exact exchange around 30-40%, such as M06, B1B95, or BMK functionals. On the basis of these results, we propose an accurate and computationally efficient strategy, employing quantum chemistry methods. This is applied here to study the protonation state of the reaction intermediate and could be easily used in further QM/MM studies.

  3. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  4. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

    ERIC Educational Resources Information Center

    Rice, Charles V.; Giffin, Guinevere A.

    2008-01-01

    Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

  5. Quantum caesium

    DOE PAGES

    Ansoborlo, Eric; Leggett, Richard Wayne

    2015-03-24

    This brief article summarizes the chemistry, history, applications, and hazards of caesium isotopes. The article is written for a general audience and will appear in the "In your element" section of Nature Chemistry.

  6. Software Applications on the Peregrine System | High-Performance Computing

    Science.gov Websites

    programming and optimization. Gaussian Chemistry Program for calculating molecular electronic structure and Materials Science Open-source classical molecular dynamics program designed for massively parallel systems framework Q-Chem Chemistry ab initio quantum chemistry package for predictin molecular structures

  7. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  8. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    PubMed

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  9. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  10. The Nature of the Chemical Bond--1990.

    ERIC Educational Resources Information Center

    Ogilvie, J. F.

    1990-01-01

    Three aspects of quantum mechanics in modern chemistry are stressed: the fundamental structure of quantum mechanics as a basis of chemical applications, the relationship of quantum mechanics to atomic and molecular structure, and the consequent implications for chemical education. A list of 64 references is included. (CW)

  11. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  12. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  13. Rethinking Undergraduate Physical Chemistry Curricula

    ERIC Educational Resources Information Center

    Miller, Stephen R.

    2016-01-01

    A summary of fundamental changes made to the undergraduate physical chemistry curriculum in the Chemistry Department at Gustavus Adolphus College (beginning in the 2013-2014 academic year) is presented. The yearlong sequence now consists of an introductory semester covering both quantum mechanics and thermodynamics/kinetics, followed by a second…

  14. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission

    PubMed Central

    Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.

    2016-01-01

    The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357

  15. Time-dependent quantum chemistry of laser driven many-electron molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy

    2014-12-28

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied tomore » calculate the detailed, sub-cycle electronic dynamics of BeH{sub 2}, treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10{sup 15} W/cm{sup 2}), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.« less

  16. Single colloidal quantum dots as sources of single photons for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo

    2011-02-01

    Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.

  17. The promise of quantum simulation

    DOE PAGES

    Muller, Richard P.; Blume-Kohout, Robin

    2015-07-21

    In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH + molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  18. On the equivalence of LIST and DIIS methods for convergence acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Alejandro J.; Scuseria, Gustavo E.

    2015-04-28

    Self-consistent field extrapolation methods play a pivotal role in quantum chemistry and electronic structure theory. We, here, demonstrate the mathematical equivalence between the recently proposed family of LIST methods [Wang et al., J. Chem. Phys. 134, 241103 (2011); Y. K. Chen and Y. A. Wang, J. Chem. Theory Comput. 7, 3045 (2011)] and the general form of Pulay’s DIIS [Chem. Phys. Lett. 73, 393 (1980); J. Comput. Chem. 3, 556 (1982)] with specific error vectors. Our results also explain the differences in performance among the various LIST methods.

  19. Multi-level meta-workflows: new concept for regularly occurring tasks in quantum chemistry.

    PubMed

    Arshad, Junaid; Hoffmann, Alexander; Gesing, Sandra; Grunzke, Richard; Krüger, Jens; Kiss, Tamas; Herres-Pawlis, Sonja; Terstyanszky, Gabor

    2016-01-01

    In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. We investigated the operations that represent basic functionalities in Quantum Chemistry, developed the relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository.Graphical AbstractMeta-workflows and embedded workflows in the template representation.

  20. High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K

    DOE PAGES

    Nguyen, Thanh Lam; Stanton, John F.

    2017-06-02

    Hydrogen abstraction from NH 3 by OH to produce H 2O and NH 2 — an important reaction in combustion of NH 3 fuel — was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5 to 20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Here, quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.

  1. The application of quantum mechanics in structure-based drug design.

    PubMed

    Mucs, Daniel; Bryce, Richard A

    2013-03-01

    Computational chemistry has become an established and valuable component in structure-based drug design. However the chemical complexity of many ligands and active sites challenges the accuracy of the empirical potentials commonly used to describe these systems. Consequently, there is a growing interest in utilizing electronic structure methods for addressing problems in protein-ligand recognition. In this review, the authors discuss recent progress in the development and application of quantum chemical approaches to modeling protein-ligand interactions. The authors specifically consider the development of quantum mechanics (QM) approaches for studying large molecular systems pertinent to biology, focusing on protein-ligand docking, protein-ligand binding affinities and ligand strain on binding. Although computation of binding energies remains a challenging and evolving area, current QM methods can underpin improved docking approaches and offer detailed insights into ligand strain and into the nature and relative strengths of complex active site interactions. The authors envisage that QM will become an increasingly routine and valued tool of the computational medicinal chemist.

  2. Solving the electron and electron-nuclear Schroedinger equations for the excited states of helium atom with the free iterative-complement-interaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi

    2008-04-21

    Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less

  3. Cold chemistry with cold molecules

    NASA Astrophysics Data System (ADS)

    Shagam, Yuval

    Low temperature chemistry has been predicted to be dominated by quantum effects, such as shape resonances, where colliding particles exhibit wave-like behavior and tunnel through potential barriers. Observation of these quantum effects provides valuable insight into the microscopic mechanism that governs scattering processes. Our recent advances in the control of neutral supersonic molecular beams, namely merged beam experiments, have enabled continuous tuning of collision energies from the classical regime at room temperature down to 0.01 kelvin, where a quantum description of the dynamics is necessary. I will discuss our use of this technique to study how the dynamics change when molecules participate in collisions, demonstrating the crucial role the molecular quantum rotor plays. We have found that at low temperatures rotational state of the molecule can strongly affect collision dynamics considerably changing reaction rates, due to the different symmetries of the molecular wavefunction.

  4. Thiolated graphene - a new platform for anchoring CdSe quantum dots for hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Pillai, Vijayamohanan K.

    2013-04-01

    Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures.Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00363a

  5. Is there a field-theoretic explanation for precursor biopolymers?

    PubMed

    Rosen, Gerald

    2002-08-01

    A Hu-Barkana-Gruzinov cold dark matter scalar field phi may enter a weak isospin invariant derivative interaction that causes the flow of right-handed electrons to align parallel to (inverted delta phi). Hence, in the outer regions of galaxies where (inverted delta phi) is large, as in galactic halos, the derivative interaction may induce a chirality-imbued quantum chemistry. Such a chirality-imbued chemistry would in turn be conducive to the formation of abundant precursor biopolymers on interstellar dust grains, comets and meteors in galactic halo regions, with subsequent delivery to planets in the inner galactic regions where phi and (inverted delta phi) are concomitantly near zero and left-right symmetric terrestrial quantum chemistry prevails.

  6. Development of high performance scientific components for interoperability of computing packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulabani, Teena Pratap

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achievedmore » by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.« less

  7. Computational design of soft materials for the capture of Cs-137 in contaminated environments: From 2D covalent cucurbituril networks to 3D supramolecular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichierri, Fabio, E-mail: fabio@che.tohoku.ac.jp

    Using computational quantum chemistry methods we design novel 2D and 3D soft materials made of cucurbituril macrocycles covalently connected with each other via rigid linkers. Such covalent cucurbituril networks might be useful for the capture of radioactive Cs-137 (present as Cs{sup +}) in the contaminated environment.

  8. Configurational assignments of conformationally restricted bis-monoterpene hydroquinones: Utility in exploration of endangered plants

    Treesearch

    Joonseok Oh; John J. Bowling; Amar G. Chittiboyina; Robert J. Doerksen; Daneel Ferreira; Theodor D. Leininger; Mark T. Hamann

    2013-01-01

    Endangered plant species are an important resource for new chemistry. Lindera melissifolia is native to the Southeastern U.S. and scarcely populates the edges of lakes and ponds. Quantum mechanics (QM) used in combination with NMR/ECD is a powerful tool for the assignment of absolute configuration in lieu of X-ray crystallography. Methods: The EtOAc extract of L....

  9. Interactive Simulations to Support Quantum Mechanics Instruction for Chemistry Students

    ERIC Educational Resources Information Center

    Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark

    2017-01-01

    The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…

  10. Using Computer Visualization Models in High School Chemistry: The Role of Teacher Beliefs.

    ERIC Educational Resources Information Center

    Robblee, Karen M.; Garik, Peter; Abegg, Gerald L.; Faux, Russell; Horwitz, Paul

    This paper discusses the role of high school chemistry teachers' beliefs in implementing computer visualization software to teach atomic and molecular structure from a quantum mechanical perspective. The informants in this study were four high school chemistry teachers with comparable academic and professional backgrounds. These teachers received…

  11. Integrating Free Computer Software in Chemistry and Biochemistry Instruction: An International Collaboration

    ERIC Educational Resources Information Center

    Cedeno, David L.; Jones, Marjorie A.; Friesen, Jon A.; Wirtz, Mark W.; Rios, Luz Amalia; Ocampo, Gonzalo Taborda

    2010-01-01

    At the Universidad de Caldas, Manizales, Colombia, we used their new computer facilities to introduce chemistry graduate students to biochemical database mining and quantum chemistry calculations using freeware. These hands-on workshops allowed the students a strong introduction to easily accessible software and how to use this software to begin…

  12. NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |

    Science.gov Websites

    and quantum size effects in semiconductors and carrier dynamics in semiconductor quantum dots and using hot carrier effects, size quantization, and superlattice concepts that could, in principle, enable

  13. Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross-Linking Proteins.

    PubMed

    Wallisch, Melanie; Sulmann, Stefan; Koch, Karl-Wilhelm; Christoffers, Jens

    2017-05-11

    Diaminoterephthalates are fluorescent dyes and define scaffolds, which can be orthogonally functionalized at their two carboxylate residues with functional residues bearing task specific reactive groups. The synthesis of monofunctionalized dyes with thiol groups for surface binding, an azide for click chemistry, and a biotinoylated congener for streptavidin binding is reported. Two bifunctionalized dyes were prepared: One with an azide for click chemistry and a biotin for streptavidin binding, the other with a maleimide for reaction with thiol and a cyclooctyne moiety for ligation with copper-free click chemistry. In general, the compounds are red to orange, fluorescent materials with an absorption at about 450 nm and an emission at 560 nm with quantum yields between 2-41 %. Of particular interest is the maleimide-functionalized compound, which shows low fluorescence quantum yield (2 %) by itself. After addition of a thiol, the fluorescence is "turned on"; quantum yield 41 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE PAGES

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  15. A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation

    PubMed Central

    Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.

    2013-01-01

    Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720

  16. Kinetic energy partition method applied to ground state helium-like atoms.

    PubMed

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  17. Some problems in applications of the linear variational method

    NASA Astrophysics Data System (ADS)

    Pupyshev, Vladimir I.; Montgomery, H. E.

    2015-09-01

    The linear variational method is a standard computational method in quantum mechanics and quantum chemistry. As taught in most classes, the general guidance is to include as many basis functions as practical in the variational wave function. However, if it is desired to study the patterns of energy change accompanying the change of system parameters such as the shape and strength of the potential energy, the problem becomes more complicated. We use one-dimensional systems with a particle in a rectangular or in a harmonic potential confined in an infinite rectangular box to illustrate situations where a variational calculation can give incorrect results. These situations result when the energy of the lowest eigenvalue is strongly dependent on the parameters that describe the shape and strength of the potential. The numerical examples described in this work are provided as cautionary notes for practitioners of numerical variational calculations.

  18. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is superior by almost an order of magnitude over the ANN method in terms of the stability, generality, and robustness of the final model. The LS-SVM model needs a much smaller numbers of samples (a much smaller sample set) to make accurate prediction results. Potential energy surface (PES) approximations for molecular dynamics (MD) studies are discussed as a promising application for the LS-SVM calibration approach. This journal is © the Owner Societies 2011

  19. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    NASA Astrophysics Data System (ADS)

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  20. Extending density functional embedding theory for covalently bonded systems.

    PubMed

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  1. Improving the accuracy of Møller-Plesset perturbation theory with neural networks

    NASA Astrophysics Data System (ADS)

    McGibbon, Robert T.; Taube, Andrew G.; Donchev, Alexander G.; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L.; Shaw, David E.

    2017-10-01

    Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol-1 (root-mean-square error 0.09 kcal mol-1), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.

  2. Improving the accuracy of Møller-Plesset perturbation theory with neural networks.

    PubMed

    McGibbon, Robert T; Taube, Andrew G; Donchev, Alexander G; Siva, Karthik; Hernández, Felipe; Hargus, Cory; Law, Ka-Hei; Klepeis, John L; Shaw, David E

    2017-10-28

    Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol -1 (root-mean-square error 0.09 kcal mol -1 ), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.

  3. The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits.

    PubMed

    Goswami, Prasenjit N; Mandal, Debranjan; Rath, Arup K

    2018-01-18

    Surface chemistry plays a crucial role in determining the electronic properties of quantum dot solids and may well be the key to mitigate loss processes involved in quantum dot solar cells. Surface ligands help to maintain the shape and size of the individual dots in solid films, to preserve the clean energy band gap of the individual particles and to control charge carrier conduction across solid films, in turn regulating their performance in photovoltaic applications. In this report, we show that the changes in size, shape and functional groups of small chain organic ligands enable us to modulate mobility, dielectric constant and carrier doping density of lead sulfide quantum dot solids. Furthermore, we correlate these results with performance, stability and recombination processes in the respective photovoltaic devices. Our results highlight the critical role of surface chemistry in the electronic properties of quantum dots. The role of the size, functionality and the surface coverage of the ligands in determining charge transport properties and the stability of quantum dot solids have been discussed. Our findings, when applied in designing new ligands with higher mobility and improved passivation of quantum dot solids, can have important implications for the development of high-performance quantum dot solar cells.

  4. Molecular Modeling of Environmentally Important Processes: Reduction Potentials

    ERIC Educational Resources Information Center

    Lewis, Anne; Bumpus, John A.; Truhlar, Donald G.; Cramer, Christopher J.

    2004-01-01

    The increasing use of computational quantum chemistry in the modeling of environmentally important processes is described. The employment of computational quantum mechanics for the prediction of oxidation-reduction potential for solutes in an aqueous medium is discussed.

  5. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.

    PubMed

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro

    2012-11-21

    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  6. | NREL

    Science.gov Websites

    of NREL's Computational Science Center, where he uses electronic structure calculations and other introductory chemistry and physical chemistry. Research Interests Electronic structure and dynamics in the quantum/classical molecular dynamics simulation|Coupling of molecular electronic structure to

  7. A computational workflow for designing silicon donor qubits

    DOE PAGES

    Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...

    2016-09-19

    Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less

  8. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less

  9. Defect formation during chlorine-based dry etching and their effects on the electronic and structural properties of InP/InAsP quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landesman, Jean-Pierre, E-mail: jean-pierre.landesman@univ-rennes1.fr; Jiménez, Juan; Torres, Alfredo

    The general objective is the investigation of the defects formed by dry etching tools such as those involved in the fabrication of photonic devices with III–V semiconductors. Emphasis is put on plasma exposures with chlorine-based chemistries. In addition to identifying these defects and describing their effects on the electro-optic and structural properties, the long-term target would be to predict the impact on the parameters of importance for photonic devices, and possibly include these predictions in their design. The work is first centered on explaining the experimental methodology. This methodology starts with the design and growth of a quantum well structuremore » on indium phosphide, including ternary indium arsenide/phosphide quantum wells with graded arsenic/phosphor composition. These samples have then been characterized by luminescence methods (photo- and cathodoluminescence), high-resolution transmission electron microscopy, and secondary ion mass spectrometry. As one of the parameters of importance in this study, the authors have also included the doping level. The samples have been exposed to the etching plasmas for “short” durations that do not remove completely the quantum wells, but change their optical signature. No masking layer with lithographic features was involved as this work is purely oriented to study the interaction between the plasma and the samples. A significant difference in the luminescence spectra of the as-grown undoped and doped samples is observed. A mechanism describing the effect of the built-in electric field appearing as a consequence of the doping profile is proposed. This mechanism involves quantum confined Stark effect and electric-field induced carrier escape from the quantum wells. In the following part, the effects of exposure to various chlorine-based plasmas were explored. Differences are again observed between the undoped and doped samples, especially for chemistries containing silicon tetrachloride. Secondary ion mass spectrometry indicates penetration of chlorine in the structures. Transmission electron microscopy is used to characterize the quantum well structure before and after plasma bombardment. By examining carefully the luminescence spectral properties, the authors could demonstrate the influence of the etching plasmas on the built-in electric field (in the case of doped samples), and relate it to some ionic species penetrating the structures. Etching plasmas involving both chlorine and nitrogen have also been studied. The etching rate for these chemistries is much slower than for some of the silicon tetrachloride based chemistries. Their effects on the samples are also very different, showing much reduced effect on the built-in electric field (for the doped samples), but significant blue-shifts of the luminescence peaks that the authors attributed to the penetration of nitrogen in the structures. Nitrogen, in interstitial locations, induces mechanical compressive stress that accounts for the blue-shifts. Finally, from the comparison between secondary ion mass spectrometry and luminescence spectra, the authors suggest some elements for a general mechanism involved in the etching by chloride-chemistries, in which a competition takes place between the species at the surface, active for the etching mechanism, and the species that penetrate the structure, lost for the etching process, but relevant in terms of impact on the electro-optic and structural features of the exposed materials.« less

  10. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  11. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  12. Quantitative collision induced mass spectrometry of substituted piperazines - A correlative analysis between theory and experiment

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2017-12-01

    The present paper deals with quantitative kinetics and thermodynamics of collision induced dissociation (CID) reactions of piperazines under different experimental conditions together with a systematic description of effect of counter-ions on common MS fragment reactions of piperazines; and intra-molecular effect of quaternary cyclization of substituted piperazines yielding to quaternary salts. There are discussed quantitative model equations of rate constants as well as free Gibbs energies of series of m-independent CID fragment processes in GP, which have been evidenced experimentally. Both kinetic and thermodynamic parameters are also predicted by computational density functional theory (DFT) and ab initio both static and dynamic methods. The paper examines validity of Maxwell-Boltzmann distribution to non-Boltzmann CID processes in quantitatively as well. The experiments conducted within the latter framework yield to an excellent correspondence with theoretical quantum chemical modeling. The important property of presented model equations of reaction kinetics is the applicability in predicting unknown and assigning of known mass spectrometric (MS) patterns. The nature of "GP" continuum of CID-MS coupled scheme of measurements with electrospray ionization (ESI) source is discussed, performing parallel computations in gas-phase (GP) and polar continuum at different temperatures and ionic strengths. The effect of pressure is presented. The study contributes significantly to methodological and phenomenological developments of CID-MS and its analytical implementations for quantitative and structural analyses. It also demonstrates great prospective of a complementary application of experimental CID-MS and computational quantum chemistry studying chemical reactivity, among others. To a considerable extend this work underlies the place of computational quantum chemistry to the field of experimental analytical chemistry in particular highlighting the structural analysis.

  13. Strong electron correlation in UO{sub 2}{sup −}: A photoelectron spectroscopy and relativistic quantum chemistry study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Li; Jian, Tian; Lopez, Gary V.

