Science.gov

Sample records for quantum circuit applications

  1. Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians.

    PubMed

    Daskin, Anmer; Kais, Sabre

    2011-04-14

    Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems. PMID:21495747

  2. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  3. Automated Design of Quantum Circuits

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  4. Quantum interference in plasmonic circuits

    NASA Astrophysics Data System (ADS)

    Heeres, Reinier W.; Kouwenhoven, Leo P.; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  5. Quantum transducer in circuit optomechanics

    NASA Astrophysics Data System (ADS)

    Didier, Nicolas; Pugnetti, Stefano; Blanter, Yaroslav M.; Fazio, Rosario

    2014-11-01

    Mechanical resonators are macroscopic quantum objects with great potential. They couple to many different quantum systems such as spins, optical photons, and Bose Einstein condensates. It is difficult to measure and manipulate a phonon state due to the tiny motion in the quantum regime. On the other hand, microwave resonators are powerful quantum devices since arbitrary photon states can be synthesized and measured with the quantum tomography. We show that linear coupling, strong and controlled with gate voltage, between mechanical and microwave resonators enables creation of quantum phonon states, manipulation of hybrid entanglement between phonons and photons, and generation of entanglement between two mechanical oscillators. In circuit quantum optomechanics, the mechanical resonator acts as a quantum transducer between an auxiliary quantum system and the microwave resonator, which is used as a quantum bus. As an example, we demonstrate how two mechanical resonators coupled to one microwave resonator and two spins can facilitate entanglement generation between the spins.

  6. Prospects For Quantum Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Bate, R. T.; Frazier, G. A.; Frensley, W. R.; Lee, J. W.; Reed, M. A.

    1987-08-01

    Recent progress in research on resonant tunneling diodes, and on lateral quantization effects in quantum wells renews hope for the development of active unipolar heterojunction devices which incorporate no depletion layers, and hence can be extremely compact in both vertical and lateral dimensions. If such devices meeting the fundamental requirements for ultrahigh density integrated circuits can be developed, and if revolutionary chip architectures which overcome current interconnection limitations can be devised, then a new generation of integrated circuits approaching the ultimate limits of functional density and functional throughput may eventually ensue. Although many of the most challenging problems in this scenario have not yet been addressed, progress is being made in the areas of fabrication and characterization of resonant tunneling devices, simulation of such devices using quantum transport theory, and simulation of nearest-neighbor connected (two-dimensional cellular automaton) architectures. This paper reviews the progress in these areas at Texas Instruments, and discusses the prospects for the future.

  7. Efficient quantum circuits for arbitrary sparse unitaries

    SciTech Connect

    Jordan, Stephen P.; Wocjan, Pawel

    2009-12-15

    Arbitrary exponentially large unitaries cannot be implemented efficiently by quantum circuits. However, we show that quantum circuits can efficiently implement any unitary provided it has at most polynomially many nonzero entries in any row or column, and these entries are efficiently computable. One can formulate a model of computation based on the composition of sparse unitaries which includes the quantum Turing machine model, the quantum circuit model, anyonic models, permutational quantum computation, and discrete time quantum walks as special cases. Thus, we obtain a simple unified proof that these models are all contained in BQP. Furthermore, our general method for implementing sparse unitaries simplifies several existing quantum algorithms.

  8. Coulomb drag in quantum circuits.

    PubMed

    Levchenko, Alex; Kamenev, Alex

    2008-11-21

    We study the drag effect in a system of two electrically isolated quantum point contacts, coupled by Coulomb interactions. Drag current exhibits maxima as a function of quantum point contacts gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the nonlinear regime the drag current is proportional to the shot noise of the driving circuit, suggesting that the Coulomb drag experiments may be a convenient way to measure the quantum shot noise. Remarkably, the transition to the nonlinear regime may occur at driving voltages substantially smaller than the temperature.

  9. Atemporal diagrams for quantum circuits

    SciTech Connect

    Griffiths, Robert B.; Wu Shengjun; Yu Li; Cohen, Scott M.

    2006-05-15

    A system of diagrams is introduced that allows the representation of various elements of a quantum circuit, including measurements, in a form which makes no reference to time (hence 'atemporal'). It can be used to relate quantum dynamical properties to those of entangled states (map-state duality), and suggests useful analogies, such as the inverse of an entangled ket. Diagrams clarify the role of channel kets, transition operators, dynamical operators (matrices), and Kraus rank for noisy quantum channels. Positive (semidefinite) operators are represented by diagrams with a symmetry that aids in understanding their connection with completely positive maps. The diagrams are used to analyze standard teleportation and dense coding, and for a careful study of unambiguous (conclusive) teleportation. A simple diagrammatic argument shows that a Kraus rank of 3 is impossible for a one-qubit channel modeled using a one-qubit environment in a mixed state.

  10. Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Holland, Eric T.

    Engineered quantum systems are poised to revolutionize information science in the near future. A persistent challenge in applied quantum technology is creating controllable, quantum interactions while preventing information loss to the environment, decoherence. In this thesis, we realize mesoscopic superconducting circuits whose macroscopic collective degrees of freedom, such as voltages and currents, behave quantum mechanically. We couple these mesoscopic devices to microwave cavities forming a cavity quantum electrodynamics (QED) architecture comprised entirely of circuit elements. This application of cavity QED is dubbed Circuit QED and is an interdisciplinary field seated at the intersection of electrical engineering, superconductivity, quantum optics, and quantum information science. Two popular methods for taming active quantum systems in the presence of decoherence are discrete feedback conditioned on an ancillary system or quantum reservoir engineering. Quantum reservoir engineering maintains a desired subset of a Hilbert space through a combination of drives and designed entropy evacuation. Circuit QED provides a favorable platform for investigating quantum reservoir engineering proposals. A major advancement of this thesis is the development of a quantum reservoir engineering protocol which maintains the quantum state of a microwave cavity in the presence of decoherence. This thesis synthesizes strongly coupled, coherent devices whose solutions to its driven, dissipative Hamiltonian are predicted a priori. This work lays the foundation for future advancements in cavity centered quantum reservoir engineering protocols realizing hardware efficient circuit QED designs.

  11. Physical synthesis of quantum circuits using templates

    NASA Astrophysics Data System (ADS)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-06-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of "physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  12. Physical synthesis of quantum circuits using templates

    NASA Astrophysics Data System (ADS)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-10-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of " physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  13. Practical fault tolerance for quantum circuits

    NASA Astrophysics Data System (ADS)

    Whitney, Mark Gregory

    Due to very high projected error rates, large scale quantum computers will require substantial fault tolerance just to maintain a minimum level of reliability. We present tools to better analyze the performance of large, fault tolerant quantum computer designs. We find that current uses of quantum error correction are overly conservative in mitigating the impact of gate errors and negligent of other error sources in quantum data communication and memory. We have developed circuit layout heuristics to generate detailed designs in trapped ion quantum computing technology. From these designs, we can extract much more accurate error models for a given application, including all gate, movement and idle errors on qubits. Using these extracted models, our flexible error simulation environment determines the overall failure probability of the design. Included in this simulation environment is a bit-parallel Monte Carlo technique that is 10 times faster than previous fault propagation simulations. This allows us to evaluate the reliability of designs that are an order of magnitude larger, in the same amount of time. Using this analysis framework to verify reliability, we have developed a linear programming-based optimization for error correction which decreases overall circuit resources by an order of magnitude. In some cases, our optimization actually improves overall system reliability by removing error correction. We combine this optimization with judicious quantum error correcting code selection to provide efficient designs for large quantum arithmetic kernels used in Shor's factorization algorithm. We show our optimized designs perform 2x to 100x better than previous works in terms of probabilistic area-delay product. Additionally, the area of our layout of a 1024-bit factoring using Shor's algorithm is 64cm2, a substantial improvement compared to the 0.9m2 state-of-the-art design from prior work. A design size reduction by this amount will make fabricating such an

  14. Towards hybrid circuit quantum electrodynamics with quantum dots

    NASA Astrophysics Data System (ADS)

    Viennot, Jérémie J.; Delbecq, Matthieu R.; Bruhat, Laure E.; Dartiailh, Matthieu C.; Desjardins, Matthieu M.; Baillergeau, Matthieu; Cottet, Audrey; Kontos, Takis

    2016-08-01

    Cavity quantum electrodynamics allows one to study the interaction between light and matter at the most elementary level. The methods developed in this field have taught us how to probe and manipulate individual quantum systems like atoms and superconducting quantum bits with an exquisite accuracy. There is now a strong effort to extend further these methods to other quantum systems, and in particular hybrid quantum dot circuits. This could turn out to be instrumental for a noninvasive study of quantum dot circuits and a realization of scalable spin quantum bit architectures. It could also provide an interesting platform for quantum simulation of simple fermion-boson condensed matter systems. In this short review, we discuss the experimental state of the art for hybrid circuit quantum electrodynamics with quantum dots, and we present a simple theoretical modeling of experiments.

  15. Josephson Circuits as Vector Quantum Spins

    NASA Astrophysics Data System (ADS)

    Samach, Gabriel; Kerman, Andrew J.

    While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  16. Efficient quantum circuits for Toeplitz and Hankel matrices

    NASA Astrophysics Data System (ADS)

    Mahasinghe, A.; Wang, J. B.

    2016-07-01

    Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.

  17. Multimode circuit quantum electrodynamics with hybrid metamaterial transmission lines.

    PubMed

    Egger, D J; Wilhelm, F K

    2013-10-18

    Quantum transmission lines are central to superconducting and hybrid quantum computing. In this work we show how coupling them to a left-handed transmission line allows circuit QED to reach a new regime: multimode ultrastrong coupling. Out of the many potential applications of this novel device, we discuss the preparation of multipartite entangled states and the simulation of the spin-boson model where a quantum phase transition is reached up to finite size effects.

  18. Local Random Quantum Circuits are Approximate Polynomial-Designs

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-09-01

    We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.

  19. Local Random Quantum Circuits are Approximate Polynomial-Designs

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-08-01

    We prove that local random quantum circuits acting on n qubits composed of O(t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O(t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O(n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O(n (k-9)/11) that are given oracle access to U.

  20. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-01

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  1. Accelerating commutation circuits in quantum computer networks

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Huang, Xu; Chen, Xiaoping; Zhang, Zeng-ke

    2012-12-01

    In a high speed and packet-switched quantum computer network, a packet routing delay often leads to traffic jams, becoming a severe bottleneck for speeding up the transmission rate. Based on the delayed commutation circuit proposed in Phys. Rev. Lett. 97, 110502 (2006), we present an improved scheme for accelerating network transmission. For two more realistic scenarios, we utilize the characteristic of a quantum state to simultaneously implement a data switch and transmission that makes it possible to reduce the packet delay and route a qubit packet even before its address is determined. This circuit is further extended to the quantum network for the transmission of the unknown quantum information. The analysis demonstrates that quantum communication technology can considerably reduce the processing delay time and build faster and more efficient packet-switched networks.

  2. Digital quantum simulation of fermionic models with a superconducting circuit.

    PubMed

    Barends, R; Lamata, L; Kelly, J; García-Álvarez, L; Fowler, A G; Megrant, A; Jeffrey, E; White, T C; Sank, D; Mutus, J Y; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Hoi, I-C; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Vainsencher, A; Wenner, J; Solano, E; Martinis, John M

    2015-01-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions. PMID:26153660

  3. Digital quantum simulation of fermionic models with a superconducting circuit

    PubMed Central

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A; Jeffrey, E; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-01-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions. PMID:26153660

  4. Digital quantum simulation of fermionic models with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-07-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions.

  5. Quantum circuits cannot control unknown operations

    NASA Astrophysics Data System (ADS)

    Araújo, Mateus; Feix, Adrien; Costa, Fabio; Brukner, Časlav

    2014-09-01

    One of the essential building blocks of classical computer programs is the ‘if’ clause, which executes a subroutine depending on the value of a control variable. Similarly, several quantum algorithms rely on applying a unitary operation conditioned on the state of a control system. Here we show that this control cannot be performed by a quantum circuit if the unitary is completely unknown. The task remains impossible even if we allow the control to be done modulo a global phase. However, this no-go theorem does not prevent implementing quantum control of unknown unitaries in practice, as any physical implementation of an unknown unitary provides additional information that makes the control possible. We then argue that one should extend the quantum circuit formalism to capture this possibility in a straightforward way. This is done by allowing unknown unitaries to be applied to subspaces and not only to subsystems.

  6. Universal Quantum Cloning Machine in Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Lv, Dan-Dan; Lu, Hong; Yu, Ya-Fei; Feng, Xun-Li; Zhang, Zhi-Ming

    2010-02-01

    We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.

  7. One-way quantum computation with circuit quantum electrodynamics

    SciTech Connect

    Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun

    2010-03-15

    In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.

  8. Entanglement distillation in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Oppliger, Markus; Heinsoo, Johannes; Salathe, Yves; Potocnik, Anton; Mondal, Mintu; Wallraff, Andreas; Paraoanu, Gheorghe Sorin

    Entanglement is an essential resource for quantum information processing, such as quantum error correction, quantum teleportation and quantum communication. Such algorithms perform optimally with maximally entangled states. In practice entangled quantum states are very fragile due to a wide range of decoherence mechanisms. When two parties share degraded entangled states they are still able to generate an entangled state with higher fidelity using local operations and classical communication. This process is commonly referred to as entanglement distillation. Here we demonstrate distillation of highly entangled Bell states from two copies of less entangled states on a four transmon qubit device realized in the circuit-QED architecture. We characterize the output state for different degrees of entanglement at the input with quantum state tomography. A clear improvement of the entanglement measures is observed at the output.

  9. Compact quantum circuits from one-way quantum computation

    NASA Astrophysics Data System (ADS)

    Dias da Silva, Raphael; Galvão, Ernesto F.

    2013-07-01

    In this paper we address the problem of translating one-way quantum computation (1WQC) into the circuit model. We start by giving a straightforward circuit representation of any 1WQC, at the cost of introducing many ancilla wires. We then propose a set of simple circuit identities that explore the relationship between the entanglement resource and correction structure of a 1WQC, allowing one to obtain equivalent circuits acting on fewer qubits. We conclude with some examples and a discussion of open problems.

  10. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  11. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  12. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  13. Derandomizing Quantum Circuits with Measurement-Based Unitary Designs

    NASA Astrophysics Data System (ADS)

    Turner, Peter S.; Markham, Damian

    2016-05-01

    Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t , while foregoing adaptive feedforward entirely. Such ensembles—known as t designs—often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.

  14. Derandomizing Quantum Circuits with Measurement-Based Unitary Designs.

    PubMed

    Turner, Peter S; Markham, Damian

    2016-05-20

    Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t, while foregoing adaptive feedforward entirely. Such ensembles-known as t designs-often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness. PMID:27258858

  15. Derandomizing Quantum Circuits with Measurement-Based Unitary Designs.

    PubMed

    Turner, Peter S; Markham, Damian

    2016-05-20

    Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t, while foregoing adaptive feedforward entirely. Such ensembles-known as t designs-often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.

  16. Quantum entanglement in circuit QED

    SciTech Connect

    Milburn, G. J.; Meaney, Charles

    2008-11-07

    We show that the ground state of a very strongly coupled two level system based on a superconducting island and a microwave cavity field can undergo a morphological change as the coupling strength is increased. This looks like a quantum phase transition and is characterized by the appearance of entanglement between the cavity field and the two level system.

  17. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  18. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian; GNS theory Group Team

    In between 2 metallic nanopads, adding identical and independent electron transfer paths in parallel increases the electronic effective coupling between the 2 nanopads through the quantum circuit defined by those paths. Measuring this increase of effective coupling using the tunnelling current intensity can lead for example for 2 paths in parallel to the now standard G =G1 +G2 + 2√{G1 .G2 } conductance superposition law (1). This is only valid for the tunnelling regime (2). For large electronic coupling to the nanopads (or at resonance), G can saturate and even decay as a function of the number of parallel paths added in the quantum circuit (3). We provide here the explanation of this phenomenon: the measurement of the effective Rabi oscillation frequency using the current intensity is constrained by the normalization principle of quantum mechanics. This limits the quantum conductance G for example to go when there is only one channel per metallic nanopads. This ef fect has important consequences for the design of Boolean logic gates at the atomic scale using atomic scale or intramolecular circuits. References: This has the financial support by European PAMS project.

  19. Towards quantum thermodynamics in electronic circuits

    NASA Astrophysics Data System (ADS)

    Pekola, Jukka P.

    2015-02-01

    Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and implementations of Maxwell's demon, revealing the rich physics yet to be fully probed in these systems.

  20. Quantum memory with millisecond coherence in circuit QED

    NASA Astrophysics Data System (ADS)

    Reagor, Matthew; Pfaff, Wolfgang; Axline, Christopher; Heeres, Reinier W.; Ofek, Nissim; Sliwa, Katrina; Holland, Eric; Wang, Chen; Blumoff, Jacob; Chou, Kevin; Hatridge, Michael J.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.

    2016-07-01

    Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.

  1. Multifrequency control pulses for multilevel superconducting quantum circuits

    SciTech Connect

    Forney, Anne M.; Jackson, Steven R.; Strauch, Frederick W.

    2010-01-15

    Superconducting quantum circuits, such as the superconducting phase qubit, have multiple quantum states that can interfere with ideal qubit operation. The use of multiple frequency control pulses, resonant with the energy differences of the multistate system, is theoretically explored. An analytical method to design such control pulses is developed, using a generalization of the Floquet method to multiple frequency controls. This method is applicable to optimizing the control of both superconducting qubits and qudits and is found to be in excellent agreement with time-dependent numerical simulations.

  2. Hybrid quantum circuit with implanted erbium ions

    SciTech Connect

    Probst, S.; Rotzinger, H.; Tkalčec, A.; Kukharchyk, N.; Wieck, A. D.; Wünsch, S.; Siegel, M.; Ustinov, A. V.; Bushev, P. A.

    2014-10-20

    We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.

  3. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  4. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216

  5. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-08

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  6. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.

    PubMed

    Pirkkalainen, J-M; Cho, S U; Li, Jian; Paraoanu, G S; Hakonen, P J; Sillanpää, M A

    2013-02-14

    Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.

  7. Superconducting circuits for quantum information: an outlook.

    PubMed

    Devoret, M H; Schoelkopf, R J

    2013-03-01

    The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future. PMID:23471399

  8. Universal programmable quantum circuit schemes to emulate an operator.

    PubMed

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos; Kais, Sabre

    2012-12-21

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U = e(-iHt) for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.

  9. Universal programmable quantum circuit schemes to emulate an operator

    SciTech Connect

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos; Kais, Sabre

    2012-12-21

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.

  10. Circuit quantum electrodynamics with a spin qubit

    NASA Astrophysics Data System (ADS)

    Petersson, Karl

    2013-03-01

    Electron spins in quantum dots have been proposed as the building blocks of a quantum information processor. While both fast one and two qubit operations have been demonstrated, coupling distant spins remains a daunting challenge. In contrast, circuit quantum electrodynamics (cQED) has enabled superconducting qubits to be readily coupled over large distances via a superconducting microwave cavity. I will present our recent work aimed at integrating spin qubits with the cQED architecture.[2] Our approach is to use spin qubits formed in strong spin-orbit materials such as InAs nanowires to enable a large effective coupling of the spin to the microwave cavity field. For an InAs nanowire double quantum dot coupled to the superconducting microwave cavity we achieve a charge-cavity coupling rate of ~ 30 MHz. Combining this large charge-cavity coupling rate with electrically driven spin qubit rotations we demonstrate that the cQED architecture can be used a sensitive probe of single spin dynamics. In another experiment, we can apply a source-drain bias to drive current through the double quantum dot and observe gain in the cavity transmission. We additionally measure photon emission from the cavity without any input field applied. Our results suggest that long-range spin coupling via superconducting microwave cavities is feasible and present new avenues for exploring quantum optics on a chip. Research was performed in collaboration with Will McFaul, Michael Schroer, Minkyung Jung, Jake Taylor, Andrew Houck and Jason Petta. We acknowledge support from the Sloan and Packard Foundations, Army Research Office, and DARPA QuEST.

  11. Digital quantum Rabi and Dicke models in superconducting circuits.

    PubMed

    Mezzacapo, A; Las Heras, U; Pedernales, J S; DiCarlo, L; Solano, E; Lamata, L

    2014-12-15

    We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.

  12. Digital Quantum Rabi and Dicke Models in Superconducting Circuits

    PubMed Central

    Mezzacapo, A.; Las Heras, U.; Pedernales, J. S.; DiCarlo, L.; Solano, E.; Lamata, L.

    2014-01-01

    We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios. PMID:25500735

  13. Quantum Correlation in Circuit QED Under Various Dissipative Modes

    NASA Astrophysics Data System (ADS)

    Ying-Hua, Ji; Yong-Mei, Liu

    2016-10-01

    Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.

  14. Three coupled qubits in a single superconducting quantum circuit

    NASA Astrophysics Data System (ADS)

    Chand, Madhavi; Kundu, Suman; Nehra, N.; Raj, Cosmic; Roy, Tanay; Ranadive, A.; Patankar, Meghan P.; Vijay, R.

    We propose a new design for a 3-qubit system in the 3D circuit QED architecture. Our design exploits the geometrical symmetry of a single superconducting circuit with three degrees of freedom to generate three coupled qubits. However, only one of these is strongly coupled to the environment while the other two are protected from the Purcell effect. Nevertheless, all three qubits can be measured using the standard dispersive technique. We will present preliminary data on this circuit showing evidence of three distinct qubits that retain the essential properties of a 3D transmon, namely insensitivity to charge noise, sufficient anharmonicity and good coherence times. We will also characterize the coupling of the three qubits to each other, to the environment and to a neighboring transmon qubit. Finally, we will compare our design to previous multi-qubit circuits and discuss possible applications in quantum computing and quantum simulations. Funding: Department of Atomic Energy, Govt. of India; Department of Science and Technology, Govt. of India.

  15. Realization of Simple Quantum Algorithms with Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Dicarlo, Leonardo

    2010-03-01

    Superconducting circuits have made considerable progress in the requirements of quantum coherence, universal gate operations and qubit readout necessary to realize a quantum computer. However, simultaneously meeting these requirements makes the solid-state realization of few-qubit processors, as previously implemented in nuclear magnetic resonance, ion-trap and optical systems, an exciting challenge. We present the realization of a two-qubit superconducting processor based on circuit quantum electrodynamics (cQED), and report progress by the Yale cQED team towards a four-qubit upgrade. The architecture employs a microwave transmission-line cavity as a quantum bus coupling multiple transmon qubits. Unitary control is achieved by concatenation of high-fidelity single-qubit rotations induced via resonant microwave tones, and multi-qubit adiabatic phase gates realized by local flux control of qubit frequencies. Qubit readout uses the cavity as a quadratic detector, such that a single, calibrated measurement channel gives direct access to multi-qubit correlations. We present generation of Bell states; entanglement quantification by strong violation of Clauser-Horne-Shimony-Holt inequalities; and implementations of the Grover search and Deutsch-Jozsa algorithms. We report experimental progress in extending adiabatic phase gates and joint readout to four qubits, and improving qubit coherence on the road to realizing more complex quantum algorithms. Research done in collaboration with J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, A. Nunnenkamp, J. Majer, A. Blais, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf.

  16. Tracking Multi-State Quantum Jumps in a Superconducting Circuit

    NASA Astrophysics Data System (ADS)

    Forouzani, Neda; Tan, Dian; Naghiloo, Mahdi; Murch, Kater

    Quantum measurements are known to be crucial for quantum error-correction and state initialization. Continuous measurements can be used for state tracking and real-time quantum feedback. If the measurements are strong, the state dynamics are described by quantum jumps between states. Using continuous measurements, we track the quantum state of a transmon circuit initially in its lowest energy state. We observe spurious jumps between five observable states of the circuit and use a Bayesian update formalism to estimate state occupation probabilities as well as transition rates over time. Our analysis reveals switching between different quantum jump statistics. Resolving the energy distribution of spurious jumps will help characterize this decoherence process.

  17. Quantum circuits employing roots of the Pauli matrices

    NASA Astrophysics Data System (ADS)

    Soeken, Mathias; Miller, D. Michael; Drechsler, Rolf

    2013-10-01

    The Pauli matrices are a set of three 2×2 complex Hermitian unitary matrices. In this article, we investigate the relationships between certain roots of the Pauli matrices and how gates implementing those roots are used in quantum circuits. Techniques for simplifying such circuits are given. In particular, we show how those techniques can be used to find a circuit of Clifford+T gates starting from a circuit composed of gates from the well-studied NOT, CNOT, V library.

  18. Non-unitary probabilistic quantum computing circuit and method

    NASA Technical Reports Server (NTRS)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  19. Mapping of Topological Quantum Circuits to Physical Hardware

    NASA Astrophysics Data System (ADS)

    Paler, Alexandru; Devitt, Simon J.; Nemoto, Kae; Polian, Ilia

    2014-04-01

    Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit.

  20. Mapping of topological quantum circuits to physical hardware.

    PubMed

    Paler, Alexandru; Devitt, Simon J; Nemoto, Kae; Polian, Ilia

    2014-01-01

    Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit. PMID:24722360

  1. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Gosset, David

    2016-06-01

    We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates.

  2. Development of superconducting bonding for multilayer microwave integrated quantum circuits

    NASA Astrophysics Data System (ADS)

    Brecht, Teresa; Axline, Christopher; Chu, Yiwen; Pfaff, Wolfgang; Frunzio, Luigi; Devoret, Michel; Schoelkopf, Robert

    Future quantum computers are likely to take the shape of multilayer microwave integrated quantum circuits. The proposed physical architecture retains the superb coherence of 3D structures while achieving superior scalability and compatibility with planar circuitry and integrated readout electronics. This hardware platform utilizes known techniques of bulk etching in silicon wafers and requires metallic bonding of superconducting materials. Superconducting wafer bonding is a crucial tool in need of development. Whether micromachined in wafers or traditionally machined in bulk metal, 3D cavities typically posses a seam where two parts meet. Ideally, this seam consists of a perfect superconducting bond. Pursuing this goal, we have developed a new understanding of seams as a loss mechanism that is applicable to 3D cavities in general. We present quality factor measurements of both 3D cavities and 2D stripline resonators to study the losses of superconducting bonds.

  3. Emulating weak localization using a solid-state quantum circuit

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Roushan, P.; Sank, D.; Neill, C.; Lucero, Erik; Mariantoni, Matteo; Barends, R.; Chiaro, B.; Kelly, J.; Megrant, A.; Mutus, J. Y.; O'Malley, P. J. J.; Vainsencher, A.; Wenner, J.; White, T. C.; Yin, Yi; Cleland, A. N.; Martinis, John M.

    2014-10-01

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  4. Emulating weak localization using a solid-state quantum circuit.

    PubMed

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  5. Chapter 12: Trapped Electrons as Electrical (Quantum) Circuits

    NASA Astrophysics Data System (ADS)

    Verdú, José

    2014-01-01

    In this chapter, we present a detailed model of the equivalent electric circuit of a single trapped particle in a coplanar-waveguide (CPW) Penning trap. The CPW-trap, which is essentially a section of coplanar-waveguide transmission-line, is designed to make it compatible with circuit-quantum electrodynamic architectures. This will enable a single trapped electron, or geonium atom, as a potential building block of microwave quantum circuits. The model of the trapped electron as an electric circuit was first introduced by Hans Dehmelt in the 1960s. It is essential for the description of the electronic detection using resonant tank circuits. It is also the basis for the description of the interaction of a geonium atom with other distant quantum systems through electrical (microwave) signals.

  6. Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding

    SciTech Connect

    Kronberg, D. A.; Molotkov, S. N.

    2010-07-15

    A quantum circuit is constructed for optimal eavesdropping on quantum key distribution proto- cols using phase-time coding, and its physical implementation based on linear and nonlinear fiber-optic components is proposed.

  7. Probabilistic Model of Fault Detection in Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Pathak, A.

    Since the introduction of quantum computation, several protocols (such as quantum cryptography, quantum algorithm, quantum teleportation) have established quantum computing as a superior future technology. Each of these processes involves quantum circuits, which are prone to different kinds of faults. Consequently, it is important to verify whether the circuit hardware is defective or not. The systematic procedure to do so is known as fault testing. Normally testing is done by providing a set of valid input states and measuring the corresponding output states and comparing the output states with the expected output states of the perfect (fault less) circuit. This particular set of input vectors are known as test set [6]. If there exists a fault then the next step would be to find the exact location and nature of the defect. This is known as fault localization. A model that explains the logical or functional faults in the circuit is a fault model. Conventional fault models include (i) stuck at faults, (ii) bridge faults, and (iii) delay faults. These fault models have been rigorously studied for conventional irreversible circuit. But with the advent of reversible classical computing and quantum computing it has become important to enlarge the domain of the study on test vectors.