    2014-03-07

    The electronic structures of actinide systems are extremely complicated and pose considerable challenges both experimentally and theoretically because of significant electron correlation and relativistic effects. Here we report an investigation of the electronic structure and chemical bonding of uranium dioxides, UO{sub 2}{sup −} and UO{sub 2}, using photoelectron spectroscopy and relativistic quantum chemistry. The electron affinity of UO{sub 2} is measured to be 1.159(20) eV. Intense detachment bands are observed from the UO{sub 2}{sup −} low-lying (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} orbitals and the more deeply bound O2p-based molecular orbitals which are separated by a large energy gap from themore » U-based orbitals. Surprisingly, numerous weak photodetachment transitions are observed in the gap region due to extensive two-electron transitions, suggesting strong electron correlations among the (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}{sup −} and the (7sσ{sub g}){sup 1}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}. These observations are interpreted using multi-reference ab initio calculations with inclusion of spin-orbit coupling. The strong electron correlations and spin-orbit couplings generate orders-of-magnitude more detachment transitions from UO{sub 2}{sup −} than expected on the basis of the Koopmans’ theorem. The current experimental data on UO{sub 2}{sup −} provide a long-sought opportunity to arbitrating various relativistic quantum chemistry methods aimed at handling systems with strong electron correlations.« less

  14. Broadband infrared light emitting waveguides based on UV curable PbS quantum dot composites

    NASA Astrophysics Data System (ADS)

    Shen, Kai; Baig, Sarfaraz; Jiang, Guomin; Paik, Young-hun; Kim, Sung Jin; Wang, Michael R.

    2018-02-01

    We present herein the active PbS-photopolymer waveguide fabricated by vacuum assisted microfluidic (VAM) soft lithography technique. The PbS Quantum Dots (QDs) were synthesized using colloidal chemistry methods with tunable sizes and emission wavelengths, resulting in efficient light emission around 1000 nm center wavelength. The PbS QDs have demonstrated much better solubility in our newly synthesized UV curable polymer than SU-8 photoresist, verified by Photoluminescence (PL) testing. Through refractive index control, the PbS QDs-polymer core material and polymer cladding material can efficiently confine the infrared emitting light with a broad spectral bandwidth of 180 nm. Both single-mode and multi-mode light emitting waveguides have been realized.

  15. First-principles calculations of Ti and O NMR chemical shift tensors in ferroelectric perovskites

    NASA Astrophysics Data System (ADS)

    Pechkis, Daniel; Walter, Eric; Krakauer, Henry

    2011-03-01

    Complementary chemical shift calculations were carried out with embedded clusters, using quantum chemistry methods, and with periodic boundary conditions, using the GIPAW approach within the Quantum Espresso package. Compared to oxygen chemical shifts, δ̂ (O), cluster calculations for δ̂ (Ti) were found to be more sensitive to size effects, termination, and choice of gaussian-type atomic basis set, while GIPAW results were found to be more sensitive to the pseudopotential construction. The two approaches complemented each other in optimizing these factors. We show that the two approaches yield comparable chemical shifts for suitably converged simulations, and results are compared with available experimental measurements. Supported by ONR.

  16. Optical activity of helical quantum-dot supercrystals

    NASA Astrophysics Data System (ADS)

    Baimuratov, A. S.; Tepliakov, N. V.; Gun'ko, Yu. K.; Baranov, A. V.; Federov, A. V.; Rukhlenko, I. D.

    2017-01-01

    The size of chiral nanoparticles is much smaller than the optical wavelength. As a result, the difference in interaction of enantiomers with circularly polarized light of different handedness is practically unobservable. Due to the large mismatch in scale, the problem of enhancement of enantioselectivity of optical properties of nanoparticles is particularly important for modern photonics. In this work, we show that ordering of achiral nanoparticles into a chiral supercrystal with dimensions comparable to the wavelength of light allows achieving nearly total dissymmetry of optical absorption and demonstrate this using a helical super-crystal made of semiconductor quantum dots as an example. The proposed approach may find numerous applications in various optical and analytical methods used in biomedicine, chemistry, and pharmacology.

  17. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  18. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard

    NASA Astrophysics Data System (ADS)

    Vogels, Sjoerd N.; Karman, Tijs; Kłos, Jacek; Besemer, Matthieu; Onvlee, Jolijn; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Over the last 25 years, the formalism known as coupled-cluster (CC) theory has emerged as the method of choice for the ab initio calculation of intermolecular interaction potentials. The implementation known as CCSD(T) is often referred to as the gold standard in quantum chemistry. It gives excellent agreement with experimental observations for a variety of energy-transfer processes in molecular collisions, and it is used to calibrate density functional theory. Here, we present measurements of low-energy collisions between NO radicals and H2 molecules with a resolution that challenges the most sophisticated quantum chemistry calculations at the CCSD(T) level. Using hitherto-unexplored anti-seeding techniques to reduce the collision energy in a crossed-beam inelastic-scattering experiment, a resonance structure near 14 cm-1 is clearly resolved in the state-to-state integral cross-section, and a unique resonance fingerprint is observed in the corresponding differential cross-section. This resonance structure discriminates between two NO-H2 potentials calculated at the CCSD(T) level and pushes the required accuracy beyond the gold standard.

  20. Contributed review: quantum cascade laser based photoacoustic detection of explosives.

    PubMed

    Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P

    2015-03-01

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  1. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B.; Fischer, H.

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacousticmore » spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.« less

  2. Assessment of Molecular Modeling & Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materialsmore » modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.« less

  3. Shape resonances of Be- and Mg- investigated with the method of analytic continuation

    NASA Astrophysics Data System (ADS)

    Čurík, Roman; Paidarová, I.; Horáček, J.

    2018-05-01

    The regularized method of analytic continuation is used to study the low-energy negative-ion states of beryllium (configuration 2 s2ɛ p 2P ) and magnesium (configuration 3 s2ɛ p 2P ) atoms. The method applies an additional perturbation potential and requires only routine bound-state multi-electron quantum calculations. Such computations are accessible by most of the free or commercial quantum chemistry software available for atoms and molecules. The perturbation potential is implemented as a spherical Gaussian function with a fixed width. Stability of the analytic continuation technique with respect to the width and with respect to the input range of electron affinities is studied in detail. The computed resonance parameters Er=0.282 eV, Γ =0.316 eV for the 2 p state of Be- and Er=0.188 eV, Γ =0.167 for the 3 p state of Mg- agree well with the best results obtained by much more elaborate and computationally demanding present-day methods.

  4. Quantum Tunneling Contribution for the Activation Energy in Microwave-Induced Reactions.

    PubMed

    Kuhnen, Carlos A; Dall'Oglio, Evandro L; de Sousa, Paulo T

    2017-08-03

    In this study, a quantum approach is presented to explain microwave-enhanced reaction rates by considering the tunneling effects in chemical reactions. In the Arrhenius equation, the part of the Hamiltonian relative to the interaction energy during tunneling, between the particle that tunnels and the electrical field defined in the medium, whose spatial component is specified by its rms value, is taken into account. An approximate evaluation of the interaction energy leads to a linear dependence of the effective activation energy on the applied field. The evaluation of the rms value of the field for pure liquids and reaction mixtures, through their known dielectric properties, leads to an appreciable reduction in the activation energies for the proton transfer process in these liquids. The results indicate the need to move toward the use of more refined methods of modern quantum chemistry to calculate more accurately field-induced reaction rates and effective activation energies.

  5. Combining ligand-induced quantum-confined stark effect with type II heterojunction bilayer structure in CdTe and CdSe nanocrystal-based solar cells.

    PubMed

    Yaacobi-Gross, Nir; Garphunkin, Natalia; Solomeshch, Olga; Vaneski, Aleksandar; Susha, Andrei S; Rogach, Andrey L; Tessler, Nir

    2012-04-24

    We show that it is possible to combine several charge generation strategies in a single device structure, the performance of which benefits from all methods used. Exploiting the inherent type II heterojunction between layered structures of CdSe and CdTe colloidal quantum dots, we systematically study different ways of combining such nanocrystals of different size and surface chemistry and with different linking agents in a bilayer solar cell configuration. We demonstrate the beneficial use of two distinctly different sizes of NCs not only to improve the solar spectrum matching but also to reduce exciton binding energy, allowing their efficient dissociation at the interface. We further make use of the ligand-induced quantum-confined Stark effect in order to enhance charge generation and, hence, overall efficiency of nanocrystal-based solar cells.

  6. Learning that Prepares for More Learning: Symbolic Mathematics in Physical Chemistry

    ERIC Educational Resources Information Center

    Zielinski, Theresa Julia

    2004-01-01

    The well-crafted templates are useful to learn the new concepts of chemistry. The templates focus on pressure-volume work, the Boltzmann distribution, the Gibbs free energy function, intermolecular potentials, the second virial coefficient and quantum mechanical tunneling.

  7. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    PubMed

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  8. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  9. A perspective on quantum mechanics calculations in ADMET predictions.

    PubMed

    Bowen, J Phillip; Güner, Osman F

    2013-01-01

    Understanding the molecular basis of drug action has been an important objective for pharmaceutical scientists. With the increasing speed of computers and the implementation of quantum chemistry methodologies, pharmacodynamic and pharmacokinetic problems have become more computationally tractable. Historically the former has been the focus of drug design, but within the last two decades efforts to understand the latter have increased. It takes about fifteen years and over $1 billion dollars for a drug to go from laboratory hit, through lead optimization, to final approval by the U.S. Food and Drug Administration. While the costs have increased substantially, the overall clinical success rate for a compound to emerge from clinical trials is approximately 10%. Most of the attrition rate can be traced to ADMET (absorption, distribution, metabolism, excretion, and toxicity) problems, which is a powerful impetus to study these issues at an earlier stage in drug discovery. Quantum mechanics offers pharmaceutical scientists the opportunity to investigate pharmacokinetic problems at the molecular level prior to laboratory preparation and testing. This review will provide a perspective on the use of quantum mechanics or a combination of quantum mechanics coupled with other classical methods in the pharmacokinetic phase of drug discovery. A brief overview of the essential features of theory will be discussed, and a few carefully selected examples will be given to highlight the computational methods.

  10. Fermion-to-qubit mappings with varying resource requirements for quantum simulation

    NASA Astrophysics Data System (ADS)

    Steudtner, Mark; Wehner, Stephanie

    2018-06-01

    The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.

  11. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.

    PubMed

    Knizia, Gerald

    2013-11-12

    Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.

  12. Quantum chemical protocols for modeling reactions and spectra in astrophysical ice analogs: the challenging case of the C⁺ + H₂O reaction in icy grain mantles.

    PubMed

    Woon, David E

    2015-11-21

    Icy grain mantles that accrete on refractory dust particles in the very cold interstellar medium or beyond the snow line in protoplanetary disks serve as minute incubators for heterogeneous chemistry. Ice mantle chemistry can differ significantly from the gas phase chemistry that occurs in these environments and is often richer. Modeling ices and their chemistry is a challenging task for quantum theoretical methods, but theory promises insight into these systems that is difficult to attain with experiments. Density functional theory (DFT) is predominately employed for modeling reactions in icy grain mantles due to its favorable scalability, but DFT has limitations that risk undercutting its reliability for this task. In this work, basic protocols are proposed for identifying the degree to which DFT methods are able to reproduce experimental or higher level theoretical results for the fundamental interactions upon which ice mantle chemistry depends, including both reactive interactions and non-reactive scaffolding interactions. The exemplar of this study is the reaction of C(+) with H2O, where substantial methodological differences are found in the prediction of gas phase relative energetics for stationary points (about 10 kcal mol(-1) for the C-O bond energy of the H2OC(+) intermediate), which in turn casts doubt about employing it to treat the C(+) + H2O reaction on an ice surface. However, careful explorations demonstrate that B3LYP with small correlation consistent basis sets performs in a sufficiently reliable manner to justify using it to identify plausible chemical pathways, where the dominant products were found to be neutral HOC and the CO(-) anion plus one and two H3O(+) cations, respectively. Predicted vibrational and electronic spectra are presented that would serve to verify or disconfirm the pathways; the latter were computed with time-dependent DFT. Conclusions are compared with those of a recent similar study by McBride and coworkers (J. Phys. Chem. A, 2014, 118, 6991).

  13. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation parameters, and demonstrate the ability of this approach to optimize MQC-IVR simulations.

  14. Turbocharged molecular discovery of OLED emitters: from high-throughput quantum simulation to highly efficient TADF devices

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.

    2016-09-01

    Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.

  15. What History Tells Us about the Distinct Nature of Chemistry.

    PubMed

    Chang, Hasok

    2017-11-01

    Attention to the history of chemistry can help us recognise the characteristics of chemistry that have helped to maintain it as a separate scientific discipline with a unique identity. Three such features are highlighted in this paper. First, chemistry has maintained a distinct type of theoretical thinking, independent from that of physics even in the era of quantum chemistry. Second, chemical research has always been shaped by its ineliminable practical relevance and usefulness. Third, the lived experience of chemistry, spanning the laboratory, the classroom and everyday life, is distinctive in its multidimensional sensuousness. Furthermore, I argue that the combination of these three features makes chemistry an exemplary science.

  16. Physical explanation of the periodic table.

    PubMed

    Ostrovsky, V N

    2003-05-01

    The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.

  17. Simulating chemistry using quantum computers.

    PubMed

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  18. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  19. Serenity: A subsystem quantum chemistry program.

    PubMed

    Unsleber, Jan P; Dresselhaus, Thomas; Klahr, Kevin; Schnieders, David; Böckers, Michael; Barton, Dennis; Neugebauer, Johannes

    2018-05-15

    We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2008-12-31

    component hybrid nanocrystals constituting pentacene or single wall carbon nanotube (SWCNT) as well as through control of interfacial chemistry and linkage...nanotubes-quantum dot conjugates or pentacene -quantum dot composits into organic matrices significantly improved photoconductivity of polymer/nanocrystal

  1. Demystifying Introductory Chemistry. Part 1: Electron Configurations from Experiment.

    ERIC Educational Resources Information Center

    Gillespie, Ronald J.; And Others

    1996-01-01

    Presents suggestions for alternative presentations of some of the material that usually forms part of the introductory chemistry course. Emphasizes development of concepts from experimental results. Discusses electronic configurations and quantum numbers, experimental evidence for electron configurations, deducing the shell model from the periodic…

  2. Theoretical Studies of the Extraterrestrial Chemistry of Biogenic Elements and Compounds

    NASA Technical Reports Server (NTRS)

    Woon, D. E.

    1998-01-01

    The report discusses modeling gas-grain chemistry with ab initio quantum chemical cluster calculations which include heterogeneous hydrogenation of CO and H2CO on icy grain mantles, and ammonia-catalyzed, water-enhanced polymerization of formaldehyde in laboratory studies of astrophysical ices.

  3. Sol-Gel Chemistry for Carbon Dots.

    PubMed

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Synthesis of Fluid Dynamics and Quantum Chemistry for the Design of Nanoelectronics

    NASA Technical Reports Server (NTRS)

    MacDougall, Preston J.

    1998-01-01

    In 1959, during a famous lecture entitled "There's Plenty of Room at the Bottom", Richard Feynman focused on the startling technical possibilities that would exist at the limit of miniaturization, that being atomically precise devices with dimensions in the nanometer range. A nanometer is both a convenient unit of length for medium to large sized molecules, and the root of the name of the new interdisciplinary field of "nanotechnology". Essentially, "nanoelectronics" denotes the goal of shrinking electronic devices, such as diodes and transistors, as well as integrated circuits of such devices that can perform logical operations, down to dimensions in the range of 100 nanometers. The thirty-year hiatus in the development of nanotechnology can figuratively be seen as a period of waiting for the bottom-up and atomically precise construction skills of synthetic chemistry to meet the top-down reductionist aspirations of device physics. The sub-nanometer domain of nineteenth-century classical chemistry has steadily grown, and state-of-the-art supramolecular chemistry can achieve atomic precision in non-repeating molecular assemblies of the size desired for nanotechnology. For nanoelectronics in particular, a basic understanding of the electron transport properties of molecules must also be developed. Quantum chemistry provides powerful computational methods that can accurately predict the properties of small to medium sized molecules on a desktop workstation, and those of large molecules if one has access to a supercomputer. Of the many properties of a molecule that quantum chemistry routinely predicts, the ability to carry a current is one that had not even been considered until recently. "Currently", there is a controversy over just how to define this key property. Reminiscent of the situation in high-Tc superconductivity, much of the difficulty arises from the different models that are used to simplify the complex electronic structure of real materials. A model-independent approach has been proposed, that sacrifices the plentiful molecular orbitals and Bloch functions of conventional approaches, for a single three-dimensional observable quantity, the electron momentum density Pi(sub rho). This quantity is simply the probability of any electron having momentum rho, multiplied by the total number of electrons in the system (the position of the electron is uncertain). We have explored the utility of this new approach in providing a fundamental understanding of the electron transport properties of molecules that have provi been nominated as candidates for components in the design of nanoelectronics; phenylene-ethynylene oligomers. Some of the molecular systems that have been studied are sketched below.

  5. In Vivo Delivery of Nanoparticles into Plant Leaves.

    PubMed

    Wu, Honghong; Santana, Israel; Dansie, Joshua; Giraldo, Juan P

    2017-12-14

    Plant nanobiotechnology is an interdisciplinary field at the interface of nanotechnology and plant biology that aims to utilize nanomaterials as tools to study, augment or impart novel plant functions. The delivery of nanoparticles to plants in vivo is a key initial step to investigate plant nanoparticle interactions and the impact of nanoparticles on plant function. Quantum dots are smaller than plant cell wall pores, have versatile surface chemistry, bright fluorescence and do not photobleach, making them ideal for the study of nanoparticle uptake, transport, and distribution in plants by widely available confocal microscopy tools. Herein, we describe three different methods for quantum dot delivery into leaves of living plants: leaf lamina infiltration, whole shoot vacuum infiltration, and root to leaf translocation. These methods can be potentially extended to other nanoparticles, including nanosensors and drug delivery nanoparticles. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. Extending Quantum Chemistry of Bound States to Electronic Resonances

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.

    2017-05-01

    Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.

  7. Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle.

    PubMed

    Ruf, Alexander; d'Hendecourt, Louis L S; Schmitt-Kopplin, Philippe

    2018-06-01

    Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.

  8. Computational Studies of Strongly Correlated Quantum Matter

    NASA Astrophysics Data System (ADS)

    Shi, Hao

    The study of strongly correlated quantum many-body systems is an outstanding challenge. Highly accurate results are needed for the understanding of practical and fundamental problems in condensed-matter physics, high energy physics, material science, quantum chemistry and so on. Our familiar mean-field or perturbative methods tend to be ineffective. Numerical simulations provide a promising approach for studying such systems. The fundamental difficulty of numerical simulation is that the dimension of the Hilbert space needed to describe interacting systems increases exponentially with the system size. Quantum Monte Carlo (QMC) methods are one of the best approaches to tackle the problem of enormous Hilbert space. They have been highly successful for boson systems and unfrustrated spin models. For systems with fermions, the exchange symmetry in general causes the infamous sign problem, making the statistical noise in the computed results grow exponentially with the system size. This hinders our understanding of interesting physics such as high-temperature superconductivity, metal-insulator phase transition. In this thesis, we present a variety of new developments in the auxiliary-field quantum Monte Carlo (AFQMC) methods, including the incorporation of symmetry in both the trial wave function and the projector, developing the constraint release method, using the force-bias to drastically improve the efficiency in Metropolis framework, identifying and solving the infinite variance problem, and sampling Hartree-Fock-Bogoliubov wave function. With these developments, some of the most challenging many-electron problems are now under control. We obtain an exact numerical solution of two-dimensional strongly interacting Fermi atomic gas, determine the ground state properties of the 2D Fermi gas with Rashba spin-orbit coupling, provide benchmark results for the ground state of the two-dimensional Hubbard model, and establish that the Hubbard model has a stripe order in the underdoped region.

  9. Initiating Molecular Growth in the Interstellar Medium via Dimeric Complexes of Observed Ions and Molecules

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2011-01-01

    A feasible initiation step for particle growth in the interstellar medium (ISM) is simulated by means of ab quantum chemistry methods. The systems studied are dimer ions formed by pairing nitrogen containing small molecules known to exist in the ISM with ions of unsaturated hydrocarbons or vice versa. Complexation energies, structures of ensuing complexes and electronic excitation spectra of the encounter complexes are estimated using various quantum chemistry methods. Moller-Plesset perturbation theory (MP2, Z-averaged perturbation theory (ZAP2), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)), and density functional theory (DFT) methods (B3LYP) were employed along with the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Two types of complexes are predicted. One type of complex has electrostatic binding with moderate (7-20 kcal per mol) binding energies, that are nonetheless significantly stronger than typical van der Waals interactions between molecules of this size. The other type of complex develops strong covalent bonds between the fragments. Cyclic isomers of the nitrogen containing complexes are produced very easily by ion-molecule reactions. Some of these complexes show intense ultraviolet visible spectra for electronic transitions with large oscillator strengths at the B3LYP, omegaB97, and equations of motion coupled cluster (EOM-CCSD) levels. The open shell nitrogen containing carbonaceous complexes especially exhibit a large oscillator strength electronic transition in the visible region of the electromagnetic spectrum.

  10. Opening Talk: Opening Talk

    NASA Astrophysics Data System (ADS)

    Doebner, H.-D.

    2008-02-01

    Ladies and Gentlemen Dear Friends and Colleagues I welcome you at the 5th International Symposium `Quantum Theory and Symmetries, QTS5' in Valladolid as Chairman of the Conference Board of this biannual series. The aim of the series is to arrange an international meeting place for scientists working in theoretical and mathematical physics, in mathematics, in mathematical biology and chemistry and in other sciences for the presentation and discussion of recent developments in connection with quantum physics and chemistry, material science and related further fields, like life sciences and engineering, which are based on mathematical methods which can be applied to model and to understand microphysical and other systems through inherent symmetries in their widest sense. These systems include, e.g., foundations and extensions of quantum theory; quantum probability; quantum optics and quantum information; the description of nonrelativistic, finite dimensional and chaotic systems; quantum field theory, particle physics, string theory and quantum gravity. Symmetries in their widest sense describe properties of a system which could be modelled, e.g., through geometry, group theory, topology, algebras, differential geometry, noncommutative geometry, functional analysis and approximation methods; numerical evaluation techniques are necessary to connect such symmetries with experimental results. If you ask for a more detailed characterisation of this notion a hand waving indirect answer is: Collect titles and contents of the contributions of the proceedings of QTS4 and get a characterisation through semantic closure. Quantum theory and its Symmetries was and is a diversified and rapidly growing field. The number of and the types of systems with an internal symmetry and the corresponding mathematical models develop fast. This is reflected in the content of the five former international symposia of this series: The first symposium, QTS1-1999, was organized in Goslar (Germany) with 170 participants and 89 contributions in the proceedings; it was centred on the foundations and extensions of quantum theory, on quantisation methods and on q-algebras. In QTS2-2001 in Cracow (Poland) with 175 participants and 81 contributions; the main topics were applications of quantum mechanics, representations of algebras and group theoretical techniques in physics. In the symposium QTS3-2003 in Cincinnati (USA) with 145 participants and 92 contributions, quantum field theory, loop quantum gravity, string and brane theory was discussed. The focus in QTS4-2005 in Varna (Bulgaria) with 228 participant and 105 contributions, was on conformal field theory, quantum gravity, noncommutative geometry and quantum groups. Three proceedings volumes were published with World Scientific and one volume with Heron Press. The promising and interesting programme for QTS5-2007 in Valladolid (Spain) attracted more than 200 participants; the contributions will be published in a special issue of Journal of Physics A: Mathematical and Theoretical and a volume of Journal of Physics: Conference Series. This shows the wide scope of symmetry in connection with quantum physics and related sciences. In the background of the symposia series is the Conference Board with presently 13 members. The Board encourages scientists and Institutions to present detailed proposals for a QTS symposium; it agrees to one proposal and is prepared to assist in matters of organisation; the local organisers are responsible for the scientific programme and for the organisation, including the budget. The Board decided that the next symposium QTS6 will be held 2009 at the University of Kentucky in Lexington (USA); Alan Shapere is the chairman of the Local Organizing committee. In the name of all of you I express my appreciation and my thanks to the members of the Local Organizing Committee of QTS5, especially to Mariano del Olmo. The programme is outstanding; it covers recent and new developments in our field. The organization is very effective and complete. We have all the necessary condition for a successful and smooth meeting. Thank you again Mariano. H-D Doebner Chairman of the Conference Board of QTS5

  11. The challenge of detecting gravitational radiation is creating a new chapter in quantum electronics: Quantum nondemolition measurements

    NASA Technical Reports Server (NTRS)

    Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S.

    1979-01-01

    Future gravitational wave antennas will be approximately 100 kilogram cylinders, whose end-to-end vibrations must be measured so accurately (10 to the -19th power centimeters) that they behave quantum mechanically. Moreover, the vibration amplitude must be measured over and over again without perturbing it (quantum nondemolition measurement). This contrasts with quantum chemistry, quantum optics, or atomic, nuclear, and elementary particle physics where measurements are usually made on an ensemble of identical objects, and care is not given to whether any single object is perturbed or destroyed by the measurement. Electronic techniques required for quantum nondemolition measurements are described as well as the theory underlying them.

  12. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    ERIC Educational Resources Information Center

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  13. The Application of Computational Chemistry to Problems in Mass Spectrometry

    EPA Science Inventory

    Quantum chemistry is capable of calculating a wide range of electronic and thermodynamic properties of interest to a chemist or physicist. Calculations can be used both to predict the results of future experiments and to aid in the interpretation of existing results. This paper w...

  14. Orbitals: Some Fiction and Some Facts

    ERIC Educational Resources Information Center

    Autschbach, Jochen

    2012-01-01

    The use of electron orbitals in quantum theory and chemistry is discussed. Common misconceptions are highlighted. Suggestions are made how chemistry educators may describe orbitals in the first and second year college curriculum more accurately without introducing unwanted technicalities. A comparison is made of different ways of graphically…

  15. One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology.

    PubMed

    Liu, Bingping; Yan, Shihai; Song, Zhongqian; Liu, Mengli; Ji, Xuqiang; Yang, Wenrong; Liu, Jingquan

    2016-12-23

    Herein, a conceptually new and straightforward aqueous route is described for the synthesis of hydroxyl- and amino-functionalized boron nitride quantum dots (BNQDs) with quantum yields (QY) as high as 18.3 % by using a facile bottom-up approach, in which a mixture of boric acid and ammonia solution was hydrothermally treated in one pot at 200 °C for 12 h. The functionalized BNQDs, with excellent photoluminescence properties, could be easily dispersed in an aqueous medium and applied as fluorescent probes for the detection of ferrous (Fe 2+ ) and ferric (Fe 3+ ) ions with excellent selectivity and low detection limits. The mechanisms for the hydrothermal reaction and fluorescence quenching were also simulated by using density functional theory (DFT), which confirmed the feasibility and advantages of this strategy. It provides a scalable and eco-friendly method for preparation of BNQDs with good dispersability and could also be generalized to the synthesis of other 2D quantum dots and nanoplates. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spiers Memorial Lecture. Quantum chemistry: the first seventy years.

    PubMed

    McWeeny, Roy

    2007-01-01

    Present-day theoretical chemistry is rooted in Quantum Mechanics. The aim of the opening lecture is to trace the evolution of Quantum Chemistry from the Heitler-London paper of 1927 up to the end of the last century, emphasizing concepts rather than calculations. The importance of symmetry concepts became evident in the early years: one thinks of the necessary anti-symmetry of the wave function under electron permutations, the Pauli principle, the aufbau scheme, and the classification of spectroscopic states. But for chemists perhaps the key concept is embodied in the Hellmann-Feynman theorem, which provides a pictorial interpretation of chemical bonding in terms of classical electrostatic forces exerted on the nuclei by the electron distribution. Much of the lecture is concerned with various electron distribution functions--the electron density, the current density, the spin density, and other 'property densities'--and with their use in interpreting both molecular structure and molecular properties. Other topics touched upon include Response theory and propagators; Chemical groups in molecules and the group function approach; Atoms in molecules and Bader's theory; Electron correlation and the 'pair function'. Finally, some long-standing controversies, in particular the EPR paradox, are re-examined in the context of molecular dissociation. By admitting the concept of symmetry breaking, along with the use of the von Neumann-Dirac statistical ensemble, orthodox quantum mechanics can lead to a convincing picture of the dissociation mechanism.

  17. Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates.

    PubMed

    McCabe, Andrew J; Arnold, William A

    2016-07-01

    The hydrology and water chemistry of prairie pothole wetlands vary spatially and temporally, on annual and decadal timescales. Pesticide contamination of wetlands arising from agricultural activities is a foremost concern. Photochemical reactions are important in the natural attenuation of pesticides and may be important in limiting ecological and human exposure. Little is known, however, about the variable influence of wetland water chemistry on indirect photochemistry. In this study, seasonal water samples were collected from seven sites throughout the prairie pothole region over three years to understand the spatiotemporal dynamics of reactive intermediate photoproduction. Samples were classified by the season in which they were collected (spring, summer, or fall) and the typical hydroperiod of the wetland surface water (temporary or semi-permanent). Under photostable conditions, steady-state concentrations and apparent quantum yields or quantum yield coefficients were measured for triplet excited states of dissolved organic matter, singlet oxygen, hydroxyl radical, and carbonate radical under simulated sunlight. Steady-state concentrations and quantum yields increased on average by 15% and 40% from spring to fall, respectively. Temporary wetlands had 40% higher steady-state concentrations of reactive intermediates than semi-permanent wetlands, but 50% lower quantum yields. Computed quantum yields for reactive intermediate formation were used to predict the indirect photochemical half-lives of seven pesticides in average temporary and semi-permanent prairie pothole wetlands. As a first approximation, the predictions agree to within two orders of magnitude of previously reported half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hole localization in Fe2O3 from density functional theory and wave-function-based methods

    NASA Astrophysics Data System (ADS)

    Ansari, Narjes; Ulman, Kanchan; Camellone, Matteo Farnesi; Seriani, Nicola; Gebauer, Ralph; Piccinin, Simone

    2017-08-01

    Hematite (α -Fe2O3 ) is a promising photocatalyst material for water splitting, where photoinduced holes lead to the oxidation of water and the release of molecular oxygen. In this work, we investigate the properties of holes in hematite using density functional theory (DFT) calculations with hybrid functionals. We find that holes form small polarons and, depending on the fraction of exact exchange included in the PBE0 functional, the site where the holes localize changes from Fe to O. We find this result to be independent of the size and structure of the system: small Fe2O3 clusters with tetrahedral coordination, larger clusters with octahedral coordination, Fe2O3 (001) surfaces in contact with water, and bulk Fe2O3 display a very similar behavior in terms of hole localization as a function of the fraction of exact exchange. We then use wave-function-based methods such as coupled cluster with single and double excitations and Møller-Plesset second-order perturbation theory applied on a cluster model of Fe2O3 to shed light on which of the two solutions is correct. We find that these high-level quantum chemistry methods suggest holes in hematite are localized on oxygen atoms. We also explore the use of the DFT +U approach as a computationally convenient way to overcome the known limitations of generalized gradient approximation functionals and recover a gap in line with experiments and hole localization on oxygen in agreement with quantum chemistry methods.

  19. Sulfate radical oxidation of aromatic contaminants: a detailed assessment of density functional theory and high-level quantum chemical methods.

    PubMed

    Pari, Sangavi; Wang, Inger A; Liu, Haizhou; Wong, Bryan M

    2017-03-22

    Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO 4 ˙ - ) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO 4 ˙ - in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO 4 ˙ - -driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies of SO 4 ˙ - -driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompass a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for OH - additions than for SO 4 ˙ - reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO 4 ˙ - and other inorganic species.

  20. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  1. Examining Quantum Oddities within the Context of Other Major Scientific Theories

    ERIC Educational Resources Information Center

    Molina, Pablo A.

    2008-01-01

    Instructors of general chemistry often pepper their introductory quantum lectures with either historical or philosophical notes so as to lessen the strangeness of the subject. Comparisons between the behavior of macroscopic and microscopic objects are also frequently used. This article presents an epistemological discussion on the conceptual…

  2. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    NASA Astrophysics Data System (ADS)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  3. Designing, programming, and optimizing a (small) quantum computer

    NASA Astrophysics Data System (ADS)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

  4. Rationalization of the solvation effects on the AtO+ ground-state change.

    PubMed

    Ayed, Tahra; Réal, Florent; Montavon, Gilles; Galland, Nicolas

    2013-09-12

    (211)At radionuclide is of considerable interest as a radiotherapeutic agent for targeted alpha therapy in nuclear medicine, but major obstacles remain because the basic chemistry of astatine (At) is not well understood. The AtO(+) cationic form might be currently used for (211)At-labeling protocols in aqueous solution and has proved to readily react with inorganic/organic ligands. But AtO(+) reactivity must be hindered at first glance by spin restriction quantum rules: the ground state of the free cation has a dominant triplet character. Investigating AtO(+) clustered with an increasing number of water molecules and using various flavors of relativistic quantum methods, we found that AtO(+) adopts in solution a Kramers restricted closed-shell configuration resembling a scalar-relativistic singlet. The ground-state change was traced back to strong interactions, namely, attractive electrostatic interactions and charge transfer, with water molecules of the first solvation shell that lift up the degeneracy of the frontier π* molecular orbitals (MOs). This peculiarity brings an alternative explanation to the highly variable reproducibility reported for some astatine reactions: depending on the production protocols (with distillation in gas-phase or "wet chemistry" extraction), (211)At may or may not readily react.

  5. Manipulating the Surface Chemistry of Quantum Dots for Sensitive Ratiometric Fluorescence Detection of Sulfur Dioxide.

    PubMed

    Li, Huihui; Zhu, Houjuan; Sun, Mingtai; Yan, Yehan; Zhang, Kui; Huang, Dejian; Wang, Suhua

    2015-08-11

    Herein, we report a novel approach to the rapid visual detection of gaseous sulfur dioxide (SO2) by manipulating the surface chemistry of 3-aminopropyltriethoxysilane (APTS)-modified quantum dots (QDs) using fluorescent coumarin-3-carboxylic acid (CCA) for specific reaction with SO2. The CCA molecules are attached to the surface amino groups of the QDs through electrostatic attraction, thus the fluorescence of CCA is greatly suppressed because of the formation of an ion-pair complex between the ATPS-modified QDs and CCA. Such an interaction is vulnerable to SO2 because SO2 can readily react with surface amino groups to form strong charge-transfer complexes and subsequently release the strongly fluorescent CCA molecules. The mechanism has been carefully verified through a series of control experiments. Upon exposure to different amounts of SO2, the fluorescent color of the nanoparticle-based sensor displays continuously changes from red to blue. Most importantly, the approach owns high selectivity for SO2 and a tolerance of interference, which enables the sensor to detect SO2 in a practical application. Using this fluorescence-based sensing method, we have achieved a visual detection limit of 6 ppb for gaseous SO2.

  6. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM)more » program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.« less

  7. Divide and conquer approach to quantum Hamiltonian simulation

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  8. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  9. Elucidating Reaction Mechanisms on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Wiebe, Nathan; Reiher, Markus; Svore, Krysta; Wecker, Dave; Troyer, Matthias

    We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant.

  10. Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Roman; Manthe, Uwe

    2017-12-01

    Quantum state-resolved reaction probabilities for the H + CHD3 → H2 + CD3 reaction are calculated by accurate full-dimensional quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree approach and the quantum transition state concept. Reaction probabilities of various ro-vibrational states of the CHD3 reactant are investigated for vanishing total angular momentum. While the reactivity of the different vibrational states of CHD3 mostly follows intuitive patterns, an unusually large reaction probability is found for CHD3 molecules triply excited in the CD3 umbrella-bending vibration. This surprising reactivity can be explained by a Fermi resonance-type mixing of the single CH-stretch excited and the triple CD3 umbrella-bend excited vibrational states of CHD3. These findings show that resonant energy transfer can significantly affect the mode-selective chemistry of CHD3 and result in counter-intuitive reactivity patterns.

  11. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    PubMed

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported. © 2014 Wiley Periodicals, Inc.

  12. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  13. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  14. A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherlis, D A; Fattebert, J; Gygi, F

    2005-11-14

    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. The model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. They apply this approach to themore » study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.« less

  15. Environmental research program. 1995 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.

    1996-06-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore themore » nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.« less

  16. Calixarene capped ZnS quantum dots as an optical nanoprobe for detection and determination of menadione.

    PubMed

    Joshi, Kuldeep V; Joshi, Bhoomika K; Pandya, Alok; Sutariya, Pinkesh G; Menon, Shobhana K

    2012-10-21

    In this communication we report a p-sulfonatocalix[4]arene coated ZnS quantum dots "cup type" highly stable optical probe for the detection and determination of menadione (VK(3)) with high sensitivity and selectivity. The detection of VK(3) depends on supramolecular host-guest chemistry.

  17. Cyclic Polyynes as Examples of the Quantum Mechanical Particle on a Ring

    ERIC Educational Resources Information Center

    Anderson, Bruce D.