  8. Photonic Circuits with Time Delays and Quantum Feedback.

    PubMed

    Pichler, Hannes; Zoller, Peter

    2016-03-01

    We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.

  9. Simulating Zeno physics by a quantum quench with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Tong, Qing-Jun; An, Jun-Hong; Kwek, L. C.; Luo, Hong-Gang; Oh, C. H.

    2014-06-01

    Studying out-of-equilibrium physics in quantum systems under quantum quench is of vast experimental and theoretical interest. Using periodic quantum quenches, we present an experimentally accessible scheme to simulate the quantum Zeno and anti-Zeno effects in an open quantum system of a single superconducting qubit interacting with an array of transmission line resonators. The scheme is based on the following two observations: First, compared with conventional systems, the short-time nonexponential decay in our superconducting circuit system is readily observed; and second, a quench-off process mimics an ideal projective measurement when its time duration is sufficiently long. Our results show the active role of quantum quench in quantum simulation and control.

  10. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    NASA Astrophysics Data System (ADS)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-06-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  11. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    PubMed Central

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-01-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814

  12. Quantum chemistry and charge transport in biomolecules with superconducting circuits.

    PubMed

    García-Álvarez, L; Las Heras, U; Mezzacapo, A; Sanz, M; Solano, E; Lamata, L

    2016-01-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814

  13. Quantum circuit physical design methodology with emphasis on physical synthesis

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Naser; Saheb Zamani, Morteza; Sedighi, Mehdi

    2013-11-01

    In our previous works, we have introduced the concept of "physical synthesis" as a method to consider the mutual effects of quantum circuit synthesis and physical design. While physical synthesis can involve various techniques to improve the characteristics of the resulting quantum circuit, we have proposed two techniques (namely gate exchanging and auxiliary qubit selection) to demonstrate the effectiveness of the physical synthesis. However, the previous contributions focused mainly on the physical synthesis concept, and the techniques were proposed only as a proof of concept. In this paper, we propose a methodological framework for physical synthesis that involves all previously proposed techniques along with a newly introduced one (called auxiliary qubit insertion). We will show that the entire flow can be seen as one monolithic methodology. The proposed methodology is analyzed using a large set of benchmarks. Experimental results show that the proposed methodology decreases the average latency of quantum circuits by about 36.81 % for the attempted benchmarks.

  14. Characterization of optical quantum circuits using resonant phase shifts

    NASA Astrophysics Data System (ADS)

    Poot, M.; Tang, H. X.

    2016-09-01

    We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then, the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases, as well as the coupling ratios of its directional couplers, are determined.

  15. Exact quantum Bayesian rule for qubit measurements in circuit QED

    PubMed Central

    Feng, Wei; Liang, Pengfei; Qin, Lupei; Li, Xin-Qi

    2016-01-01

    Developing efficient framework for quantum measurements is of essential importance to quantum science and technology. In this work, for the important superconducting circuit-QED setup, we present a rigorous and analytic solution for the effective quantum trajectory equation (QTE) after polaron transformation and converted to the form of Stratonovich calculus. We find that the solution is a generalization of the elegant quantum Bayesian approach developed in arXiv:1111.4016 by Korotokov and currently applied to circuit-QED measurements. The new result improves both the diagonal and off-diagonal elements of the qubit density matrix, via amending the distribution probabilities of the output currents and several important phase factors. Compared to numerical integration of the QTE, the resultant quantum Bayesian rule promises higher efficiency to update the measured state, and allows more efficient and analytical studies for some interesting problems such as quantum weak values, past quantum state, and quantum state smoothing. The method of this work opens also a new way to obtain quantum Bayesian formulas for other systems and in more complicated cases. PMID:26841968

  16. Exact quantum Bayesian rule for qubit measurements in circuit QED.

    PubMed

    Feng, Wei; Liang, Pengfei; Qin, Lupei; Li, Xin-Qi

    2016-02-04

    Developing efficient framework for quantum measurements is of essential importance to quantum science and technology. In this work, for the important superconducting circuit-QED setup, we present a rigorous and analytic solution for the effective quantum trajectory equation (QTE) after polaron transformation and converted to the form of Stratonovich calculus. We find that the solution is a generalization of the elegant quantum Bayesian approach developed in arXiv:1111.4016 by Korotokov and currently applied to circuit-QED measurements. The new result improves both the diagonal and off-diagonal elements of the qubit density matrix, via amending the distribution probabilities of the output currents and several important phase factors. Compared to numerical integration of the QTE, the resultant quantum Bayesian rule promises higher efficiency to update the measured state, and allows more efficient and analytical studies for some interesting problems such as quantum weak values, past quantum state, and quantum state smoothing. The method of this work opens also a new way to obtain quantum Bayesian formulas for other systems and in more complicated cases.

  17. Exact quantum Bayesian rule for qubit measurements in circuit QED

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Liang, Pengfei; Qin, Lupei; Li, Xin-Qi

    2016-02-01

    Developing efficient framework for quantum measurements is of essential importance to quantum science and technology. In this work, for the important superconducting circuit-QED setup, we present a rigorous and analytic solution for the effective quantum trajectory equation (QTE) after polaron transformation and converted to the form of Stratonovich calculus. We find that the solution is a generalization of the elegant quantum Bayesian approach developed in arXiv:1111.4016 by Korotokov and currently applied to circuit-QED measurements. The new result improves both the diagonal and off-diagonal elements of the qubit density matrix, via amending the distribution probabilities of the output currents and several important phase factors. Compared to numerical integration of the QTE, the resultant quantum Bayesian rule promises higher efficiency to update the measured state, and allows more efficient and analytical studies for some interesting problems such as quantum weak values, past quantum state, and quantum state smoothing. The method of this work opens also a new way to obtain quantum Bayesian formulas for other systems and in more complicated cases.

  18. Specification of photonic circuits using quantum hardware description language.

    PubMed

    Tezak, Nikolas; Niederberger, Armand; Pavlichin, Dmitri S; Sarma, Gopal; Mabuchi, Hideo

    2012-11-28

    Following the simple observation that the interconnection of a set of quantum optical input-output devices can be specified using structural mode VHSIC hardware description language, we demonstrate a computer-aided schematic capture workflow for modelling and simulating multi-component photonic circuits. We describe an algorithm for parsing circuit descriptions to derive quantum equations of motion, illustrate our approach using simple examples based on linear and cavity-nonlinear optical components, and demonstrate a computational approach to hierarchical model reduction. PMID:23091208

  19. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    SciTech Connect

    Li Pengbo; Li Fuli

    2011-03-15

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  20. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates.

    PubMed

    Bravyi, Sergey; Gosset, David

    2016-06-24

    We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates. PMID:27391708

  1. Emulating a mesoscopic system using superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Barends, R.; Bochmann, J.; Campbell, B.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Neill, C.; O'Malley, P.; Ohya, S.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.

    2013-03-01

    We demonstrate an emulation of a mesoscopic system using superconducting quantum circuits. Taking advantage of our ReZQu-architectured quantum processor, we controllably splitted a microwave photon and manipulated the splitted photons before they recombined for detection. In this way, we were able to simulate the weak localization effect in mesoscopic systems - a coherent backscattering process due to quantum interference. The influence of the phase coherence was investigated by tuning the coherence time of the quantum circuit, which in turn mimics the temperature effect on the weak localization process. At the end, we demonstrated an effect resembling universal conductance fluctuations, which arises from the frequency beating between different coherent backscattering processes. The universality of the observed fluctuation was shown as the independence of the fluctuation amplitude on detailed experimental conditions.

  2. Quantum Optics with Superconducting Circuits: From Single Photons to Schrodinger Cats

    SciTech Connect

    Schoelkopf, Rob

    2013-01-09

    Over the last decade and a half, superconducting circuits have advanced to the point where we can generate and detect highly-entangled states, and perform universal quantum gates. Meanwhile, the coherence properties of these systems have improved more than 10,000-fold. I will describe recent experiments, such as the latest advance in coherence using a three-dimensional implementation of qubits interacting with microwave cavities, called “3D circuit QED.” The control and strong interactions possible in superconducting circuits make it possible to generate non-classical states of light, including large superpositions known as “Schrodinger cat” states. This field has many interesting prospects both for applications in quantum information processing, and fundamental investigations of the boundary between the macroscopic classical world and the microscopic world of the quantum.

  3. Quantum state transfer between hybrid qubits in a circuit QED

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo

    2012-01-01

    In this Brief Report, we propose a theoretical scheme to transfer quantum states between superconducting charge qubits and semiconductor spin qubits in a circuit QED device. Under dispersive conditions, resonator-assisted state transfer between qubits can be performed controllably only by addressing the flux bias applied to the charge qubits. The low infidelity and existing advantages show that the proposal may provide an effective route toward scalable quantum-information transfer with solid-state hybrid qubits.

  4. Time-independent quantum circuits with local interactions

    NASA Astrophysics Data System (ADS)

    Seifnashri, Sahand; Kianvash, Farzad; Nobakht, Jahangir; Karimipour, Vahid

    2016-06-01

    Heisenberg spin chains can act as quantum wires transferring quantum states either perfectly or with high fidelity. Gaussian packets of excitations passing through dual rails can encode the two states of a logical qubit, depending on which rail is empty and which rail is carrying the packet. With extra interactions in one or between different chains, one can introduce interaction zones in arrays of such chains, where specific one- or two-qubit gates act on any qubit which passes through these interaction zones. Therefore, universal quantum computation is made possible in a static way where no external control is needed. This scheme will then pave the way for a scalable way of quantum computation where specific hardware can be connected to make large quantum circuits. Our scheme is an improvement of a recent scheme where we borrowed an idea from quantum electrodynamics to replace nonlocal interactions between spin chains with local interactions mediated by an ancillary chain.

  5. Parallel Quantum Circuit in a Tunnel Junction.

    PubMed

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-01-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N). PMID:27453262

  6. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).

  7. Parallel Quantum Circuit in a Tunnel Junction.

    PubMed

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-25

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).

  8. Parallel Quantum Circuit in a Tunnel Junction

    PubMed Central

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-01-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262

  9. Digital circuits for computer applications: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.

  10. Coupling single emitters to quantum plasmonic circuits

    NASA Astrophysics Data System (ADS)

    Huck, Alexander; Andersen, Ulrik L.

    2016-09-01

    In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters to nanowires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale and for the study of fundamental physics in the ultrastrong coupling regime.

  11. Lasing without inversion in circuit quantum electrodynamics.

    PubMed

    Marthaler, M; Utsumi, Y; Golubev, D S; Shnirman, A; Schön, Gerd

    2011-08-26

    We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit can lead to a lasing state of the oscillator. Here we show that the circuit can also exhibit the effect of "lasing without inversion." It arises since the coupling to the dissipative environment enhances photon emission as compared to absorption, similar to the recoil effect predicted for atomic systems. While the recoil effect is very weak, and so far elusive, the effect described here should be observable with realistic circuits. We analyze the requirements for system parameters and environment.

  12. Synthesis of Arbitrary Quantum Circuits to Topological Assembly

    NASA Astrophysics Data System (ADS)

    Paler, Alexandru; Devitt, Simon J.; Fowler, Austin G.

    2016-08-01

    Given a quantum algorithm, it is highly nontrivial to devise an efficient sequence of physical gates implementing the algorithm on real hardware and incorporating topological quantum error correction. In this paper, we present a first step towards this goal, focusing on generating correct and simple arrangements of topological structures that correspond to a given quantum circuit and largely neglecting their efficiency. We detail the many challenges that will need to be tackled in the pursuit of efficiency. The software source code can be consulted at https://github.com/alexandrupaler/tqec.

  13. Synthesis of Arbitrary Quantum Circuits to Topological Assembly

    PubMed Central

    Paler, Alexandru; Devitt, Simon J.; Fowler, Austin G.

    2016-01-01

    Given a quantum algorithm, it is highly nontrivial to devise an efficient sequence of physical gates implementing the algorithm on real hardware and incorporating topological quantum error correction. In this paper, we present a first step towards this goal, focusing on generating correct and simple arrangements of topological structures that correspond to a given quantum circuit and largely neglecting their efficiency. We detail the many challenges that will need to be tackled in the pursuit of efficiency. The software source code can be consulted at https://github.com/alexandrupaler/tqec. PMID:27481212

  14. Flexible quantum circuits using scalable continuous-variable cluster states

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Menicucci, Nicolas C.

    2016-06-01

    We show that measurement-based quantum computation on scalable continuous-variable (CV) cluster states admits more quantum-circuit flexibility and compactness than similar protocols for standard square-lattice CV cluster states. This advantage is a direct result of the macronode structure of these states—that is, a lattice structure in which each graph node actually consists of several physical modes. These extra modes provide additional measurement degrees of freedom at each graph location, which can be used to manipulate the flow and processing of quantum information more robustly and with additional flexibility that is not available on an ordinary lattice.

  15. Synthesis of Arbitrary Quantum Circuits to Topological Assembly.

    PubMed

    Paler, Alexandru; Devitt, Simon J; Fowler, Austin G

    2016-01-01

    Given a quantum algorithm, it is highly nontrivial to devise an efficient sequence of physical gates implementing the algorithm on real hardware and incorporating topological quantum error correction. In this paper, we present a first step towards this goal, focusing on generating correct and simple arrangements of topological structures that correspond to a given quantum circuit and largely neglecting their efficiency. We detail the many challenges that will need to be tackled in the pursuit of efficiency. The software source code can be consulted at https://github.com/alexandrupaler/tqec. PMID:27481212

  16. Atomic physics and quantum optics using superconducting circuits.

    PubMed

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  17. Asymptotically Optimal Quantum Circuits for d-Level Systems

    SciTech Connect

    Bullock, Stephen S.; O'Leary, Dianne P.; Brennen, Gavin K.

    2005-06-17

    Scalability of a quantum computation requires that the information be processed on multiple subsystems. However, it is unclear how the complexity of a quantum algorithm, quantified by the number of entangling gates, depends on the subsystem size. We examine the quantum circuit complexity for exactly universal computation on many d-level systems (qudits). Both a lower bound and a constructive upper bound on the number of two-qudit gates result, proving a sharp asymptotic of {theta}(d{sup 2n}) gates. This closes the complexity question for all d-level systems (d finite). The optimal asymptotic applies to systems with locality constraints, e.g., nearest neighbor interactions.

  18. Two-dimensional lattice gauge theories with superconducting quantum circuits

    SciTech Connect

    Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.

    2014-12-15

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

  19. Interacting Electrodynamics of Short Coherent Conductors in Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Altimiras, C.; Portier, F.; Joyez, P.

    2016-07-01

    When combining lumped mesoscopic electronic components to form a circuit, quantum fluctuations of electrical quantities lead to a nonlinear electromagnetic interaction between the components, which is generally not understood. The Landauer-Büttiker formalism that is frequently used to describe noninteracting coherent mesoscopic components is not directly suited to describe such circuits since it assumes perfect voltage bias, i.e., the absence of fluctuations. Here, we show that for short coherent conductors of arbitrary transmission, the Landauer-Büttiker formalism can be extended to take into account quantum voltage fluctuations similarly to what is done for tunnel junctions. The electrodynamics of the whole circuit is then formally worked out disregarding the non-Gaussianity of fluctuations. This reveals how the aforementioned nonlinear interaction operates in short coherent conductors: Voltage fluctuations induce a reduction of conductance through the phenomenon of dynamical Coulomb blockade, but they also modify their internal density of states, leading to an additional electrostatic modification of the transmission. Using this approach, we can quantitatively account for conductance measurements performed on quantum point contacts in series with impedances of the order of RK=h /e2 . Our work should enable a better engineering of quantum circuits with targeted properties.

  20. Two-dimensional lattice gauge theories with superconducting quantum circuits

    PubMed Central

    Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.

    2014-01-01

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676

  1. Large-scale quantum photonic circuits in silicon

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk

    2016-08-01

    Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards

  2. Relativistic quantum teleportation with superconducting circuits.

    PubMed

    Friis, N; Lee, A R; Truong, K; Sabín, C; Solano, E; Johansson, G; Fuentes, I

    2013-03-15

    We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes nonuniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion. However, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.

  3. Hybrid Circuit QED with Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Petta, Jason

    2014-03-01

    Cavity quantum electrodynamics explores quantum optics at the most basic level of a single photon interacting with a single atom. We have been able to explore cavity QED in a condensed matter system by placing a double quantum dot (DQD) inside of a high quality factor microwave cavity. Our results show that measurements of the cavity field are sensitive to charge and spin dynamics in the DQD.[2,3] We can explore non-equilibrium physics by applying a finite source-drain bias across the DQD, which results in sequential tunneling. Remarkably, we observe a gain as large as 15 in the cavity transmission when the DQD energy level detuning is matched to the cavity frequency. These results will be discussed in the context of single atom lasing.[4] I will also describe recent progress towards reaching the strong-coupling limit in cavity-coupled Si DQDs. In collaboration with Manas Kulkarni, Yinyu Liu, Karl Petersson, George Stehlik, Jacob Taylor, and Hakan Tureci. We acknowledge support from the Sloan and Packard Foundations, ARO, DARPA, and NSF.

  4. An investigation of algebraic quantum dynamics for mesoscopic coupled electric circuits with mutual inductance

    NASA Astrophysics Data System (ADS)

    Pahlavani, H.; Kolur, E. Rahmanpour

    2016-08-01

    Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.

  5. Relativistic quantum teleportation with superconducting circuits.

    PubMed

    Friis, N; Lee, A R; Truong, K; Sabín, C; Solano, E; Johansson, G; Fuentes, I

    2013-03-15

    We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes nonuniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion. However, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology. PMID:25166531

  6. Quantum simulation with a boson sampling circuit

    NASA Astrophysics Data System (ADS)

    González Olivares, Diego; Peropadre, Borja; Aspuru-Guzik, Alán; García-Ripoll, Juan José

    2016-08-01

    In this work we study a system that consists of 2 M matter qubits that interact through a boson sampling circuit, i.e., an M -port interferometer, embedded in two different architectures. We prove that, under the conditions required to derive a master equation, the qubits evolve according to effective bipartite X Y spin Hamiltonians, with or without local and collective dissipation terms. This opens the door to the simulation of any bipartite spin or hard-core boson models and exploring dissipative phase transitions as the competition between coherent and incoherent exchange of excitations. We also show that in the purely dissipative regime this model has a large number of exact and approximate dark states, whose structure and decay rates can be estimated analytically. We finally argue that this system may be used for the adiabatic preparation of boson sampling states encoded in the matter qubits.

  7. Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Slichter, D. H.; Müller, C.; Vijay, R.; Weber, S. J.; Blais, A.; Siddiqi, I.

    2016-05-01

    We observe the quantum Zeno effect—where the act of measurement slows the rate of quantum state transitions—in a superconducting qubit using linear circuit quantum electrodynamics readout and a near-quantum-limited following amplifier. Under simultaneous strong measurement and qubit drive, the qubit undergoes a series of quantum jumps between states. These jumps are visible in the experimental measurement record and are analyzed using maximum likelihood estimation to determine qubit transition rates. The observed rates agree with both analytical predictions and numerical simulations. The analysis methods are suitable for processing general noisy random telegraph signals.

  8. Quantum dot rolled-up microtube optoelectronic integrated circuit.

    PubMed

    Bhowmick, Sishir; Frost, Thomas; Bhattacharya, Pallab

    2013-05-15

    A rolled-up microtube optoelectronic integrated circuit operating as a phototransceiver is demonstrated. The microtube is made of a InGaAs/GaAs strained bilayer with InAs self-organized quantum dots inserted in the GaAs layer. The phototransceiver consists of an optically pumped microtube laser and a microtube photoconductive detector connected by an a-Si/SiO2 waveguide. The loss in the waveguide and responsivity of the entire phototransceiver circuit are 7.96 dB/cm and 34 mA/W, respectively.

  9. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  10. Introduction to parametric amplification of quantum signals with Josephson circuits

    NASA Astrophysics Data System (ADS)

    Roy, Ananda; Devoret, Michel

    2016-08-01

    This short and opinionated review starts with the concept of quantum signals at microwave frequencies and focuses on the principle of linear parametric amplification. This process emerges from the dispersive nonlinearity of Josephson junctions driven with appropriate tones. We discuss two defining characteristics of the corresponding amplifying devices: i) the number of modes excited by the signal, idler and pump waves and ii) the number of independent ports through which these waves enter into the circuit.

  11. Efficient synthesis of probabilistic quantum circuits with fallback

    NASA Astrophysics Data System (ADS)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.

    2015-05-01

    Repeat-until-success (RUS) circuits can approximate a given single-qubit unitary with an expected number of T gates of about 1/3 of what is required by optimal, deterministic, ancilla-free decompositions over the Clifford + T gate set. In this work, we introduce a more general and conceptually simpler circuit decomposition method that allows for synthesis into protocols that probabilistically implement quantum circuits over several universal gate sets including, but not restricted to, the Clifford + T gate set. The protocol, which we call probabilistic quantum circuits with fallback (PQF), implements a walk on a discrete Markov chain in which the target unitary is an absorbing state and in which transitions are induced by multiqubit unitaries followed by measurements. In contrast to RUS protocols, the presented PQF protocols are guaranteed to terminate after a finite number of steps. Specifically, we apply our method to the Clifford + T , Clifford + V , and Clifford + π /12 gate sets to achieve decompositions with expected gate counts of logb(1 /ɛ ) +O {ln[ln(1 /ɛ ) ] } , where b is a quantity related to the expansion property of the underlying universal gate set.

  12. Tomonaga–Luttinger physics in electronic quantum circuits

    PubMed Central

    Jezouin, S.; Albert, M.; Parmentier, F. D.; Anthore, A.; Gennser, U.; Cavanna, A.; Safi, I.; Pierre, F.

    2013-01-01

    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga–Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga–Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga–Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga–Luttinger liquid with an impurity. PMID:23653214

  13. Tomonaga-Luttinger physics in electronic quantum circuits.

    PubMed

    Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F

    2013-01-01

    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

  14. LTS junction technology for RSFQ and qubit circuit applications

    NASA Astrophysics Data System (ADS)

    Buchholz, F.-Im.; Balashov, D. V.; Dolata, R.; Hagedorn, D.; Khabipov, M. I.; Kohlmann, J.; Zorin, A. B.; Niemeyer, J.

    2006-10-01

    The potentials of LTS junction technology and electronics offer innovative solutions for the processing of quantum information in RSFQ and qubit circuits. We discuss forthcoming approaches based on standard SIS technology and addressed to the development of new superconducting device concepts. The challenging problem of reducing back action noise of the RSFQ circuits deteriorating coherent properties of the qubit is currently solved by implementing Josephson junctions with non-linear shunts based on LTS SIS-SIN technology. Upgraded NbAlOx trilayer technology enables the fabrication of high-quality mesoscopic Josephson junction transistors down to the nanometer range suitable for a qubit-operation regime. As applications, circuit concepts are presented which combine superconducting devices of different nature.

  15. Microwave integrated circuits for space applications

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  16. A scanning transmon qubit for strong coupling circuit quantum electrodynamics.

    PubMed

    Shanks, W E; Underwood, D L; Houck, A A

    2013-01-01

    Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.

  17. Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation.

    PubMed

    Sawaya, Nicolas P D; Smelyanskiy, Mikhail; McClean, Jarrod R; Aspuru-Guzik, Alán

    2016-07-12

    Calculating molecular energies is likely to be one of the first useful applications to achieve quantum supremacy, performing faster on a quantum than a classical computer. However, if future quantum devices are to produce accurate calculations, errors due to environmental noise and algorithmic approximations need to be characterized and reduced. In this study, we use the high performance qHiPSTER software to investigate the effects of environmental noise on the preparation of quantum chemistry states. We simulated 18 16-qubit quantum circuits under environmental noise, each corresponding to a unitary coupled cluster state preparation of a different molecule or molecular configuration. Additionally, we analyze the nature of simple gate errors in noise-free circuits of up to 40 qubits. We find that, in most cases, the Jordan-Wigner (JW) encoding produces smaller errors under a noisy environment as compared to the Bravyi-Kitaev (BK) encoding. For the JW encoding, pure dephasing noise is shown to produce substantially smaller errors than pure relaxation noise of the same magnitude. We report error trends in both molecular energy and electron particle number within a unitary coupled cluster state preparation scheme, against changes in nuclear charge, bond length, number of electrons, noise types, and noise magnitude. These trends may prove to be useful in making algorithmic and hardware-related choices for quantum simulation of molecular energies. PMID:27254482

  18. Implementing phase-covariant cloning in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Zheng; Ye, Liu

    2016-10-01

    An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.

  19. Quantum phases in circuit QED with a superconducting qubit array

    PubMed Central

    Zhang, Yuanwei; Yu, Lixian; Liang, J. -Q; Chen, Gang; Jia, Suotang; Nori, Franco

    2014-01-01

    Circuit QED on a chip has become a powerful platform for simulating complex many-body physics. In this report, we realize a Dicke-Ising model with an antiferromagnetic nearest-neighbor spin-spin interaction in circuit QED with a superconducting qubit array. We show that this system exhibits a competition between the collective spin-photon interaction and the antiferromagnetic nearest-neighbor spin-spin interaction, and then predict four quantum phases, including: a paramagnetic normal phase, an antiferromagnetic normal phase, a paramagnetic superradiant phase, and an antiferromagnetic superradiant phase. The antiferromagnetic normal phase and the antiferromagnetic superradiant phase are new phases in many-body quantum optics. In the antiferromagnetic superradiant phase, both the antiferromagnetic and superradiant orders can coexist, and thus the system possesses symmetry. Moreover, we find an unconventional photon signature in this phase. In future experiments, these predicted quantum phases could be distinguished by detecting both the mean-photon number and the magnetization. PMID:24522250

  20. Applications of quantum cloning

    NASA Astrophysics Data System (ADS)

    Pomarico, E.; Sanguinetti, B.; Sekatski, P.; Zbinden, H.; Gisin, N.

    2011-10-01

    Quantum Cloning Machines (QCMs) allow for the copying of information, within the limits imposed by quantum mechanics. These devices are particularly interesting in the high-gain regime, i.e., when one input qubit generates a state of many output qubits. In this regime, they allow for the study of certain aspects of the quantum to classical transition. The understanding of these aspects is the root of the two recent applications that we will review in this paper: the first one is the Quantum Cloning Radiometer, a device which is able to produce an absolute measure of spectral radiance. This device exploits the fact that in the quantum regime information can be copied with only finite fidelity, whereas when a state becomes macroscopic, this fidelity gradually increases to 1. Measuring the fidelity of the cloning operation then allows to precisely determine the absolute spectral radiance of the input optical source. We will then discuss whether a Quantum Cloning Machine could be used to produce a state visible by the naked human eye, and the possibility of a Bell Experiment with humans playing the role of detectors.

  1. Single-photon transistor in circuit quantum electrodynamics.

    PubMed

    Neumeier, Lukas; Leib, Martin; Hartmann, Michael J

    2013-08-01

    We introduce a circuit quantum electrodynamical setup for a "single-photon" transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are exchanged between the two transmission lines but a single photon in one line can completely block or enable the propagation of photons in the other line. High on-off ratios can be achieved for feasible experimental parameters. Our approach is inherently scalable as all photon pulses can have the same pulse shape and carrier frequency such that output signals of one transistor can be input signals for a consecutive transistor.

  2. Classical simulation of noninteracting-fermion quantum circuits

    NASA Astrophysics Data System (ADS)

    Terhal, Barbara M.; Divincenzo, David P.

    2002-03-01

    We show that a class of quantum computations that was recently shown to be efficiently simulatable on a classical computer by Valiant [in Proceedings of the 33rd ACM Symposium on the Theory of Computing (2001), p. 114] corresponds to a physical model of noninteracting fermions in one dimension. We give an alternative proof of his result using the language of fermions and extend the result to noninteracting fermions with arbitrary pairwise interactions, where gates can be conditioned on outcomes of complete von Neumann measurements in the computational basis on other fermionic modes in the circuit. This last result is in remarkable contrast with the case of noninteracting bosons where universal quantum computation can be achieved by allowing gates to be conditioned on classical bits [E. Knill, R. Laflamme, and G. Milburn, Nature (London) 409, 46 (2001)].