    2012-01-01

    Many quantum mechanical models are discussed as part of the undergraduate physical chemistry course to help students understand the connection between eigenvalue expressions and spectroscopy. Typical examples covered include the particle in a box, the harmonic oscillator, the rigid rotor, and the hydrogen atom. This article demonstrates that…

  18. Photochemistry of Naphthopyrans and Derivatives: A Computational Experiment for Upper-Level Undergraduates or Graduate Students

    ERIC Educational Resources Information Center

    Castet, Frédéric; Méreau, Raphaël; Liotard, Daniel

    2014-01-01

    In this computational experiment, students use advanced quantum chemistry tools to simulate the photochromic reaction mechanism in naphthopyran derivatives. The first part aims to make students familiar with excited-state reaction mechanisms and addresses the photoisomerization of the benzopyran molecule by means of semiempirical quantum chemical…

  19. Quantum Tunnelling to the Origin and Evolution of Life

    PubMed Central

    Trixler, Frank

    2013-01-01

    Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling might seem to be an exotic process only important for special physical effects and applications such as the Tunnel Diode, Scanning Tunnelling Microscopy (electron tunnelling) or Near-field Optical Microscopy operating in photon tunnelling mode. However, this review demonstrates that tunnelling can do far more, being of vital importance for life: physical and chemical processes which are crucial in theories about the origin and evolution of life can be traced directly back to the effects of quantum tunnelling. These processes include the chemical evolution in stellar interiors and within the cold interstellar medium, prebiotic chemistry in the atmosphere and subsurface of planetary bodies, planetary habitability via insolation and geothermal heat as well as the function of biomolecular nanomachines. This review shows that quantum tunnelling has many highly important implications to the field of molecular and biological evolution, prebiotic chemistry and astrobiology. PMID:24039543

  20. A Writing and Ethics Component for a Quantum Mechanics, Physical Chemistry Course

    ERIC Educational Resources Information Center

    Reilly, John T.; Strickland, Michael

    2010-01-01

    A writing-across-the-curriculum and ethics component is presented for a second-semester, physical chemistry course. The activity involves introducing ethical issues pertinent to scientists. Students are asked to read additional material, participate in discussions, and write essays and a paper on an ethical issue. The writing and discussion…

  1. Dynamic Data Driven Applications Systems (DDDAS)

    DTIC Science & Technology

    2012-05-03

    response) – Earthquakes, hurricanes, tornados, wildfires, floods, landslides, tsunamis, … • Critical Infrastructure systems – Electric-powergrid...Multiphase Flow Weather and Climate Structural Mechanics Seismic Processing Aerodynamics Geophysical Fluids Quantum Chemistry Actinide Chemistry...Alloys • Approach and Objectives:  Consider porous SMAs:  similar macroscopic behavior but mass /weight is less, and thus attractive for

  2. An Integrated, Statistical Molecular Approach to the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2009-01-01

    As an alternative to the "thermodynamics first" or "quantum first" approaches to the physical chemistry curriculum, the statistical definition of entropy and the Boltzmann distribution are introduced in the first days of the course and the entire two-semester curriculum is then developed from these concepts. Once the tools of statistical mechanics…

  3. Proceedings: Conference on Computers in Chemical Education and Research, Dekalb, Illinois, 19-23 July 1971.

    ERIC Educational Resources Information Center

    1971

    Computers have effected a comprehensive transformation of chemistry. Computers have greatly enhanced the chemist's ability to do model building, simulations, data refinement and reduction, analysis of data in terms of models, on-line data logging, automated control of experiments, quantum chemistry and statistical and mechanical calculations, and…

  4. The performance of low-cost commercial cloud computing as an alternative in computational chemistry.

    PubMed

    Thackston, Russell; Fortenberry, Ryan C

    2015-05-05

    The growth of commercial cloud computing (CCC) as a viable means of computational infrastructure is largely unexplored for the purposes of quantum chemistry. In this work, the PSI4 suite of computational chemistry programs is installed on five different types of Amazon World Services CCC platforms. The performance for a set of electronically excited state single-point energies is compared between these CCC platforms and typical, "in-house" physical machines. Further considerations are made for the number of cores or virtual CPUs (vCPUs, for the CCC platforms), but no considerations are made for full parallelization of the program (even though parallelization of the BLAS library is implemented), complete high-performance computing cluster utilization, or steal time. Even with this most pessimistic view of the computations, CCC resources are shown to be more cost effective for significant numbers of typical quantum chemistry computations. Large numbers of large computations are still best utilized by more traditional means, but smaller-scale research may be more effectively undertaken through CCC services. © 2015 Wiley Periodicals, Inc.

  5. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  6. Computational Nanotechnology Program

    NASA Technical Reports Server (NTRS)

    Scuseria, Gustavo E.

    1997-01-01

    The objectives are: (1) development of methodological and computational tool for the quantum chemistry study of carbon nanostructures and (2) development of the fundamental understanding of the bonding, reactivity, and electronic structure of carbon nanostructures. Our calculations have continued to play a central role in understanding the outcome of the carbon nanotube macroscopic production experiment. The calculations on buckyonions offer the resolution of a long controversy between experiment and theory. Our new tight binding method offers increased speed for realistic simulations of large carbon nanostructures.

  7. Molecular Interactions and Properties with Many-Body Methods

    DTIC Science & Technology

    1990-04-17

    AFOSR have been identified in a book by Schaefer , Quantum Chemistry (Oxford, 1984), as being among the 149 most influential papers in the 50-year...Coupled Cluster Investigation of Isomerization Reactions: HCN*HNC, BH3CN-BH 3NC- and HCNBH3 *HNCBH3," J. Am. Chem. Soc. 110, 4926 (1988). 21. M. Rittby...Kucharski, J. Noga and R.J. Bartlett, J. Chem. Phys. 88, 1035 (1988). 49. H. Urban and R.J. Bartlett, J. Am. Chem. Soc. 110, 4926 (1988). 50. G.D

  8. A quantum theoretical study of polyimides

    NASA Technical Reports Server (NTRS)

    Burke, Luke A.

    1987-01-01

    One of the most important contributions of theoretical chemistry is the correct prediction of properties of materials before any costly experimental work begins. This is especially true in the field of electrically conducting polymers. Development of the Valence Effective Hamiltonian (VEH) technique for the calculation of the band structure of polymers was initiated. The necessary VEH potentials were developed for the sulfur and oxygen atoms within the particular molecular environments and the explanation explored for the success of this approximate method in predicting the optical properties of conducting polymers.

  9. Quantum molecular dynamics simulations of dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.; Kress, J.; Troullier, N.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB,more » which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.« less

  10. Majorana-Based Fermionic Quantum Computation.

    PubMed

    O'Brien, T E; Rożek, P; Akhmerov, A R

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  11. Majorana-Based Fermionic Quantum Computation

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  12. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer.

    PubMed

    Sharma, Sandeep; Yanai, Takeshi; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic

    2014-03-14

    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D(e) = 931.2 cm(-1) which agrees very well with recent experimentally derived estimates D(e) = 929.7±2 cm(-1) [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D(e) = 934.6 cm(-1) [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D(e) = 938±15 cm(-1) [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D(e) = 935.1±10 cm(-1) [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 ¹Σ(g)⁻ state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.

  13. Excess electrons in methanol clusters: Beyond the one-electron picture

    NASA Astrophysics Data System (ADS)

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-01

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  14. Excess electrons in methanol clusters: Beyond the one-electron picture.

    PubMed

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-28

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  15. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    PubMed

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  16. DOE pushes for useful quantum computing

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-01-01

    The U.S. Department of Energy (DOE) is joining the quest to develop quantum computers, devices that would exploit quantum mechanics to crack problems that overwhelm conventional computers. The initiative comes as Google and other companies race to build a quantum computer that can demonstrate "quantum supremacy" by beating classical computers on a test problem. But reaching that milestone will not mean practical uses are at hand, and the new $40 million DOE effort is intended to spur the development of useful quantum computing algorithms for its work in chemistry, materials science, nuclear physics, and particle physics. With the resources at its 17 national laboratories, DOE could play a key role in developing the machines, researchers say, although finding problems with which quantum computers can help isn't so easy.

  17. Elucidating reaction mechanisms on quantum computers.

    PubMed

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  18. Elucidating reaction mechanisms on quantum computers

    PubMed Central

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  19. Quantum information processing in the radical-pair mechanism: Haberkorn's theory violates the Ozawa entropy bound

    NASA Astrophysics Data System (ADS)

    Mouloudakis, K.; Kominis, I. K.

    2017-02-01

    Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.

  20. Elucidating reaction mechanisms on quantum computers

    NASA Astrophysics Data System (ADS)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  1. An Introduction to Quantum Theory

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-02-01

    Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information

  2. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    PubMed

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  3. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem

    PubMed Central

    2012-01-01

    This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications. PMID:22870956

  4. Synthesis and Characterization of Quantum Dots: A Case Study Using PbS

    ERIC Educational Resources Information Center

    Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.

    2015-01-01

    A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…

  5. Teaching the Philosophical Interpretations of Quantum Mechanics and Quantum Chemistry through Controversies

    ERIC Educational Resources Information Center

    Garritz, Andoni

    2013-01-01

    This study has the key premise of teaching history and philosophy of physical sciences to illustrate how controversies and rivalries among scientists play a key role in the progress of science and why scientific development is not only founded on the accumulation of experimental data. The author is a defender of teachers who consider…

  6. Exploring Do-It-Yourself Approaches in Computational Quantum Chemistry: The Pedagogical Benefits of the Classical Boys Algorithm

    ERIC Educational Resources Information Center

    Orsini, Gabriele

    2015-01-01

    The ever-increasing impact of molecular quantum calculations over chemical sciences implies a strong and urgent need for the elaboration of proper teaching strategies in university curricula. In such perspective, this paper proposes an extensive project for a student-driven, cooperative, from-scratch implementation of a general Hartree-Fock…

  7. Conceptual Integration of Covalent Bond Models by Algerian Students

    ERIC Educational Resources Information Center

    Salah, Hazzi; Dumon, Alain

    2014-01-01

    The concept of covalent bonding is characterized by an interconnected knowledge framework based on Lewis and quantum models of atoms and molecules. Several research studies have shown that students at all levels of chemistry learning find the quantum model to be one of the most difficult subjects to understand. We have tried in this paper to…

  8. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  9. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  10. Playing with Light: Adventures in Optics and Spectroscopy for Honors and Majors General Chemistry

    ERIC Educational Resources Information Center

    van Staveren, Marie N.; Edwards, Kimberly D.; Apkarian, V. A.

    2012-01-01

    A lab was developed for use in an undergraduate honors and majors general chemistry laboratory to introduce students to optics, spectroscopy, and the underlying principles of quantum mechanics. This lab includes four mini-experiments exploring total internal reflection, the tunneling of light, spectra of sparklers and colored candles, and emission…

  11. A Single Reaction Thread Ties Multiple Core Concepts in an Introductory Chemistry Course

    ERIC Educational Resources Information Center

    Barbee, Meredith H.; Carden, Robert G.; Johnson, Julia H. R.; Brown, Cameron L.; Canelas, Dorian A.; Craig, Stephen L.

    2018-01-01

    This work describes the use of a single chemical reaction to teach and connect a number of standard general chemistry course topics while also introducing students to polymer concepts. Through the study of the reaction that converts spiropyran into merocyanine, we are able to present and connect molecular orbital theory, quantum mechanics,…

  12. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    ERIC Educational Resources Information Center

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  13. Why surface chemistry matters for QD–QD resonance energy transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Jacob B.; Alam, Rabeka; Kamat, Prashant V.

    Resonance energy transfer (RET) has been shown to occur in films of semiconductor quantum dots (QDs) with variation in QD composition and size. When coupled with charge carrier transfer, RET could provide a complementary strategy for light harvesting in QD based solid state photovoltaic devices. Due to a direct dependence on the optical properties of the donor and acceptor, QD surface chemistry plays a drastic role in determining the efficiency of RET. Here, the impact of QD surface chemistry on RET in QD films was investigated using a pair of different sized CdSe QDs spin-cast onto a glass substrate. Themore » effects of QD surface passivation on RET were studied by removing surface ligands through QD washing and adding an insulating ZnS shell. In addition, QD films were subjected to solid state ligand exchanges with thiolated ligands in order to mimic a layer-by-layer deposition method commonly used in the construction of QD photovoltaics. These solid state ligand exchanges exhibit drastic quenching of RET in the films. As a result, these experiments highlight the importance of understanding surface chemistry when designing photovoltaics that utilize RET.« less

  14. Why surface chemistry matters for QD–QD resonance energy transfer

    DOE PAGES

    Hoffman, Jacob B.; Alam, Rabeka; Kamat, Prashant V.

    2017-01-12

    Resonance energy transfer (RET) has been shown to occur in films of semiconductor quantum dots (QDs) with variation in QD composition and size. When coupled with charge carrier transfer, RET could provide a complementary strategy for light harvesting in QD based solid state photovoltaic devices. Due to a direct dependence on the optical properties of the donor and acceptor, QD surface chemistry plays a drastic role in determining the efficiency of RET. Here, the impact of QD surface chemistry on RET in QD films was investigated using a pair of different sized CdSe QDs spin-cast onto a glass substrate. Themore » effects of QD surface passivation on RET were studied by removing surface ligands through QD washing and adding an insulating ZnS shell. In addition, QD films were subjected to solid state ligand exchanges with thiolated ligands in order to mimic a layer-by-layer deposition method commonly used in the construction of QD photovoltaics. These solid state ligand exchanges exhibit drastic quenching of RET in the films. As a result, these experiments highlight the importance of understanding surface chemistry when designing photovoltaics that utilize RET.« less

  15. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  16. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  17. Perspectives on Computational Organic Chemistry

    PubMed Central

    Streitwieser, Andrew

    2009-01-01

    The author reviews how his early love for theoretical organic chemistry led to experimental research and the extended search for quantitative correlations between experiment and quantum calculations. The experimental work led to ion pair acidities of alkali-organic compounds and most recently to equilibria and reactions of lithium and cesium enolates in THF. This chemistry is now being modeled by ab initio calculations. An important consideration is the treatment of solvation in which coordination of the alkali cation with the ether solvent plays a major role. PMID:19518150

  18. Unicorns in the world of chemical bonding models.

    PubMed

    Frenking, Gernot; Krapp, Andreas

    2007-01-15

    The appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry. Copyright (c) 2006 Wiley Periodicals, Inc.

  19. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering.

    PubMed

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C M

    2016-07-08

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  20. Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Chan, Garnet Kin-Lic

    2013-04-01

    We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.

  1. Quantum chemical approaches in structure-based virtual screening and lead optimization

    NASA Astrophysics Data System (ADS)

    Cavasotto, Claudio N.; Adler, Natalia S.; Aucar, Maria G.

    2018-05-01

    Today computational chemistry is a consolidated tool in drug lead discovery endeavors. Due to methodological developments and to the enormous advance in computer hardware, methods based on quantum mechanics (QM) have gained great attention in the last 10 years, and calculations on biomacromolecules are becoming increasingly explored, aiming to provide better accuracy in the description of protein-ligand interactions and the prediction of binding affinities. In principle, the QM formulation includes all contributions to the energy, accounting for terms usually missing in molecular mechanics force-fields, such as electronic polarization effects, metal coordination, and covalent binding; moreover, QM methods are systematically improvable, and provide a greater degree of transferability. In this mini-review we present recent applications of explicit QM-based methods in small-molecule docking and scoring, and in the calculation of binding free-energy in protein-ligand systems. Although the routine use of QM-based approaches in an industrial drug lead discovery setting remains a formidable challenging task, it is likely they will increasingly become active players within the drug discovery pipeline.

  2. The Harvard Clean Energy Project: High-throughput screening of organic photovoltaic materials using cheminformatics, machine learning, and pattern recognition

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto; Hachmann, Johannes; Amador-Bedolla, Carlos; Daly, Aidan; Jinich, Adrian; Atahan-Evrenk, Sule; Boixo, Sergio; Aspuru-Guzik, Alán

    2012-02-01

    Organic photovoltaic devices have emerged as competitors to silicon-based solar cells, currently reaching efficiencies of over 9% and offering desirable properties for manufacturing and installation. We study conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices with a molecular library motivated by experimental feasibility. We use quantum mechanics and a distributed computing approach to explore this vast molecular space. We will detail the screening approach starting from the generation of the molecular library, which can be easily extended to other kinds of molecular systems. We will describe the screening method for these materials which ranges from descriptor models, ubiquitous in the drug discovery community, to eventually reaching first principles quantum chemistry methods. We will present results on the statistical analysis, based principally on machine learning, specifically partial least squares and Gaussian processes. Alongside, clustering methods and the use of the hypergeometric distribution reveal moieties important for the donor materials and allow us to quantify structure-property relationships. These efforts enable us to accelerate materials discovery in organic photovoltaics through our collaboration with experimental groups.

  3. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    PubMed

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.

  4. Discriminating Drug-Like Compounds by Partition Trees with Quantum Similarity Indices and Graph Invariants.

    PubMed

    Julián-Ortiz, Jesus V de; Gozalbes, Rafael; Besalú, Emili

    2016-01-01

    The search for new drug candidates in databases is of paramount importance in pharmaceutical chemistry. The selection of molecular subsets is greatly optimized and much more promising when potential drug-like molecules are detected a priori. In this work, about one hundred thousand molecules are ranked following a new methodology: a drug/non-drug classifier constructed by a consensual set of classification trees. The classification trees arise from the stochastic generation of training sets, which in turn are used to estimate probability factors of test molecules to be drug-like compounds. Molecules were represented by Topological Quantum Similarity Indices and their Graph Theoretical counterparts. The contribution of the present paper consists of presenting an effective ranking method able to improve the probability of finding drug-like substances by using these types of molecular descriptors.

  5. Quantum chemical approaches to [NiFe] hydrogenase.

    PubMed

    Vaissier, Valerie; Van Voorhis, Troy

    2017-05-09

    The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Yoink: An interaction-based partitioning API.

    PubMed

    Zheng, Min; Waller, Mark P

    2018-05-15

    Herein, we describe the implementation details of our interaction-based partitioning API (application programming interface) called Yoink for QM/MM modeling and fragment-based quantum chemistry studies. Interactions are detected by computing density descriptors such as reduced density gradient, density overlap regions indicator, and single exponential decay detector. Only molecules having an interaction with a user-definable QM core are added to the QM region of a hybrid QM/MM calculation. Moreover, a set of molecule pairs having density-based interactions within a molecular system can be computed in Yoink, and an interaction graph can then be constructed. Standard graph clustering methods can then be applied to construct fragments for further quantum chemical calculations. The Yoink API is licensed under Apache 2.0 and can be accessed via yoink.wallerlab.org. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  8. Bond additivity corrections for quantum chemistry methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. F. Melius; M. D. Allendorf

    1999-04-01

    In the 1980's, the authors developed a bond-additivity correction procedure for quantum chemical calculations called BAC-MP4, which has proven reliable in calculating the thermochemical properties of molecular species, including radicals as well as stable closed-shell species. New Bond Additivity Correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid DFT/MP2 method, BAC-Hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method duemore » to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-Hybrid and BAC-MP4. The BAC-Hybrid method should scale well for large molecules. The BAC-Hybrid method uses the differences between the DFT and MP2 as an indicator of the method's accuracy, while the BAC-G2 method uses its internal methods (G1 and G2MP2) to provide an indicator of its accuracy. Indications of the average error as well as worst cases are provided for each of the BAC methods.« less

  9. Progress in Preparation of Monodisperse Polymer Microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  10. Determination of graphene's edge energy using hexagonal graphene quantum dots and PM7 method.

    PubMed

    Vorontsov, Alexander V; Tretyakov, Evgeny V

    2018-05-18

    Graphene quantum dots (GQDs) are important for a variety of applications and designs, and the shapes of GQDs rely on the energy of their boundaries. Presently, many methods have been developed for the preparation of GQDs with the required boundaries, shapes and edge terminations. However, research on the properties of GQDs and their applications is limited due to the unavailability of these compounds in pure form. In the present computational study, the standard enthalpy of formation, the standard enthalpy of formation of edges and the standard enthalpy of hydrogenation are studied for hexagonal GQDs with purely zigzag and armchair edges in non-passivated and H-passivated forms using the semiempirical quantum chemistry method pm7. The standard enthalpy of formation of the edge is found to remain constant for GQDs studied in the range of 1 to 6 nm, and the enthalpies of edge C atoms are 32.4 and 35.5 kcal mol-1 for armchair and zigzag edges, respectively. In contrast to some literature data, the standard enthalpy of formation of hydrogenated edges is far from zero, and the values are 7.3 and 8.0 kcal mol-1 C for armchair and zigzag edges, respectively. The standard enthalpy of hydrogenation is found to be -10.2 and -9.72 eV nm-1 for the armchair and zigzag edges, respectively.