  3. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  4. Applications of Quantum Groups

    NASA Astrophysics Data System (ADS)

    Chryssomalakos, Chryssomalis

    The main theme of this thesis is the search for applications of Quantum Group and Hopf algebraic concepts and techniques in Physics. We investigate in particular the possibilities that exist in deforming, in a self consistent way, the symmetry structure of physical theories with the hope that the resulting scheme will be of relevance in the description of physical reality. Our choice of topics reflects this motivation: we discuss deformations of rotations and Lorentz boosts, search for integrals on the quantum plane and attempt to Fourier transform functions of non -commuting coordinates. Along the way, more formal considerations prompt us to revisit integration on finite dimensional Hopf algebras, explore the interconnections between various descriptions of the quantum double and derive the algebraic structure of the quantum plane from that of the underlying deformed symmetry group. The material is structured as follows. Chapter 1 introduces the language, basic concepts and notation employed throughout this thesis. Chapter 2 focuses on Hopf algebras viewed as universal envelopes of deformed Lie algebras and their duals. Bicovariant generators enter the discussion as analogues of the classical Lie algebra generators and some of their properties are given. We comment on the geometrical interpretation of the algebraic formulation and introduce computational tools. In chapter 3 we take a close look at the quantum Lorentz Hopf algebra. The basics of complex quantum groups are presented and applied in the derivation of the algebra of the quantum Lorentz generators and its Hopf and involutive structures. We point also to isomorphisms with previous related constructions. The subject of quantum integration is explored in chapter 4. We derive a formula for the integral on a finite dimensional Hopf algebra and show its equivalence to the formulation in terms of the trace of the square of the antipode. Integration on the quantum plane is also examined and a Fourier transform

  5. Observation of topological transitions in interacting quantum circuits

    NASA Astrophysics Data System (ADS)

    Roushan, P.; Neill, C.; Chen, Yu; Kolodrubetz, M.; Quintana, C.; Leung, N.; Fang, M.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Mutus, J.; O'Malley, P. J. J.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Polkovnikov, A.; Cleland, A. N.; Martinis, J. M.

    2014-11-01

    Topology, with its abstract mathematical constructs, often manifests itself in physics and has a pivotal role in our understanding of natural phenomena. Notably, the discovery of topological phases in condensed-matter systems has changed the modern conception of phases of matter. The global nature of topological ordering, however, makes direct experimental probing an outstanding challenge. Present experimental tools are mainly indirect and, as a result, are inadequate for studying the topology of physical systems at a fundamental level. Here we employ the exquisite control afforded by state-of-the-art superconducting quantum circuits to investigate topological properties of various quantum systems. The essence of our approach is to infer geometric curvature by measuring the deflection of quantum trajectories in the curved space of the Hamiltonian. Topological properties are then revealed by integrating the curvature over closed surfaces, a quantum analogue of the Gauss-Bonnet theorem. We benchmark our technique by investigating basic topological concepts of the historically important Haldane model after mapping the momentum space of this condensed-matter model to the parameter space of a single-qubit Hamiltonian. In addition to constructing the topological phase diagram, we are able to visualize the microscopic spin texture of the associated states and their evolution across a topological phase transition. Going beyond non-interacting systems, we demonstrate the power of our method by studying topology in an interacting quantum system. This required a new qubit architecture that allows for simultaneous control over every term in a two-qubit Hamiltonian. By exploring the parameter space of this Hamiltonian, we discover the emergence of an interaction-induced topological phase. Our work establishes a powerful, generalizable experimental platform to study topological phenomena in quantum systems.

  6. Observation of topological transitions in interacting quantum circuits.

    PubMed

    Roushan, P; Neill, C; Chen, Yu; Kolodrubetz, M; Quintana, C; Leung, N; Fang, M; Barends, R; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Kelly, J; Megrant, A; Mutus, J; O'Malley, P J J; Sank, D; Vainsencher, A; Wenner, J; White, T; Polkovnikov, A; Cleland, A N; Martinis, J M

    2014-11-13

    Topology, with its abstract mathematical constructs, often manifests itself in physics and has a pivotal role in our understanding of natural phenomena. Notably, the discovery of topological phases in condensed-matter systems has changed the modern conception of phases of matter. The global nature of topological ordering, however, makes direct experimental probing an outstanding challenge. Present experimental tools are mainly indirect and, as a result, are inadequate for studying the topology of physical systems at a fundamental level. Here we employ the exquisite control afforded by state-of-the-art superconducting quantum circuits to investigate topological properties of various quantum systems. The essence of our approach is to infer geometric curvature by measuring the deflection of quantum trajectories in the curved space of the Hamiltonian. Topological properties are then revealed by integrating the curvature over closed surfaces, a quantum analogue of the Gauss-Bonnet theorem. We benchmark our technique by investigating basic topological concepts of the historically important Haldane model after mapping the momentum space of this condensed-matter model to the parameter space of a single-qubit Hamiltonian. In addition to constructing the topological phase diagram, we are able to visualize the microscopic spin texture of the associated states and their evolution across a topological phase transition. Going beyond non-interacting systems, we demonstrate the power of our method by studying topology in an interacting quantum system. This required a new qubit architecture that allows for simultaneous control over every term in a two-qubit Hamiltonian. By exploring the parameter space of this Hamiltonian, we discover the emergence of an interaction-induced topological phase. Our work establishes a powerful, generalizable experimental platform to study topological phenomena in quantum systems.

  7. Accessibility of applications specific integrated circuits

    NASA Astrophysics Data System (ADS)

    Strip, D. R.

    1986-03-01

    Applications specific integrated circuits (ASICs) open new design opportunities in Sandia component applications. ASICs can be used to overcome many of the constraints that reduce system functionality in Sandia systems. Key constraints in our environment are power consumption, volume, weight, speed, and radiation-hardness. In addition, use of ASICs may reduce the costs of system design, acquisition, and life-cycle maintenance. Design tools for integrated circuits are rapidly simplifying the design of integrated circuits. Just as high level computer languages enabled applications-oriented computer users to take control of their own code development after assembly coding had limited the practicality of user design, in ICC design tools and approaches are enabling the applications-oriented user to design an ASIC with modest training and in a short time period. In order to demonstrate the state of the design systems, we have selected a representative application and, without any formal training or experience in IC design, have designed and fabricated an ASIC. This report details the steps that were followed and the time they took. It is important to emphasize that this project was the first chip designed start-to-finish on the Mentor design stations in Organization 2110; therefore most of the problems encountered were typical of a first pass through a new system. Most of the problems were quickly wrung out by the CAD tools staff; future users of the system should not expect to have the problems recur.

  8. Real applications of quantum imaging

    NASA Astrophysics Data System (ADS)

    Genovese, Marco

    2016-07-01

    In previous years the possibility of creating and manipulating quantum states of light has paved the way for the development of new technologies exploiting peculiar properties of quantum states, such as quantum information, quantum metrology and sensing, quantum imaging, etc. In particular quantum imaging addresses the possibility of overcoming limits of classical optics by using quantum resources such as entanglement or sub-Poissonian statistics. Albeit, quantum imaging is a more recent field than other quantum technologies, e.g. quantum information, it is now mature enough for application. Several different protocols have been proposed, some of them only theoretically, others with an experimental implementation and a few of them pointing to a clear application. Here we present a few of the most mature protocols ranging from ghost imaging to sub shot noise imaging and sub-Rayleigh imaging.

  9. Superposition states for quantum nanoelectronic circuits and their nonclassical properties

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Ryeol

    2016-09-01

    Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge(q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.

  10. Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect

    SciTech Connect

    Helmer, Ferdinand; Marquardt, Florian; Mariantoni, Matteo; Solano, Enrique

    2009-05-15

    We analyze the detection of itinerant photons using a quantum nondemolition measurement. An important example is the dispersive detection of microwave photons in circuit quantum electrodynamics, which can be realized via the nonlinear interaction between photons inside a superconducting transmission line resonator. We show that the back action due to the continuous measurement imposes a limit on the detector efficiency in such a scheme. We illustrate this using a setup where signal photons have to enter a cavity in order to be detected dispersively. In this approach, the measurement signal is the phase shift imparted to an intense beam passing through a second cavity mode. The restrictions on the fidelity are a consequence of the quantum Zeno effect, and we discuss both analytical results and quantum trajectory simulations of the measurement process.

  11. Radio-Frequency Electronics, Circuits and Applications

    NASA Astrophysics Data System (ADS)

    Hagen, Jon B.

    This accessible and comprehensive book provides an introduction to the basic concepts and key circuits of radio frequency systems, covering fundamental principles which apply to all radio devices, from wireless data transceivers on semiconductor chips to high-power broadcast transmitters. Topics covered include filters, amplifiers, oscillators, modulators, low-noise amplifiers, phase-locked loops, and transformers. Applications of radio frequency systems are described in such areas as communications, radio and television broadcasting, radar, and radio astronomy. The book contains many exercises, and assumes only a knowledge of elementary electronics and circuit analysis. It will be an ideal textbook for advanced undergraduate and graduate courses in electrical engineering, as well as an invaluable reference for researchers and professional engineers in this area, or for those moving into the field of wireless communications.

  12. Quantum Tomograms and Their Application in Quantum Information Science

    NASA Astrophysics Data System (ADS)

    Fedorov, Aleksey K.; Yurchenko, Stanislav O.

    2013-02-01

    This note is devoted to quantum tomograms application in quantum information science. Representation for quantum tomograms of continuous variables via Feynman path integrals is considered. Due to this construction quantum tomograms of harmonic oscillator are obtained. Application tomograms in causal analysis of quantum states is presented. Two qubit maximum entangled and "quantum-classical" states have been analyzed by tomographic causal analysis of quantum states.

  13. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    PubMed Central

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  14. Optimal universal asymmetric covariant quantum cloning circuits for qubit entanglement manipulation

    SciTech Connect

    Szabo, Levente; Koniorczyk, Matyas; Adam, Peter; Janszky, Jozsef

    2010-03-15

    We consider the entanglement manipulation capabilities of the universal covariant quantum cloner or quantum processor circuit for quantum bits. We investigate its use for cloning a member of a bipartite or a genuine tripartite entangled state of quantum bits. We find that for bipartite pure entangled states a nontrivial behavior of concurrence appears, while for GHZ entangled states a possibility of the partial extraction of bipartite entanglement can be achieved.

  15. Dynamical Lamb effect versus dissipation in superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2016-06-01

    Superconducting circuits provide a new platform for study of nonstationary cavity QED phenomena. An example of such a phenomenon is the dynamical Lamb effect, which is the parametric excitation of an atom due to nonadiabatic modulation of its Lamb shift. This effect was initially introduced for a natural atom in a varying cavity, while we suggest its realization in a superconducting qubit-cavity system with dynamically tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy dissipation, which is unavoidable in realistic systems. We find that despite naive expectations, this interplay can lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum can be strongly enhanced due to qubit relaxation, which opens another channel for such a process. We also show that dissipation in the cavity can increase the qubit excited-state population. Our results can be used for experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.

  16. Theoretical research of the distortion of quantum circuit in Grover's algorithm

    NASA Astrophysics Data System (ADS)

    Gubaidullina, K. V.; Chivilikhin, S. A.

    2016-08-01

    Grover's algorithm is a quantum search algorithm among unsorted elements that can do several operations at the same time due to their wave like properties. In addition, it could solve problems of global optimization and graph coloring. This work presents the results of the simulation of Grover's algorithm and research of its resistance to the effects of perturbations of quantum logic circuit elements. These dependencies can be useful for creating optical circuit.

  17. High-fidelity measurement and quantum feedback control in circuit QED

    SciTech Connect

    Sarovar, Mohan; Milburn, G. J.; Goan, H.-S.; Spiller, T. P.

    2005-12-15

    Circuit QED is a promising solid-state quantum computing architecture. It also has excellent potential as a platform for quantum control--especially quantum feedback control--experiments. However, the current scheme for measurement in circuit QED is low efficiency and has low signal-to-noise ratio for single-shot measurements. The low quality of this measurement makes the implementation of feedback difficult, and here we propose two schemes for measurement in circuit QED architectures that can significantly improve signal-to-noise ratio and potentially achieve quantum-limited measurement. Such measurements would enable the implementation of quantum feedback protocols and we illustrate this with a simple entanglement-stabilization scheme.

  18. 20 CFR 416.1485 - Application of circuit court law.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Application of circuit court law. 416.1485... Determinations and Decisions Court Remand Cases § 416.1485 Application of circuit court law. The procedures which follow apply to administrative determinations or decisions on claims involving the application of...

  19. 20 CFR 416.1485 - Application of circuit court law.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Application of circuit court law. 416.1485... Determinations and Decisions Court Remand Cases § 416.1485 Application of circuit court law. The procedures which follow apply to administrative determinations or decisions on claims involving the application of...

  20. 20 CFR 404.985 - Application of circuit court law.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Application of circuit court law. 404.985... and Decisions Court Remand Cases § 404.985 Application of circuit court law. The procedures which follow apply to administrative determinations or decisions on claims involving the application of...

  1. 20 CFR 404.985 - Application of circuit court law.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Application of circuit court law. 404.985... and Decisions Court Remand Cases § 404.985 Application of circuit court law. The procedures which follow apply to administrative determinations or decisions on claims involving the application of...

  2. 20 CFR 404.985 - Application of circuit court law.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Application of circuit court law. 404.985... and Decisions Court Remand Cases § 404.985 Application of circuit court law. The procedures which follow apply to administrative determinations or decisions on claims involving the application of...

  3. 20 CFR 416.1485 - Application of circuit court law.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Application of circuit court law. 416.1485... Determinations and Decisions Court Remand Cases § 416.1485 Application of circuit court law. The procedures which follow apply to administrative determinations or decisions on claims involving the application of...

  4. 20 CFR 404.985 - Application of circuit court law.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Application of circuit court law. 404.985... and Decisions Court Remand Cases § 404.985 Application of circuit court law. The procedures which follow apply to administrative determinations or decisions on claims involving the application of...

  5. Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics.

    PubMed

    Navarrete-Benlloch, Carlos; García-Ripoll, Juan José; Porras, Diego

    2014-11-01

    We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions.

  6. Synthetic mammalian gene circuits for biomedical applications.

    PubMed

    Ye, Haifeng; Aubel, Dominique; Fussenegger, Martin

    2013-12-01

    Synthetic biology is the science of reassembling cataloged and standardized biological items in a systematic and rational manner to create and engineer functional biological designer devices, systems and organisms with novel and useful, preferably therapeutic functions. Synthetic biology has significantly advanced the design of complex genetic networks that can reprogram metabolic activities in mammalian cells and provide novel therapeutic strategies for future gene-based and cell-based therapies. Synthetic biology-inspired therapeutic strategies provide new opportunities for improving human health in the 21st century. This review covers the most recent synthetic mammalian circuits designed for therapy of diseases such as metabolic disorders, cancer, and immune disorders. We conclude by discussing current challenges and future perspectives for biomedical applications of synthetic mammalian gene networks.

  7. Ultraprecise phase manipulation in integrated photonic quantum circuits with generalized directional couplers

    SciTech Connect

    Heilmann, R.; Keil, R.; Gräfe, M.; Nolte, S.; Szameit, A.

    2014-08-11

    We present an innovative approach for ultra-precise phase manipulation in integrated photonic quantum circuits. To this end, we employ generalized directional couplers that utilize a detuning of the propagation constant in optical waveguides by the overlap of adjacent waveguide modes. We demonstrate our findings in experiments with classical as well as quantum light.

  8. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  9. A quantum watermarking scheme using simple and small-scale quantum circuits

    NASA Astrophysics Data System (ADS)

    Miyake, S.; Nakamae, K.

    2016-05-01

    A new quantum gray-scale image watermarking scheme by using simple and small-scale quantum circuits is proposed. The NEQR representation for quantum images is used. The image sizes for carrier and watermark are assumed to be 2n × 2n and n × n, respectively. At first, a classical watermark with n × n image size and 8 bits gray scale is expanded to an image with 2n × 2n image size and 2 bits gray scale. Then the expanded image is scrambled to be a meaningless image by the SWAP gates that controlled by the keys only known to the operator. The scrambled image is embedded into the carrier image by the CNOT gates (XOR operation). The watermark is extracted from the watermarked image by applying operations in the reverse order. Simulation-based experimental results show that our proposed scheme is excellent in terms of three items, visual quality, robustness performance under noises, and computational complexity.

  10. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    PubMed

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations. PMID:25763944

  11. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    PubMed

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  12. Quantum technology and its applications

    SciTech Connect

    Boshier, Malcolm; Berkeland, Dana; Govindan, Tr; Abo - Shaeer, Jamil

    2010-12-10

    Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have another powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants

  13. 20 CFR 405.515 - Application of circuit court law.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Application of circuit court law. 405.515 Section 405.515 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ADMINISTRATIVE REVIEW PROCESS FOR ADJUDICATING INITIAL DISABILITY CLAIMS Judicial Review § 405.515 Application of circuit court law. We...

  14. 20 CFR 405.515 - Application of circuit court law.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Application of circuit court law. 405.515 Section 405.515 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ADMINISTRATIVE REVIEW PROCESS FOR ADJUDICATING INITIAL DISABILITY CLAIMS Judicial Review § 405.515 Application of circuit court law. We...

  15. 20 CFR 405.515 - Application of circuit court law.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Application of circuit court law. 405.515 Section 405.515 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ADMINISTRATIVE REVIEW PROCESS FOR ADJUDICATING INITIAL DISABILITY CLAIMS Judicial Review § 405.515 Application of circuit court law. We...

  16. 20 CFR 405.515 - Application of circuit court law.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Application of circuit court law. 405.515 Section 405.515 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ADMINISTRATIVE REVIEW PROCESS FOR ADJUDICATING INITIAL DISABILITY CLAIMS Judicial Review § 405.515 Application of circuit court law. We...

  17. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    NASA Astrophysics Data System (ADS)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  18. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    PubMed Central

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-01-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176

  19. Experimental investigation of a four-qubit linear-optical quantum logic circuit.

    PubMed

    Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J

    2016-09-20

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  20. Experimental investigation of a four-qubit linear-optical quantum logic circuit.

    PubMed

    Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J

    2016-01-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176

  1. Recursive multiport schemes for implementing quantum algorithms with photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel M.

    2016-01-01

    We present recursive multiport schemes for implementing quantum Fourier transforms and the inversion step in Grover's algorithm on an integrated linear optics device. In particular, each scheme shows how to execute a quantum operation on 2 d modes using a pair of circuits for the same operation on d modes. The circuits operate on path-encoded qudits and realize d -dimensional unitary transformations on these states using linear optical networks with O (d2) optical elements. To evaluate the schemes against realistic errors, we ran simulations of proof-of-principle experiments using a simple fabrication model of silicon-based photonic integrated devices that employ directional couplers and thermo-optic modulators for beam splitters and phase shifters, respectively. We find that high-fidelity performance is achievable with our multiport circuits for 2-qubit and 3-qubit quantum Fourier transforms, and for quantum search on four-item and eight-item databases.

  2. Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits

    NASA Astrophysics Data System (ADS)

    Xue, Zheng-Yuan; Zhou, Jian; Wang, Z. D.

    2015-08-01

    To implement a set of universal quantum logic gates based on non-Abelian geometric phases, it is conventional wisdom that quantum systems beyond two levels are required, which is extremely difficult to fulfill for superconducting qubits and appears to be a main reason why only single-qubit gates were implemented in a recent experiment [A. A. Abdumalikov, Jr. et al., Nature (London) 496, 482 (2013), 10.1038/nature12010]. Here we propose to realize nonadiabatic holonomic quantum computation in decoherence-free subspace on circuit QED, where one can use only the two levels in transmon qubits, a usual interaction, and a minimal resource for the decoherence-free subspace encoding. In particular, our scheme not only overcomes the difficulties encountered in previous studies but also can still achieve considerably large effective coupling strength, such that high-fidelity quantum gates can be achieved. Therefore, the present scheme makes realizing robust holonomic quantum computation with superconducting circuits very promising.

  3. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED.

    PubMed

    Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco

    2016-01-01

    W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055

  4. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED

    PubMed Central

    Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco

    2016-01-01

    W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055

  5. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco

    2016-08-01

    W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit.

  6. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits.

    PubMed

    Strambini, E; Makarenko, K S; Abulizi, G; de Jong, M P; van der Wiel, W G

    2016-01-06

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  7. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits

    PubMed Central

    Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.

    2016-01-01

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751

  8. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits

    NASA Astrophysics Data System (ADS)

    Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.

    2016-01-01

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  9. Superconducting quantum circuits at the surface code threshold for fault tolerance

    NASA Astrophysics Data System (ADS)

    Barends, R.; Kelly, J.; Megrant, A.; Veitia, A.; Sank, D.; Jeffrey, E.; White, T. C.; Mutus, J.; Fowler, A. G.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Neill, C.; O'Malley, P.; Roushan, P.; Vainsencher, A.; Wenner, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, John M.

    2014-04-01

    A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.

  10. Superconducting quantum circuits at the surface code threshold for fault tolerance.

    PubMed

    Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M

    2014-04-24

    A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.

  11. Superconducting quantum circuits at the surface code threshold for fault tolerance.

    PubMed

    Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M

    2014-04-24

    A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits. PMID:24759412

  12. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  13. High performance protection circuit for power electronics applications

    SciTech Connect

    Tudoran, Cristian D. Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  14. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  15. A circuit analysis of an in situ tunable radio-frequency quantum point contact.

    PubMed

    Müller, T; Choi, T; Hellmüller, S; Ensslin, K; Ihn, T; Schön, S

    2013-08-01

    A detailed analysis of the tunability of a radio-frequency quantum point contact setup using a C - LCR circuit is presented. We calculate how the series capacitance influences resonance frequency and charge-detector resistance for which matching is achieved as well as the voltage and power delivered to the load. Furthermore, we compute the noise contributions in the system and compare our findings with measurements taken with an etched quantum point contact. While our considerations mostly focus on our specific choice of matching circuit, the discussion of the influence of source-to-load power transfer on the signal-to-noise ratio is valid generally.

  16. Quantum circuit for the proof of the security of quantum key distribution without encryption of error syndrome and noisy processing

    SciTech Connect

    Tamaki, Kiyoshi; Kato, Go

    2010-02-15

    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.

  17. Deterministic amplification of Schrödinger cat states in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Joo, Jaewoo; Elliott, Matthew; Oi, Daniel K. L.; Ginossar, Eran; Spiller, Timothy P.

    2016-02-01

    Perfect deterministic amplification of arbitrary quantum states is prohibited by quantum mechanics, but determinism can be achieved by compromising between fidelity and amplification power. We propose a dynamical scheme for deterministically amplifying photonic Schrödinger cat states, which show great promise as a tool for quantum information processing. Our protocol is designed for strongly coupled circuit quantum electrodynamics and utilizes artificial atomic states and external microwave controls to engineer a set of optimal state transfers and achieve high fidelity amplification. We compare analytical results with full simulations of the open, driven Jaynes-Cummings model, using realistic device parameters for state of the art superconducting circuits. Amplification with a fidelity of 0.9 can be achieved for sizable cat states in the presence of cavity and atomic-level decoherence. This tool could be applied to practical continuous-variable information processing for the purification and stabilization of cat states in the presence of photon losses.

  18. Switching circuit to improve the frequency modulation difference-intensity THz quantum cascade laser imaging

    SciTech Connect

    Saat, N. K.; Dean, P.; Khanna, S. P.; Salih, M.; Linfield, E. H.; Davies, A. G.

    2015-04-24

    We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.

  19. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  20. Quantum memories: emerging applications and recent advances

    NASA Astrophysics Data System (ADS)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-11-01

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  1. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  2. Tunable quantum interference in a 3D integrated circuit.

    PubMed

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  3. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics.

    PubMed

    Joo, Jaewoo; Ginossar, Eran

    2016-01-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775

  4. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics

    PubMed Central

    Joo, Jaewoo; Ginossar, Eran

    2016-01-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775

  5. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics.

    PubMed

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  6. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  7. Towards Evolving Electronic Circuits for Autonomous Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Haith, Gary L.; Colombano, Silvano P.; Stassinopoulos, Dimitris

    2000-01-01

    The relatively new field of Evolvable Hardware studies how simulated evolution can reconfigure, adapt, and design hardware structures in an automated manner. Space applications, especially those requiring autonomy, are potential beneficiaries of evolvable hardware. For example, robotic drilling from a mobile platform requires high-bandwidth controller circuits that are difficult to design. In this paper, we present automated design techniques based on evolutionary search that could potentially be used in such applications. First, we present a method of automatically generating analog circuit designs using evolutionary search and a circuit construction language. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm, we present experimental results for five design tasks. Second, we investigate the use of coevolution in automated circuit design. We examine fitness evaluation by comparing the effectiveness of four fitness schedules. The results indicate that solution quality is highest with static and co-evolving fitness schedules as compared to the other two dynamic schedules. We discuss these results and offer two possible explanations for the observed behavior: retention of useful information, and alignment of problem difficulty with circuit proficiency.

  8. Circuit models and SPICE macro-models for quantum Hall effect devices

    NASA Astrophysics Data System (ADS)

    Ortolano, Massimo; Callegaro, Luca

    2015-08-01

    Precise electrical measurement technology based on the quantum Hall effect is one of the pillars of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a concise review of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided.

  9. Emulating Anyonic Fractional Statistical Behavior in a Superconducting Quantum Circuit.

    PubMed

    Zhong, Y P; Xu, D; Wang, P; Song, C; Guo, Q J; Liu, W X; Xu, K; Xia, B X; Lu, C-Y; Han, Siyuan; Pan, Jian-Wei; Wang, H

    2016-09-01

    Anyons are exotic quasiparticles obeying fractional statistics, whose behavior can be emulated in artificially designed spin systems. Here we present an experimental emulation of creating anyonic excitations in a superconducting circuit that consists of four qubits, achieved by dynamically generating the ground and excited states of the toric code model, i.e., four-qubit Greenberger-Horne-Zeilinger states. The anyonic braiding is implemented via single-qubit rotations: a phase shift of π related to braiding, the hallmark of Abelian 1/2 anyons, has been observed through a Ramsey-type interference measurement. PMID:27661671

  10. Emulating Anyonic Fractional Statistical Behavior in a Superconducting Quantum Circuit

    NASA Astrophysics Data System (ADS)

    Zhong, Y. P.; Xu, D.; Wang, P.; Song, C.; Guo, Q. J.; Liu, W. X.; Xu, K.; Xia, B. X.; Lu, C.-Y.; Han, Siyuan; Pan, Jian-Wei; Wang, H.

    2016-09-01

    Anyons are exotic quasiparticles obeying fractional statistics, whose behavior can be emulated in artificially designed spin systems. Here we present an experimental emulation of creating anyonic excitations in a superconducting circuit that consists of four qubits, achieved by dynamically generating the ground and excited states of the toric code model, i.e., four-qubit Greenberger-Horne-Zeilinger states. The anyonic braiding is implemented via single-qubit rotations: a phase shift of π related to braiding, the hallmark of Abelian 1 /2 anyons, has been observed through a Ramsey-type interference measurement.

  11. All-high-Tc superconductor rapid-single-flux-quantum circuit operating at ˜30 K

    NASA Astrophysics Data System (ADS)

    Shokhor, S.; Nadgorny, B.; Gurvitch, M.; Semenov, V.; Polyakov, Yu.; Likharev, K.; Hou, S. Y.; Phillips, Julia M.

    1995-11-01

    We have implemented a simple circuit of the rapid single-flux-quantum (RSFQ) logic family using a single-layer YBa2Cu3O7-x thin-film structure with 14 in-plane Josephson junctions formed by direct electron beam writing. The circuit includes two dc/SFQ converters, two Josephson transmission lines, a complete RS SFQ flip-flop, and an SFQ/dc converter (readout SQUID). Low-frequency testing has shown that the dc-current-biased circuit operates correctly and reliably at T˜30 K, a few degrees below the effective critical temperature of the junctions. Prospects for a further increase of the operation temperature and implementation of more complex RSFQ circuits are discussed in brief.

  12. Propagation of correlations in local random quantum circuits

    NASA Astrophysics Data System (ADS)

    Santra, Siddhartha; Balu, Radhakrishnan

    2016-08-01

    We derive a dynamical bound on the propagation of correlations in local random quantum circuits—lattice spin systems where piecewise quantum operations—in space and time—occur with classical probabilities. Correlations are quantified by the Frobenius norm of the commutator of two positive operators acting on disjoint regions of a one-dimensional circular chain of length L. For a time t=O(L) , correlations spread ballistically to spatial distances D=t , growing at best, diffusively with time for any distance within that radius with extensively suppressed distance- dependent corrections. For t=Ω (L^2) , all parts of the system get almost equally correlated with exponentially suppressed distance- dependent corrections and approach the maximum amount of correlations that may be established asymptotically.

  13. Stamping single wall nanotubes for circuit quantum electrodynamics

    SciTech Connect

    Viennot, J. J. Kontos, T.; Palomo, J.

    2014-03-17

    We report on a dry transfer technique for single wall carbon nanotube devices, which allows to embed them in high finesse microwave cavity. We demonstrate the ground state charge readout and a quality factor of about 3000 down to the single photon regime. This technique allows to make devices such as double quantum dots, which could be instrumental for achieving the strong spin photon coupling. It can easily be extended to generic carbon nanotube based microwave devices.

  14. Giant relaxation oscillations in a very strongly hysteretic superconductive quantum interference device ring-tank circuit system

    NASA Astrophysics Data System (ADS)

    Clark, T. D.; Prance, R. J.; Whiteman, R.; Prance, H.; Everitt, M. J.; Bulsara, A. R.; Ralph, J. F.

    2001-09-01

    In this article, we show that the radio frequency (rf) dynamical characteristics of a very strongly hysteretic superconducting quantum interference device (SQUID) ring, coupled to a rf tank circuit resonator, display relaxation oscillations. We demonstrate that the overall form of these characteristics, together with the relaxation oscillations, can be modeled accurately by solving the quasiclassical nonlinear equations of motion for the system. We suggest that in these very strongly hysteretic regimes, SQUID ring-resonator systems may find application in logic and memory devices.

  15. 1998 technology roadmap for integrated circuits used in critical applications

    SciTech Connect

    Dellin, T.A.

    1998-09-01

    Integrated Circuits (ICs) are being extensively used in commercial and government applications that have extreme consequences of failure. The rapid evolution of the commercial microelectronics industry presents serious technical and supplier challenges to this niche critical IC marketplace. This Roadmap was developed in conjunction with the Using ICs in Critical Applications Workshop which was held in Albuquerque, NM, November 11--12, 1997.

  16. Engineering reconfigurable laser-written circuits for practical quantum metrology

    NASA Astrophysics Data System (ADS)

    Chaboyer, Zachary; Stokes, Alex; Steel, M. J.; Withford, Michael J.

    2016-02-01

    We fabricate a series of reconfigurable waveguide interferometers using laser machining techniques and charac- terize them classically. The 3D nature of the ultrafast laser writing technique allows for the fabrication of unique multi-arm interferometers not possible in planar platforms. We demonstrate selectivity between multiple phase shifters in a single interferometer by patterning the chip surface using picosecond laser ablation in a separate step. Microfluidic elements for making practical measurements on-chip are incorporated by machining channels within the substrate to interact with waveguide modes. Our results provide a path toward practical implementation of quantum metrology protocols requiring multiple interferometer arms and tunable phases.

  17. Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Billangeon, P.-M.; Tsai, J. S.; Nakamura, Y.

    2015-03-01

    We discuss different ways of generating entanglement in the original picture of circuit QED (XcQED) and several restrictions that arise in the context of a large-scale quantum architecture. To alleviate some of the issues posed by the presence of the nonlinearities inherent to these systems, we introduce a layout for circuit QED, wherein an artificial atom is coupled to a quantized radiation field via its longitudinal degree of freedom (ZcQED). This system is akin to ion traps used in atomic physics, but it relies on fixed coupling between the atom and the resonator. We describe a scalable architecture for processing quantum information with superconducting qubits, which is free from any type of residual interaction between the atomic and photonic degrees of freedom. Tunable interactions can be realized based on sideband transitions, and the system can be operated out of the Lamb-Dicke regime, allowing it to benefit from the possibility of achieving large coupling strengths between atoms and resonators. We also discuss a readout scheme that does not require any extra circuits and allows a qubit-specific measurement of the state of the quantum register inspired by the electron shelving technique. This scheme is quantum nondemolition (QND)-like, and allows for single-shot determination of the qubit states.

  18. Quantum gate circuit model of signal integration in bacterial quorum sensing.

    PubMed

    Karafyllidis, Ioannis G

    2012-01-01

    Bacteria evolved cell to cell communication processes to gain information about their environment and regulate gene expression. Quorum sensing is such a process in which signaling molecules, called autoinducers, are produced, secreted and detected. In several cases bacteria use more than one autoinducers and integrate the information conveyed by them. It has not yet been explained adequately why bacteria evolved such signal integration circuits and what can learn about their environments using more than one autoinducers since all signaling pathways merge in one. Here quantum information theory, which includes classical information theory as a special case, is used to construct a quantum gate circuit that reproduces recent experimental results. Although the conditions in which biosystems exist do not allow for the appearance of quantum mechanical phenomena, the powerful computation tools of quantum information processing can be carefully used to cope with signal and information processing by these complex systems. A simulation algorithm based on this model has been developed and numerical experiments that analyze the dynamical operation of the quorum sensing circuit were performed for various cases of autoinducer variations, which revealed that these variations contain significant information about the environment in which bacteria exist.

  19. Low power RF amplifier circuit for ion trap applications

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; García-Delgado, L. A.; Gómez-Fuentes, R.; García-Juárez, A.

    2016-09-01

    A low power RF amplifier circuit for ion trap applications is presented and described. The amplifier is based on a class-D half-bridge amplifier with a voltage mirror driver. The RF amplifier is composed of an RF class-D amplifier, an envelope modulator to ramp up the RF voltage during the ion analysis stage, a detector or amplitude demodulation circuit for sensing the output signal amplitude, and a feedback amplifier that linearizes the steady state output of the amplifier. The RF frequency is set by a crystal oscillator and the series resonant circuit is tuned to the oscillator frequency. The resonant circuit components have been chosen, in this case, to operate at 1 MHz. In testings, the class-D stage operated at a maximum of 78 mW at 1.1356 MHz producing 225 V peak.

  20. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  1. Equivalent circuit-level model and improvement of terahertz quantum cascade lasers

    SciTech Connect

    Wei Zhou; Shaobin Liu; Jie Wu; Xiaoliu Zhang; Wu Tang

    2014-04-28

    An equivalent circuit-level model of terahertz (THz) quantum cascade lasers (QCLs) is developed by using rate equations. This model can be employed to investigate the characteristics of THz QCLs accurately and to improve their design. We use the circuit-level model to analyse a new active structure, which can improve the performance of THz QCLs by means of enhancing carrier injection. The simulation result shows that THz QCLs with the new active structure have a much higher performance compared with conventional THz QCLs. The high-performance THz QCLs are expected to be operated at higher temperatures. (lasers)

  2. Exploring the quantum critical behaviour in a driven Tavis-Cummings circuit.

    PubMed

    Feng, M; Zhong, Y P; Liu, T; Yan, L L; Yang, W L; Twamley, J; Wang, H

    2015-05-14

    Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed-matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalize the critical spin-field coupling strength, we have observed a four-qubit nonequilibrium quantum phase transition in a dynamical manner; that is, we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the nonequilibrium quantum phase transition, which is in good agreement with the driven Tavis-Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition-related science, such as scaling behaviours, parity breaking and long-range quantum correlations.

  3. Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit

    PubMed Central

    Feng, M.; Zhong, Y.P.; Liu, T.; Yan, L.L.; Yang, W.L.; Twamley, J.; Wang, H.

    2015-01-01

    Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed-matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalize the critical spin-field coupling strength, we have observed a four-qubit nonequilibrium quantum phase transition in a dynamical manner; that is, we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the nonequilibrium quantum phase transition, which is in good agreement with the driven Tavis–Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition-related science, such as scaling behaviours, parity breaking and long-range quantum correlations. PMID:25971985

  4. Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.

    PubMed

    Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping

    2015-12-01

    Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators. PMID:26625061

  5. Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.

    PubMed

    Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping

    2015-12-01

    Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.

  6. Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Barends, R.; Kelly, J.; Megrant, A.; Sank, D.; Jeffrey, E.; Chen, Y.; Yin, Y.; Chiaro, B.; Mutus, J.; Neill, C.; O'Malley, P.; Roushan, P.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.

    2013-08-01

    We demonstrate a planar, tunable superconducting qubit with energy relaxation times up to 44μs. This is achieved by using a geometry designed to both minimize radiative loss and reduce coupling to materials-related defects. At these levels of coherence, we find a fine structure in the qubit energy lifetime as a function of frequency, indicating the presence of a sparse population of incoherent, weakly coupled two-level defects. We elucidate this defect physics by experimentally varying the geometry and by a model analysis. Our “Xmon” qubit combines facile fabrication, straightforward connectivity, fast control, and long coherence, opening a viable route to constructing a chip-based quantum computer.

  7. A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis

    NASA Astrophysics Data System (ADS)

    Zeller, Luke

    In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.

  8. Printed circuits and their applications: Which way forward?

    NASA Astrophysics Data System (ADS)

    Cantatore, E.

    2015-09-01

    The continuous advancements in printed electronics make nowadays feasible the design of printed circuits which enable meaningful applications. Examples include ultra-low cost sensors embedded in food packaging, large-area sensing surfaces and biomedical assays. This paper offers an overview of state-of-the-art digital and analog circuit blocks, manufactured with a printed complementary organic TFT technology. An analog to digital converter and an RFID tag implemented exploiting these building blocks are also described. The main remaining drawbacks of the printed technology described are identified, and new approaches to further improve the state of the art, enabling more innovative applications are discussed.

  9. Transport Properties of Strongly Correlated Electrons in Quantum Dots Studied with a Simple Circuit Model

    SciTech Connect

    Martins, G. B.; Busser, Carlos A; Al Hassanieh, Khaled A; Anda, E. V.; Moreo, Adriana; Dagotto, Elbio R

    2006-01-01

    Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in quantum dots [Craig et al., Science 304, 565 (2004).]. In particular, the experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these results, a simple 'circuit model' is introduced and shown to qualitatively describe the experiments. The main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum dot side connected in relation to the current's path. This scenario provides an explanation of the results of Craig et al. that is an alternative to the RKKY proposal, also addressed here.

  10. Transport properties of strongly correlated electrons in quantum dots studied with a simple circuit model.

    PubMed

    Martins, G B; Büsser, C A; Al-Hassanieh, K A; Anda, E V; Moreo, A; Dagotto, E

    2006-02-17

    Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in quantum dots [Craig, Science 304, 565 (2004).]. In particular, the experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to qualitatively describe the experiments. The main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum dot side connected in relation to the current's path. This scenario provides an explanation of the results of Craig et al. that is an alternative to the RKKY proposal, also addressed here.

  11. Fabrication and characterization of transmon qubits and rectangular waveguide resonators for circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ha, Dong-Gwang; Park, Jung; Jun, So-Yeon; Song, Woon; Chong, Yonuk

    2013-03-01

    We present our design, fabrication and characterization of superconducting transmon qubits and resonators for circuit quantum electrodynamics (QED). We have made coplanar waveguide resonators and rectangular waveguide resonators. The characteristics of the resonators are well controlled by the design parameters, with the fundamental frequencies in the range of 1 to 8 GHz and the quality factors in the range of 102 to 106, respectively. We measured the resonator characteristics as a function of temperature. The excitation power dependence of the resonator characteristics was also investigated. For transmon qubits, we fabricated 100 nm-scale Al/Al2Ox/Al tunnel junctions with e-beam lithography and double angle evaporation. The junctions were characterized at low temperature down to 10 mK. Furthermore, quantum state measurement and manipulation in circuit QED structure will be discussed.

  12. Si quantum dot structures and their applications

    NASA Astrophysics Data System (ADS)

    Shcherbyna, L.; Torchynska, T.

    2013-06-01

    This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. These PL bands were attributed to the exciton recombination in Si QDs, to the carrier recombination through defects inside of Si NCs or via oxide related defects at the Si/SiOx interface. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been presented. The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been discussed as well. Note the significant worldwide interest directed toward the silicon-based light emission for integrated optoelectronics is related to the complementary metal-oxide semiconductor compatibility and the possibility to be monolithically integrated with very large scale integrated (VLSI) circuits. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon NCs or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.

  13. Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Norte, Richard Alexander

    a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents

  14. Minimized open-circuit voltage reduction in GaAs/InGaAs quantum well solar cells with bandgap-engineered graded quantum well depths

    SciTech Connect

    Li, Xiaohan; Dasika, Vaishno D.; Li, Ping-Chun; Ji, Li; Bank, Seth R.; Yu, Edward T.

    2014-09-22

    The use of InGaAs quantum wells with composition graded across the intrinsic region to increase open-circuit voltage in p-i-n GaAs/InGaAs quantum well solar cells is demonstrated and analyzed. By engineering the band-edge energy profile to reduce photo-generated carrier concentration in the quantum wells at high forward bias, simultaneous increases in both open-circuit voltage and short-circuit current density are achieved, compared to those for a structure with the same average In concentration, but constant rather than graded quantum well composition across the intrinsic region. This approach is combined with light trapping to further increase short-circuit current density.

  15. QUANTUM: A Wolfram Mathematica add-on for Dirac Bra-Ket Notation, Non-Commutative Algebra, and Simulation of Quantum Computing Circuits

    NASA Astrophysics Data System (ADS)

    Gómez Muñoz, J. L.; Delgado, F.

    2016-03-01

    This paper introduces QUANTUM, a free library of commands of Wolfram Mathematica that can be used to perform calculations directly in Dirac braket and operator notation. Its development started several years ago, in order to study quantum random walks. Later, many other features were included, like operator and commutator algebra, simulation and graphing of quantum computing circuits, generation and solution of Heisenberg equations of motion, among others. To the best of our knowledge, QUANTUM remains a unique tool in its use of Dirac notation, because it is used both in the input and output of the calculations. This work depicts its usage and features in Quantum Computing and Quantum Hamilton Dynamics.

  16. Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice

    NASA Astrophysics Data System (ADS)

    Yang, Zi-He; Wang, Yan-Pu; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Gao, Jin-Hua; Wu, Ying

    2016-06-01

    The concept of flat band plays an important role in strongly correlated many-body physics. However, the demonstration of the flat band physics is highly nontrivial due to intrinsic limitations in conventional condensed-matter materials. Here we propose a circuit quantum electrodynamics simulator of the two-dimensional (2D) Lieb lattice exhibiting a flat middle band. By exploiting the parametric conversion method, we design a photonic Lieb lattice with in situ tunable hopping strengths in a 2D array of coupled superconducting transmissionline resonators. Moreover, the flexibility of our proposal enables the incorporation of both the artificial gauge field and the strong photon-photon interaction in a time- and site-resolved manner. To unambiguously demonstrate the synthesized flat band, we further investigate the observation of the flat band localization of microwave photons through the pumping and the steady-state measurements of only a few sites on the lattice. Requiring only current level of technique and being robust against imperfections in realistic circuits, our scheme can be readily tested in experiment and may pave a new way towards the realization of exotic photonic quantum Hall fluids including anomalous quantum Hall effect and bosonic fractional quantum Hall effect without magnetic field.

  17. A quantum circuit rule for interference effects in single-molecule electrical junctions

    NASA Astrophysics Data System (ADS)

    Manrique, David Zsolt; Huang, Cancan; Baghernejad, Masoud; Zhao, Xiaotao; Al-Owaedi, Oday A.; Sadeghi, Hatef; Kaliginedi, Veerabhadrarao; Hong, Wenjing; Gulcur, Murat; Wandlowski, Thomas; Bryce, Martin R.; Lambert, Colin J.

    2015-03-01

    A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo(phenyleneethynylene) (OPE)-type molecules possessing three aromatic rings was investigated both experimentally and theoretically. Molecules were of the type X-Y-X, where X represents pyridyl anchors with para (p), meta (m) or ortho (o) connectivities and Y represents a phenyl ring with p and m connectivities. The conductances GXmX (GXpX) of molecules of the form X-m-X (X-p-X), with meta (para) connections in the central ring, were predominantly lower (higher), irrespective of the meta, para or ortho nature of the anchor groups X, demonstrating that conductance is dominated by the nature of quantum interference in the central ring Y. The single-molecule conductances were found to satisfy the quantum circuit rule Gppp/Gpmp=Gmpm/Gmmm. This demonstrates that the contribution to the conductance from the central ring is independent of the para versus meta nature of the anchor groups.

  18. Continuous generation and stabilization of Schrödinger cat states in a quantum circuit

    NASA Astrophysics Data System (ADS)

    Roy, A.; Leghtas, Z.; Stone, A. D.; Devoret, M. H.; Mirrahimi, M.

    2015-03-01

    While dissipation is widely considered as being harmful for quantum coherence, it can, when properly engineered, lead to the stabilization of non-trivial pure quantum states. Deterministic generation of non-classical states like Schrödinger cat states is one of the key ingredients in performing universal quantum computation. We theoretically propose a scheme, adapted to superconducting quantum circuits, for continuous generation and stabilization of these states in a cavity using dissipation engineering. We first generate these states inside a high-Q cavity by engineering its dissipation with a bath that only exchanges photons in pairs. We then stabilize these transient states against single-photon decay using a second engineered bath. The single-photon stabilization is autonomous, and exploits the photon-number-dependent frequency-splitting due to Kerr interactions in the strongly dispersive regime of circuit QED. We present analytical and numerical results demonstrating the robustness of the scheme and its amenability to immediate experimental implementation. Work supported by ARO.

  19. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    PubMed

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

  20. Fast resonator reset in circuit QED using open quantum system optimal control

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Blais, Alexandre

    Practical implementations of quantum information processing requires repetitive qubit readout. In circuit QED, where readout is performed using a resonator dispersively coupled to the qubits, the measurement repetition rate is limited by the resonator reset time. This reset is usually performed passively by waiting several resonator decay times. Alternatively, it was recently shown that a simple pulse sequence allows to decrease the reset time to twice the resonator decay time. In this work, we show how to further optimize the ring-down pulse sequence by using optimal control theory for open quantum systems. Using a new implementation of the open GRAPE algorithm that is well suited to large Hilbert spaces, we find active resonator reset procedures that are faster than a single resonator decay time. Simple quantum speed limits for this kind of active reset processes will be discussed

  1. Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.

    PubMed

    Gosset, David; Terhal, Barbara M; Vershynina, Anna

    2015-04-10

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.

  2. Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.

    PubMed

    Gosset, David; Terhal, Barbara M; Vershynina, Anna

    2015-04-10

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice. PMID:25910098

  3. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    PubMed Central

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  4. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED.

    PubMed

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2015-01-01

    Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct the fast universal quantum gates on superconducting resonators in a microwave-photon quantum processor composed of multiple superconducting resonators coupled to a superconducting transmon qutrit, that is, the controlled-phase (c-phase) gate on two microwave-photon resonators and the controlled-controlled phase (cc-phase) gates on three resonators, resorting to quantum resonance operations, without any drive field. Compared with previous works, our universal quantum gates have the higher fidelities and shorter operation times in theory. The numerical simulation shows that the fidelity of our c-phase gate is 99.57% within about 38.1 ns and that of our cc-phase gate is 99.25% within about 73.3 ns. PMID:25787147

  5. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED.

    PubMed

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2015-03-19

    Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct the fast universal quantum gates on superconducting resonators in a microwave-photon quantum processor composed of multiple superconducting resonators coupled to a superconducting transmon qutrit, that is, the controlled-phase (c-phase) gate on two microwave-photon resonators and the controlled-controlled phase (cc-phase) gates on three resonators, resorting to quantum resonance operations, without any drive field. Compared with previous works, our universal quantum gates have the higher fidelities and shorter operation times in theory. The numerical simulation shows that the fidelity of our c-phase gate is 99.57% within about 38.1 ns and that of our cc-phase gate is 99.25% within about 73.3 ns.

  6. Terahertz applications of integrated circuits based on intrinsic Josephson junctions in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Huabing; Wu, Peiheng; Yamashita, Tsutomu

    2001-10-01

    Using a newly developed double-side fabrication method, an IJJ stack plus a bow-tie antenna and chokes were integrated in a slice 200 nm thick and singled out from inside a bulk Bi2Sr2CaCu2O8+x (BSCCO) single crystal. The junctions in the fabricated stack were very uniform, and the number of junctions involved was rather controllable. In addition to this method, which can be used to fabricate integrated circuits based on intrinsic Josephson junctions in high temperature (Tc) superconductors, also reported will be terahertz responses of IJJs, and the possible applications in quantum voltage standard, spectroscopy, and so on.

  7. Efficient quantum walk on a quantum processor.

    PubMed

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  8. Efficient quantum walk on a quantum processor

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-05-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  9. Efficient quantum walk on a quantum processor.

    PubMed

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-05-05

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  10. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  11. Understanding degenerate ground states of a protected quantum circuit in the presence of disorder

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Fu, Bo; Ferguson, David G.; Schuster, D. I.; Koch, Jens

    2014-09-01

    A recent theoretical proposal suggests that a simple circuit utilizing two superinductors may produce a qubit with ground-state degeneracy [Brooks, Phys. Rev. A 87, 052306 (2013), 10.1103/PhysRevA.87.052306]. We perform a full circuit analysis along with exact diagonalization of the circuit Hamiltonian to elucidate the nature of the spectrum and low-lying wave functions of this 0-π device. We show that the ground-state degeneracy is robust to disorder in charge, flux, and critical current as well as insensitive to modest variations in the circuit parameters. Our treatment is nonperturbative, provides access to excited states and matrix elements, and is immediately applicable also to intermediate parameter regimes of experimental interest.

  12. Quantum groups: Geometry and applications

    SciTech Connect

    Chu, C.S.

    1996-05-13

    The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge.

  13. Integrated Methods: Applications in Quantum Chemistry

    SciTech Connect

    Irle, Stephen; Morokuma, Keiji

    2004-03-31

    Authors introduce quantum chemical methods applicable to extended molecular systems or parts of them, describe in short the theory behind integrated methods, and discuss their applications to the most recognizable areas of nanochemistry (fullerenes, nanotubes, and silica- based nanosystems).

  14. Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2016-04-01

    Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this Letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single-qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven superconducting quantum interference device couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multiqubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of 40 or more compared to the individual qubit T1 and T2 using this technique. We thus demonstrate that there is substantial headroom for improving the coherence of modern superconducting qubits with a fairly modest increase in device complexity.

  15. Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits.

    PubMed

    Kapit, Eliot

    2016-04-15

    Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this Letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single-qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven superconducting quantum interference device couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multiqubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of 40 or more compared to the individual qubit T_{1} and T_{2} using this technique. We thus demonstrate that there is substantial headroom for improving the coherence of modern superconducting qubits with a fairly modest increase in device complexity.

  16. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  17. Applications of the dynamic circuit theory to maglev suspension systems

    SciTech Connect

    He, Jian Liang; Rote, D.M.; Coffey, H.T.

    1993-11-01

    This paper discusses the applications of dynamic circuit theory to electrodynamic suspension EDS systems. In particular, the paper focuses on the loop-shaped coil and the figure-eight-shaped null-flux coil suspension systems. Mathematical models, including very general force expressions that can be used for the development of computer codes, are provided for each of these suspension systems. General applications and advantages of the dynamic circuit model are summarized. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many EDS maglev design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper to demonstrate the capability of the model.

  18. [Flexible print circuit technology application in biomedical engineering].

    PubMed

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  19. Design and characterization of integrated components for SiN photonic quantum circuits.

    PubMed

    Poot, Menno; Schuck, Carsten; Ma, Xiao-Song; Guo, Xiang; Tang, Hong X

    2016-04-01

    The design, fabrication, and detailed calibration of essential building blocks towards fully integrated linear-optics quantum computation are discussed. Photonic devices are made from silicon nitride rib waveguides, where measurements on ring resonators show small propagation losses. Directional couplers are designed to be insensitive to fabrication variations. Their offset and coupling lengths are measured, as well as the phase difference between the transmitted and reflected light. With careful calibrations, the insertion loss of the directional couplers is found to be small. Finally, an integrated controlled-NOT circuit is characterized by measuring the transmission through different combinations of inputs and outputs. The gate fidelity for the CNOT operation with this circuit is estimated to be 99.81% after post selection. This high fidelity is due to our robust design, good fabrication reproducibility, and extensive characterizations. PMID:27136982

  20. A variable inductor for power applications using coupled circuits

    SciTech Connect

    Lashine, A.E. )

    1992-01-01

    In this paper, a variable inductor suitable for power system applications is presented. The inductor variation is based on varying the number of turns in a secondary circuit using triac switches. Unlike thyristor-controlled reactors, the inductance of the proposed reactor is varied in steps but without causing distortion in the inductor current. Mathematical expression for the effective impedance of the reactor is developed. Theoretical results are compared with those obtained experimentally using a test model.

  1. Engineering Gene Circuits for Mammalian Cell-Based Applications.

    PubMed

    Ausländer, Simon; Fussenegger, Martin

    2016-01-01

    Synthetic gene switches are basic building blocks for the construction of complex gene circuits that transform mammalian cells into useful cell-based machines for next-generation biotechnological and biomedical applications. Ligand-responsive gene switches are cellular sensors that are able to process specific signals to generate gene product responses. Their involvement in complex gene circuits results in sophisticated circuit topologies that are reminiscent of electronics and that are capable of providing engineered cells with the ability to memorize events, oscillate protein production, and perform complex information-processing tasks. Microencapsulated mammalian cells that are engineered with closed-loop gene networks can be implanted into mice to sense disease-related input signals and to process this information to produce a custom, fine-tuned therapeutic response that rebalances animal metabolism. Progress in gene circuit design, in combination with recent breakthroughs in genome engineering, may result in tailored engineered mammalian cells with great potential for future cell-based therapies. PMID:27194045

  2. 20 CFR 410.670c - Application of circuit court law.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Application of circuit court law. 410.670c..., Administrative Review, Finality of Decisions, and Representation of Parties § 410.670c Application of circuit... involving the application of circuit court law. (a) The Administration will apply a holding in a...

  3. 20 CFR 410.670c - Application of circuit court law.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Application of circuit court law. 410.670c..., Administrative Review, Finality of Decisions, and Representation of Parties § 410.670c Application of circuit... involving the application of circuit court law. (a) The Administration will apply a holding in a...

  4. Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits

    SciTech Connect

    Quintana, C. M.; Megrant, A.; Chen, Z.; Dunsworth, A.; Chiaro, B.; Barends, R.; Campbell, B.; Chen, Yu; Hoi, I.-C.; Jeffrey, E.; Kelly, J.; Mutus, J. Y.; O'Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; and others

    2014-08-11

    Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.

  5. Local random quantum circuits: Ensemble completely positive maps and swap algebras

    SciTech Connect

    Zanardi, Paolo

    2014-08-15

    We define different classes of local random quantum circuits (L-RQC) and show that (a) statistical properties of L-RQC are encoded into an associated family of completely positive maps and (b) average purity dynamics can be described by the action of these maps on operator algebras of permutations (swap algebras). An exactly solvable one-dimensional case is analyzed to illustrate the power of the swap algebra formalism. More in general, we prove short time area-law bounds on average purity for uncorrelated L-RQC and infinite time results for both the uncorrelated and correlated cases.

  6. Equivalence between classical and quantum dynamics. Neutral kaons and electric circuits

    SciTech Connect

    Caruso, M. Fanchiotti, H.; Canal, C.A. Garcia

    2011-10-15

    An equivalence between the Schroedinger dynamics of a quantum system with a finite number of basis states and a classical dynamics is presented. The equivalence is an isomorphism that connects in univocal way both dynamical systems. We treat the particular case of neutral kaons and found a class of electric networks uniquely related to the kaon system finding the complete map between the matrix elements of the effective Hamiltonian of kaons and those elements of the classical dynamics of the networks. As a consequence, the relevant {epsilon} parameter that measures CP violation in the kaon system is completely determined in terms of network parameters. - Highlights: > We provide a formal equivalence between classical and quantum dynamics. > We make use of the decomplexification concept. > Neutral kaon systems can be represented by electric circuits. > CP symmetry violation can be taken into account by non-reciprocity. > Non-reciprocity is represented by gyrators.

  7. Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Neilinger, P.; Shevchenko, S. N.; Bogár, J.; Rehák, M.; Oelsner, G.; Karpov, D. S.; Hübner, U.; Astafiev, O.; Grajcar, M.; Il'ichev, E.

    2016-09-01

    We demonstrate amplification (and attenuation) of a probe signal by a driven two-level quantum system in the Landau-Zener-Stückelberg-Majorana regime by means of an experiment, in which a superconducting qubit was strongly coupled to a microwave cavity, in a conventional arrangement of circuit quantum electrodynamics. Two different types of flux qubit, specifically a conventional Josephson junctions qubit and a phase-slip qubit, show similar results, namely, lasing at the working points where amplification takes place. The experimental data are explained by the interaction of the probe signal with Rabi-like oscillations. The latter are created by constructive interference of Landau-Zener-Stückelberg-Majorana (LZSM) transitions during the driving period of the qubit. A detailed description of the occurrence of these oscillations and a comparison of obtained data with both analytic and numerical calculations are given.