  11. The Journey from Classical to Quantum Thinking: An Analysis of Student Understanding through the Lens of Atomic Spectra

    ERIC Educational Resources Information Center

    Rao, Sandhya Kolla

    2012-01-01

    This dissertation aims to explore how students think about atomic absorption and emission of light in the area of introductory quantum chemistry. In particular, the impact of classical ideas of electron position and energy on student understanding of spectra is studied. The analysis was undertaken to discover how student learning can be…

  12. Using Quantum Mechanics to Facilitate the Introduction of a Broad Range of Chemical Concepts to First-Year Undergraduate Students

    ERIC Educational Resources Information Center

    deSouza, Romualdo T.; Iyengar, Srinivasan S.

    2013-01-01

    A first-year undergraduate course that introduces students to chemistry through a conceptually detailed description of quantum mechanics is outlined. Quantization as arising from the confinement of a particle is presented and these ideas are used to introduce the reasons behind resonance, molecular orbital theory, degeneracy of electronic states,…

  13. Lorentz Trial Function for the Hydrogen Atom: A Simple, Elegant Exercise

    ERIC Educational Resources Information Center

    Sommerfeld, Thomas

    2011-01-01

    The quantum semester of a typical two-semester physical chemistry course is divided into two parts. The initial focus is on quantum mechanics and simple model systems for which the Schrodinger equation can be solved in closed form, but it then shifts in the second half to atoms and molecules, for which no closed solutions exist. The underlying…

  14. Production, Manipulation, and Applications of Ultracold Polar Molecules

    DTIC Science & Technology

    2015-04-30

    molecules, cooling, trapping, photoassociation, feshbach resonances, quantum simulation , ultracold collisions, ultracold chemistry, optical lattices...been a multitude of less predictable outcomes: special quantum information processing schemes, uses of entanglement such a spin-squeezing for better...field seeing states to high-field-seeking states (and back) at key points in the magnetic field. The molecules spontaneously emit photons as they are

  15. Investigating Quantum Mechanical Tunneling at the Nanoscale via Analogy: Development and Assessment of a Teaching Tool for Upper-Division Chemistry

    ERIC Educational Resources Information Center

    Muniz, Marc N.; Oliver-Hoyo, Maria T.

    2014-01-01

    We report a novel educational activity designed to teach quantum mechanical tunneling to upper-division undergraduate students in the context of nanochemistry. The activity is based on a theoretical framework for analogy and is split into three parts that are linked pedagogically through the framework: classical ball-and-ramp system, tunneling…

  16. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    PubMed

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  17. From the GKLS Equation to the Theory of Solar and Fuel Cells

    NASA Astrophysics Data System (ADS)

    Alicki, R.

    The mathematically sound theory of quantum open systems, formulated in the ’70s and highlighted by the discovery of Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation, found a wide range of applications in various branches of physics and chemistry, notably in the field of quantum information and quantum thermodynamics. However, it took 40 years before this formalism has been applied to explain correctly the operation principles of long existing energy transducers like photovoltaic, thermoelectric and fuel cells. This long path is briefly reviewed from the author’s perspective. Finally, the new, fully quantum model of chemical engine based on GKLS equation and applicable to fuel cells or replicators is outlined. The model illustrates the difficulty with an entirely quantum operational definition of work, comparable to the problem of quantum measurement.

  18. Towards quantum chemistry on a quantum computer.

    PubMed

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  19. Nano interface potential influences in CdTe quantum dots and biolabeling

    NASA Astrophysics Data System (ADS)

    Kanagasubbulakshmi, S.; Kadirvelu, K.

    2018-05-01

    Nano interface influences in physiochemical properties of quantum dots (QDs) are the challenging approach to tailor its surface functionalities. In this study, a set of polar and non-polar solvents were selected to analyze the influences in solvent-based dynamic radius and surface potential of QDs. From the nano interface chemistry of polar and non-polar solvents, an appropriate mechanism of precipitation and hydrophobic ligand exchange strategy were elucidated by correlating Henry's equation. Further, the in vitro cytotoxic potential and antimicrobial activity of QDs were assessed to perform biolabeling. From the observations, an appropriate dosage of QDs was fixed to label the animal ((RAW 264.7 cell lines) and bacterial cells (Escherichia coli) for effective cell attachment. Biolabeling was achieved by tailoring nano interface chemistry of QDs without additional support of biomolecules. Bacterial cell wall-based interaction of QDs was evaluated using SEM and EDAX analysis. Thus, provided clear insights into the nano interface chemistry in the development of highly photostable QDs will be helpful in biomedical applications.

  20. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  1. Mono- and binuclear non-heme iron chemistry from a theoretical perspective.

    PubMed

    Rokob, Tibor András; Chalupský, Jakub; Bím, Daniel; Andrikopoulos, Prokopis C; Srnec, Martin; Rulíšek, Lubomír

    2016-09-01

    In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for experimental as well as theoretical methods. We emphasize that the concerted progress on both theoretical and experimental side is a conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. After briefly discussing the current challenges and advances in the computational methodology, we review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems and highlight the correlations between various experimental data (spectroscopic, kinetic, thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most fascinating and attractive phenomenon in the NHFe(2) chemistry, which is the fact that despite the strong oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high selectivity. We conclude with our personal viewpoint and hope that further developments in quantum chemistry and especially in the field of multireference wave function methods are needed to have a solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the computationally efficient and easy-to-use DFT methods.

  2. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  3. Neutron scattering, solid state NMR and quantum chemistry studies of 11-keto-progesterone

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2004-07-01

    The molecule geometry, frequency and intensity of the IINS and IR vibrational bands of 11-ketoprogesterone have been obtained by the HF, PM3 and density functional theory (DFT) with the B3LYP functionals and 6-31G(d,p) basis set. The optimised bond lengths and bond angles of the steroid skeleton are in good agreement with the X-ray data. The IR and IINS spectra of ketoprogesterone, computed at the DFT level, well reproduce the vibrational wavenumbers and intensities to an accuracy allowing reliable vibrational assignments. The molecular dynamic study by 1H NMR has confirmed the sequence of onset of reorientations of subsequent methyl groups indicated by the results of quantum chemistry calculations and INS spectra.

  4. Quasi-Particle Self-Consistent GW for Molecules.

    PubMed

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  5. Quantum mechanics implementation in drug-design workflows: does it really help?

    PubMed

    Arodola, Olayide A; Soliman, Mahmoud Es

    2017-01-01

    The pharmaceutical industry is progressively operating in an era where development costs are constantly under pressure, higher percentages of drugs are demanded, and the drug-discovery process is a trial-and-error run. The profit that flows in with the discovery of new drugs has always been the motivation for the industry to keep up the pace and keep abreast with the endless demand for medicines. The process of finding a molecule that binds to the target protein using in silico tools has made computational chemistry a valuable tool in drug discovery in both academic research and pharmaceutical industry. However, the complexity of many protein-ligand interactions challenges the accuracy and efficiency of the commonly used empirical methods. The usefulness of quantum mechanics (QM) in drug-protein interaction cannot be overemphasized; however, this approach has little significance in some empirical methods. In this review, we discuss recent developments in, and application of, QM to medically relevant biomolecules. We critically discuss the different types of QM-based methods and their proposed application to incorporating them into drug-design and -discovery workflows while trying to answer a critical question: are QM-based methods of real help in drug-design and -discovery research and industry?

  6. Note: The performance of new density functionals for a recent blind test of non-covalent interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    Benchmark datasets of non-covalent interactions are essential for assessing the performance of density functionals and other quantum chemistry approaches. In a recent blind test, Taylor et al. benchmarked 14 methods on a new dataset consisting of 10 dimer potential energy curves calculated using coupled cluster with singles, doubles, and perturbative triples (CCSD(T)) at the complete basis set (CBS) limit (80 data points in total). Finally, the dataset is particularly interesting because compressed, near-equilibrium, and stretched regions of the potential energy surface are extensively sampled.

  7. Note: The performance of new density functionals for a recent blind test of non-covalent interactions

    DOE PAGES

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-11-09

    Benchmark datasets of non-covalent interactions are essential for assessing the performance of density functionals and other quantum chemistry approaches. In a recent blind test, Taylor et al. benchmarked 14 methods on a new dataset consisting of 10 dimer potential energy curves calculated using coupled cluster with singles, doubles, and perturbative triples (CCSD(T)) at the complete basis set (CBS) limit (80 data points in total). Finally, the dataset is particularly interesting because compressed, near-equilibrium, and stretched regions of the potential energy surface are extensively sampled.

  8. A systematic typology for negative Poisson's ratio materials and the prediction of complete auxeticity in pure silica zeolite JST.

    PubMed

    Siddorn, M; Coudert, F-X; Evans, K E; Marmier, A

    2015-07-21

    Single crystals can commonly have negative Poisson's ratio in a few directions; however more generalised auxeticity is rarer. We propose a typology to distinguish auxetic materials. We characterise numerous single crystals and demonstrate that partial auxeticity occurs for around 37%. We find average auxeticity to be limited to α-cristobalite and no example of complete auxeticity. We simulate two hundreds pure silica zeolites with empirical potentials and quantum chemistry methods, and for the first time identify complete auxeticity in a zeolite network, JST.

  9. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  10. A hybrid approach to simulation of electron transfer in complex molecular systems

    PubMed Central

    Kubař, Tomáš; Elstner, Marcus

    2013-01-01

    Electron transfer (ET) reactions in biomolecular systems represent an important class of processes at the interface of physics, chemistry and biology. The theoretical description of these reactions constitutes a huge challenge because extensive systems require a quantum-mechanical treatment and a broad range of time scales are involved. Thus, only small model systems may be investigated with the modern density functional theory techniques combined with non-adiabatic dynamics algorithms. On the other hand, model calculations based on Marcus's seminal theory describe the ET involving several assumptions that may not always be met. We review a multi-scale method that combines a non-adiabatic propagation scheme and a linear scaling quantum-chemical method with a molecular mechanics force field in such a way that an unbiased description of the dynamics of excess electron is achieved and the number of degrees of freedom is reduced effectively at the same time. ET reactions taking nanoseconds in systems with hundreds of quantum atoms can be simulated, bridging the gap between non-adiabatic ab initio simulations and model approaches such as the Marcus theory. A major recent application is hole transfer in DNA, which represents an archetypal ET reaction in a polarizable medium. Ongoing work focuses on hole transfer in proteins, peptides and organic semi-conductors. PMID:23883952

  11. Rhorix: An interface between quantum chemical topology and the 3D graphics program blender

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.

    Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less

  12. Rhorix: An interface between quantum chemical topology and the 3D graphics program blender

    PubMed Central

    Sale, Kenneth L.; Simmons, Blake A.; Popelier, Paul L. A.

    2017-01-01

    Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter‐free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition of mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add‐On” named Rhorix for the state‐of‐the‐art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. A number of examples are discussed. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28857244

  13. Rhorix: An interface between quantum chemical topology and the 3D graphics program blender

    DOE PAGES

    Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.; ...

    2017-08-31

    Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less

  14. Development and validation of an achievement test in introductory quantum mechanics: The Quantum Mechanics Visualization Instrument (QMVI)

    NASA Astrophysics Data System (ADS)

    Cataloglu, Erdat

    The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.

  15. Overview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals

    PubMed Central

    Zhang, Yanjie; Clapp, Aaron

    2011-01-01

    Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands. PMID:22247651

  16. Quantum information processing with superconducting circuits: a review.

    PubMed

    Wendin, G

    2017-10-01

    During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

  17. Quantum information processing with superconducting circuits: a review

    NASA Astrophysics Data System (ADS)

    Wendin, G.

    2017-10-01

    During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

  18. Using LEDs and Phosphorescent Materials to Teach High School Students Quantum Mechanics: A Guided-Inquiry Laboratory for Introductory High School Chemistry

    ERIC Educational Resources Information Center

    Green, William P.; Trotochaud, Alan; Sherman, Julia; Kazerounian, Kazem; Faraclas, Elias W.

    2009-01-01

    The quantization of electronic energy levels in atoms is foundational to a mechanistic explanation of the periodicity of elemental properties and behavior. This paper presents a hands-on, guided inquiry approach to teaching this concept as part of a broader treatment of quantum mechanics, and as a foundation for an understanding of chemical…

  19. Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Curtiss, C. F.

    1974-01-01

    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.

  20. Functional renormalization group and Kohn-Sham scheme in density functional theory

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  1. Max Born and Molecular Theory

    NASA Astrophysics Data System (ADS)

    Rechenberg, H.

    While the 20th century is approaching its conclusion, the historian may look back and assemble the essential scientific fruits of the this period. Nearly fifty years ago, Werner Heisenberg stated in a lecture that in quantum or wave mechanics ``a new, unified science of matter has arisen, where the separation between chemistry and physics essentially lost any meaning", because (Heisenberg 1953)``The chemical properties of atoms have at least in principle become accessible to calculation, and already in the first years after the rise of quantum mechanics the simplest chemical binding, namely that of the two hydrogen atoms in the hydrogen molecule was calculated with the help of the new methods and was found in closest agreement with chemical experience. Thus the chemical valency-forces were explained on a physical basis, and the application of the new knowledge in industrial practices became only a matter of time."

  2. Flexible and Comprehensive Implementation of MD-PMM Approach in a General and Robust Code.

    PubMed

    Carrillo-Parramon, Oliver; Del Galdo, Sara; Aschi, Massimiliano; Mancini, Giordano; Amadei, Andrea; Barone, Vincenzo

    2017-11-14

    The Perturbed Matrix Method (PMM) approach to be used in combination with Molecular Dynamics (MD) trajectories (MD-PMM) has been recoded from scratch, improved in several aspects, and implemented in the Gaussian suite of programs for allowing a user-friendly and yet flexible tool to estimate quantum chemistry observables in complex systems in condensed phases. Particular attention has been devoted to a description of rigid and flexible quantum centers together with powerful essential dynamics and clustering approaches. The default implementation is fully black-box and does not require any external action concerning both MD and PMM sections. At the same time, fine-tuning of different parameters and use of external data are allowed in all the steps of the procedure. Two specific systems (Tyrosine and Uridine) have been reinvestigated with the new version of the code in order to validate the implementation, check the performances, and illustrate some new features.

  3. Analytical strategies based on quantum dots for heavy metal ions detection.

    PubMed

    Vázquez-González, Margarita; Carrillo-Carrion, Carolina

    2014-01-01

    Heavy metal contamination is one of the major concerns to human health because these substances are toxic and retained by the ecological system. Therefore, in recent years, there has been a pressing need for fast and reliable methods for the analysis of heavy metal ions in environmental and biological samples. Quantum dots (QDs) have facilitated the development of sensitive sensors over the past decade, due to their unique photophysical properties, versatile surface chemistry and ligand binding ability, and the possibility of the encapsulation in different materials or attachment to different functional materials, while retaining their native luminescence property. This paper comments on different sensing strategies with QD for the most toxic heavy metal ions (i.e., cadmium, Cd2+; mercury, Hg2+; and lead, Pb2+). Finally, the challenges and outlook for the QD-based sensors for heavy metals ions are discussed.

  4. Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Zn, Cu, Co, Ni) metal-organic framework polymers: X-ray photoelectron spectroscopy, QTAIM and ELF study

    NASA Astrophysics Data System (ADS)

    Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.

    2017-12-01

    Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.

  5. An intermediate level of abstraction for computational systems chemistry.

    PubMed

    Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F

    2017-12-28

    Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately predict the structures and reactivities of small molecules, they are not efficient enough to cope with large-scale reaction systems. The formalization of chemical reactions as graph grammars provides a generative system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large reaction networks using optimization techniques.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  6. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.

    PubMed

    Tanaka, Shigenori; Mochizuki, Yuji; Komeiji, Yuto; Okiyama, Yoshio; Fukuzawa, Kaori

    2014-06-14

    Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.

  7. Chemical Control of Charge Trapping and Charge Transfer Processes at the Organic-Inorganic Interface within Quantum Dot-Organic Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Emily A.

    Within the research program funded through the Early Career Research Award we designed complexes of colloidal semiconductor quantum dots (QDs) and organic molecules in which the interfacial chemistry controls the electronic structure and dynamics of the excitonic state of the QD. The program included two main projects; (1) investigation of the mechanisms by which organic surfactants control the quantum confinement of excitonic charge carriers; and (2) development of models for electron transfer between QDs and adsorbed molecules as a function of interfacial chemistry. This project was extremely successful in that our achievements in those two areas addressed the great majoritymore » of questions we outlined in the original proposal and answered questions I did not think to ask in that original proposal. Our work led to the discovery of “exciton delocalizing ligands”, which change the electronic structure of colloidal semiconductor nanocrystals by altering, with small synthetic modifications to their surfaces, their most defining characteristic – the quantum confinement of their excited states. It also led to detailed, quantitative descriptions of how the surface chemistry of a QD dictates, thermodynamically and kinetically, the probability of exchange of electrons between the QD and a small molecule. We used two of the three major techniques in the proposal (transient photoluminescence and transient absorption). Electrogenerated chemiluminescence was also proposed, but was too technically difficult with these systems to be useful. Instead, NMR spectroscopy emerged as a major analytical tool in our studies. With the fundamental advancements we made with this project, we believe that we can design QDs to be the next great class of visible-light photocatalysts.« less

  8. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement functions because they are the elements of the complete functions for the system under consideration. We extended this idea to solve the relativistic DE and applied it to the hydrogen and helium atoms, without observing any problems such as variational collapse. Thereafter, we obtained very accurate solutions of the SE for the ground and excited states of the Born-Oppenheimer (BO) and non-BO states of very small systems like He, H(2)(+), H(2), and their analogues. For larger systems, however, the overlap and Hamiltonian integrals over the complement functions are not always known mathematically (integration difficulty); therefore we formulated the local SE (LSE) method as an integral-free method. Without any integration, the LSE method gave fairly accurate energies and wave functions for small atoms and molecules. We also calculated continuous potential curves of the ground and excited states of small diatomic molecules by introducing the transferable local sampling method. Although the FC-LSE method is simple, the achievement of chemical accuracy in the absolute energy of larger systems remains time-consuming. The development of more efficient methods for the calculations of ordinary molecules would allow researchers to make these calculations more easily.

  9. Versatile multi-functionalization of protein nanofibrils for biosensor applications

    NASA Astrophysics Data System (ADS)

    Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. A. K.; Gerrard, J. A.

    2014-01-01

    Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry. Electronic supplementary information (ESI) available: Cyclic voltammetry characterization of biosensor platforms including bare Au electrodes (Fig. S1), biosensor response to various glucose concentrations (Fig. S2), and AFM roughness measurements due to WPNF modifications (Fig. S3). See DOI: 10.1039/c3nr05752f

  10. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1990

    1990-01-01

    Presented are 29 science activities for secondary school science instruction. Topic areas include botany, genetics, biochemistry, anatomy, entomology, molecular structure, spreadsheets, chemistry, mechanics, astronomy, relativity, aeronautics, instrumentation, electrostatics, quantum mechanics, and laboratory interfacing. (CW)

  11. Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory.

    PubMed

    Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2016-12-21

    Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10 -1 cm 2 V -1 s -1 which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.

  12. Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2016-12-01

    Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10-1 cm2 V-1 s-1 which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.

  13. The ab-initio density matrix renormalization group in practice.

    PubMed

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  14. Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teunis, Meghan B.; Johnson, Merrell A.; Muhoberac, Barry B.