  8. Rapid single-flux-quantum circuits for low noise mK operation

    NASA Astrophysics Data System (ADS)

    Intiso, Samuel; Pekola, Jukka; Savin, Alexander; Devyatov, Ygor; Kidiyarova-Shevchenko, Anna

    2006-05-01

    Rapid single-flux-quantum (RSFQ) technology has been proposed as control electronics for superconducting quantum bits because of the material and working temperature compatibility. In this work, we consider practical aspects of RSFQ circuit design for low noise low power operation. At the working temperature of 20 mK and operational frequency of 2 GHz, dissipated power per junction is reduced to 25 pW by using 6 µA critical current junctions available at the Hypres and VTT low Jc fabrication process. To limit phonon temperature to 30 mK, a maximum of 40 junctions can be placed on a 5 mm × 5 mm chip. Electron temperature in resistive shunts of Josephson junctions is minimized by use of cooling fins, giving minimum electron temperatures of about 150 mK for the Hypres process and 70 mK for the VTT process.

  9. Few-Electron Ultrastrong Light-Matter Coupling in a Quantum LC Circuit

    NASA Astrophysics Data System (ADS)

    Todorov, Yanko; Sirtori, Carlo

    2014-10-01

    The phenomenon of ultrastrong light-matter interaction of a two-dimensional electron gas within a lumped element electronic circuit resonator is explored. The gas is coupled through the oscillating electric field of the capacitor, and in the limit of very small capacitor volumes, the total number of electrons of the system can be reduced to only a few. One of the peculiar features of our quantum mechanical system is that its Hamiltonian evolves from the fermionic Rabi model to the bosonic Hopfield model for light-matter coupling as the number of electrons is increased. We show that the Dicke states, introduced to describe the atomic super-radiance, are the natural base to describe the crossover between the two models. Furthermore, we illustrate how the ultrastrong coupling regime in the system and the associated antiresonant terms of the quantum Hamiltonian have a fundamentally different impact in the fermionic and bosonic cases. In the intermediate regime, our system behaves like a multilevel quantum bit with nonharmonic energy spacing, owing to the particle-particle interactions. Such a system can be inserted into a technological semiconductor platform, thus opening interesting perspectives for electronic devices where the readout of quantum electrodynamical properties is obtained via the measure of a DC current.

  10. Low noise multichannel circuits for physics and biology applications

    NASA Astrophysics Data System (ADS)

    Grybos, Pawel

    2005-09-01

    Experimental techniques in physics, material science, biology and medicine want to gain profit from the advantages of the VLSI technology by using a new generation of electronic measurement systems based on parallel signal processing from the multielement sensors. In most cases key problems for building such system are multichannel mixed-mode Application Specific Integrated Circuits, which are capable to process small amplitude signals from multielement sensor. In this class of integrated circuits several important problems like power limitation, low level of noise, good matching performance and crosstalk effects must be solved simultaneously. This presentation shows two ASICs which, given the original solutions implemented and their universal properties, can be used in different applications and are significant milestones in experimental techniques. The first presented ASIC is the 64-channel charge amplifier with binary readout architecture for a low energy X-ray imaging techniques. This integrated circuit connected to silicon strip detector can be used in powder diffractometry and then it reduces the measurement time by two order of magnitude. The second presented ASIC is multichannel low noise readout for extracellular neural recording, which is able to cope with extracellular neuronal recording for the systems comprising several hundreds of electrodes. Important steps forward in this design are a novel solution for band-pass filters for low frequency range, which follow requirements for good matching, low power and small silicon area. This ASIC can be used to monitor the neural activity of such complicated system like retina or brain.

  11. Millimeter-wave and optoelectronic applications of heterostructure integrated circuits

    NASA Technical Reports Server (NTRS)

    Pavlidis, Dimitris

    1991-01-01

    The properties are reviewed of heterostructure devices for microwave-monolithic-integrated circuits (MMICs) and optoelectronic integrated circuits (OICs). Specific devices examined include lattice-matched and pseudomorphic InAlAs/InGaAs high-electron mobility transistors (HEMTs), mixer/multiplier diodes, and heterojunction bipolar transistors (HBTs) developed with a number of materials. MMICs are reviewed that can be employed for amplification, mixing, and signal generation, and receiver/transmitter applications are set forth for OICs based on GaAs and InP heterostructure designs. HEMTs, HBTs, and junction-FETs can be utilized in combination with PIN, MSM, and laser diodes to develop novel communication systems based on technologies that combine microwave and photonic capabilities.

  12. Integral Battery Power Limiting Circuit for Intrinsically Safe Applications

    NASA Technical Reports Server (NTRS)

    Burns, Bradley M.; Blalock, Norman N.

    2010-01-01

    A circuit topology has been designed to guarantee the output of intrinsically safe power for the operation of electrical devices in a hazardous environment. This design uses a MOSFET (metal oxide semiconductor field-effect transistor) as a switch to connect and disconnect power to a load. A test current is provided through a separate path to the load for monitoring by a comparator against a preset threshold level. The circuit is configured so that the test current will detect a fault in the load and open the switch before the main current can respond. The main current passes through the switch and then an inductor. When a fault occurs in the load, the current through the inductor cannot change immediately, but the voltage drops immediately to safe levels. The comparator detects this drop and opens the switch before the current in the inductor has a chance to respond. This circuit protects both the current and voltage from exceeding safe levels. Typically, this type of protection is accomplished by a fuse or a circuit breaker, but in order for a fuse or a circuit breaker to blow or trip, the current must exceed the safe levels momentarily, which may be just enough time to ignite anything in a hazardous environment. To prevent this from happening, a fuse is typically current-limited by the addition of the resistor to keep the current within safe levels while the fuse reacts. The use of a resistor is acceptable for non-battery applications where the wasted energy and voltage drop across the resistor can be tolerated. The use of the switch and inductor minimizes the wasted energy. For example, a circuit runs from a 3.6-V battery that must be current-limited to 200 mA. If the circuit normally draws 10 mA, then an 18-ohm resistor would drop 180 mV during normal operation, while a typical switch (0.02 ohm) and inductor (0.97 ohm) would only drop 9.9 mV. From a power standpoint, the current-limiting resistor protection circuit wastes about 18 times more power than the

  13. Biocompatible Quantum Dots for Biological Applications

    SciTech Connect

    Rosenthal, Sandra; Chang, Jerry; Kovtun, Oleg; McBride, James; Tomlinson, Ian

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  14. Quantum metrology and its application in biology

    NASA Astrophysics Data System (ADS)

    Taylor, Michael A.; Bowen, Warwick P.

    2016-02-01

    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artefacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient details to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science. We hope that this will aid in bridging the communication gap that exists

  15. Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture

    SciTech Connect

    Basset, J.; Stockklauser, A.; Jarausch, D.-D.; Frey, T.; Reichl, C.; Wegscheider, W.; Wallraff, A.; Ensslin, K.; Ihn, T.

    2014-08-11

    We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.

  16. Continuous generation and stabilization of mesoscopic field superposition states in a quantum circuit

    NASA Astrophysics Data System (ADS)

    Roy, Ananda; Leghtas, Zaki; Stone, A. Douglas; Devoret, Michel; Mirrahimi, Mazyar

    2015-01-01

    While dissipation is widely considered to be harmful for quantum coherence, it can, when properly engineered, lead to the stabilization of nontrivial pure quantum states. We propose a scheme for continuous generation and stabilization of Schrödinger cat states in a cavity using dissipation engineering. We first generate nonclassical photon states with definite parity by means of a two-photon drive and dissipation, and then stabilize these transient states against single-photon decay. The single-photon stabilization is autonomous, and is implemented through a second engineered bath, which exploits the photon-number-dependent frequency splitting due to Kerr interactions in the strongly dispersive regime of circuit QED. Starting with the Hamiltonian of the baths plus cavity, we derive an effective model of only the cavity photon states along with analytic expressions for relevant physical quantities, such as the stabilization rate. The deterministic generation of such cat states is one of the key ingredients in performing universal quantum computation.

  17. Quantum Walks: Theory, Application, and Implementation

    NASA Astrophysics Data System (ADS)

    Schmitz, Albert Thomas

    The quantum walk is a method for conceptualizing and designing quantum computing algorithms and it comes in two forms: the continuous-time and discrete-time quantum walk. The thesis is organized into three parts, each of which looks to develop the concept and uses of the quantum walk. The first part is the theory of the quantum walk. This includes definitions and considerations for the various incarnations of the discrete-time quantum walk and a discussion on the general method for connecting the continuous-time and discrete-time versions. As a result, it is shown that most versions of the discrete-time quantum walk can be put into a general form and this can be used to simulate any continuous-time quantum walk. The second part uses these results for a hypothetical application. The application presented is a search algorithm that appears to scale in the time for completion independent of the size of the search space. This behavior is then elaborated upon and shown to have general qualitative agreement with simulations to within the approximations that are made. The third part introduces a method of implementation. Given a universal quantum computer, the method is discussed and shown to simulate an arbitrary discrete-time quantum walk. Some of the benefits of this method are that half the unitary evolution can be achieved without the use of any gates and there may be some possibility for error detection. The three parts combined suggest a possible experiment, given a quantum computing scheme of sufficient robustness.

  18. Decoherence-protected spin-photon quantum gates in a hybrid semiconductor-superconductor circuit

    NASA Astrophysics Data System (ADS)

    Wang, Li; Tu, Tao; Gong, Bo; Guo, Guang-Can

    2015-12-01

    High-fidelity gate operations are a crucial function for quantum information processing. This problem is particularly challenging for hybrid systems where coherence and control time scales greatly differ by orders of magnitude among different elements. Here we propose decoherence-protected gate operations in an important class of hybrid system in the context of a spin qubit in semiconductor quantum dots coupled to a superconductor resonator. Our scheme is able to generate complex photon states for various applications even in the presence of practical imperfections: limited available control of the spin-photon hybrid system and demanding spin decoherence in current state-of-the-art devices.

  19. A quantum galvanometer with high-energy resolution based on a superconducting interferometer circuit

    SciTech Connect

    Bakhtin, P.A.; Makhov, V.I.; Masalov, V.V.; Sretenskii, V.N.; Tyablikov, A.V.; Vasenkov, A.A.

    1985-07-01

    The authors make a comprehensive analysis of principles of constructing measurement systems based on the superconducting quantum interferometer (SQUID) implemented in integrated form. They note trends of promising applications for galvanometric measurement systems. They describe the two types of SQUID, one-junction and two junction. They analyze the processing and formation of superconducting ion chemical signals and structures. And they present their results in a series of charts and diagrams. They conclude that quantum galvanometry using superconducting microcircuits allows one to propose new experimental studies in microelectronics, the techniques of high-precision measurements, and equipment for metrological work.

  20. Graph states of prime-power dimension from generalized CNOT quantum circuit.

    PubMed

    Chen, Lin; Zhou, D L

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  1. Graph states of prime-power dimension from generalized CNOT quantum circuit

    PubMed Central

    Chen, Lin; Zhou, D. L.

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  2. Graph states of prime-power dimension from generalized CNOT quantum circuit.

    PubMed

    Chen, Lin; Zhou, D L

    2016-06-07

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four.

  3. Quantum kernel applications in medicinal chemistry.

    PubMed

    Huang, Lulu; Massa, Lou

    2012-07-01

    Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design. PMID:22857535

  4. An equivalent circuit model for terahertz quantum cascade lasers: Modeling and experiments

    NASA Astrophysics Data System (ADS)

    Yao, Chen; Xu, Tian-Hong; Wan, Wen-Jian; Zhu, Yong-Hao; Cao, Jun-Cheng

    2015-09-01

    Terahertz quantum cascade lasers (THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model. Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61404149), the Major National Development Project of Scientific Instrument and Equipment, China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the Major Project, China (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300).

  5. Superconducting single flux quantum 20 Gb/s clock recovery circuit

    SciTech Connect

    Kaplunenko, V.; Borzenets, V.; Dubash, N.; Van Duzer, T.

    1997-07-01

    A clock recovery circuit has been successfully tested at frequencies up to 20 GHz. This cell is designed for a rapid-single-flux-quantum (RSFQ) telecommunication data switch. It serves to set the receiver clock in phase with the incoming digital signal. The circuit consists of a dc-to-SFQ converter, ring oscillator [(RO) is a closed-loop RSFQ Josephson transmission line], confluence buffer, and an 8-bit binary counter. The input signal transforms to SFQ pulses, and each pulse resets the phase of the ring oscillator, giving a locking time of 1 bit. Thus, the pull-in (capture) range and hold-in (tracking) range are the same, and strictly depend on the encoding of the input signal. This range is estimated to be about 1 GHz at frequency 20 GHz, if the sequence of consecutive ONEs or ZEROs does not exceed 20 bits. The quality factor Q{sub RO} of ring oscillator is about 2000, which gives a jitter of 50 fs for a 35-junction RO. A sampling technique was used to demonstrate phase recovery (phase locking) with only one incoming pulse per 512 clock periods. {copyright} {ital 1997 American Institute of Physics.}

  6. Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics.

    PubMed

    Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D

    2016-04-22

    Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2  D and p=p_{2}=8.3±0.4  D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume. PMID:27152820

  7. Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics.

    PubMed

    Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D

    2016-04-22

    Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2  D and p=p_{2}=8.3±0.4  D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.

  8. Short Distance Applications of Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Huttner, Bruno; Imoto, Nobuyuki; Barnett, Steve M.

    We present an identification protocol based on quantum mechanics. The first user, Alice, needs to identify herself in front of a second user, Bob, by means of a password, known only to both. The safety requirement for Alice is that somebody impersonating Bob, who only pretended to know Alice’s password, shall not be able to obtain information on the password from the exchange. This is an example of a potentially practical new application of quantum mechanics to cryptography.

  9. Quantum simulation

    NASA Astrophysics Data System (ADS)

    Georgescu, I. M.; Ashhab, S.; Nori, Franco

    2014-01-01

    Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.

  10. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying

    2015-02-01

    Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized.

  11. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace.

    PubMed

    Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying

    2015-01-01

    Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized. PMID:25666884

  12. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace

    PubMed Central

    Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying

    2015-01-01

    Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized. PMID:25666884

  13. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace.

    PubMed

    Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying

    2015-02-10

    Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized.

  14. TOPICAL REVIEW: Circuit type simulations of magneto-transport in the quantum Hall effect regime

    NASA Astrophysics Data System (ADS)

    Oswald, Josef; Oswald, Manfred

    2006-02-01

    Localization in the bulk is one of the most important ingredients for the theory of the quantum Hall effect and much attention has been paid to this topic for more than two decades. However, less effort has been made to model the current transport itself. Network models are frequently used in this context and an answer should be given as to whether these are also suitable for modelling the lateral distribution of experimentally excited currents and voltages in the quantum Hall effect (QHE) regime. The term 'network model' is of more general meaning and therefore the term 'circuit type simulations' should be used instead for expressing this kind of modelling. In preceding papers a Landauer-Büttiker type representation of bulk current transport has been successfully used for the numerical simulation of the magneto-transport of two-dimensional electron systems in the high magnetic field regime. This approach allows us to build up a network model, which describes correctly the effect of non-equilibrium currents injected via metallic contacts as in real experiments. In this context we suggest a network model, which serves as a circuit type representation of magneto-transport. It is demonstrated that it is in full agreement with a treatment of bulk current transport as a quantum tunnelling process between magnetic bound states, which exist in the high magnetic field regime. Additionally, we find a striking correspondence between our network representation and the bulk current picture in terms of mixed phases mapped on a chequerboard: at half filled Landau level (LL) coupled droplets of a quantum Hall (QH) liquid phase and coupled droplets of an insulator phase exist at the same time, with each of them occupying half of the bulk area. Removing a single electron from such a QH liquid droplet at half filling completes the QH plateau transition to the next higher QH plateau, while adding a single electron to such a droplet at half filling completes the QH plateau transition

  15. Hybrid planar lightwave circuits for defense and aerospace applications

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing < 5 grams. These chip-based transceivers have been measured to withstand harsh g-forces, including sinusoidal vibrations with amplitude of 20 g acceleration, followed by mechanical shock of 500 g acceleration. The components operate over a wide range of temperatures, with no device failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  16. Integrated superconducting detectors on semiconductors for quantum optics applications

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.

    2016-05-01

    Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

  17. Active resonator reset in the non-linear regime of circuit QED to improve multi-round quantum parity checks

    NASA Astrophysics Data System (ADS)

    Bultink, Cornelis Christiaan; Rol, M. A.; Fu, X.; Dikken, B. C. S.; de Sterke, J. C.; Vermeulen, R. F. L.; Schouten, R. N.; Bruno, A.; Bertels, K. L. M.; Dicarlo, L.

    Reliable quantum parity measurements are essential for fault-tolerant quantum computing. In quantum processors based on circuit QED, the fidelity and speed of multi-round quantum parity checks using an ancillary qubit can be compromised by photons remaining in the readout resonator post measurement, leading to ancilla dephasing and gate errors. The challenge of quickly depleting photons is biggest when maximizing the single-shot readout fidelity involves strong pulses turning the resonators non-linear. We experimentally demonstrate the numerical optimization of counter pulses for fast photon depletion in this non-analytic regime. We compare two methods, one using digital feedback and another running open loop. We assess both methods by minimizing the average number of rounds to ancilla measurement error. We acknowledge funding from the EU FP7 project SCALEQIT, FOM, and an ERC Synergy Grant.

  18. Application of telecom planar lightwave circuits for homeland security sensing

    NASA Astrophysics Data System (ADS)

    Veldhuis, Gert J.; Elders, Job; van Weerden, Harm; Amersfoort, Martin

    2004-03-01

    Over the past decade, a massive effort has been made in the development of planar lightwave circuits (PLCs) for application in optical telecommunications. Major advances have been made, on both the technological and functional performance front. Highly sophisticated software tools that are used to tailor designs to required functional performance support these developments. In addition extensive know-how in the field of packaging, testing, and failure mode and effects analysis (FMEA) has been built up in the struggle for meeting the stringent Telcordia requirements that apply to telecom products. As an example, silica-on-silicon is now a mature technology available at several industrial foundries around the world, where, on the performance front, the arrayed-waveguide grating (AWG) has evolved into an off-the-shelf product. The field of optical chemical-biological (CB) sensors for homeland security application can greatly benefit from the advances as described above. In this paper we discuss the currently available technologies, device concepts, and modeling tools that have emerged from the telecommunications arena and that can effectively be applied to the field of homeland security. Using this profound telecom knowledge base, standard telecom components can readily be tailored for detecting CB agents. Designs for telecom components aim at complete isolation from the environment to exclude impact of environmental parameters on optical performance. For sensing applications, the optical path must be exposed to the measurand, in this area additional development is required beyond what has already been achieved in telecom development. We have tackled this problem, and are now in a position to apply standard telecom components for CB sensing. As an example, the application of an AWG as a refractometer is demonstrated, and its performance evaluated.

  19. Design of beam steering electronic circuits for medical applications

    NASA Astrophysics Data System (ADS)

    Safar, Mohammad A. A. A.

    This thesis deals with the theory and design of a hemispherical antenna array circuit that is capable to operate in the intermediate zones. By doing that, this array can be used in Hyperthermia Treatment for Brain Cancer in which the aim is to noninvasively focus the fields at microwave frequencies to the location of the tumor cells in the brain. Another possible application of the array is to offer an alternative means of sustaining Deep Brain Stimulation other than using the traditional (surgical) approach. The new noninvasive technique is accomplished by the use of a hemispherical antenna array placed on the human's head. The array uses a new beamforming technique that achieves 3 dimensional beamforming or focusing of the magnetic field of antennas to desired points in the brain to achieve either cell death by temperature rise (Hyperthermia Application) or to cause brain stimulation and hopefully alleviate the affects of Parkinson's Disease (Deep Brain Stimulation). The main obstacle in this design was that the far field approximation that is usually used when designing antenna arrays does not apply in this case since the hemispherical array is in close proximity to where the magnetic field is desired to be focused. The antenna array problem is approached as a boundary-valued problem with the human head being modeled as a three layered hemisphere. The exact expressions for electromagnetic fields are derived. Health issues such as electric field exposure and specific absorption rate (SAR) are considered. After developing the main antenna and beamforming theory, a neural network is designed to accomplish the beamforming technique used. The radio-frequency (RF) transmitter was designed to transmit the fields at a frequency of 1.8 GHz. The antenna array can also be used as a receiver. The antenna and beamforming theory is presented. A new reception technique is shown which enables the array to receive multiple magnetic field sources from within the hemispherical

  20. Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture.

    PubMed

    Deng, Guang-Wei; Wei, Da; Johansson, J R; Zhang, Miao-Lei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Tu, Tao; Guo, Guang-Can; Jiang, Hong-Wen; Nori, Franco; Guo, Guo-Ping

    2015-09-18

    We use an on-chip superconducting resonator as a sensitive meter to probe the properties of graphene double quantum dots at microwave frequencies. Specifically, we investigate the charge dephasing rates in a circuit quantum electrodynamics architecture. The dephasing rates strongly depend on the number of charges in the dots, and the variation has a period of four charges, over an extended range of charge numbers. Although the exact mechanism of this fourfold periodicity in dephasing rates is an open problem, our observations hint at the fourfold degeneracy expected in graphene from its spin and valley degrees of freedom. PMID:26431005

  1. Charge Number Dependence of the Dephasing Rates of a Graphene Double Quantum Dot in a Circuit QED Architecture.

    PubMed

    Deng, Guang-Wei; Wei, Da; Johansson, J R; Zhang, Miao-Lei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Tu, Tao; Guo, Guang-Can; Jiang, Hong-Wen; Nori, Franco; Guo, Guo-Ping

    2015-09-18

    We use an on-chip superconducting resonator as a sensitive meter to probe the properties of graphene double quantum dots at microwave frequencies. Specifically, we investigate the charge dephasing rates in a circuit quantum electrodynamics architecture. The dephasing rates strongly depend on the number of charges in the dots, and the variation has a period of four charges, over an extended range of charge numbers. Although the exact mechanism of this fourfold periodicity in dephasing rates is an open problem, our observations hint at the fourfold degeneracy expected in graphene from its spin and valley degrees of freedom.

  2. New microwave excitation signal generating circuit for quantum frequency standard on the atoms of caesium Cs133

    NASA Astrophysics Data System (ADS)

    Petrov, A. A.; Davydov, V. V.

    2016-03-01

    In this work the study, design, development and experimental results of a new microwave excitation signal generating circuit are presented. New design of this circuit is based on the method of direct digital synthesis. The results of theoretical calculations and experimental researches show that the new design not only has a high precision, but also has an improvement in the spectral characteristics of the output signal. Range of generated output frequencies is expanded, that leads to the possibility of detuning the frequency of the neighboring resonance of spectral line and adjust the C-field in quantum frequency standard. Experimental research of the metrological characteristics of the quantum frequency standard on the atoms of caesium with a new functional unit showed an improvement in the daily frequency stability.

  3. Compact chromium oxide thin film resistors for use in nanoscale quantum circuits

    SciTech Connect

    Nash, C. R.; Fenton, J. C.; Constantino, N. G. N.; Warburton, P. A.

    2014-12-14

    We report on the electrical characterisation of a series of thin amorphous chromium oxide (CrO{sub x}) films, grown by dc sputtering, to evaluate their suitability for use as on-chip resistors in nanoelectronics. By increasing the level of oxygen doping, the room-temperature sheet resistance of the CrO{sub x} films was varied from 28 Ω/◻ to 32.6 kΩ/◻. The variation in resistance with cooling to 4.2 K in liquid helium was investigated; the sheet resistance at 4.2 K varied with composition from 65 Ω/◻ to above 20 GΩ/◻. All of the films measured displayed linear current–voltage characteristics at all measured temperatures. For on-chip devices for quantum phase-slip measurements using niobium–silicon nanowires, interfaces between niobium–silicon and chromium oxide are required. We also characterised the contact resistance for one CrO{sub x} composition at an interface with niobium–silicon. We found that a gold intermediate layer is favourable: the specific contact resistivity of chromium-oxide-to-gold interfaces was 0.14 mΩcm{sup 2}, much lower than the value for direct CrO{sub x} to niobium–silicon contact. We conclude that these chromium oxide films are suitable for use in nanoscale circuits as high-value resistors, with resistivity tunable by oxygen content.

  4. Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits.

    PubMed

    Foell, Charles A; Schelew, Ellen; Qiao, Haijun; Abel, Keith A; Hughes, Stephen; van Veggel, Frank C J M; Young, Jeff F

    2012-05-01

    We report coupling of the excitonic photon emission from photoexcited PbSe colloidal quantum dots (QDs) into an optical circuit that was fabricated in a silicon-on-insulator wafer using a CMOS-compatible process. The coupling between excitons and sub-μm sized silicon channel waveguides was mediated by a photonic crystal microcavity. The intensity of the coupled light saturates rapidly with the optical excitation power. The saturation behaviour was quantitatively studied using an isolated photonic crystal cavity with PbSe QDs site-selectively located at the cavity mode antinode position. Saturation occurs when a few μW of continuous wave HeNe pump power excites the QDs with a Gaussian spot size of 2 μm. By comparing the results with a master equation analysis that rigorously accounts for the complex dielectric environment of the QD excitons, the saturation is attributed to ground state depletion due to a non-radiative exciton decay channel with a trap state lifetime ~ 3 μs.

  5. Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits

    PubMed Central

    2013-01-01

    The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is somewhat complicated. However, through unitary transformation, the Hamiltonian became very simple enough that we can easily treat it. By executing inverse transformation for the wave function obtained in the transformed system, we derived the exact wave function associated to the DSN in the original system. The time evolution of the DSN is described in detail, and its corresponding probability density is illustrated. We confirmed that the probability density oscillates with time like that of a classical state. There are two factors that drive the probability density to oscillate: One is the initial amplitude of complementary functions, and the other is the external power source. The oscillation associated with the initial amplitude gradually disappears with time due to the dissipation raised by resistances of the system. These analyses exactly coincide with those obtained from classical state. The characteristics of quantum fluctuations and uncertainty relations for charges and currents are also addressed. PMID:23320631

  6. Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits.

    PubMed

    Foell, Charles A; Schelew, Ellen; Qiao, Haijun; Abel, Keith A; Hughes, Stephen; van Veggel, Frank C J M; Young, Jeff F

    2012-05-01

    We report coupling of the excitonic photon emission from photoexcited PbSe colloidal quantum dots (QDs) into an optical circuit that was fabricated in a silicon-on-insulator wafer using a CMOS-compatible process. The coupling between excitons and sub-μm sized silicon channel waveguides was mediated by a photonic crystal microcavity. The intensity of the coupled light saturates rapidly with the optical excitation power. The saturation behaviour was quantitatively studied using an isolated photonic crystal cavity with PbSe QDs site-selectively located at the cavity mode antinode position. Saturation occurs when a few μW of continuous wave HeNe pump power excites the QDs with a Gaussian spot size of 2 μm. By comparing the results with a master equation analysis that rigorously accounts for the complex dielectric environment of the QD excitons, the saturation is attributed to ground state depletion due to a non-radiative exciton decay channel with a trap state lifetime ~ 3 μs. PMID:22565670

  7. Reversibility conditions for quantum channels and their applications

    SciTech Connect

    Shirokov, M E

    2013-08-31

    Conditions for a quantum channel (noncommutative Markov operator) to be reversible with respect to complete families of quantum states with bounded rank are obtained. A description of all quantum channels reversible with respect to a given (orthogonal or nonorthogonal) complete family of pure states is given. Some applications in quantum information theory are considered. Bibliography: 20 titles.

  8. Heterodyne lock-in thermal coupling measurements in integrated circuits: Applications to test and characterization.

    PubMed

    Altet, J; Aldrete-Vidrio, E; Mateo, D; Salhi, A; Grauby, S; Claeys, W; Dilhaire, S; Perpiñà, X; Jordà, X

    2009-02-01

    Heterodyne strategies can be used to characterize thermal coupling in integrated circuits when the electrical bandwidth of the dissipating circuit is beyond the bandwidth of the thermal coupling mechanism. From the characterization of the thermal coupling, two possible applications are described: extraction of characteristics of the dissipating circuit (the determination of the center frequency of a low-noise amplifier) and the extraction of the thermal coupling transfer function. PMID:19256677

  9. Short Circuit Analysis of Induction Machines Wind Power Application

    SciTech Connect

    Starke, Michael R; Smith, Travis M; Howard, Dustin; Harley, Ronald

    2012-01-01

    he short circuit behavior of Type I (fixed speed) wind turbine-generators is analyzed in this paper to aid in the protection coordination of wind plants of this type. A simple network consisting of one wind turbine-generator is analyzed for two network faults: a three phase short circuit and a phase A to ground fault. Electromagnetic transient simulations and sequence network calculations are compared for the two fault scenarios. It is found that traditional sequence network calculations give accurate results for the short circuit currents in the balanced fault case, but are inaccurate for the un-faulted phases in the unbalanced fault case. The time-current behavior of the fundamental frequency component of the short circuit currents for both fault cases are described, and found to differ significantly in the unbalanced and balanced fault cases

  10. Development of integrated thermionic circuits for high-temperature applications

    NASA Technical Reports Server (NTRS)

    Mccormick, J. B.; Wilde, D.; Depp, S.; Hamilton, D. J.; Kerwin, W.; Derouin, C.; Roybal, L.; Wooley, R.