    Here, systematic tailoring of nanocrystal architecture could provide unprecedented control over their electronic, photophysical, and charge transport properties for a variety of applications. However, at present, manipulation of the shape of perovskite nanocrystals is done mostly by trial-and-error-based experimental approaches. Here, we report systematic colloidal synthetic strategies to prepare methylammonium lead bromide quantum platelets and quantum cubes. In order to control the nucleation and growth processes of these nano crystals, we appropriately manipulate the solvent system, surface ligand chemistry, and reaction temperature causing syntheses into anisotropic shapes. We demonstrate that both the presence of chlorinated solvent and a long chainmore » aliphatic amine in the reaction mixture are crucial for the formation of ultrathin quantum platelets (similar to 1.5 nm in thickness), which is driven by mesoscale-assisted growth of spherical seed nanocrystals (similar to 1.6 nm in diameter) through attachment of monomers onto selective crystal facets. A combined surface and structural characterization, along with small-angle X-ray scattering analysis, confirm that the long hydrocarbon of the aliphatic amine is responsible for the well ordered hierarchical stacking of the quantum platelets of 3.5 nm separation. In contrast, the formation of similar to 12 nm edge-length quantum cubes is a kinetically driven process in which a high flux of monomers is achieved by supplying thermal energy. The photoluminescence quantum yield of our quantum platelets (similar to 52%) is nearly 2-fold higher than quantum cubes. Moreover, the quantum platelets display a lower nonradiative rate constant than that found with quantum cubes, which suggests less surface trap states. Together, our research has the potential both to improve the design of synthetic methods for programmable control of shape and assembly and to provide insight into optoelectronic properties of these materials for solid-state device fabrication, e.g., light-emitting diodes, solar cells, and lasing materials.« less

  15. Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties

    DOE PAGES

    Teunis, Meghan B.; Johnson, Merrell A.; Muhoberac, Barry B.; ...

    2017-04-05

    Here, systematic tailoring of nanocrystal architecture could provide unprecedented control over their electronic, photophysical, and charge transport properties for a variety of applications. However, at present, manipulation of the shape of perovskite nanocrystals is done mostly by trial-and-error-based experimental approaches. Here, we report systematic colloidal synthetic strategies to prepare methylammonium lead bromide quantum platelets and quantum cubes. In order to control the nucleation and growth processes of these nano crystals, we appropriately manipulate the solvent system, surface ligand chemistry, and reaction temperature causing syntheses into anisotropic shapes. We demonstrate that both the presence of chlorinated solvent and a long chainmore » aliphatic amine in the reaction mixture are crucial for the formation of ultrathin quantum platelets (similar to 1.5 nm in thickness), which is driven by mesoscale-assisted growth of spherical seed nanocrystals (similar to 1.6 nm in diameter) through attachment of monomers onto selective crystal facets. A combined surface and structural characterization, along with small-angle X-ray scattering analysis, confirm that the long hydrocarbon of the aliphatic amine is responsible for the well ordered hierarchical stacking of the quantum platelets of 3.5 nm separation. In contrast, the formation of similar to 12 nm edge-length quantum cubes is a kinetically driven process in which a high flux of monomers is achieved by supplying thermal energy. The photoluminescence quantum yield of our quantum platelets (similar to 52%) is nearly 2-fold higher than quantum cubes. Moreover, the quantum platelets display a lower nonradiative rate constant than that found with quantum cubes, which suggests less surface trap states. Together, our research has the potential both to improve the design of synthetic methods for programmable control of shape and assembly and to provide insight into optoelectronic properties of these materials for solid-state device fabrication, e.g., light-emitting diodes, solar cells, and lasing materials.« less

  16. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    PubMed

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  17. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  18. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  19. Publication and Retrieval of Computational Chemical-Physical Data Via the Semantic Web. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostlund, Neil

    This research showed the feasibility of applying the concepts of the Semantic Web to Computation Chemistry. We have created the first web portal (www.chemsem.com) that allows data created in the calculations of quantum chemistry, and other such chemistry calculations to be placed on the web in a way that makes the data accessible to scientists in a semantic form never before possible. The semantic web nature of the portal allows data to be searched, found, and used as an advance over the usual approach of a relational database. The semantic data on our portal has the nature of a Giantmore » Global Graph (GGG) that can be easily merged with related data and searched globally via a SPARQL Protocol and RDF Query Language (SPARQL) that makes global searches for data easier than with traditional methods. Our Semantic Web Portal requires that the data be understood by a computer and hence defined by an ontology (vocabulary). This ontology is used by the computer in understanding the data. We have created such an ontology for computational chemistry (purl.org/gc) that encapsulates a broad knowledge of the field of computational chemistry. We refer to this ontology as the Gainesville Core. While it is perhaps the first ontology for computational chemistry and is used by our portal, it is only a start of what must be a long multi-partner effort to define computational chemistry. In conjunction with the above efforts we have defined a new potential file standard (Common Standard for eXchange – CSX for computational chemistry data). This CSX file is the precursor of data in the Resource Description Framework (RDF) form that the semantic web requires. Our portal translates CSX files (as well as other computational chemistry data files) into RDF files that are part of the graph database that the semantic web employs. We propose a CSX file as a convenient way to encapsulate computational chemistry data.« less

  20. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    NASA Astrophysics Data System (ADS)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  1. Molecular Quantum Mechanics: Analytic Gradients and Beyond - Program and Abstracts

    DTIC Science & Technology

    2007-06-03

    Kutzelnigg (Bochum, Germany) Chair: Pekka Pyykko (Helsinki, Finland) Which Masses are Vibrating or Rotating in a Molecule? 15:40-16:15 O30...Krylov (Los Angeles, CA, U.S.A.) Multiconfigurational Quantum Chemistry for Actinide Containing Systems: From Isolated Molecules to Condensed...the genetic algorithm will be critically assessed. For B4n, the double rings are notably stable. The DFT calculations provide strong indications of

  2. Development of the Next Generation of Biogeochemistry Simulations Using EMSL's NWChem Molecular Modeling Software

    NASA Astrophysics Data System (ADS)

    Bylaska, E. J.; Kowalski, K.; Apra, E.; Govind, N.; Valiev, M.

    2017-12-01

    Methods of directly simulating the behavior of complex strongly interacting atomic systems (molecular dynamics, Monte Carlo) have provided important insight into the behavior of nanoparticles, biogeochemical systems, mineral/fluid systems, nanoparticles, actinide systems and geofluids. The limitation of these methods to even wider applications is the difficulty of developing accurate potential interactions in these systems at the molecular level that capture their complex chemistry. The well-developed tools of quantum chemistry and physics have been shown to approach the accuracy required. However, despite the continuous effort being put into improving their accuracy and efficiency, these tools will be of little value to condensed matter problems without continued improvements in techniques to traverse and sample the high-dimensional phase space needed to span the ˜10^12 time scale differences between molecular simulation and chemical events. In recent years, we have made considerable progress in developing electronic structure and AIMD methods tailored to treat biochemical and geochemical problems, including very efficient implementations of many-body methods, fast exact exchange methods, electron-transfer methods, excited state methods, QM/MM, and new parallel algorithms that scale to +100,000 cores. The poster will focus on the fundamentals of these methods and the realities in terms of system size, computational requirements and simulation times that are required for their application to complex biogeochemical systems.

  3. Exploring the Nature of the H[subscript 2] Bond. 2. Using Ab Initio Molecular Orbital Calculations to Obtain the Molecular Constants

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Glendening, Eric D.

    2013-01-01

    A project for students in an upper-level course in quantum or computational chemistry is described in which they are introduced to the concepts and applications of a high quality, ab initio treatment of the ground-state potential energy curve (PEC) for H[subscript 2] and D[subscript 2]. Using a commercial computational chemistry application and a…

  4. Metal centre effects on HNO binding in porphyrins and the electronic origin: metal's electronic configuration, position in the periodic table, and oxidation state.

    PubMed

    Yang, Liu; Fang, Weihai; Zhang, Yong

    2012-04-21

    HNO binds to many different metals in organometallic and bioinorganic chemistry. To help understand experimentally observed metal centre effects, a quantum chemical investigation was performed, revealing clear general binding trends with respect to metal centre characteristics and the electronic origin for the first time. This journal is © The Royal Society of Chemistry 2012

  5. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method' evaluating the translation diffusion of charged analytes, while the theoretical modelling of MS ions and computations of theoretical diffusion coefficients are based on the Arrhenius type behavior of the charged species under ESI- and APCI-conditions. Although the study provide certain sound considerations for the quantitative relations between the reaction kinetic-thermodynamics and 3D structure of the analytes together with correlations between 3D molecular/electronic structures-quantum chemical diffusion coefficient-mass spectrometric diffusion coefficient, which contribute significantly to the structural analytical chemistry, the results have importance to other areas such as organic synthesis and catalysis as well.

  6. The Importance of Electron Correlation on Stacking Interaction of Adenine-Thymine Base-Pair Step in B-DNA: A Quantum Monte Carlo Study.

    PubMed

    Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo

    2013-02-12

    We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.

  7. Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register.

    PubMed

    Wang, Ya; Dolde, Florian; Biamonte, Jacob; Babbush, Ryan; Bergholm, Ville; Yang, Sen; Jakobi, Ingmar; Neumann, Philipp; Aspuru-Guzik, Alán; Whitfield, James D; Wrachtrup, Jörg

    2015-08-25

    Ab initio computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH(+). Moreover, we report an energy uncertainty (given our model basis) of the order of 10(-14) hartree, which is 10 orders of magnitude below the desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides an important step toward a fully scalable solid-state implementation of a quantum chemistry simulator.

  8. Research | Chemistry and Nanoscience Research | NREL

    Science.gov Websites

    organic batteries Hydrogen and Fuel Cells Fuel cells Testing and fabrication Hydrogen production H2@Scale Photovoltaics Organic photovoltaics Perovskites Quantum dot solar cells Dynamic windows Solar Photochemistry

  9. Will water act as a photocatalyst for cluster phase chemical reactions? Vibrational overtone-induced dehydration reaction of methanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.

    2012-04-28

    The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energymore » is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.« less

  10. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations.

    PubMed

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang

    2013-11-01

    To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.

  11. Plasticity and Kinky Chemistry of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  12. Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste

    2013-03-01

    Tensor contractions are generalized multidimensional matrix multiplication operations that widely occur in quantum chemistry. Efficient execution of tensor contractions on Graphics Processing Units (GPUs) requires several challenges to be addressed, including index permutation and small dimension-sizes reducing thread block utilization. Moreover, to apply the same optimizations to various expressions, we need a code generation tool. In this paper, we present our approach to automatically generate CUDA code to execute tensor contractions on GPUs, including management of data movement between CPU and GPU. To evaluate our tool, GPU-enabled code is generated for the most expensive contractions in CCSD(T), a key coupledmore » cluster method, and incorporated into NWChem, a popular computational chemistry suite. For this method, we demonstrate speedup over a factor of 8.4 using one GPU (instead of one core per node) and over 2.6 when utilizing the entire system using hybrid CPU+GPU solution with 2 GPUs and 5 cores (instead of 7 cores per node). Finally, we analyze the implementation behavior on future GPU systems.« less

  13. The Physics of Life and Quantum Complex Matter: A Case of Cross-Fertilization

    PubMed Central

    Poccia, Nicola; Bianconi, Antonio

    2011-01-01

    Progress in the science of complexity, from the Big Bang to the coming of humankind, from chemistry and biology to geosciences and medicine, and from materials engineering to energy sciences, is leading to a shift of paradigm in the physical sciences. The focus is on the understanding of the non-equilibrium process in fine tuned systems. Quantum complex materials such as high temperature superconductors and living matter are both non-equilibrium and fine tuned systems. These topics have been subbjects of scientific discussion in the Rome Symposium on the “Quantum Physics of Living Matter”. PMID:26791661

  14. Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1

    PubMed Central

    Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione

    2007-01-01

    The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555

  15. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    PubMed

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  16. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation

    NASA Astrophysics Data System (ADS)

    Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry

    2018-04-01

    The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.

  17. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  18. Definition of molecular structure: by choice or by appeal to observation?

    PubMed

    Bader, Richard F W

    2010-07-22

    There are two schools of thought in chemistry: one derived from the valence bond and molecular orbital models of bonding, the other appealing directly to the measurable electron density and the quantum mechanical theorems that determine its behavior, an approach embodied in the quantum theory of atoms in molecules, QTAIM. No one questions the validity of the former approach, and indeed molecular orbital models and QTAIM play complementary roles, the models finding expression in the principles of physics. However, some orbital proponents step beyond the models to impose their personal stamp on their use in interpretive chemistry, by denying the possible existence of a physical basis for the concepts of chemistry. This places them at odds with QTAIM, whose very existence stems from the discovery in the observable topology of the electron density, the definitions of atoms, of the bonding between atoms and hence of molecular structure. Relating these concepts to the electron density provides the necessary link for their ultimate quantum definition. This paper explores in depth the possible causes of the difficulties some have in accepting the quantum basis of structure beginning with the arguments associated with the acceptance of a "bond path" as a criterion for bonding. This identification is based on the finding that all classical structures may be mapped onto molecular graphs consisting of bond paths linking neighboring atoms, a mapping that has no known exceptions and one that is further bolstered by the finding that there are no examples of "missing bond paths". Difficulties arise when the quantum concept is applied to systems that are not amenable to the classical models of bonding. Thus one is faced with the recurring dilemma of science, of having to escape the constraints of a model that requires a change in the existing paradigm, a process that has been in operation since the discovery of new and novel structures necessitated the extension of the Lewis model and the octet rule. The paper reviews all facets of bonding beginning with the work of Pauling and Slater in their accounting for crystal structures, taking note of Pauling's advocating possible bonding between large anions. Many examples of nonbonded or van der Waals interactions are considered from both points of view. The final section deals with the consequences of the realization that bonded quantum atoms that share an interatomic surface do not "overlap". The time has come for entering students of chemistry to be taught that the electron density can be seen, touched, and measured and that the chemical structures they learn are in fact the tracings of "bonds" onto lines of maximum density that link bonded nuclei. Matter, as we perceive it, is bound by the electrostatic force of attraction between the nuclei and the electron density.

  19. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

    PubMed Central

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano

    2015-01-01

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516

  20. Probing Molecular Ions With Laser-Cooled Atomic Ions

    DTIC Science & Technology

    2017-10-11

    Sept. 23, 2015 Precision Chemical Dynamics and Quantum Control of Ultracold Molecular Ion Reactions , Cold Molecular Ions at the Quantum limit (COMIQ...ken.brown@chemistry.gatech.edu This work solved an old mystery about the lifetime of Ca+ due to reactions with background gases in laser-cooling experiments...Relative to other alkaline earths, Ca+ had a much slower reaction rate. We discovered the reason is that the Doppler cooling laser is near

  1. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 1. Statistical Analysis of a Quantitative Study

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 1 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught in the twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used. The study compared performance in five questions that tested recall of knowledge or application of algorithmic procedures (type-A…

  2. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    NASA Astrophysics Data System (ADS)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  3. Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents.

    PubMed

    Borodin, Oleg; Smith, Grant D

    2006-03-30

    Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.

  4. A new concept in laser-assisted chemistry - The electronic-field representation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Yuan, J.-M.; Laing, J. R.; Devries, P. L.

    1977-01-01

    Electronic-field representation is proposed as a technique for laser-assisted chemistry. Specifically, it is shown that several field-assisted chemical processes can be described in terms of mixed matter-field quantum states and their associated energies. The technique may be used to analyze the effects exerted by an intense laser on both bound and unbound molecular systems, and to investigate other field-induced effects including multiphoton processes, emission, and photodissociation.

  5. Density functional theory across chemistry, physics and biology.

    PubMed

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-03-13

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT.

  6. Kinetics and Product Channels in Combustion Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershberger, John F.

    We report study of the chemical kinetics and/or photochemistry of several chemical reactions of potential interest in understanding the gas phase combustion chemistry of nitrogen-containing molecules. Studies completed during the final grant period include determination of quantum yields of the photolysis of HCNO, fulminic acid, a kinetics and product channel study of the reaction of CN radicals with methyl bromide, and study of the products of the reaction of hydroxymethyl radical with nitric oxide.

  7. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  8. Parallel scalability of Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.

    2015-03-01

    Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.

  9. Quantum tunneling of oxygen atoms on very cold surfaces.

    PubMed

    Minissale, M; Congiu, E; Baouche, S; Chaabouni, H; Moudens, A; Dulieu, F; Accolla, M; Cazaux, S; Manicó, G; Pirronello, V

    2013-08-02

    Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.

  10. Efficient and accurate treatment of electron correlations with correlation matrix renormalization theory

    DOE PAGES

    Yao, Y. X.; Liu, J.; Liu, C.; ...

    2015-08-28

    We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We alsomore » show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.« less

  11. Many-body optimization using an ab initio monte carlo method.

    PubMed

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  12. Picking a Fight with Water, and Water Lost ... an Electron

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.

    The global need for energy is increasing, as is the importance of producing energy by green and renewable methodologies. This document outlines a research program dedicated to investigating a possible source for this form of energy generation and storage: solar fuels. The photon-induced splitting of water into molecular hydrogen and oxygen is currently hindered by large overpotentials from the oxidation half-reaction of water-splitting. This study concentrated on fundamental models of water-spitting chemistry, using a physical and computational chemistry analysis. The oxidation was first explored via ab initio electronic structure calculations of bare cationic water clusters, comprised of 2 to 21 molecules, in order to determine key electronic interactions that facilitate oxidation. Deeper understanding of these interactions could serve as guides for the development of viable water oxidation catalysts (WOC) designed to reduce overpotentials. The cationic water cluster study was followed by an investigation into hydrated copper (I) clusters, which acted as precursor models for real WOCs. Analyzing how the copper ion perturbed the properties of water clusters led to important electronic considerations for the development of WOCs, such as copper-water interactions that go beyond simple electrostatics. The importance of diagnostic thermodynamic properties, as well as anharmonic characteristics being persistent throughout oxidized water clusters, necessitated the use of quantum and classical molecular dynamics (MD) routines. Therefore, two new methods for accelerating computationally demanding classical and quantum MD methods were developed to increase their accessibility. The first method utilized a new form of electronic extrapolation - a linear prediction routine incorporating a Burg minimization - to decrease the iterations required for solving the electronic equations throughout the dynamics. The second method utilized a multiple-timestepping description of the potential energy term in the path integral molecular dynamics (PIMD) formalism. This method led to reductions of computational time by allowing the use of less computationally laborious methods for portions of the simulation and resulted in negligible increase of error. The determination of the fundamental driving forces within water oxidation and the development of acceleration techniques for important electronic structure methods will help drive progress into fully solar-initiated water oxidation.

  13. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011

  14. Diffusion doping in quantum dots: bond strength and diffusivity.

    PubMed

    Saha, Avijit; Makkar, Mahima; Shetty, Amitha; Gahlot, Kushagra; A R, Pavan; Viswanatha, Ranjani

    2017-02-23

    Semiconducting materials uniformly doped with optical or magnetic impurities have been useful in a number of potential applications. However, clustering or phase separation during synthesis has made this job challenging. Recently the "inside out" diffusion doping was proposed to be successful in obtaining large sized quantum dots (QDs) uniformly doped with a dilute percentage of dopant atoms. Herein, we demonstrate the use of basic physical chemistry of diffusion to control the size and concentration of the dopants within the QDs for a given transition metal ion. We have studied three parameters; the bond strength of the core molecules and the diffusion coefficient of the diffusing metal ion are found to be important while the ease of cation exchange was not highly influential in the control of size and concentration of the single domain dilute magnetic semiconductor quantum dots (DMSQDs) with diverse dopant ions M 2+ (Fe 2+ , Ni 2+ , Co 2+ , Mn 2+ ). Steady state optical emission spectra reveal that the dopants are incorporated inside the semiconducting CdS and the emission can be tuned during shell growth. We have shown that this method enables control over doping percentage and the QDs show a superior ferromagnetic response at room temperature as compared to previously reported systems.