    1981-01-01

    Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments.

  11. Development of integrated thermionic circuits for high-temperature applications

    SciTech Connect

    McCormick, J.B.; Wilde, D.; Depp, S.; Hamilton, D.J.; Kerwin, W.

    1981-01-01

    This report describes a class of microminiature, thin film devices known as integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500/sup 0/C. The evolution of the ITC concept is discussed. A set of practical design and performance equations is demonstrated. Recent experimental results are discussed in which both devices and simple circuits have successfully operated in 500/sup 0/C environments for extended periods of time (greater than 11,000 hours).

  12. Development of thermionic integrated circuits for applications in hostile environments

    SciTech Connect

    McCormik, J.B.; Lynn, D.K.; Wilde, D.; Cowan, R.; Hamilton, D.J.; Kerwin, W.; Dooley, R.

    1984-04-10

    This report describes a class of devices known as thermionic integrated circuits (TICs) that are capable of extended operation in ambient temperatures up to 500/sup 0/C and in high radiation environments. The evolution of the TIC concept is discussed. A set of practical design and performance equations is demonstrated. Recent experimental results are discussed in which both devices and simple circuits have successfully operated in 500/sup 0/C environments for extended periods of time.

  13. Applications of quantum entropy to statistics

    SciTech Connect

    Silver, R.N.; Martz, H.F.

    1994-07-01

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.

  14. Driver circuit

    NASA Technical Reports Server (NTRS)

    Matsumoto, Raymond T. (Inventor); Higashi, Stanley T. (Inventor)

    1976-01-01

    A driver circuit which has low power requirements, a relatively small number of components and provides flexibility in output voltage setting. The driver circuit comprises, essentially, two portions which are selectively activated by the application of input signals. The output signal is determined by which of the two circuit portions is activated. While each of the two circuit portions operates in a manner similar to silicon controlled rectifiers (SCR), the circuit portions are on only when an input signal is supplied thereto.

  15. Y-Ba-Cu-O superconducting/GaAs semiconducting hybrid circuits for microwave applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Rohrer, N. J.; Valco, G. J.

    1993-01-01

    A two pole superconducting bandpass filter was combined with a packaged GaAs low noise amplifier, and a superconducting X-band oscillator was designed, fabricated, and tested. Both circuits were compared to normal metal circuits at 77K. The results of these experiments, technical issues, and potential applications are presented.

  16. Applications of Maxent to quantum Monte Carlo

    SciTech Connect

    Silver, R.N.; Sivia, D.S.; Gubernatis, J.E. ); Jarrell, M. . Dept. of Physics)

    1990-01-01

    We consider the application of maximum entropy methods to the analysis of data produced by computer simulations. The focus is the calculation of the dynamical properties of quantum many-body systems by Monte Carlo methods, which is termed the Analytical Continuation Problem.'' For the Anderson model of dilute magnetic impurities in metals, we obtain spectral functions and transport coefficients which obey Kondo Universality.'' 24 refs., 7 figs.

  17. Applicability of Rydberg atoms to quantum computers

    NASA Astrophysics Data System (ADS)

    Ryabtsev, Igor I.; Tretyakov, Denis B.; Beterov, Ilya I.

    2005-01-01

    The applicability of Rydberg atoms to quantum computers is examined from an experimental point of view. In many recent theoretical proposals, the excitation of atoms into highly excited Rydberg states was considered as a way to achieve quantum entanglement in cold atomic ensembles via dipole-dipole interactions that could be strong for Rydberg atoms. Appropriate conditions to realize a conditional quantum phase gate have been analysed. We also present the results of modelling experiments on microwave spectroscopy of single- and multi-atom excitations at the one-photon 37S1/2 → 37P1/2 and two-photon 37S1/2 → 38S1/2 transitions in an ensemble of a few sodium Rydberg atoms. The microwave spectra were investigated for various final states of the ensemble initially prepared in its ground state. The results may be applied to the studies on collective laser excitation of ground-state atoms aiming to realize quantum gates.

  18. Semiconductor Quantum Dot Sensitized Solar Cells Based on Ferricyanide/Ferrocyanide Redox Electrolyte Reaching an Open Circuit Photovoltage of 0.8 V.

    PubMed

    Evangelista, Rosemarie M; Makuta, Satoshi; Yonezu, Shota; Andrews, John; Tachibana, Yasuhiro

    2016-06-01

    Semiconductor quantum dot sensitized solar cells (QDSSCs) have rapidly been developed, and their efficiency has recently exceeded 9%. Their performances have mainly been achieved by focusing on improving short circuit photocurrent employing polysulfide electrolytes. However, the increase of open circuit photovoltage (VOC) cannot be expected with QDSSCs based on the polysulfide electrolytes owing to their relatively negative redox potential (around -0.65 V vs Ag/AgCl). Here, we demonstrate enhancement of the open circuit voltage by employing an alternative electrolyte, ferricyanide/ferrocyanide redox couple. The solar cell performance was optimized by investigating the influence of ferricyanide and ferrocyanide concentration on their interfacial charge transfer and transport kinetics. The optimized ferricyanide/ferrocyanide species concentrations (0.01/0.2 M) result in solar energy conversion efficiency of 2% with VOC of 0.8 V. Since the potential difference between the TiO2 conduction band edge at pH 7 and the electrolyte redox potential is about 0.79 V, although the conduction band edge shifts negatively under the negative bias application into the TiO2 electrode, the solar cell with the optimized electrolyte composition has nearly reached the theoretical maximum voltage. This study suggests a promising method to optimize an electrolyte composition for maximizing solar energy conversion efficiency.

  19. Micropower circuits for bidirectional wireless telemetry in neural recording applications.

    PubMed

    Neihart, Nathan M; Harrison, Reid R

    2005-11-01

    State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-microm CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 microW; the power consumption of the transmitter is measured to be 465 microW when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter. PMID:16285399

  20. Micropower circuits for bidirectional wireless telemetry in neural recording applications.

    PubMed

    Neihart, Nathan M; Harrison, Reid R

    2005-11-01

    State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-microm CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 microW; the power consumption of the transmitter is measured to be 465 microW when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter.

  1. Silicon quantum dots for biological applications.

    PubMed

    Chinnathambi, Shanmugavel; Chen, Song; Ganesan, Singaravelu; Hanagata, Nobutaka

    2014-01-01

    Semiconductor nanoparticles (or quantum dots, QDs) exhibit unique optical and electronic properties such as size-controlled fluorescence, high quantum yields, and stability against photobleaching. These properties allow QDs to be used as optical labels for multiplexed imaging and in drug delivery detection systems. Luminescent silicon QDs and surface-modified silicon QDs have also been developed as potential minimally toxic fluorescent probes for bioapplications. Silicon, a well-known power electronic semiconductor material, is considered an extremely biocompatible material, in particular with respect to blood. This review article summarizes existing knowledge related to and recent research progress made in the methods for synthesizing silicon QDs, as well as their optical properties and surface-modification processes. In addition, drug delivery systems and in vitro and in vivo imaging applications that use silicon QDs are also discussed.

  2. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  3. NbSi nanowire quantum phase-slip circuits: dc supercurrent blockade, microwave measurements, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Webster, C. H.; Fenton, J. C.; Hongisto, T. T.; Giblin, S. P.; Zorin, A. B.; Warburton, P. A.

    2013-04-01

    We present a detailed report of microwave irradiation of ultranarrow superconducting nanowires. In our nanofabricated circuits containing a superconducting NbSi nanowire, a dc blockade of current flow was observed at low temperatures below a critical voltage Vc, a strong indicator of the existence of quantum phase-slip (QPS) in the nanowire. We describe the results of applying microwaves to these samples, using a range of frequencies and both continuous-wave and pulsed drive, in order to search for dual Shapiro steps which would constitute an unambiguous demonstration of quantum phase-slip. We observed no steps, and our subsequent thermal analysis suggests that the electron temperature in the series CrO resistors was significantly elevated above the substrate temperature, resulting in sufficient Johnson noise to wash out the steps. To understand the system and inform future work, we have constructed a numerical model of the dynamics of the circuit for dc and ac bias (both continuous-wave and pulsed drive signals) in the presence of Johnson noise. Using this model, we outline important design considerations for device and measurement parameters which should be used in any future experiment to enable the observation of dual Shapiro steps at experimentally accessible temperatures and, thus, lead to the development of a QPS-based quantum current standard.

  4. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO

  5. Si quantum dots and different aspects of applications

    NASA Astrophysics Data System (ADS)

    Torchynska, Tetyana V.

    2011-09-01

    This paper presents briefly the history of the study of Si quantum dot (QDs) structures and the advances of different applications of Si quantum dots (QDs) in quantum electronics, such as: Si QD light emitting diodes, Si QD solar cells and memory structures, Si QD based one electron devices and double QD structures for spintronics [1].

  6. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched {sup 28}Si

    SciTech Connect

    Tosi, Guilherme Mohiyaddin, Fahd A.; Morello, Andrea; Huebl, Hans

    2014-08-15

    Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified {sup 28}Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  7. Supersymmetric quantum mechanics and its applications

    SciTech Connect

    Sukumar, C.V.

    2004-12-23

    The Hamiltonian in Supersymmetric Quantum Mechanics is defined in terms of charges that obey the same algebra as that of the generators of supersymmetry in field theory. The consequences of this symmetry for the spectra of the component parts that constitute the supersymmetric system are explored. The implications of supersymmetry for the solutions of the Schroedinger equation, the Dirac equation, the inverse scattering theory and the multi-soliton solutions of the KdV equation are examined. Applications to scattering problems in Nuclear Physics with specific reference to singular potentials which arise from considerations of supersymmetry will be discussed.

  8. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  9. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  10. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  11. Electrical Devices and Circuits for Low Temperature Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S.; Overton, E.; Elbuluk, M.

    2003-01-01

    The environmental temperature in many NASA missions, such as deep space probes and outer planetary exploration, is significantly below the range for which conventional commercial-off-the-shelf electronics is designed. Presently, spacecraft operating in the cold environment of such deep space missions carry a large number of radioisotope or other heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronic devices and circuits capable of operation at cryogenic temperatures will not only tolerate the harsh environment of deep space but also will reduce system size and weight by eliminating or reducing the heating units and their associate structures; thereby reducing system development cost as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior in the electrical and thermal properties of some semiconductor and dielectric materials at low temperatures. An on-going research and development program on low temperature electronics at the NASA Glenn Research Center focuses on the development of efficient electrical systems and circuits capable of surviving and exploiting the advantages of low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. On-going research activities that are being performed in collaboration with various organizations will also be presented.

  12. Design and application of cotranscriptional non-enzymatic RNA circuits and signal transducers

    PubMed Central

    Bhadra, Sanchita; Ellington, Andrew D.

    2014-01-01

    Nucleic acid circuits are finding increasing real-life applications in diagnostics and synthetic biology. Although DNA has been the main operator in most nucleic acid circuits, transcriptionally produced RNA circuits could provide powerful alternatives for reagent production and their use in cells. Towards these goals, we have implemented a particular nucleic acid circuit, catalytic hairpin assembly, using RNA for both information storage and processing. Our results demonstrated that the design principles developed for DNA circuits could be readily translated to engineering RNA circuits that operated with similar kinetics and sensitivities of detection. Not only could purified RNA hairpins perform amplification reactions but RNA hairpins transcribed in vitro also mediated amplification, even without purification. Moreover, we could read the results of the non-enzymatic amplification reactions using a fluorescent RNA aptamer ‘Spinach’ that was engineered to undergo sequence-specific conformational changes. These advances were applied to the end-point and real-time detection of the isothermal strand displacement amplification reaction that produces single-stranded DNAs as part of its amplification cycle. We were also able to readily engineer gate structures with RNA similar to those that have previously formed the basis of DNA circuit computations. Taken together, these results validate an entirely new chemistry for the implementation of nucleic acid circuits. PMID:24493736

  13. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.

    PubMed

    Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A

    2012-01-27

    Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.

  14. Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Dousti, M. J.; Shafaei, A.; Pedram, M.

    2014-05-01

    This paper presents a physical mapping tool for quantum circuits, which generates the optimal universal logic block (ULB) that can, on average, perform any logical fault-tolerant (FT) quantum operations with the minimum latency. The operation scheduling, placement, and qubit routing problems tackled by the quantum physical mapper are highly dependent on one another. More precisely, the scheduling solution affects the quality of the achievable placement solution due to resource pressures that may be created as a result of operation scheduling, whereas the operation placement and qubit routing solutions influence the scheduling solution due to resulting distances between predecessor and current operations, which in turn determines routing latencies. The proposed flow for the quantum physical mapper captures these dependencies by applying (1) a loose scheduling step, which transforms an initial quantum data flow graph into one that explicitly captures the no-cloning theorem of the quantum computing and then performs instruction scheduling based on a modified force-directed scheduling approach to minimize the resource contention and quantum circuit latency, (2) a placement step, which uses timing-driven instruction placement to minimize the approximate routing latencies while making iterative calls to the aforesaid force-directed scheduler to correct scheduling levels of quantum operations as needed, and (3) a routing step that finds dynamic values of routing latencies for the qubits. In addition to the quantum physical mapper, an approach is presented to determine the single best ULB size for a target quantum circuit by examining the latency of different FT quantum operations mapped onto different ULB sizes and using information about the occurrence frequency of operations on critical paths of the target quantum algorithm to weigh these latencies. Experimental results show an average latency reduction of about 40 % compared to previous work.

  15. High temperature superconducting thin film microwave circuits: Fabrication, characterization, and applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.

  16. The development of an uncommitted integrated circuit for combined digital and analogue applications

    NASA Astrophysics Data System (ADS)

    Kemp, A. J.

    1982-06-01

    An uncommmited integrated circuit is a standardized integrated circuit needing only a fraction of the normal processing steps to program it for a required application. The result is a reduction in the time, money and knowledge required to develop an integrated circuit. The development and industrialization of an uncommitted circuit for combined digital and analog applications are described. Integrated Injection Logic (I2L) is used to realize digital functions, and standard analog techniques, based on a bipolar process, are used to realize analog functions. A novel architecture, as well as the use of three masks to realize a required interconnection pattern, results in a very high efficiency in terms of the number of components that was used.

  17. Mixed application MMIC technologies - Progress in combining RF, digital and photonic circuits

    NASA Technical Reports Server (NTRS)

    Swirhun, S.; Bendett, M.; Sokolov, V.; Bauhahn, P.; Sullivan, C.; Mactaggart, R.; Mukherjee, S.; Hibbs-Brenner, M.; Mondal, J.

    1991-01-01

    Approaches for future 'mixed application' monolithic integrated circuits (ICs) employing optical receive/transmit, RF amplification and modulation and digital control functions are discussed. We focus on compatibility of the photonic component fabrication with conventional RF and digital IC technologies. Recent progress at Honeywell in integrating several parts of the desired RF/digital/photonic circuit integration suite required for construction of a future millimeter-wave optically-controlled phased-array element are illustrated.

  18. Basic structures of integrated photonic circuits for smart biosensor applications

    NASA Astrophysics Data System (ADS)

    Germer, S.; Cherkouk, C.; Rebohle, L.; Helm, M.; Skorupa, W.

    2013-05-01

    The breadth of opportunities for applied technologies for optical sensors ranges from environmental and biochemical control, medical diagnostics to process regulation. Thus the specified usage of the optical sensor system requires a particular design and functionalization. Especially biochemical sensors incorporate electronic and photonic devices for the detection of harmful substances e.g. in drinking water. Here we present recent developments in the integration of a Si-based light emitting device (LED) [1-3, 8] into a photonic circuit for an optical waveguide-based biodetection system. This concept includes the design, fabrication and characterization of the dielectric high contrast waveguide as an important component, beside the LED, in the photonic system circuit. First approaches involve simulations of Si3N4/SiO2-waveguides with the finite element method (FEM) and their fabrication by plasma enhanced chemical vapour deposition (PECVD), optical lithography and reactive ion etching (RIE). In addition, we characterized the deposited layers via ellipsometry and the etched structures by scanning electron microscopy (SEM). The obtained results establish a basis for optimized Si-based LED waveguide butt-coupling with adequate coupling efficiency, low attenuation loss and a high optical power throughput.

  19. Silicon quantum dots for optical applications

    NASA Astrophysics Data System (ADS)

    Wu, Jeslin J.

    Luminescent silicon quantum dots (SiQDs) are emerging as attractive materials for optoelectronic devices, third generation photovoltaics, and bioimaging. Their applicability in the real world is contingent on their optical properties and long-term environmental stability; and in biological applications, factors such as water solubility and toxicity must also be taken into consideration. The aforementioned properties are highly dependent on the QDs' surface chemistry. In this work, SiQDs were engineered for the respective applications using liquid-phase and gas-phase functionalization techniques. Preliminary work in luminescent downshifting for photovoltaic systems are also reported. Highly luminescent SiQDs were fabricated by grafting unsaturated hydrocarbons onto the surface of hydrogen-terminated SiQDs via thermal and photochemical hydrosilylation. An industrially attractive, all gas-phase, nonthermal plasma synthesis, passivation (aided by photochemical reactions), and deposition process was also developed to reduce solvent waste. With photoluminescence quantum yields (PLQYs) nearing 60 %, the alkyl-terminated QDs are attractive materials for optical applications. The functionalized SiQDs also exhibited enhanced thermal stability as compared to their unfunctionalized counterparts, and the photochemically-hydrosilylated QDs further displayed photostability under UV irradiation. These environmentally-stable SiQDs were used as luminescent downshifting layers in photovoltaic systems, which led to enhancements in the blue photoresponse of heterojunction solar cells. Furthermore, the QD films demonstrated antireflective properties, improving the coupling efficiency of sunlight into the cell. For biological applications, oxide, amine, or hydroxyl groups were grafted onto the surface to create water-soluble SiQDs. Luminescent, water-soluble SiQDs were produced in by microplasma treating the QDs in water. Stable QYs exceeding 50 % were obtained. Radical-based and

  20. Quantum technology: from research to application

    NASA Astrophysics Data System (ADS)

    Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter

    2016-05-01

    The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.

  1. Giant photon gain in large-scale quantum dot-circuit QED systems

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-09-01

    Motivated by recent experiments on the generation of coherent light in engineered hybrid quantum systems, we investigate gain in a microwave photonic cavity coupled to quantum dot structures and develop concrete directions for achieving a giant amplification in photon transmission. We propose two architectures for scaling up the electronic gain medium: (i) N -double quantum dot systems and (ii) M -quantum dots arranged in series akin to a quantum cascade laser setup. In both setups, the fermionic reservoirs are voltage biased, and the quantum dots are coupled to a single-mode cavity. Optical amplification is explained based on a sum rule for the transmission function, and it is determined by an intricate competition between two different processes: charge-density response in the gain medium and cavity losses to input and output ports. The same design principle is also responsible for the corresponding giant amplification in other photonic observables, mean photon number, and emission spectrum, thereby realizing a quantum device that behaves as a giant microwave amplifier.

  2. Quantum searching application in search based software engineering

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Song, FangMin; Li, Xiangdong

    2013-05-01

    The Search Based Software Engineering (SBSE) is widely used in software engineering for identifying optimal solutions. However, there is no polynomial-time complexity solution used in the traditional algorithms for SBSE, and that causes the cost very high. In this paper, we analyze and compare several quantum search algorithms that could be applied for SBSE: quantum adiabatic evolution searching algorithm, fixed-point quantum search (FPQS), quantum walks, and a rapid modified Grover quantum searching method. The Grover's algorithm is thought as the best choice for a large-scaled unstructured data searching and theoretically it can be applicable to any search-space structure and any type of searching problems.

  3. Practical applications of digital integrated circuits. Part 2: Minimization techniques, code conversion, flip-flops, and asynchronous circuits

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Here, the 7400 line of transistor to transistor logic (TTL) devices is emphasized almost exclusively where hardware is concerned. However, it should be pointed out that the logic theory contained herein applies to all hardware. Binary numbers, simplification of logic circuits, code conversion circuits, basic flip-flop theory, details about series 54/7400, and asynchronous circuits are discussed.

  4. Quantum cryptography and applications in the optical fiber network

    NASA Astrophysics Data System (ADS)

    Luo, Yuhui

    2005-09-01

    Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an

  5. Microstrip circuit applications of high-Q open microwave resonators

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.; Young, Song-Lin; Wong, Sai-Chu

    1988-09-01

    An open microwave resonator can be formed above a planar microstrip substrate by suspending a spherical reflector above it. A theory is developed to account for the coupling between such an open resonator mode and a microstrip line. The open resonator is shown to have useful circuit properties similar to a dielectric resonator, but with the potential of efficient operation well into the millimeter-wave range. Experimental confirmation of the theory is demonstrated by a scale model of a microstrip-based single-pole bandpass filter, which shows a loaded Q of 860 and a minimum loss of 0.8 dB +/- 0.4 dB at 10 GHz.

  6. Plasmonic nanopatch array for optical integrated circuit applications

    PubMed Central

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-01-01

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle. PMID:24201454

  7. Plasmonic nanopatch array for optical integrated circuit applications.

    PubMed

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  8. An application of carbon nanotubes for integrated circuit interconnects

    NASA Astrophysics Data System (ADS)

    Coiffic, J. C.; Foa Torres, L. E.; Le Poche, H.; Fayolle, M.; Roche, S.; Maitrejean, S.; Roualdes, S.; Ayral, A.

    2008-08-01

    Integrated circuits fabrication is soon reaching strong limitations. Help could come from using carbon nanotubes as conducting wires for interconnects. Although this solution was proposed six years ago, researchers still come up with many obstacles such as localization, low temperature growth on copper, contacting and reproducibility. The integration processes exposed here intend to meet the industrial requirements. Two approaches are then possibly followed. Either using densely packed single wall (SWCNT) (or very tiny multiwall) nanotubes, or filling up the whole interconnect diameter with a single large multiwall (MWCNT) nanotube. In this work, we focus on the integration of multiwall vertical interconnects. Densely packed MWCNTs are grown in via holes by CVD. Alternatively, we have developed a method to obtain a single large nanofibre grown by PECVD (MWCNF) in each via hole. Electrical measurements are performed on CVD and PECVD grown carbon nanotubes. The role of electron-phonon interaction in these devices is also briefly discussed.

  9. Recurrent Delocalization and Quasiequilibration of Photons in Coupled Systems in Circuit Quantum Electrodynamics.

    PubMed

    Hwang, Myung-Joong; Kim, M S; Choi, Mahn-Soo

    2016-04-15

    We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked. PMID:27127967

  10. Recurrent Delocalization and Quasiequilibration of Photons in Coupled Systems in Circuit Quantum Electrodynamics.

    PubMed

    Hwang, Myung-Joong; Kim, M S; Choi, Mahn-Soo

    2016-04-15

    We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked.

  11. Modeling and simulation of carbon nanotube field effect transistor and its circuit application

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Saini, Dinesh Kumar; Agarwal, Dinesh; Aggarwal, Sajal; Khosla, Mamta; Raj, Balwinder

    2016-07-01

    The carbon nanotube field effect transistor (CNTFET) is modelled for circuit application. The model is based on the transport mechanism and it directly relates the transport mechanism with the chirality. Also, it does not consider self consistent equations and thus is used to develop the HSPICE compatible circuit model. For validation of the model, it is applied to the top gate CNTFET structure and the MATLAB simulation results are compared with the simulations of a similar structure created in NanoTCAD ViDES. For demonstrating the circuit compatibility of the model, two circuits viz. inverter and SRAM are designed and simulated in HSPICE. Finally, SRAM performance metrics are compared with those of device simulations from Nano TCAD ViDES.

  12. Holonomic quantum computation in the ultrastrong-coupling regime of circuit QED

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Zhang, Jiang; Wu, Chunfeng; You, J. Q.; Romero, G.

    2016-07-01

    We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of the quantum Rabi model allow us to build an effective three-level Λ -structured artificial atom for quantum computation. The proposed physical implementation includes two gradiometric flux qubits and two microwave resonators where single-qubit gates are realized by a two-tone driving on one physical qubit, and a two-qubit gate is achieved with a time-dependent coupling between the field quadratures of both resonators. Our work paves the way for scalable holonomic quantum computation in ultrastrongly coupled systems.

  13. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.

    PubMed

    Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A

    2012-01-27

    Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%. PMID:22400817

  14. Simulations of magnetic field gradients due to micro-magnets on a triple quantum dot circuit

    SciTech Connect

    Poulin-Lamarre, G.; Bureau-Oxton, C.; Kam, A.; Zawadzki, P.; Aers, G.; Studenikin, S.; Pioro-Ladrière, M.; Sachrajda, A. S.

    2013-12-04

    To quantify the effects of local magnetic fields on triple quantum dots, the Heisenberg Hamiltonian has been diagonalized for three electrons coupled via the exchange interaction. In particular, we have investigated different geometries of micro-magnets located on top of the triple dot in order to optimize the field gradient characteristics. In this paper, we focus on two geometries which are candidates for an addressable EDSR triple quantum dot device.

  15. Experimental realization of the quantum duel game using linear optical circuits

    NASA Astrophysics Data System (ADS)

    Balthazar, W. F.; Passos, M. H. M.; Schmidt, A. G. M.; Caetano, D. P.; Huguenin, J. A. O.

    2015-08-01

    We report on the experimental realization of the quantum duel game for two players, Alice and Bob. Using an all optical approach, we have encoded Alice and Bob states in transverse modes and polarization degrees of freedom of a laser beam, respectively. By setting Alice and Bob input states and considering the possibility of Alice performing two shots, we demonstrated the quantum features of the game as well as we recovered the classical version of the game.

  16. Postselection technique for quantum channels with applications to quantum cryptography.

    PubMed

    Christandl, Matthias; König, Robert; Renner, Renato

    2009-01-16

    We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for an arbitrary input, it is sufficient to consider the case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained with help of the exponential de Finetti theorem.

  17. Postselection technique for quantum channels with applications to quantum cryptography.

    PubMed

    Christandl, Matthias; König, Robert; Renner, Renato

    2009-01-16

    We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for an arbitrary input, it is sufficient to consider the case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained with help of the exponential de Finetti theorem. PMID:19257257

  18. Weak Quantum Theory: Formal Framework and Selected Applications

    SciTech Connect

    Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann

    2006-01-04

    Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli.

  19. Quantum Computational Logics and Possible Applications

    NASA Astrophysics Data System (ADS)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Leporini, Roberto; di Francia, Giuliano Toraldo

    2008-01-01

    In quantum computational logics meanings of formulas are identified with quantum information quantities: systems of qubits or, more generally, mixtures of systems of qubits. We consider two kinds of quantum computational semantics: (1) a compositional semantics, where the meaning of a compound formula is determined by the meanings of its parts; (2) a holistic semantics, which makes essential use of the characteristic “holistic” features of the quantum-theoretic formalism. The compositional and the holistic semantics turn out to characterize the same logic. In this framework, one can introduce the notion of quantum-classical truth table, which corresponds to the most natural way for a quantum computer to calculate classical tautologies. Quantum computational logics can be applied to investigate different kinds of semantic phenomena where holistic, contextual and gestaltic patterns play an essential role (from natural languages to musical compositions).

  20. Local unitary quantum cellular automata

    SciTech Connect

    Perez-Delgado, Carlos A.; Cheung, Donny

    2007-09-15

    In this paper we present a quantization of cellular automata. Our formalism is based on a lattice of qudits and an update rule consisting of local unitary operators that commute with their own lattice translations. One purpose of this model is to act as a theoretical model of quantum computation, similar to the quantum circuit model. It is also shown to be an appropriate abstraction for space-homogeneous quantum phenomena, such as quantum lattice gases, spin chains, and others. Some results that show the benefits of basing the model on local unitary operators are shown: universality, strong connections to the circuit model, simple implementation on quantum hardware, and a wealth of applications.