  15. Materials science: Chemistry and physics happily wed

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory A.

    2017-07-01

    A major advance in the quantum theory of solids allows materials to be identified whose electronic states have a non-trivial topology. Such materials could have many computing and electronics applications. See Article p.298

  16. A quantum chemistry study of Qinghaosu

    NASA Astrophysics Data System (ADS)

    Gu, Jian-De; Chen, Kai-Xian; Jiang, Hua-Liang; Zhu, Wei-Liang; Chen, Jian-Zhong; Ji, Ru-Yun

    1997-10-01

    The powerful anti-malarial drug, Qinghaosu (Artemisinin), has been studied using ab initio methods. The DFT B3LYP method with the 6-31G ∗ basis set gives an excellent geometry compared to experiments, especially for the OO bond length and the 1,2,4-Trioxane ring subsystem. The R(OO) bond length predicted at this level is 1.460 Å, only 0.018 Å shorter than the experimental measurement. The vibrational analysis shows that the OO stretching mode is combined with the OC vibration mode, having the character of an OOC entity. The OO vibrational band at 722 cm -1 suggested in the experimental studies has been assigned as 1,2,4-trioxane ring breathing.

  17. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meusinger, Carl; Johnson, Matthew S.; Berhanu, Tesfaye A.

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently amore » result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.« less

  18. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 2. Students' Common Errors, Misconceptions and Difficulties in Understanding

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…

  19. Understanding the many-body expansion for large systems. I. Precision considerations

    NASA Astrophysics Data System (ADS)

    Richard, Ryan M.; Lao, Ka Un; Herbert, John M.

    2014-07-01

    Electronic structure methods based on low-order "n-body" expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H_2O)_{47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.

  20. Understanding the many-body expansion for large systems. I. Precision considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Ryan M.; Lao, Ka Un; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu

    2014-07-07

    Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H{sub 2}O){sub 47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program,more » we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.« less

  1. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    PubMed

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Stimulated Raman adiabatic passage in physics, chemistry, and beyond

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas

    2017-01-01

    The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).

  3. Control of Ultracold Photodissociation with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Majewska, I.; Lee, C.-H.; Kondov, S. S.; McGuyer, B. H.; Moszynski, R.; Zelevinsky, T.

    2018-01-01

    Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.

  4. Advanced Electronic Structure Calculations For Nanoelectronics Using Finite Element Bases and Effective Mass Theory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, John King; Nielsen, Erik; Baczewski, Andrew David

    This paper describes our work over the past few years to use tools from quantum chemistry to describe electronic structure of nanoelectronic devices. These devices, dubbed "artificial atoms", comprise a few electrons, con ned by semiconductor heterostructures, impurities, and patterned electrodes, and are of intense interest due to potential applications in quantum information processing, quantum sensing, and extreme-scale classical logic. We detail two approaches we have employed: nite-element and Gaussian basis sets, exploring the interesting complications that arise when techniques that were intended to apply to atomic systems are instead used for artificial, solid-state devices.

  5. Compression selective solid-state chemistry

    NASA Astrophysics Data System (ADS)

    Hu, Anguang

    Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.

  6. Introducing Quantum Mechanics into General Chemistry

    NASA Astrophysics Data System (ADS)

    Popkowski, Iwona; Bascal, Hafed

    2008-10-01

    Periodicity has long been recognized as the tool that chemists can use to bring some order to investigating the chemistry of more than one hundred elements. Such studies provide useful tools for understanding a wide array of chemical principles. The advances in computational chemistry make it possible to study and teach such trends with hands on approach. In this study we utilize recently acquired software Spartan Pro to illustrate theoretical measurements of bond length, bond angle and dipole as compared to experimental data. We constructed a matrix of values obtained from the theoretical calculations and obtained trends in bond length, bond angle and dipoles for the several periodic groups.

  7. Effects of surface chemistry on the optical properties and cellular interaction of lanthanide-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco J.; Avalos, Julio C.; Mimun, Lawrence C.; Yust, Brian G.; Tsin, Andrew; Sardar, Dhiraj K.

    2015-03-01

    Fluorescent nanoparticles (NPs) such as KYb2F7:Tm3+ potential in biomedical applications due to their ability to absorb and emit within the biological window, where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. Another big factor in determining their ability to perform in a biological setting is the surface chemistry. Biocompatible coatings, including polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), pluronic and folic acid are commonly used because they pose several advantages such as ease of functionalization, better dispersion, and higher cellular uptake. To study the effects of the NP surface chemistry, KYb2F7:Tm3+ a solvothermal method using PEG, PVP, pluronic acid, and folic acid as a capping agent, followed by thorough optical characterizations. Optical changes were thoroughly studied and compared using absorption, emission, and quantum yield data. Cell viability was obtained by treating Rhesus Monkey Retinal Endothelial cells (RhREC) with KYb2F7:Tm3+ and counting viable cells following a 24 hour uptake period. The work presented will compare the optical properties and toxicity dependency on the surface chemistry on KYb2F7:Tm3+. The results will also indicate that KYb2F7:Tm3+ nanoparticles are viable candidates for various biomedical applications.

  8. New developments in theoretical thermochemistry and electronic structure applications in supramolecular chemistry and cluster science

    NASA Astrophysics Data System (ADS)

    Ramabhadran, Raghunath Ozhapakkam

    In a concise display of the power and diversity of electronic structure theory (EST), the work presented herein involves the development of new computational methods to advance the practical utility of quantum chemistry, as well as solving different types of challenging chemical problems by applying existing EST tools. The research presented is highly interdisciplinary in nature and features synergistic collaborations to solve real-life problems such as regulating toxic chemicals and generating alternative sources of energy. In the first chapter of this dissertation, the solution to a long-standing problem in theoretical thermochemistry is accomplished by the development of the automated, chemically intuitive and generalized thermochemical hierarchy, Connectivity-Based Hierarchy (CBH) to accurately predict the thermochemical properties of organic molecules. The extension of the hierarchy to predict the enthalpies of formations of biomonomers such as amino acids is also presented. The development of a computationally efficient protocol to accurately extrapolate to high CCSD(T) energies based on MP2 and DFT energies using CBH is presented in the second chapter, thus merging theoretical thermochemistry with fragment-based methods in quantum chemistry. This merger drastically reduces the computational cost involved in a CCSD(T) calculation, while retaining the impeccable accuracy it offers. The practical utility of the CH hydrogen bond, commonly thought as being too weak to be used in supramolecular applications has been demonstrated by DFT calculations (along with experimental results from the Flood group) in the third chapter. This is accomplished by systematically studying the binding of monoatomic chloride, diatomic and toxic cyanide and the polyatomic bi-fluoride anions for the first time using only CH hydrogen bonds within a triazolophane macrocycle. The fourth chapter contains the introduction of the concept of fluxionality in the chemical reactions of transition metal oxide clusters. This is useful to develop a systematic paradigm for discussing the mechanisms in the reactions of larger transition metal oxide clusters with small molecules. Additionally, DFT calculations (along with experimental results from the C. C. Jarrold group) are shown to be useful to provide new insights on hydrogen liberation from water, thus aiding in the generation of alternative sources of energy.

  9. Simple Perturbation Example for Quantum Chemistry.

    ERIC Educational Resources Information Center

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  10. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  11. Development of a Polarizable Force Field for Molecular Dynamics Simulations of Poly (Ethylene Oxide) in Aqueous Solution.

    PubMed

    Starovoytov, Oleg N; Borodin, Oleg; Bedrov, Dmitry; Smith, Grant D

    2011-06-14

    We have developed a quantum chemistry-based polarizable potential for poly(ethylene oxide) (PEO) in aqueous solution based on the APPLE&P polarizable ether and the SWM4-DP polarizable water models. Ether-water interactions were parametrized to reproduce the binding energy of water with 1,2-dimethoxyethane (DME) determined from high-level quantum chemistry calculations. Simulations of DME-water and PEO-water solutions at room temperature using the new polarizable potentials yielded thermodynamic properties in good agreement with experimental results. The predicted miscibility of PEO and water as a function of the temperature was found to be strongly correlated with the predicted free energy of solvation of DME. The developed nonbonded force field parameters were found to be transferrable to poly(propylene oxide) (PPO), as confirmed by capturing, at least qualitatively, the miscibility of PPO in water as a function of the molecular weight.

  12. State-to-state chemistry for three-body recombination in an ultracold rubidium gas.

    PubMed

    Wolf, Joschka; Deiß, Markus; Krükow, Artjom; Tiemann, Eberhard; Ruzic, Brandon P; Wang, Yujun; D'Incao, José P; Julienne, Paul S; Denschlag, Johannes Hecker

    2017-11-17

    Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb 2 molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck's constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes. Copyright © 2017, American Association for the Advancement of Science.

  13. A blueprint for demonstrating quantum supremacy with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Neill, C.; Roushan, P.; Kechedzhi, K.; Boixo, S.; Isakov, S. V.; Smelyanskiy, V.; Megrant, A.; Chiaro, B.; Dunsworth, A.; Arya, K.; Barends, R.; Burkett, B.; Chen, Y.; Chen, Z.; Fowler, A.; Foxen, B.; Giustina, M.; Graff, R.; Jeffrey, E.; Huang, T.; Kelly, J.; Klimov, P.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, J. M.

    2018-04-01

    A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.

  14. Quantum speedup in solving the maximal-clique problem

    NASA Astrophysics Data System (ADS)

    Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang

    2018-03-01

    The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.

  15. Quantum Effects in Cosmochemistry: Complexation Energy and Van Der Waals Radii

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Wilson, T. L.

    2007-01-01

    The subject of quantum effects in cosmochemistry was recently addressed with the goal of understanding how they contribute to Q-phase noble gas abundances found in meteorites. It was the pursuit of the Q-phase carrier of noble gases and their anomalous abundances that ultimately led to the identification, isolation, and discovery of presolar grains. In spite of its importance, Q-phase investigations have led a number of authors to reach conclusions that do not seem to be supported by quantum chemistry. In view of the subject's fundamental significance, additional study is called for. Two quantum properties of Q-phase candidates known as endohedral carbon-cage clathrates such as fullerenes will be addressed here. These are complexation energy and instability induced by Pauli blocking (exclusion principle).

  16. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    NASA Astrophysics Data System (ADS)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their technological design and development. Time dependent perturbation theory, employed by non-equilibrium Green's function formalism, is utilized to study the effect of quantum coherences on electron transport and the effect of symmetry breaking on the electronic spectra of model molecular junctions. The fourth part of this thesis presents the design of a physical chemistry course based on a pedagogical approach called Writing-to-Teach. The nature of inaccuracies expressed in student-generated explanations of quantum chemistry topics, and the ability of a peer review process to engage these inaccuracies, is explored within this context.

  17. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    PubMed Central

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607

  18. Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging

    PubMed Central

    Liu, Wenhao; Howarth, Mark; Greytak, Andrew B.; Zheng, Yi; Nocera, Daniel G.; Ting, Alice Y.; Bawendi, Moungi G.

    2009-01-01

    We present a family of water-soluble quantum dots (QDs) that exhibit low nonspecific binding to cells, small hydrodynamic diameter, tunable surface charge, high quantum yield, and good solution stability across a wide pH range. These QDs are amenable to covalent modification via simple carbodiimide coupling chemistry, which is achieved by functionalizing the surface of QDs with a new class of heterobifunctional ligands incorporating dihydrolipoic acid, a short poly(ethylene glycol) (PEG) spacer, and an amine or carboxylate terminus. The covalent attachment of molecules is demonstrated by appending a rhodamine dye to form a QD-dye conjugate exhibiting fluorescence resonance energy transfer (FRET). High-affinity labeling is demonstrated by covalent attachment of streptavidin, thus enabling the tracking of biotinylated epidermal growth factor (EGF) bound to EGF receptor on live cells. In addition, QDs solubilized with the heterobifunctional ligands retain their metal-affinity driven conjugation chemistry with polyhistidine-tagged proteins. This dual functionality is demonstrated by simultaneous covalent attachment of a rhodamine FRET acceptor and binding of polyhistidine-tagged streptavidin on the same nanocrystal to create a targeted QD, which exhibits dual-wavelength emission. Such emission properties could serve as the basis for ratiometric sensing of the cellular receptor’s local chemical environment. PMID:18177042

  19. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    PubMed

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  20. Efficient grid-based techniques for density functional theory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hernandez, Juan Ignacio

    Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.

  1. Computational studies of thermal and quantum phase transitions approached through non-equilibrium quenching

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Wei

    Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.

  2. Optical activity of chirally distorted nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.

    2016-05-21

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ bymore » a factor of 10{sup 5}. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.« less

  3. Investigation of anticancer properties of caffeinated complexes via computational chemistry methods

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Üngördü, Ayhan

    2018-03-01

    Computational investigations were performed for 1,3,7-trimethylpurine-2,6-dione, 3,7-dimethylpurine-2,6-dione, their Ru(II) and Os(III) complexes. B3LYP/6-311 ++G(d,p)(LANL2DZ) level was used in numerical calculations. Geometric parameters, IR spectrum, 1H-, 13C and 15N NMR spectrum were examined in detail. Additionally, contour diagram of frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) maps, MEP contour and some quantum chemical descriptors were used in the determination of reactivity rankings and active sites. The electron density on the surface was similar to each other in studied complexes. Quantum chemical descriptors were investigated and the anticancer activity of complexes were more than cisplatin and their ligands. Additionally, molecular docking calculations were performed in water between related complexes and a protein (ID: 3WZE). The most interact complex was found as Os complex. The interaction energy was calculated as 342.9 kJ/mol.

  4. Nano-assembly of nanodiamonds by conjugation to actin filaments.

    PubMed

    Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J

    2016-03-01

    Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  6. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells

    PubMed Central

    Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; Harvey, Steven P.; Ciesielski, Peter N.; Wheeler, Lance M.; Schulz, Philip; Lin, Lih Y.; Beard, Matthew C.; Luther, Joseph M.

    2017-01-01

    We developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (VOC’s) than thin-film perovskites. CsPbI3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small VOC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions at the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%. PMID:29098184

  7. Computer Modeling of the Structure and Spectra of Fluorescent Proteins

    PubMed Central

    Grigorenko, B.L.; Savitsky, A.P.

    2009-01-01

    Fluorescent proteins from the family of green fluorescent proteins are intensively used as biomarkers in living systems. The chromophore group based on the hydroxybenzylidene-imidazoline molecule, which is formed in nature from three amino-acid residues inside the protein globule and well shielded from external media, is responsible for light absorption and fluorescence. Along with the intense experimental studies of the properties of fluorescent proteins and their chromophores by biochemical, X-ray, and spectroscopic tools, in recent years, computer modeling has been used to characterize their properties and spectra. We present in this review the most interesting results of the molecular modeling of the structural parameters and optical and vibrational spectra of the chromophorecontaining domains of fluorescent proteins by methods of quantum chemistry, molecular dynamics, and combined quantum-mechanical-molecular-mechanical approaches. The main emphasis is on the correlation of theoretical and experimental data and on the predictive power of modeling, which may be useful for creating new, efficient biomarkers. PMID:22649601

  8. Quantum chemical investigations on the molecular structure, FTIR, UV-Vis and HOMO-LUMO analysis of 15-16-epoxy-7b, 9a dihydroxylabdane 13(16), 14-dien-6-one

    NASA Astrophysics Data System (ADS)

    Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal

    2018-05-01

    The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.

  9. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-04

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.

  10. Green chemistry approach for the synthesis of ZnO-carbon dots nanocomposites with good photocatalytic properties under visible light.

    PubMed

    Bozetine, Hakima; Wang, Qi; Barras, Alexandre; Li, Musen; Hadjersi, Toufik; Szunerits, Sabine; Boukherroub, Rabah

    2016-03-01

    We report on a simple and one-pot synthetic method to produce ZnO/carbon quantum dots (ZnO/CQDs) nanocomposites. The morphological features and chemical composition of the nanocomposites were characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analyses (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties of the nanocomposites were examined using UV-visible (UV-vis) spectrophotometry. The photocatalytic activity of the ZnO/CQDs was evaluated for the degradation of a model organic pollutant, rhodamine B, under visible light irradiation at room temperature. The highly efficient photodegradation capability of the nanocomposite was demonstrated by comparison with ZnO particles, prepared using identical experimental conditions. Overall, the present approach adheres to green chemistry principles and the nanocomposite holds promise for the development of remarkably efficient catalytic systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. International Journal of Quantum Chemistry, Quantum Biology Symposium No. 24. Proceedings of the International Symposium on the Application of Fundamental Theory to Problems of Biology and Pharmacology, Held at Ponce de Leon Resort, St. Augustine, Florida on March 1-7, 1997. Volume 65, No. 6, 1997.

    DTIC Science & Technology

    1997-03-01

    characteristic musk odor [7]. Molecular shape is important in circular dichroism and chirality. Enantiomers, if viewed in isolation, have identical all...simply a function of the length of the elon - gated structure). We can introduce V/S as an index of molecular shape by using computed molecular

  12. Coherent manipulation of spin qubits based on polyoxometalates: the case of the single ion magnet [GdW30P5O110]14-.

    PubMed

    Baldoví, José J; Cardona-Serra, Salvador; Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro; Prima-García, Helena

    2013-10-11

    Polyoxometalate single ion magnet [GdW30P5O110](14-) (1) has been studied by generalized Rabi oscillation experiments. It was possible to increase the number of coherent rotations tenfold through matching the Rabi frequency with the frequency of the proton. Achieving high coherence with polyoxometalate chemistry, we show its excellent potential not only for the storage of quantum information but even for the realization of quantum algorithms.

  13. Immersive virtual reality in computational chemistry: Applications to the analysis of QM and MM data.

    PubMed

    Salvadori, Andrea; Del Frate, Gianluca; Pagliai, Marco; Mancini, Giordano; Barone, Vincenzo

    2016-11-15

    The role of Virtual Reality (VR) tools in molecular sciences is analyzed in this contribution through the presentation of the Caffeine software to the quantum chemistry community. Caffeine, developed at Scuola Normale Superiore, is specifically tailored for molecular representation and data visualization with VR systems, such as VR theaters and helmets. Usefulness and advantages that can be gained by exploiting VR are here reported, considering few examples specifically selected to illustrate different level of theory and molecular representation.

  14. Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation

    NASA Astrophysics Data System (ADS)

    Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.

    2013-03-01

    Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.

  15. Theoretical Study of Sodium Effect on the Gasification of Carbonaceous Materials with Carbon Dioxide.

    PubMed

    Calderón, Lucas A; Garza, Jorge; Espinal, Juan F

    2015-12-24

    The effect of sodium on the thermodynamics and kinetics of carbon gasification with carbon dioxide was studied by using quantum chemistry methods. Specifically, in the density functional context, two exchange-correlation functionals were used: B3LYP and M06. Some results obtained by these exchange-correlation functionals were contrasted with those obtained by the CCSD(T) method. It was found that density functional theory gives similar conclusions with respect to the coupled-cluster method. As one important conclusion we can mention that the thermodynamics of carbon monoxide desorption is not favored by the sodium presence. However, the presence of this metal induces: (a) an easier formation of one semiquinone group, (b) the dissociation of carbon dioxide, and (c) an increment on the CO desorption rate for one of the proposed pathways.

  16. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    NASA Astrophysics Data System (ADS)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  17. Conformational analysis of a polyconjugated protein-binding ligand by joint quantum chemistry and polarizable molecular mechanics. Addressing the issues of anisotropy, conjugation, polarization, and multipole transferability.

    PubMed

    Goldwaser, Elodie; de Courcy, Benoit; Demange, Luc; Garbay, Christiane; Raynaud, Françoise; Hadj-Slimane, Reda; Piquemal, Jean-Philip; Gresh, Nohad

    2014-11-01

    We investigate the conformational properties of a potent inhibitor of neuropilin-1, a protein involved in cancer processes and macular degeneration. This inhibitor consists of four aromatic/conjugated fragments: a benzimidazole, a methylbenzene, a carboxythiourea, and a benzene-linker dioxane, and these fragments are all linked together by conjugated bonds. The calculations use the SIBFA polarizable molecular mechanics procedure. Prior to docking simulations, it is essential to ensure that variations in the ligand conformational energy upon rotations around its six main-chain torsional bonds are correctly represented (as compared to high-level ab initio quantum chemistry, QC). This is done in two successive calibration stages and one validation stage. In the latter, the minima identified following independent stepwise variations of each of the six main-chain torsion angles are used as starting points for energy minimization of all the torsion angles simultaneously. Single-point QC calculations of the minimized structures are then done to compare their relative energies ΔE conf to the SIBFA ones. We compare three different methods of deriving the multipoles and polarizabilities of the central, most critical moiety of the inhibitor: carboxythiourea (CTU). The representation that gives the best agreement with QC is the one that includes the effects of the mutual polarization energy E pol between the amide and thioamide moieties. This again highlights the critical role of this contribution. The implications and perspectives of these findings are discussed.

  18. Teaching Chemistry with Electron Density Models

    NASA Astrophysics Data System (ADS)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  19. Converging ligand‐binding free energies obtained with free‐energy perturbations at the quantum mechanical level

    PubMed Central

    Olsson, Martin A.; Söderhjelm, Pär

    2016-01-01

    In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27117350

  20. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    NASA Technical Reports Server (NTRS)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  1. Absolute Configuration of 3-METHYLCYCLOHEXANONE by Chiral Tag Rotational Spectroscopy and Vibrational Circular Dichroism

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Holdren, Martin S.; Mayer, Kevin J.; Smart, Taylor; West, Channing; Pate, Brooks

    2017-06-01

    The absolute configuration of 3-methylcyclohexanone was established by chiral tag rotational spectroscopy measurements using 3-butyn-2-ol as the tag partner. This molecule was chosen because it is a benchmark measurement for vibrational circular dichroism (VCD). A comparison of the analysis approaches of chiral tag rotational spectroscopy and VCD will be presented. One important issue in chiral analysis by both methods is the conformational flexibility of the molecule being analyzed. The analysis of conformational composition of samples will be illustrated. In this case, the high spectral resolution of molecular rotational spectroscopy and potential for spectral simplification by conformational cooling in the pulsed jet expansion are advantages for chiral tag spectroscopy. The computational chemistry requirements for the two methods will also be discussed. In this case, the need to perform conformer searches for weakly bound complexes and to perform reasonably high level quantum chemistry geometry optimizations on these complexes makes the computational time requirements less favorable for chiral tag rotational spectroscopy. Finally, the issue of reliability of the determination of the absolute configuration will be considered. In this case, rotational spectroscopy offers a "gold standard" analysis method through the determination of the ^{13}C-subsitution structure of the complex between 3-methylcyclohexanone and an enantiopure sample of the 3-butyn-2-ol tag.

  2. Computer Series, 29: Bits and Pieces, 10.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1982-01-01

    Describes computer programs (available from authors) including molecular input to computer, programs for quantum chemistry, library orientation to technical literature, plotting potentiometric titration data, simulating oscilloscope curves, organic qualitative analysis with dynamic graphics, extended Huckel calculations, and calculator programs…

  3. Polyatomic molecular Dirac-Hartree-Fock calculations with Gaussian basis sets

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.; Taylor, Peter R.

    1990-01-01

    Numerical methods have been used successfully in atomic Dirac-Hartree-Fock (DHF) calculations for many years. Some DHF calculations using numerical methods have been done on diatomic molecules, but while these serve a useful purpose for calibration, the computational effort in extending this approach to polyatomic molecules is prohibitive. An alternative more in line with traditional quantum chemistry is to use an analytical basis set expansion of the wave function. This approach fell into disrepute in the early 1980's due to problems with variational collapse and intruder states, but has recently been put on firm theoretical foundations. In particular, the problems of variational collapse are well understood, and prescriptions for avoiding the most serious failures have been developed. Consequently, it is now possible to develop reliable molecular programs using basis set methods. This paper describes such a program and reports results of test calculations to demonstrate the convergence and stability of the method.

  4. Synthesis and DFT calculations of some 2-aminothiazoles

    NASA Astrophysics Data System (ADS)

    Rezania, Jafar; Behzadi, Hadi; Shockravi, Abbas; Ehsani, Morteza; Akbarzadeh, Elahe

    2018-04-01

    A series of 2-aminothiazole derivatives have been synthesized by the reaction of acetyl compounds with thiourea and iodine as catalyst under solvent-free condition, a green chemistry method. The quantum chemical calculations at the DFT/B3LYP level of theory in gas phase were carried out for starting acetyl derivatives. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and related reactivity descriptor of acetyl derivatives, as well as, enthalpy of reactions are calculated in order to investigate the reaction properties of acetyl compounds and yields of the reactions. The calculated reactivity descriptors are well correlated to activity of different acetyl derivatives.

  5. Generic construction of efficient matrix product operators

    NASA Astrophysics Data System (ADS)

    Hubig, C.; McCulloch, I. P.; Schollwöck, U.

    2017-01-01

    Matrix product operators (MPOs) are at the heart of the second-generation density matrix renormalization group (DMRG) algorithm formulated in matrix product state language. We first summarize the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (rescaled SVD, deparallelization, and delinearization) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.

  6. Conductance of single microRNAs chains related to the autism spectrum disorder

    NASA Astrophysics Data System (ADS)

    Oliveira, J. I. N.; Albuquerque, E. L.; Fulco, U. L.; Mauriz, P. W.; Sarmento, R. G.; Caetano, E. W. S.; Freire, V. N.

    2014-09-01

    The charge transport properties of single-stranded microRNAs (miRNAs) chains associated to autism disorder were investigated. The computations were performed within a tight-binding model, together with a transfer matrix technique, with ionization energies and hopping parameters obtained by quantum chemistry method. Current-voltage (I× V) curves of twelve miRNA chains related to the autism spectrum disorders were calculated and analysed. We have obtained both semiconductor and insulator behavior, and a relationship between the current intensity and the autism-related miRNA bases sequencies, suggesting that a kind of electronic biosensor can be developed to distinguish different profiles of autism disorders.

  7. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  8. Vibrational properties of gold nanoparticles obtained by green synthesis

    NASA Astrophysics Data System (ADS)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  9. The harmonic frequencies of benzene

    NASA Astrophysics Data System (ADS)

    Handy, Nicholas C.; Maslen, Paul E.; Amos, Roger D.; Andrews, Jamie S.; Murray, Christopher W.; Laming, Gregory J.

    1992-09-01

    We report calculations for the harmonic frequencies of C 6H 6 and C 6D 6. Our most sophisticated quantum chemistry values are obtained with the MP2 method and a TZ2P+f basis set (288 basis functions), which are the largest such calculations reported on benzene to date. Using the SCF density, we also calculate the frequencies using the exchange and correlation expressions of density functional theory. We compare our calculated harmonic frequencies with those deduced from experiment by Goodman, Ozkabak and Thakur. The density functional frequencies appear to be more reliable predictions than the MP2 frequencies and they are obtained at significantly less cost.

  10. A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam

    In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.

  11. The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age.

    PubMed

    Adams, Sam; de Castro, Pablo; Echenique, Pablo; Estrada, Jorge; Hanwell, Marcus D; Murray-Rust, Peter; Sherwood, Paul; Thomas, Jens; Townsend, Joe

    2011-10-14

    Computational Quantum Chemistry has developed into a powerful, efficient, reliable and increasingly routine tool for exploring the structure and properties of small to medium sized molecules. Many thousands of calculations are performed every day, some offering results which approach experimental accuracy. However, in contrast to other disciplines, such as crystallography, or bioinformatics, where standard formats and well-known, unified databases exist, this QC data is generally destined to remain locally held in files which are not designed to be machine-readable. Only a very small subset of these results will become accessible to the wider community through publication.In this paper we describe how the Quixote Project is developing the infrastructure required to convert output from a number of different molecular quantum chemistry packages to a common semantically rich, machine-readable format and to build respositories of QC results. Such an infrastructure offers benefits at many levels. The standardised representation of the results will facilitate software interoperability, for example making it easier for analysis tools to take data from different QC packages, and will also help with archival and deposition of results. The repository infrastructure, which is lightweight and built using Open software components, can be implemented at individual researcher, project, organisation or community level, offering the exciting possibility that in future many of these QC results can be made publically available, to be searched and interpreted just as crystallography and bioinformatics results are today.Although we believe that quantum chemists will appreciate the contribution the Quixote infrastructure can make to the organisation and and exchange of their results, we anticipate that greater rewards will come from enabling their results to be consumed by a wider community. As the respositories grow they will become a valuable source of chemical data for use by other disciplines in both research and education.The Quixote project is unconventional in that the infrastructure is being implemented in advance of a full definition of the data model which will eventually underpin it. We believe that a working system which offers real value to researchers based on tools and shared, searchable repositories will encourage early participation from a broader community, including both producers and consumers of data. In the early stages, searching and indexing can be performed on the chemical subject of the calculations, and well defined calculation meta-data. The process of defining more specific quantum chemical definitions, adding them to dictionaries and extracting them consistently from the results of the various software packages can then proceed in an incremental manner, adding additional value at each stage.Not only will these results help to change the data management model in the field of Quantum Chemistry, but the methodology can be applied to other pressing problems related to data in computational and experimental science.

  12. The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age

    PubMed Central

    2011-01-01

    Computational Quantum Chemistry has developed into a powerful, efficient, reliable and increasingly routine tool for exploring the structure and properties of small to medium sized molecules. Many thousands of calculations are performed every day, some offering results which approach experimental accuracy. However, in contrast to other disciplines, such as crystallography, or bioinformatics, where standard formats and well-known, unified databases exist, this QC data is generally destined to remain locally held in files which are not designed to be machine-readable. Only a very small subset of these results will become accessible to the wider community through publication. In this paper we describe how the Quixote Project is developing the infrastructure required to convert output from a number of different molecular quantum chemistry packages to a common semantically rich, machine-readable format and to build respositories of QC results. Such an infrastructure offers benefits at many levels. The standardised representation of the results will facilitate software interoperability, for example making it easier for analysis tools to take data from different QC packages, and will also help with archival and deposition of results. The repository infrastructure, which is lightweight and built using Open software components, can be implemented at individual researcher, project, organisation or community level, offering the exciting possibility that in future many of these QC results can be made publically available, to be searched and interpreted just as crystallography and bioinformatics results are today. Although we believe that quantum chemists will appreciate the contribution the Quixote infrastructure can make to the organisation and and exchange of their results, we anticipate that greater rewards will come from enabling their results to be consumed by a wider community. As the respositories grow they will become a valuable source of chemical data for use by other disciplines in both research and education. The Quixote project is unconventional in that the infrastructure is being implemented in advance of a full definition of the data model which will eventually underpin it. We believe that a working system which offers real value to researchers based on tools and shared, searchable repositories will encourage early participation from a broader community, including both producers and consumers of data. In the early stages, searching and indexing can be performed on the chemical subject of the calculations, and well defined calculation meta-data. The process of defining more specific quantum chemical definitions, adding them to dictionaries and extracting them consistently from the results of the various software packages can then proceed in an incremental manner, adding additional value at each stage. Not only will these results help to change the data management model in the field of Quantum Chemistry, but the methodology can be applied to other pressing problems related to data in computational and experimental science. PMID:21999363

  13. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment.

    PubMed

    Sponer, Jiří; Sponer, Judit E; Mládek, Arnošt; Jurečka, Petr; Banáš, Pavel; Otyepka, Michal

    2013-12-01

    Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained. Copyright © 2013 Wiley Periodicals, Inc.

  14. Theory of complicated liquids. Investigation of liquids, solvents and solvent effects with modern theoretical methods

    NASA Astrophysics Data System (ADS)

    Kirchner, Barbara

    2007-03-01

    It is the aim of this work to elucidate the usefulness and feasibility of the first-principles approach and to extend it to the regime of liquid molecular substances of complex structure. Physical and thermodynamic properties of complicated liquids are investigated by means of Car-Parrinello molecular dynamics (CPMD) and also with static quantum chemical methods. The connection between the dynamic and static approach is given by the quantum cluster equilibrium (QCE) theory. Since the QCE theory is not yet well established, a new implementation in the MD post-processing program P EACEMAKER is presented. It can be shown that it is by far more important to include cooperative effects rather than to concentrate the effort on the inclusion of weak dispersion forces not present in current density functionals. Traditionally, investigations of complicated liquids were also undertaken with the tools of simple liquids, because for some problems the size of the system does not allow for a more accurate description. Although linear-scaling techniques are simplifications from the point of view of quantum chemistry, they might be severe improvements when compared to traditional molecular dynamics simulations. For the interpretation of the liquid state the introduction of local properties is inevitable. New methods are presented for the calculation of local dipole moments and for the estimation of hydrogen bond energies in quantum mechanically nondecomposable systems. The latter also allows for the detection of hydrogen bonds in simulations through a wavefunction-based criterion instead of one which is solely grounded on the geometric structure of the atomic nuclei involved. The article then discusses prominent liquids which show properties that are not yet understood. Another part of the work analyzes the effect of solvent molecules on solutes and their reactions in the solvent. Finaly, neoteric solvents, such as ionic liquids are discussed.

  15. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    PubMed

    Ekvall, Mikael T; Bianco, Giuseppe; Linse, Sara; Linke, Heiner; Bäckman, Johan; Hansson, Lars-Anders

    2013-01-01

    Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale) organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D) tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  16. Preface: phys. stat. sol. (b) 243/5

    NASA Astrophysics Data System (ADS)

    Artacho, Emilio; Beck, Thomas L.; Hernández, Eduardo

    Between 20 and 24 June 2005 the Centre Européen de Calcul Atomique et Moléculaire - or CECAM, as it is more widely known - hosted a workshop entitled State-of-the-art, developments and perspectives of real-space electronic structure methods in condensed-matter and chemical physics, organized with the support of CECAM itself and the ?k network. The workshop was attended by some forty participants coming from fifteen countries, and about thirty presentations were given. The workshop provided a lively forum for the discussion of recent methodological developments in electronic structure calculations, ranging from linear-scaling methods, mesh techniques, time-dependent density functional methods, and a long etcetera, which had been our ultimate objective when undertaking its organization.The first-principles simulation of solids, liquids and complex matter in general has jumped in the last few years from the relatively confined niches in condensed matter and materials physics and in quantum chemistry, to cover most of the sciences, including nano, bio, geo, environmental sciences and engineering. This effect has been propitiated by the ability of simulation techniques to deal with an ever larger degree of complexity. Although this is partially to be attributed to the steady increase in computer power, the main factor behind this change has been the coming of age of the main theoretical framework for most of the simulations performed today, together with an extremely active development of the basic algorithms for its computer implementation. It is this latter aspect that is the topic of this special issue of physica status solidi.There is a relentless effort in the scientific community seeking to achieve not only higher accuracy, but also more efficient, cost-effective and if possible simpler computational methods in electronic structure calculations [1]. From the early 1990s onwards there has been a keen interest in the computational condensed matter and chemical physics communities in methods that had the potential to overcome the unfavourable scaling of the computational cost with the system size, implicit in the momentum-space formalism familiar to solid-state physicists and the quantum chemistry approaches more common in chemical physics and physical chemistry. This interest was sparkled by the famous paper in which Weitao Yang [2] introduced the Divide and Conquer method. Soon afterwards several practical schemes aiming to achieve linear-scaling calculations, by exploiting what Walter Kohn called most aptly the near-sightedness of quantum mechanics [3], were proposed and explored (for a review on linear-scaling methods, see [4]). This search for novel, more efficient and better scaling algorithms proved to be fruitful in more than one way. Not only was it the start of several packages which are well-known today (such as Siesta, Conquest, etc.), but it also leads to new ways of representing electronic states and orbitals, such as grids [5, 6], wavelets [7], finite elements, etc. Also, the drive to exploit near-sightedness attracted computational solid state physicists to the type of atomic-like basis functions traditionally used in the quantum chemistry community. At the same time computational chemists learnt about plane waves and density functional theory, and thus a fruitful dialogue was started between two communities that hitherto had not had much contact.Another interesting development that has begun to take place over the last decade or so is the convergence of several branches of science, notably physics, chemistry and biology, at the nanoscale. Experimentalists in all these different fields are now performing highly sophisticated measurements on systems of nanometer size, the kind of systems that us theoreticians can address with our computational methods, and this convergence of experiment and theory at this scale has also been very fruitful, particularly in the fields of electronic transport and STM image simulation. It is now quite common to find papers at the cutting edge of nanoscience and nanotechnology co-authored by experimentalists and theorists, and it can only be expected that this fruitful interplay between theory and experiment will increase in the future.It was considerations such as these that moved us to propose to CECAM and ?k the celebration of a workshop devoted to the discussion of recent developments in electronic structure techniques, a proposal that was enthusiastically received, not just by CECAM and ?k, but also by our invited speakers and participants. Interest in novel electronic structure methods is now as high as ever, and we are therefore very happy that physica status solidi has given us the opportunity to devote a special issue to the topics covered in the workshop. This special issue of physica status solidi gathers invited contributions from several attendants to the workshop, contributions that are representative of the range of topics and issues discussed then, including progress in linear scaling methods, electronic transport, simulation of STM images, time-dependent DFT methods, etc. It rests for us to thank all the contributors to this special issue for their efforts, CECAM and ?k for funding the workshop, physica status solidi for agreeing to devote this special issue to the workshop, and last but not least Emmanuelle and Emilie, the CECAM secretaries, for their invaluable practical help in putting this workshop together

  17. Dielectric response of periodic systems from quantum Monte Carlo calculations.

    PubMed

    Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola

    2005-11-11

    We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.

  18. Pseudohalide-Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics.

    PubMed

    Sun, Bin; Voznyy, Oleksandr; Tan, Hairen; Stadler, Philipp; Liu, Mengxia; Walters, Grant; Proppe, Andrew H; Liu, Min; Fan, James; Zhuang, Taotao; Li, Jie; Wei, Mingyang; Xu, Jixian; Kim, Younghoon; Hoogland, Sjoerd; Sargent, Edward H

    2017-07-01

    Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.

    PubMed

    Giansante, Carlo; Infante, Ivan

    2017-10-19

    Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.

  20. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    PubMed

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

Top