  1. Application of the DRS4 chip for GHz waveform digitizing circuits

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Bo; Su, Hong; Kong, Jie; Cheng, Ke; Chen, Jin-Da; Du, Cheng-Ming; Zhang, Jing-Zhe

    2015-05-01

    A new fast waveform sampling digitizing circuit based on the domino ring sampler (DRS), a switched capacitor array (SCA) chip, is presented in this paper, which is different from the traditional waveform digitizing circuit constructed with an analog to digital converter (ADC) or time to digital converter. A DRS4 chip is used as a core device in our circuit, which has a fast sampling rate up to five gigabit samples per second (GSPS). Quite satisfactory results are acquired by the preliminary performance test for this circuit board. Eight channels can be provided by one board, which has a 1 V input dynamic range for each channel. The circuit linearity is better than 0.1%, the noise is less than 0.5 mV (root mean square, RMS), and its time resolution is about 50 ps. Several boards can be cascaded to construct a multi-board system. The advantages of high resolution, low cost, low power dissipation, high channel density and small size make the circuit board useful not only for physics experiments, but also for other applications. Supported by National Natural Science Foundation of China (11305233), Specific Fund Research Based on Large-scale Science Instrument Facilities of China (2011YQ12009604)

  2. Quasi-probability representations of quantum theory with applications to quantum information science

    NASA Astrophysics Data System (ADS)

    Ferrie, Christopher

    2011-11-01

    This paper comprises a review of both the quasi-probability representations of infinite-dimensional quantum theory (including the Wigner function) and the more recently defined quasi-probability representations of finite-dimensional quantum theory. We focus on both the characteristics and applications of these representations with an emphasis toward quantum information theory. We discuss the recently proposed unification of the set of possible quasi-probability representations via frame theory and then discuss the practical relevance of negativity in such representations as a criteria for quantumness.

  3. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    SciTech Connect

    Bronn, Nicholas T. Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M.; Liu, Yanbing; Houck, Andrew A.

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  4. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering

    NASA Astrophysics Data System (ADS)

    Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng

    2016-07-01

    Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.

  5. Fabrication of high-temperature superconductor single-flux-quantum circuits using a multilayer structure with a smooth surface

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Tsubone, K.; Tarutani, Y.; Kamitani, Ai; Nakayama, K.; Ishimaru, Y.; Tanabe, K.

    2006-05-01

    We have developed a multilayer structure with a smooth surface and fabrication processes for HTS single-flux-quantum (SFQ) circuits. The multilayer structure with surface roughness Ra less than 2 nm, composed of a La0.2-Y0.9Ba1.9Cu3Ox ground plane and base electrode layer, and SrSnO3 insulating layers, was deposited by off-axis magnetron sputtering. We have fabricated interface-engineered junctions based on the multilayer structure using an La0.2-Yb0.9Ba1.9Cu3Ox counter-electrode layer prepared by pulsed laser deposition. The fabricated junctions exhibited excellent Josephson characteristics with a 1-σ spread in Ic as low as 8% for 1000 junctions. The sheet inductance values below 50 K were 0.8-1.0 pH per square. Operation of several elementary SFQ circuits including a toggle flip-flop, a confluence buffer, a set-reset flip-flop and other SFQ elements has been successfully demonstrated at 30-60 K.

  6. 40 CFR 413.80 - Applicability: Description of the printed circuit board subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the printed circuit board subcategory. 413.80 Section 413.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...

  7. 40 CFR 413.80 - Applicability: Description of the printed circuit board subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability: Description of the printed circuit board subcategory. 413.80 Section 413.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...

  8. 20 CFR 416.1485 - Application of circuit court law.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Justice, concurs that relitigation of an issue and application of our interpretation of the Social... Section 416.1485 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE... determine conflicts with our interpretation of a provision of the Social Security Act or regulations...

  9. 20 CFR 404.985 - Application of circuit court law.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Justice, concurs that relitigation of an issue and application of our interpretation of the Social... Section 404.985 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... determine conflicts with our interpretation of a provision of the Social Security Act or regulations...

  10. Total quantum coherence and its applications

    NASA Astrophysics Data System (ADS)

    Yu, Chang-shui; Yang, Si-ren; Guo, Bao-qing

    2016-09-01

    Quantum coherence is the most fundamental feature of quantum mechanics. The usual understanding of it depends on the choice of the basis, that is, the coherence of the same quantum state is different within different reference framework. To reveal all the potential coherence, we present the total quantum coherence measures in terms of two different methods. One is optimizing maximal basis-dependent coherence with all potential bases considered and the other is quantifying the distance between the state and the incoherent state set. Interestingly, the coherence measures based on relative entropy and l_2 norm have the same form in the two different methods. In particular, we show that the measures based on the non-contractive l_2 norm are also a good measure different from the basis-dependent coherence. In addition, we show that all the measures are analytically calculable and have all the good properties. The experimental schemes for the detection of these coherence measures are also proposed by multiple copies of quantum states instead of reconstructing the full density matrix. By studying one type of quantum probing schemes, we find that both the normalized trace in the scheme of deterministic quantum computation with one qubit and the overlap of two states in quantum overlap measurement schemes can be well described by the change of total coherence of the probing qubit. Hence the nontrivial probing always leads to the change of the total coherence.

  11. Hidden Correlations in Indivisible Qudits as a Resource for Quantum Technologies on Examples of Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Man'ko, M. A.; Man'ko, V. I.

    2016-03-01

    We show that the density-matrix states of noncomposite qudit systems satisfy entropic and information relations like the subadditivity condition, strong subadditivity condition, and Araki-Lieb inequality, which characterize hidden quantum correlations of observables associated with these indivisible systems. We derive these relations employing a specific map of the entropic inequalities known for density matrices of multiqudit systems to the inequalities for density matrices of single-qudit systems. We present the obtained relations in the form of mathematical inequalities for arbitrary Hermitian N × N-matrices. We consider examples of superconducting qubits and qudits. We discuss the hidden correlations in single- qudit states as a new resource for quantum technologies analogous to the known resource in correlations associated with the entanglement in multiqudit systems.

  12. System-level integrated circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  13. System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  14. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    PubMed

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-01

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  15. A simple tachometer circuit

    NASA Technical Reports Server (NTRS)

    Dimeff, J.

    1972-01-01

    Electric circuit to measure frequency of repetitive sinusoidal or rectangular wave is presented. Components of electric circuit and method of operation are explained. Application of circuit as tachometer for automobile is discussed.

  16. Extending the lifetime of a quantum bit with error correction in superconducting circuits.

    PubMed

    Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S M; Jiang, L; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J

    2016-08-25

    Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system. PMID:27437573

  17. Extending the lifetime of a quantum bit with error correction in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S. M.; Jiang, L.; Mirrahimi, Mazyar; Devoret, M. H.; Schoelkopf, R. J.

    2016-08-01

    Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The ‘break-even’ point of QEC—at which the lifetime of a qubit exceeds the lifetime of the constituents of the system—has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0>f and |1>f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

  18. Equivalence between classical and quantum dynamics. Neutral kaons and electric circuits

    NASA Astrophysics Data System (ADS)

    Caruso, M.; Fanchiotti, H.; Canal, C. A. Garcia

    2011-10-01

    An equivalence between the Schrödinger dynamics of a quantum system with a finite number of basis states and a classical dynamics is presented. The equivalence is an isomorphism that connects in univocal way both dynamical systems. We treat the particular case of neutral kaons and found a class of electric networks uniquely related to the kaon system finding the complete map between the matrix elements of the effective Hamiltonian of kaons and those elements of the classical dynamics of the networks. As a consequence, the relevant ɛ parameter that measures CP violation in the kaon system is completely determined in terms of network parameters.

  19. Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics

    SciTech Connect

    Filipp, S.; Goeppl, M.; Fink, J. M.; Baur, M.; Bianchetti, R.; Steffen, L.; Wallraff, A.

    2011-06-15

    Microwave cavities with high quality factors enable coherent coupling of distant quantum systems. Virtual photons lead to a transverse interaction between qubits when they are nonresonant with the cavity but resonant with each other. We experimentally investigate the inverse scaling of the interqubit coupling with the detuning from a cavity mode and its proportionality to the qubit-cavity interaction strength. We demonstrate that the enhanced coupling at higher frequencies is mediated by multiple higher-harmonic cavity modes. Moreover, we observe dark states of the coupled qubit-qubit system and analyze their relation to the symmetry of the applied driving field at different frequencies.

  20. Superconducting nanowire single-photon detectors integrated with waveguide circuits for quantum information science

    NASA Astrophysics Data System (ADS)

    Gaggero, A.; Sahin, D.; Mattioli, F.; Leoni, R.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J. P.; Beetz, J.; Lermer, M.; Höfling, S.; Kamp, M.; Fiore, A.

    2013-05-01

    We present our progress in the development of an integrated technology suitable for the photonic quantum information processing, showing the first autocorrelator based on two separated detectors integrated on top of the same ridge waveguide. An efficiency of ~1% at 1300 nm for both detectors and independent of the polarization of the incoming photons, is reported. This ultracompact device enables the on-chip measurement of the second-order correlation function g(2)(τ) . We will further discuss ongoing work on the integration of detectors with single-photon sources.

  1. Synthesis of colloidal InAs/ZnSe quantum dots and their quantum dot sensitized solar cell (QDSSC) application

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Jung, C.; Jun, Y.; Kim, S.-W.

    2015-11-01

    We report the synthesis of colloidal InAs/ZnSe core/shell quantum dots (QDs) by the hot injection method. InAs nanocrystals have a narrow band gap of 0.38 eV, a high absorption coefficient, and multiple exciton generation; hence, they are promising candidates for application in solar cells. However, poor coverage of the titania layer causes a low solar efficiency of ∼1.74%. We synthesized type-I InAs/ZnSe core/shell QDs as an effective solution; they are expected to have enhanced solar cell efficiency because of the different wettability of the ZnSe shell and their superior stability as compared to that of the unstable InAs core. We characterized the QDs by powder X-ray diffraction, transmission electron microscopy, and absorption and emission spectroscopy. The particle size increased from 2.6 nm to 5 nm, whereas the absorption and emission spectra exhibited a slight red shift, which is typical of type-I structured core/shell QDs. We then fabricated QD-based solar cells and investigated the cell properties, obtaining an open-circuit voltage (VOC) of 0.51 V, a short-circuit current density (JSC) of 12.4 mA/cm2, and a fill factor (FF) of 44%; the efficiency of 2.7% shows an improvement of more than 50% as compared to the values in previous reports.

  2. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Chun; Li, Tie-Fu; Luo, Xiao-Qing; Zhao, Hu; Xiong, Wei; Zhang, Ying-Shan; Chen, Zhen; Liu, J. S.; Chen, Wei; Nori, Franco; Tsai, J. S.; You, J. Q.

    2016-05-01

    Electromagnetically induced transparency (EIT) has been realized in atomic systems, but fulfilling the EIT conditions for artificial atoms made from superconducting circuits is a more difficult task. Here we report an experimental observation of the EIT in a tunable three-dimensional transmon by probing the cavity transmission. To fulfill the EIT conditions, we tune the transmon to adjust its damping rates by utilizing the effect of the cavity on the transmon states. From the experimental observations, we clearly identify the EIT and Autler-Townes splitting (ATS) regimes as well as the transition regime in between. Also, the experimental data demonstrate that the threshold ΩAIC determined by the Akaike information criterion can describe the EIT-ATS transition better than the threshold ΩEIT given by the EIT theory.

  3. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Cho, K.-H.; Patel, U.; Podkaminer, J.; Gao, Y.; Folkman, C. M.; Bark, C. W.; Lee, S.; Zhang, Y.; Pan, X. Q.; McDermott, R.; Eom, C. B.

    2013-10-01

    We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001) Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature) quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  4. Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics.

    PubMed

    Lolli, Jared; Baksic, Alexandre; Nagy, David; Manucharyan, Vladimir E; Ciuti, Cristiano

    2015-05-01

    We investigate theoretically how the spectroscopy of an ancillary qubit can probe cavity (circuit) QED ground states containing photons. We consider three classes of systems (Dicke, Tavis-Cummings, and Hopfield-like models), where nontrivial vacua are the result of ultrastrong coupling between N two-level systems and a single-mode bosonic field. An ancillary qubit detuned with respect to the boson frequency is shown to reveal distinct spectral signatures depending on the type of vacua. In particular, the Lamb shift of the ancilla is sensitive to both ground state photon population and correlations. Backaction of the ancilla on the cavity ground state is investigated, taking into account the dissipation via a consistent master equation for the ultrastrong coupling regime. The conditions for high-fidelity measurements are determined. PMID:26001000

  5. Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics.

    PubMed

    Lolli, Jared; Baksic, Alexandre; Nagy, David; Manucharyan, Vladimir E; Ciuti, Cristiano

    2015-05-01

    We investigate theoretically how the spectroscopy of an ancillary qubit can probe cavity (circuit) QED ground states containing photons. We consider three classes of systems (Dicke, Tavis-Cummings, and Hopfield-like models), where nontrivial vacua are the result of ultrastrong coupling between N two-level systems and a single-mode bosonic field. An ancillary qubit detuned with respect to the boson frequency is shown to reveal distinct spectral signatures depending on the type of vacua. In particular, the Lamb shift of the ancilla is sensitive to both ground state photon population and correlations. Backaction of the ancilla on the cavity ground state is investigated, taking into account the dissipation via a consistent master equation for the ultrastrong coupling regime. The conditions for high-fidelity measurements are determined.

  6. Efficient Quantum Pseudorandomness

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-04-01

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  7. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics. PMID:27176509

  8. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  9. Double electromagnetically induced transparency and its application in quantum information

    NASA Astrophysics Data System (ADS)

    Wang, Zeng-Bin; Marzlin, Karl-Peter; Sanders, Barry C.

    2006-08-01

    Strong optical cross-phase modulation (XPM) for weak fields is tremendously important for optical quantum information (QI) processing and for all-optical switches in classical communication. A sufficiently large XPM would allow the design of deterministic controlled quantum gates for photonic qubits and thus enable universal optical quantum computation. Recently, several proposals have been brought forward to create large XPM using double electromagnetically induced transparency (DEIT) in which two weak signal light pulses travel at equally slow group velocity, but creating DEIT still poses an experimental challenge. We give a brief overview about DEIT and discuss its applications and limitations. A scheme that combines the best features of previous proposals and optimizes the large XPM parameter for DEIT schemes is outlined. Finally we devise a scheme to perform universal quantum information processing, which respects the bound on the achievable nonlinearity and addresses the requirement of quantum error correction.

  10. Innovative devices for integrated circuits - A design perspective

    NASA Astrophysics Data System (ADS)

    Schmitt-Landsiedel, D.; Werner, C.

    2009-04-01

    MOS devices go 3D, new quantum effect devices appear in the research labs. This paper discusses the impact of various innovative device architectures on circuit design. Examples of circuits with FinFETs or Multi-Gate-FETs are shown and their performance is compared with classically scaled CMOS circuits both for digital and analog applications. As an example for novel quantum effect devices beyond CMOS we discuss circuits with Tunneling Field Effect Transistors and their combination with classical MOSFETs and MuGFETs. Finally the potential of more substantial paradigm changes in circuit design will be exploited for the example of magnetic quantum cellular automata using a novel integrated magnetic field clocking scheme.

  11. Quantum groups, non-commutative differential geometry and applications

    SciTech Connect

    Schupp, P

    1993-12-09

    The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ``quantum geometric`` construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of {Delta}(U). It provides invariant maps A {yields} U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ``reflection`` matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity.

  12. Generation of multi-qubit entanglement in a superconducting quantum circuit by parallelized parity measurements

    NASA Astrophysics Data System (ADS)

    Poletto, Stefano; Riste', Diego; Huang, Meng-Zi; Bruno, Alessandro; Vesterinen, Visa; Saira, Olli-Pentti; Dicarlo, Leonardo

    2015-03-01

    We present the generation of multi-qubit entanglement using parallelized ancilla-based parity measurements in a five qubit superconducting processor. Two-qubit Bell states and three-qubit GHZ-type states are generated by single and double two-qubit parity measurements on superposition states, respectively, and characterized by both witnessing and state tomography. The protocol for generation of GHZ-type states can be used as the encoding step in the three-qubit bit-flip quantum error correction code, and made deterministic by digital feedback control. We assess its performance by state tomography of the six encoded cardinal states, and compare to the traditional method of encoding by gates. We acknowledge funding from NWO, FOM and EU FP7 project Scale QIT.

  13. A 2013 Survey on Pressure Monitoring in Adult Cardiopulmonary Bypass Circuits: Modes and Applications

    PubMed Central

    Rigg, Laura; Searles, Bruce; Darling, Edward Morse

    2014-01-01

    Abstract: Pressure data acquired from multiple sites of extracorporeal circuits can be an important parameter to monitor for the safe conduct of cardiopulmonary bypass (CPB). Although previous surveys demonstrate that CPB circuit pressure monitoring is widely used, there are very little data cataloging specific applications of this practice. Therefore, the purpose of this study is to survey the perfusion community to catalog 1) primary CPB circuit site pressure monitoring locations; 2) type of manometers used; 3) pressure monitoring interface and servoregulation with pump console; and 4) the rationale and documentation associated with pressure monitoring during CPB. In June 2013, a validated 27-question online survey was sent directly through an e-mail link to the chief perfusionists in the northeast United States. Completed surveys were received from 75 of 117 surveys deployed yielding a 64% response rate. Arterial line pressure monitoring during CPB is reported by 99% with six distinct circuit site locations identified. Cardioplegia system pressure was monitored by 95% of the centers. For vacuum-assisted venous drainage (VAVD) users, the venous pressure was measured by 72% of the responding centers. Arterial line pressure servoregulation of the arterial pump was indicated by 61% of respondents and 75% of centers record arterial line pressure in their perfusion record. Most centers (77%) report the use of a transducer that is integrated into the pump console providing a digital pressure display, whereas 20% combine an aneroid gauge manometer with the integrated digital transducer. This study demonstrates that the practice of arterial line pressure monitoring during CPB is nearly universal. However, the selection of the pressure monitoring site on the circuit, modes of monitoring pressure, and their applications are highly variable across the perfusion community. PMID:26357797

  14. Industrial application for global quantum communication

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Petruccione, F.

    2012-09-01

    In the last decade the quantum communication community has witnessed great advances in photonic quantum cryptography technology with the research, development and commercialization of automated Quantum Key Distribution (QKD) devices. These first generation devices are however bottlenecked by the achievable spatial coverage. This is due to the intrinsic absorption of the quantum particle into the communication medium. As QKD is of paramount importance in the future ICT landscape, various innovative solutions have been developed and tested to expand the spatial coverage of these networks such as the Quantum City initiative in Durban, South Africa. To expand this further into a global QKD-secured network, recent efforts have focussed on high-altitude free-space techniques through the use of satellites. This couples the QKD-secured Metropolitan Area Networks (MANs) with secured ground-tosatellite links as access points to a global network. Such a solution, however, has critical limitations that reduce its commercial feasibility. As parallel step to the development of satellitebased global QKD networks, we investigate the use of the commercial aircrafts' network as secure transport mechanisms in a global QKD network. This QKD-secured global network will provide a robust infrastructure to create, distribute and manage encryption keys between the MANs of the participating cities.

  15. Quantum Well Infrared Photodetectors for Low Background Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Luong, E. M.; Mumolo, J. M.; McKelvey, M. J.

    1998-01-01

    High performance long-wavelength GaAs/Al(x)Ga(1-x)As quantum well infrared photodetectors for low background applications have been demonstrated. This is the first theoretical analysis of quantum well infrared photodetectors for low background applications and the detectivity D* of 6 x 10(exp 13) cm.square root of Hz/W has been achieved at T = 40 K with 2 x 10(exp 9) photons/cm2/sec background. In addition, this paper describes the demonstration of mid-wavelength/long-wavelength dualband quantum well infrared photodetectors and long-wavelength/very long-wavelength dualband quantum well infrared photodetectors in 4-26 micrometers wavelength region.

  16. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2015-10-01

    The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.

  17. Potential clinical applications of quantum dots

    PubMed Central

    Medintz, Igor L; Mattoussi, Hedi; Clapp, Aaron R

    2008-01-01

    The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting. PMID:18686776

  18. Quantum Dot Spintronics: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Ludwig, Arne; Sothmann, Björn; Höpfner, Henning; Gerhardt, Nils C.; Nannen, Jörg; Kümmell, Tilmar; König, Jürgen; Hofmann, Martin R.; Bacher, Gerd; Wieck, Andreas D.

    Spintronics is a generalization of electronics: Electronics means charge carrier transport, spintronics adds to this transport the supplementary degree of freedom spin which has been neglected since the roots of electronics. In this sense, spintronics is opening a new dimension of functional devices which is even more mighty than it may look at a first glance: The electron spin and its orientation is a pure quantum mechanical phenomenon which leads in its complexity to much more information coding depth and combinatorial operations than the storage and transport of charges in classical electronics. That is why the quantum bit (qubit) concept has been introduced by Schumacher [1].

  19. SEMICONDUCTOR INTEGRATED CIRCUITS: Accurate metamodels of device parameters and their applications in performance modeling and optimization of analog integrated circuits

    NASA Astrophysics Data System (ADS)

    Tao, Liang; Xinzhang, Jia; Junfeng, Chen

    2009-11-01

    Techniques for constructing metamodels of device parameters at BSIM3v3 level accuracy are presented to improve knowledge-based circuit sizing optimization. Based on the analysis of the prediction error of analytical performance expressions, operating point driven (OPD) metamodels of MOSFETs are introduced to capture the circuit's characteristics precisely. In the algorithm of metamodel construction, radial basis functions are adopted to interpolate the scattered multivariate data obtained from a well tailored data sampling scheme designed for MOSFETs. The OPD metamodels can be used to automatically bias the circuit at a specific DC operating point. Analytical-based performance expressions composed by the OPD metamodels show obvious improvement for most small-signal performances compared with simulation-based models. Both operating-point variables and transistor dimensions can be optimized in our nesting-loop optimization formulation to maximize design flexibility. The method is successfully applied to a low-voltage low-power amplifier.

  20. Quantum random number generators and their applications in cryptography

    NASA Astrophysics Data System (ADS)

    Stipcevic, Mario

    2012-06-01

    Random number generators (RNG) are an important resource in many areas: cryptography (both quantum and classical), probabilistic computation (Monte Carlo methods), numerical simulations, industrial testing and labeling, hazard games, scientific research etc. Because today's computers are deterministic, they can not create random numbers unless complemented with a physical RNG. Randomness of a RNG can be defined and scientifically characterized and measured. Especially valuable is the information-theoretic provable RNG which, at state of the art, seem to be possible only by harvest of randomness inherent to certain (simple) quantum systems and such a generator we call Quantum RNG (QRNG). On the other hand, current industry standards dictate use of RNGs based on free running oscillators (FRO) whose randomness is derived from electronics noise present in logic circuits and which, although quantum in nature, cannot be strictly proven. This approach is currently used in FPGA and ASIC chips. We compare weak and strong aspects of the two approaches for use in cryptography and in general. We also give an alternative definition of randomness, discuss usage of single photon detectors in realization of QRNGs and give several examples where QRNG can significantly improve security of a cryptographic system.

  1. Open-Circuit Voltage Deficit, Radiative Sub-Bandgap States, and Prospects in Quantum Dot Solar Cells

    PubMed Central

    Chuang, Chia-Hao Marcus; Maurano, Andrea; Brandt, Riley E.; Hwang, Gyu Weon; Jean, Joel; Buonassisi, Tonio; Bulović, Vladimir; Bawendi, Moungi G.

    2016-01-01

    Quantum dot photovoltaics (QDPV) offer the potential for low-cost solar cells. To develop strategies for continued improvement in QDPVs, a better understanding of the factors that limit their performance is essential. Here, we study carrier recombination processes that limit the power conversion efficiency of PbS QDPVs. We demonstrate the presence of radiative sub-bandgap states and sub-bandgap state filling in operating devices by using photoluminescence (PL) and electroluminescence (EL) spectroscopy. These sub-bandgap states are most likely the origin of the high open-circuit-voltage (VOC) deficit and relatively limited carrier collection that have thus far been observed in QDPVs. Combining these results with our perspectives on recent progress in QDPV, we conclude that eliminating sub-bandgap states in PbS QD films has the potential to show a greater gain than may be attainable by optimization of interfaces between QDs and other materials. We suggest possible future directions that could guide the design of high-performance QDPVs. PMID:25927871

  2. Novel room-temperature functional analogue and digital nanoelectronic circuits based on three-terminal ballistic junctions and planar quantum-wire transistors

    NASA Astrophysics Data System (ADS)

    Sun, J.; Wallin, D.; Brusheim, P.; Maximov, I.; Xu, H. Q.

    2008-03-01

    Three-Terminal ballistic junctions (TBJs) and planar quantum-wire transistors (QWTs) are emerging nanoelectronic devices with various novel electrical properties. In this work, we realize novel nanoelectronic analogue and digital circuits with TBJs and planar QWTs made on In0.75Ga0.25As/InP two-dimensional electron gas (2DEG) material. First we show that a single TBJ can work as a frequency mixer or a phase detector. Second, we fabricate an integrated nanostructure containing two planar QWTs, which can be used as an RS flip-flop element. Third, we make a nanoelectronic circuit by the integration of two TBJs and two planar QWTs. This circuit shows the RS flip-flop functionalities with much larger noise margins in both high and low level inputs. All measurements in this work are done at room temperature.

  3. Applications of quantum dots in cell biology

    NASA Astrophysics Data System (ADS)

    Barroso, Margarida; Mehdibeigi, Roshanak; Brogan, Louise

    2006-02-01

    Quantum dots promise to revolutionize the way fluorescence imaging is used in the Cell Biology field. The unique fluorescent spectral characteristics, high photostability, low photobleaching and tight emission spectra of quantum dots, position them above traditional dyes. Here we will address the ability of EviTags, which are water stabilized quantum dot products from Evident Technologies, to behave as effective FRET donors in cells. EviTag-Hops Yellow (HY; Emission 566nm; Donor) conjugated to biotin were bound to stretapvidin-Alexa568 (Acceptor) conjugates. These HYbiotin-streptavidin-Alexa568 FRET EviTag conjugates were then internalized by fluid-phase into non-polarized MDCK cells. Confocal microscopy detects these FRET EviTag conjugates in endocytic compartments, suggesting that EviTags can be used to track fluid-phase internalization and trafficking. EviTags are shown here to be effective FRET donors when internalized into cells. Upon pairing with the appropriate acceptor dyes, quantum dots will reduce the laborious data processing that is required to compensate for bleed through contamination between organic dye donor and acceptor pair signals. The EviTag technology will simplify and expand the use of FRET in the analysis of cellular processes that may involve protein-protein interactions and other complex cellular processes.

  4. Tensor network characterization of superconducting circuits

    NASA Astrophysics Data System (ADS)

    Duclos-Cianci, Guillaume; Poulin, David; Najafi-Yazdi, Alireza

    Superconducting circuits are promising candidates in the development of reliable quantum computing devices. In principle, one can obtain the Hamiltonian of a generic superconducting circuit and solve for its eigenvalues to obtain its energy spectrum. In practice, however, the computational cost of calculating eigenvalues of a complex device with many degrees of freedom can become prohibitively expensive. In the present work, we investigate the application of tensor network algorithms to enable efficient and accurate characterization of superconducting circuits comprised of many components. Suitable validation test cases are performed to study the accuracy, computational efficiency and limitations of the proposed approach.

  5. Synthesis, Characterization and Application Of PbS Quantum Dots

    SciTech Connect

    Sarma, Sweety; Datta, Pranayee; Barua, Kishore Kr.; Karmakar, Sanjib

    2009-06-29

    Lead Chalcogenides (PbS, PbSe, PbTe) quantum dots (QDs) are ideal for fundamental studies of strongly quantum confined systems with possible technological applications. Tunable electronic transitions at near--infrared wavelengths can be obtained with these QDs. Applications of lead chalcogenides encompass quite a good number of important field viz. the fields of telecommunications, medical electronics, optoelectronics etc. Very recently, it has been proposed that 'memristor'(Memory resistor) can be realized in nanoscale systems with coupled ionic and electronic transports. The hystersis characteristics of 'memristor' are observed in many nanoscale electronic devices including semiconductor quantum dot devices. This paper reports synthesis of PbS QDs by chemical route. The fabricated samples are characterized by UV-Vis, XRD, SEM, TEM, EDS, etc. Observed characteristics confirm nano formation. I-V characteristics of the sample are studied for investigating their applications as 'memristor'.

  6. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control

    NASA Astrophysics Data System (ADS)

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-10-01

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm-2 and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm-2 and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on

  7. Neural CMOS-integrated circuit and its application to data classification.

    PubMed

    Göknar, Izzet Cem; Yildiz, Merih; Minaei, Shahram; Deniz, Engin

    2012-05-01

    Implementation and new applications of a tunable complementary metal-oxide-semiconductor-integrated circuit (CMOS-IC) of a recently proposed classifier core-cell (CC) are presented and tested with two different datasets. With two algorithms-one based on Fisher's linear discriminant analysis and the other based on perceptron learning, used to obtain CCs' tunable parameters-the Haberman and Iris datasets are classified. The parameters so obtained are used for hard-classification of datasets with a neural network structured circuit. Classification performance and coefficient calculation times for both algorithms are given. The CC has 6-ns response time and 1.8-mW power consumption. The fabrication parameters used for the IC are taken from CMOS AMS 0.35-μm technology.

  8. Quantum Groups, Non-Commutative Differential Geometry and Applications

    NASA Astrophysics Data System (ADS)

    Schupp, Peter

    The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a 'quantum geometric' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras {cal A} of functions and {cal U} of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Delta({cal U}). It provides invariant maps {cal A} to{cal U} and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the 'reflection' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras--it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity. We attempt a classification of various types of quantum Lie algebras and present a fairly general example for their construction

  9. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    PubMed

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction.

  10. A 200 C Universal Gate Driver Integrated Circuit for Extreme Environment Applications

    SciTech Connect

    Tolbert, Leon M; Huque, Mohammad A; Islam, Syed K; Blalock, Benjamin J

    2012-01-01

    High-temperature power converters (dc-dc, dc-ac, etc.) have enormous potential in extreme environment applications, including automotive, aerospace, geothermal, nuclear, and well logging. For successful realization of such high-temperature power conversion modules, the associated control electronics also need to perform at high temperature. This paper presents a silicon-on-insulator (SOI) based high-temperature gate driver integrated circuit (IC) incorporating an on-chip low-power temperature sensor and demonstrating an improved peak output current drive over our previously reported work. This driver IC has been primarily designed for automotive applications, where the underhood temperature can reach 200 C. This new gate driver prototype has been designed and implemented in a 0.8 {micro}m, 2-poly, and 3-metal bipolar CMOS-DMOS (Double-Diffused Metal-Oxide Semiconductor) on SOI process and has been successfully tested for up to 200 C ambient temperature driving a SiC MOSFET and a SiC normally-ON JFET. The salient feature of the proposed universal gate driver is its ability to drive power switches over a wide range of gate turn-ON voltages such as MOSFET (0 to 20 V), normally-OFF JFET (-7 to 3 V), and normally-ON JFET (-20 to 0 V). The measured peak output current capability of the driver is around 5 A and is thus capable of driving several power switches connected in parallel. An ultralow-power on-chip temperature supervisory circuit has also been integrated into the die to safeguard the driver circuit against excessive die temperature ({ge}220 C). This approach utilizes increased diode leakage current at higher temperature to monitor the die temperature. The power consumption of the proposed temperature sensor circuit is below 10 {micro}W for operating temperature up to 200 C.

  11. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  12. Effect of parameter variations on the static and dynamic behaviour of a self-assembled quantum-dot laser using circuit-level modelling

    SciTech Connect

    Razm-Pa, M; Emami, F

    2015-01-31

    We report a new circuit model for a self-assembled quantum-dot (SAQD) laser made of InGaAs/GaAs structures. The model is based on the excited state and standard rate equations, improves the previously suggested circuit models and also provides and investigates the performance of this kind of laser. The carrier dynamic effects on static and dynamic characteristics of a SAQD laser are analysed. The phonon bottleneck problem is simulated. Quantum-dot lasers are shown to be quite sensitive to the crystal quality outside and inside quantum dots. The effects of QD coverage factor, inhomogeneous broadening, the physical source of which is the size fluctuation of quantum dots formed by self-assembly of atoms, and cavity length on the SAQD laser characteristics are analysed. The results of simulation show that an increase in the cavity length and in the QD coverage factor results in the growth of the output power. On the other hand, an increase in the coverage factor and a degradation of inhomogeneous broadening lead to an increase in the modulation bandwidth. The effect of the QD height (cylindrical shape) and stripe width of the laser cavity on QD laser modulation is also analysed. (lasers)

  13. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    SciTech Connect

    Hooker, Matthew; Fabian, Paul

    2013-05-01

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

  14. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  15. Photonic quantum technologies (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy L.

    2015-09-01

    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  16. Applications of fidelity measures to complex quantum systems.

    PubMed

    Wimberger, Sandro

    2016-06-13

    We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967

  17. Development of wide range charge integration application specified integrated circuit for photo-sensor

    NASA Astrophysics Data System (ADS)

    Katayose, Yusaku; Ikeda, Hirokazu; Tanaka, Manobu; Shibata, Makio

    2013-01-01

    A front-end application specified integrated circuit (ASIC) is developed with a wide dynamic range amplifier (WDAMP) to read-out signals from a photo-sensor like a photodiode. The WDAMP ASIC consists of a charge sensitive preamplifier, four wave-shaping circuits with different amplification factors and Wilkinson-type analog-to-digital converter (ADC). To realize a wider range, the integrating capacitor in the preamplifier can be changed from 4 pF to 16 pF by a two-bit switch. The output of a preamplifier is shared by the four wave-shaping circuits with four gains of 1, 4, 16 and 64 to adapt the input range of ADC. A 0.25-μm CMOS process (of UMC electronics CO., LTD) is used to fabricate the ASIC with four-channels. The dynamic range of four orders of magnitude is achieved with the maximum range over 20 pC and the noise performance of 0.46 fC + 6.4×10-4 fC/pF.

  18. Equivalent-circuit modeling of a MEMS phase detector for phase-locked loop applications

    NASA Astrophysics Data System (ADS)

    Han, Juzheng; Liao, Xiaoping

    2016-05-01

    This paper presents an equivalent-circuit model of a MEMS phase detector and deals with its application in phase-locked loops (PLLs). Due to the dc voltage output of the MEMS phase detector, the low-pass filter which is essential in a conventional PLL can be omitted. Thus, the layout area can be miniaturized and the consumed power can be saved. The signal transmission inside the phase detector is realized in circuit model by waveguide modules while the electric-thermal-electric conversion is illustrated in circuit term based on analogies between thermal and electrical variables. Losses are taken into consideration in the modeling. Measurement verifications for the phase detector model are conducted at different input powers 11, 14 and 17 dBm at 10 GHz. The maximum discrepancies between the simulated and measured results are 0.14, 0.42 and 1.13 mV, respectively. A new structure of PLL is constructed by connecting the presented model directly to a VCO module in the simulation platform. It allows to model the transient behaviors of the PLL at both locked and out of lock conditions. The VCO output frequency is revealed to be synchronized with the reference frequency within the hold range. All the modeling and simulation are performed in Advanced Design System (ADS) software.

  19. PT -symmetric Hamiltonians and their application in quantum information

    NASA Astrophysics Data System (ADS)

    Croke, Sarah

    2015-05-01

    We discuss the prospect of PT -symmetric Hamiltonians finding applications in quantum information science, and conclude that such evolution is unlikely to provide any benefit over existing techniques. Although it has been known for some time that PT -symmetric quantum theory, when viewed as a unitary theory, is exactly equivalent to standard quantum mechanics, proposals continue to be put forward for schemes in which PT -symmetric quantum theory can outperform standard quantum theory. The most recent of these is the suggestion to use PT -symmetric Hamiltonians to perform an exponentially fast database search, a task known to be impossible with a quantum computer. Further, such a scheme has been shown to apparently produce effects in conflict with fundamental information-theoretic principles, such as the impossibility of superluminal information transfer, and the invariance of entanglement under local operations. In this paper we propose three inequivalent experimental implementations of PT -symmetric Hamiltonians, with careful attention to the resources required to realize each such evolution. Such an operational approach allows us to resolve these apparent conflicts, and evaluate fully schemes proposed in the literature for faster time evolution and state discrimination.

  20. A Framework for Robust Multivariable Optimization of Integrated Circuits in Space Applications

    NASA Technical Reports Server (NTRS)

    DuMonthier, Jeffrey; Suarez, George

    2013-01-01

    Application Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the

  1. Recent Developments in Quantum Monte Carlo: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Aspuru-Guzik, Alan; Austin, Brian; Domin, Dominik; Galek, Peter T. A.; Handy, Nicholas; Prasad, Rajendra; Salomon-Ferrer, Romelia; Umezawa, Naoto; Lester, William A.

    2007-12-01

    The quantum Monte Carlo method in the diffusion Monte Carlo form has become recognized for its capability of describing the electronic structure of atomic, molecular and condensed matter systems to high accuracy. This talk will briefly outline the method with emphasis on recent developments connected with trial function construction, linear scaling, and applications to selected systems.

  2. Ambipolar MoTe2 transistors and their applications in logic circuits.

    PubMed

    Lin, Yen-Fu; Xu, Yong; Wang, Sheng-Tsung; Li, Song-Lin; Yamamoto, Mahito; Aparecido-Ferreira, Alex; Li, Wenwu; Sun, Huabin; Nakaharai, Shu; Jian, Wen-Bin; Ueno, Keiji; Tsukagoshi, Kazuhito

    2014-05-28

    We report ambipolar charge transport in α-molybdenum ditelluride (MoTe2 ) flakes, whereby the temperature dependence of the electrical characteristics was systematically analyzed. The ambipolarity of the charge transport originated from the formation of Schottky barriers at the metal/MoTe2 contacts. The Schottky barrier heights as well as the current on/off ratio could be modified by modulating the electrostatic fields of the back-gate voltage (Vbg) and drain-source voltage (Vds). Using these ambipolar MoTe2 transistors we fabricated complementary inverters and amplifiers, demonstrating their feasibility for future digital and analog circuit applications. PMID:24692079

  3. Some implications of superconducting quantum interference to the application of master equations in engineering quantum technologies

    NASA Astrophysics Data System (ADS)

    Duffus, S. N. A.; Bjergstrom, K. N.; Dwyer, V. M.; Samson, J. H.; Spiller, T. P.; Zagoskin, A. M.; Munro, W. J.; Nemoto, Kae; Everitt, M. J.

    2016-08-01

    In this paper we consider the modeling and simulation of open quantum systems from a device engineering perspective. We derive master equations at different levels of approximation for a superconducting quantum interference device (SQUID) ring coupled to an ohmic bath. We demonstrate that the master equations we consider produce decoherences that are qualitatively and quantitatively dependent on both the level of approximation and the ring's external flux bias. We discuss the issues raised when seeking to obtain Lindbladian dissipation and show, in this case, that the external flux (which may be considered to be a control variable in some applications) is not confined to the Hamiltonian, as often assumed in quantum control, but also appears in the Lindblad terms.

  4. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  5. Applications of Absorption Spectroscopy Using Quantum Cascade Lasers.

    PubMed

    2014-10-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  6. Quantum counting algorithm and its application in mesoscopic physics

    SciTech Connect

    Lesovik, G. B.; Suslov, M. V.; Blatter, G.

    2010-07-15

    We discuss a quantum counting algorithm which transforms a physical particle-number state (and superpositions thereof) into a binary number. The algorithm involves two quantum Fourier transformations. One transformation is in physical space, where a stream of nApplications include a divisibility check characterizing the size of a finite train of particles in a quantum wire and a scheme allowing one to entangle multiparticle wave functions in a Mach-Zehnder interferometer, generating Bell, Greenberger-Horne-Zeilinger, or Dicke states.

  7. Some applications of uncertainty relations in quantum information

    NASA Astrophysics Data System (ADS)

    Majumdar, A. S.; Pramanik, T.

    2016-08-01

    We discuss some applications of various versions of uncertainty relations for both discrete and continuous variables in the context of quantum information theory. The Heisenberg uncertainty relation enables demonstration of the Einstein, Podolsky and Rosen (EPR) paradox. Entropic uncertainty relations (EURs) are used to reveal quantum steering for non-Gaussian continuous variable states. EURs for discrete variables are studied in the context of quantum memory where fine-graining yields the optimum lower bound of uncertainty. The fine-grained uncertainty relation is used to obtain connections between uncertainty and the nonlocality of retrieval games for bipartite and tripartite systems. The Robertson-Schrödinger (RS) uncertainty relation is applied for distinguishing pure and mixed states of discrete variables.

  8. Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yamanaka, A.; Ozaki, N.; Ikeda, N.; Sugimoto, Y.

    2016-06-01

    The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs) and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs) with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  9. In application specific integrated circuit and data acquisition system for digital X-ray imaging

    NASA Astrophysics Data System (ADS)

    Beuville, E.; Cederström, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-02-01

    We have developed an Application Specific Integrated Circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications.

  10. Classical and quantum superintegrability with applications

    NASA Astrophysics Data System (ADS)

    Miller, Willard, Jr.; Post, Sarah; Winternitz, Pavel

    2013-10-01

    A superintegrable system is, roughly speaking, a system that allows more integrals of motion than degrees of freedom. This review is devoted to finite dimensional classical and quantum superintegrable systems with scalar potentials and integrals of motion that are polynomials in the momenta. We present a classification of second-order superintegrable systems in two-dimensional Riemannian and pseudo-Riemannian spaces. It is based on the study of the quadratic algebras of the integrals of motion and on the equivalence of different systems under coupling constant metamorphosis. The determining equations for the existence of integrals of motion of arbitrary order in real Euclidean space E2 are presented and partially solved for the case of third-order integrals. A systematic exposition is given of systems in two and higher dimensional space that allow integrals of arbitrary order. The algebras of integrals of motions are not necessarily quadratic but close polynomially or rationally. The relation between superintegrability and the classification of orthogonal polynomials is analyzed.

  11. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  12. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  13. A coherent RC circuit

    NASA Astrophysics Data System (ADS)

    Gabelli, J.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2012-12-01

    We review the first experiment on dynamic transport in a phase-coherent quantum conductor. In our discussion, we highlight the use of time-dependent transport as a means of gaining insight into charge relaxation on a mesoscopic scale. For this purpose, we studied the ac conductance of a model quantum conductor, i.e. the quantum RC circuit. Prior to our experimental work, Büttiker et al (1993 Phys. Lett. A 180 364-9) first worked on dynamic mesoscopic transport in the 1990s. They predicted that the mesoscopic RC circuit can be described by a quantum capacitance related to the density of states in the capacitor and a constant charge-relaxation resistance equal to half of the resistance quantum h/2e2, when a single mode is transmitted between the capacitance and a reservoir. By applying a microwave excitation to a gate located on top of a coherent submicronic quantum dot that is coupled to a reservoir, we validate this theoretical prediction on the ac conductance of the quantum RC circuit. Our study demonstrates that the ac conductance is directly related to the dwell time of electrons in the capacitor. Thereby, we observed a counterintuitive behavior of a quantum origin: as the transmission of the single conducting mode decreases, the resistance of the quantum RC circuit remains constant while the capacitance oscillates.

  14. A Multi-Functional Planar Lightwave Circuit for Optical Signal Processing Applications

    NASA Astrophysics Data System (ADS)

    Samadi, Payman

    Ultrafast optical signal processing is now a necessary tool in several domains of science and technology such as high-speed telecommunication, biomedicine, microscopy and radar systems. Optical arbitrary waveform generation is an optical signal processing function which has applications in optical telecommunication networks, sampling, and photonically-assisted RF waveform generation. Furthermore, performing optical signal processing in photonic integrated circuits is crucial for system integration and overcoming the speed limitations in electrical to optical conversion. In this thesis, we introduce a silica-based planar lightwave circuit which performs several optical signal processing functions. We start by reviewing the material system used to fabricate the device. We justify the choice of the material for our application and explain the fabrication process and the experiments to characterize the device. Then we introduce the fundamental theory of our device which is based on pulse repetition rate multiplication (PRRM) and shaping. We review the theory of direct time-domain approach to perform the PRRM and shaping. Experiments to measure the impulse response of the device, perform PRRM and polarization dependence characterization is shown as well. Three main applications of our device is presented next. First we use the PLC device with non-linear optics to generate multiple pulse trains at different wavelengths and different repetition rates. Second, we use the fundamental of the previous application to perform demultiplexing of optical time division multiplexed signals. Our approach is flexible in a sense that it can demultiplex any tributary channel of lower rate data, also it works for both amplitude and phase modulated data. Finally, using the second generation of our PLC device, we photonically generate radio frequency waveforms. We are able to generate various pulse shapes which are generally hard to generate using electronics at frequencies up to 80 GHz

  15. Optically driven quantum networks: Applications in molecular electronics

    NASA Astrophysics Data System (ADS)

    Körner, H.; Mahler, G.

    1993-07-01

    Progress in nanostructuring tends to provide us with synthetic structures for which, for example, energy or time scales can be adjusted in such a way that quantum systems with unusual physical properties emerge. The challenge of molecular electronics is to make these properties represent computer functions. We investigate a quantum network model consisting of a modular array of localized few-level subsystems. When driven optically, a diagonal (energy renormalizing) interaction among these subsystems is shown to lead to a complex stochastic dynamics, which may be interpreted as a highly parallel Monte-Carlo-type simulation ``programmed'' by the external light field. A first application is demonstrated in terms of a two-dimensional kinetic Ising model with J(Rn-Rm)~||Rn-Rm||-3. In another application the nonlocal nonlinear optical properties are exploited in specific pump and probe scenarios: Under certain conditions simple image processing tasks are performed. A possible realization of such quantum network models by an array of charge-transfer quantum dots is discussed.

  16. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  17. Wet chemical synthesis of quantum dots for medical applications

    NASA Astrophysics Data System (ADS)

    Cepeda-Pérez, E. I.; López-Luke, T.; Pérez-Mayen, L.; Hidalgo, Alberto; de la Rosa, E.; Torres-Castro, Alejandro; Ceja-Fdez, Andrea; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana L.

    2015-07-01

    In recent years the use of nanoparticles in medical applications has boomed. This is because the various applications that provide these materials like drug delivery, cancer cell diagnostics and therapeutics [1-5]. Biomedical applications of Quantum Dots (QDs) are focused on molecular imaging and biological sensing due to its optical properties. The size of QDs can be continuously tuned from 2 to 10 nm in diameter, which, after polymer encapsulation, generally increases to 5 - 20 nm diminishing the toxicity. The QDs prepared in our lab have a diameter between 2 to 7 nm. Particles smaller than 5 nm can interact with the cells [2]. Some of the characteristics that distinguish QDs from the commonly used fluorophores are wider range of emission, narrow and more sharply defined emission peak, brighter emission and a higher signal to noise ratio compared with organic dyes [6]. In this paper we will show our progress in the study of the interaction of quantum dots in live cells for image and Raman spectroscopy applications. We will also show the results of the interaction of quantum dots with genomic DNA for diagnostic purposes.

  18. Quantum gate decomposition algorithms.

    SciTech Connect

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  19. Unoxidized porous Si as an isolation material for mixed-signal integrated circuit applications

    NASA Astrophysics Data System (ADS)

    Kim, Han-Su; Xie, Ya-Hong; DeVincentis, Marc; Itoh, Tatsuo; Jenkins, Keith A.

    2003-04-01

    An isolation technology for radio frequency (rf) applications based on unoxidized porous Si (PS) is demonstrated. This study examines all the important issues pertinent to incorporating PS with Si very-large-scale integration (VLSI) technology, where PS is used as a semi-insulating material. Specifically, the issues on rf isolation performance of PS as a function of porosity [from coplanar waveguide (CPW) line measurements] and PS thickness (from on-chip inductors) and the stress generated from incorporating PS regions by anodization are discussed in detail. CPW line measurements show that the relative dielectric constant of PS films decreases from 9 to 3 with increasing porosity from 24% to 78%. PS is a very low loss material with loss tangent <0.001 at 20 GHz when its porosity is above 51%. rf crosstalk through a Si substrate can be reduced to that through air by inserting a PS trench between noise generating circuit and noise sensing circuit. On-chip spiral inductors fabricated on top of PS regions of through-the-wafer thickness have Qmax of about 29 at 7 GHz and resonant frequency higher than 20 GHz. With the additional advantage of planar topography and mechanical integrity, we show that unoxidized PS is an outstanding material for rf isolation in Si VLSI.

  20. Novel Micromachined Coplanar Waveguide Transmission Lines for Application in Millimeter-Wave Circuits

    NASA Astrophysics Data System (ADS)

    Park, Jae-Hyoung; Baek, Chang-Wook; Jung, Sanghwa; Kim, Hong-Teuk; Kwon, Youngwoo; Kim, Yong-Kweon

    2000-12-01

    In this paper, novel micromachined coplanar waveguide(CPW) transmission lines for application in millimeter-wave circuits are proposed. Two types of transmission lines with the length of 1 cm are fabricated and the measured characteristics are compared with those of the conventional CPW transmission line. One is the elevated CPW(ECPW) transmission line and the other is the overlay CPW(OCPW) line. These transmission lines are composed of 3-μm-thick electroplated gold lines with overhanging parts. By elevating the metal lines from the substrate using micromachining technology, the conductor and substrate dielectric loss can be reduced and easily integrated with conventional monolithic microwave integrated circuits. Compared with the conventional CPW line showing 2.65 dB/cm insertion loss at 50 GHz, the loss can be reduced to 1.9 dB/cm and 1.25 dB/cm at 50 GHz in the case of the ECPW and OCPW transmission lines, respectively. Also, the OCPW transmission line shows that the insertion loss does not vary with the change of the characteristic impedance. As shown in the measured and simulated results, the insertion loss is maintained below 1.4 dB/cm over wide impedance ranges.

  1. Carbon Nanotube Self-Gating Diode and Application in Integrated Circuits.

    PubMed

    Si, Jia; Liu, Lijun; Wang, Fanglin; Zhang, Zhiyong; Peng, Lian-Mao

    2016-07-26

    A nano self-gating diode (SGD) based on nanoscale semiconducting material is proposed, simulated, and realized on semiconducting carbon nanotubes (CNTs) through a doping-free fabrication process. The relationships between the performance and material/structural parameters of the SGD are explored through numerical simulation and verified by experiment results. Based on these results, performance optimization strategy is outlined, and high performance CNT SGDs are fabricated and demonstrated to surpass other published CNT diodes. In particular the CNT SGD exhibits high rectifier factor of up to 1.4 × 10(6) while retains large on-state current. Benefiting from high yield and stability, CNT SGDs are used for constructing logic and analog integrated circuits. Two kinds of basic digital gates (AND and OR) have been realized on chip through using CNT SGDs and on-chip Ti wire resistances, and a full wave rectifier circuit has been demonstrated through using two CNT SGDs. Although demonstrated here using CNT SGDs, this device structure may in principle be implemented using other semiconducting nanomaterials, to provide ideas and building blocks for electronic applications based on nanoscale materials. PMID:27322134

  2. Heterostructure-based high-speed/high-frequency electronic circuit applications

    NASA Astrophysics Data System (ADS)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  3. Slot-waveguide cavities for optical quantum information applications.

    PubMed

    Hiscocks, Mark P; Su, Chun-Hsu; Gibson, Brant C; Greentree, Andrew D; Hollenberg, Lloyd C L; Ladouceur, François

    2009-04-27

    To take existing quantum optical experiments and devices into a more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of tom-photon interactions requires very small cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond- and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogen-vacancy (NV) defect. We show that one can achieve increased single-photon Rabi frequencies of order O(10(11)) rad s(-1) in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.

  4. Quantum transport in carbon nanorings for metamaterials applications

    NASA Astrophysics Data System (ADS)

    Jack, Mark

    2010-10-01

    Central theme of this theoretical study is quantum transport on carbon nanoring surfaces under microwave illumination and the transmission of electromagnetic energy across a two-dimensional array of properly aligned toroidal carbon nanotubes for metamaterials applications. In a classical description, electromagnetically driven electronic surface currents in the rings will themselves generate in multipole radiation to interfere with an incoming polarized wave front, which may lead to new optical response characteristics created e.g. by the chiral features of the underlying mesoscopic structures. Possible applications ranging from quantum computing to new energy harvesting technologies could be envisioned. At these mesoscopic scales however a proper quantum mechanical treatment of these coherent electronic oscillations in form of surface plasmon-polaritons (SPPs) that travel along the toroidal surfaces is necessary. The main effects of SPPs in charge transport can be described in a simplified Hubbard model that allows a generalization of single-electron tightbinding transport calculations in a non-equilibrium Green's function formalism. An existing Fortran code is being expanded to include these quantum many-body effects by calculating the transport Green's function GF using highly optimized, parallel matrix inversion routines in an object-oriented C++ code with the ScaLAPACK library on NSF TeraGrid resources (TACC). Multiparticle quantum effects can thus be treated accurately and quickly for realistic nanoring device sizes of few 10,000 carbon atoms or more. The influence of different torus dimensions and relative alignments may be studied on how electromagnetic energy is stored and transmitted across the metamaterial. Additionally, in a collaboration with the Georgia Institute of Technology the influence of electron-phonon coupling on transport for low-energy vibrational modes is investigated, crucial for understanding true nanodevice performance when including

  5. Numerical simulation of NQR/NMR: Applications in quantum computing.

    PubMed

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php.

  6. Graphene-based tunable non-foster circuit for VHF applications

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Nagarkoti, Deepak Singh; Rajab, Khalid Z.; Hao, Yang

    2016-06-01

    This paper presents a negative impedance converter (NIC) based on graphene field effect transistors (GFETs) for VHF applications. The NIC is designed following Linvill's open circuit stable (OCS) topology. The DC modelling parameters of GFET are extracted from a device measured by Meric et al. [IEEE Electron Devices Meeting, 23.2.1 (2010)] Estimated parasitics are also taken into account. Simulation results from Keysight Advanced Design System (ADS) show good NIC performance up to 200 MHz and the value of negative capacitance is directly proportional to the capacitive load. In addition, it has been shown that by varying the supply voltage the value of negative capacitance can also be tuned. The NIC stability has been tested up to 2 GHz (10 times the maximum operation frequency) using Nyquist stability criterion to ensure there are no oscillation issues.

  7. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  8. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  9. Quantum transport theory for nanostructures: Application to STM-tip-induced quantum dots and MOSFETs

    NASA Astrophysics Data System (ADS)

    Croitoru, Mihail

    The subject of the thesis is electron transport in advanced semiconductor devices with focus on two classes of devices: nanoscale metal-oxide field-effect transistors (MOSFETs) and scanning-tunneling microscope (STM)-tip-induced quantum dots. The first part of the work is devoted to the investigation of the electron quantum transport in nanoscale transistors. Si-based MOSFETs with typical sizes about 100 nm have found an application in highly integrated systems. The mechanism of the electron transport in these devices differs from that in devices with sizes of 50 nm and below. The conventional devices are described by the Boltzmann transport equation. This theory focuses on scattering-dominant transport, which typically occurs in long-channel devices. On the contrary, in a structure with a characteristic size of the order of the mean free path, the electron transport is essentially ballistic. Downscaling MOSFETs to their limiting sizes is a key challenge for the semiconductor industry. Detailed simulations that capture the physics of carrier transport and the quantum mechanical effects that occur in these devices complements experimental work in addressing this challenge. Furthermore, a conceptual view of the nanoscale transistor is needed to support the interpretation of the simulations and experimental data as well as to guide further experimental work. The objective of this part of the work is to provide such a view by formulating a detailed quantum-mechanical transport model and performing extensive numerical simulations. We have developed a model along these lines for the nanosize MOSFETs with different device geometries. In this work two types of transistors are investigated: single-gate and double-gate structures. It is shown that an ultra-thin double-gate silicon-on-insulator MOSFET demonstrates the capability of delivering a remarkably high saturation current as compared with a single-gate structure. The results of the investigation of the electron quantum

  10. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction

  11. Printed circuit boards as platform for disposable lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Leiterer, Christian; Urban, Matthias; Fritzsche, Wolfgang; Goldys, Ewa; Inglis, David

    2015-12-01

    An increasing demand in performance from electronic devices has resulted in continuous shrinking of electronic components. This shrinkage has demanded that the primary integration platform, the printed circuit board (PCB), follow this same trend. Today, PCB companies offer ~100 micron sized features (depth and width) which mean they are becoming suitable as physical platforms for Lab-on-a-Chip (LOC) and microfluidic applications. Compared to current lithographic based fluidic approaches; PCB technology offers several advantages that are useful for this technology. These include: Being easily designed and changed using free software, robust structures that can often be reused, chip layouts that can be ordered from commercial PCB suppliers at very low cost (1 AUD each in this work), and integration of electrodes at no additional cost. Here we present the application of PCB technology in connection with microfluidics for several biomedical applications. In case of commercialization the costs for each device can be even further decreased to approximately one tenth of its current cost.

  12. Open Quantum Systems with Applications to Precision Measurements

    NASA Astrophysics Data System (ADS)

    Tieri, David

    A spectrally pure coherent light source is an important component in precision measurement applications, such as an atomic clock. The more spectrally pure the coherent light source, or the narrower the linewidth of its power spectrum, the better for atomic clock experiments. A coherent light light source, such as a laser, is intrinsically an open quantum system, meaning that it gains and loses energy from an external environment. The aim of this thesis is to study various open quantum systems in an attempt to discover a scheme in which an extremely spectrally pure coherent light source might be realized. Therefore, this thesis begins by introducing the two main approaches to treating open quantum systems, the quantum master equation approach, and the quantum Langevin equation approach. In addition to deriving these from first principles, many of the solution methods to these approaches are given and then demonstrated using computer simulations. These include the quantum jump algorithm, the quantum state diffusion algorithm, the cumulant expansion method, and the method of c-number Langevin equations. Using these methods, the theory of the crossover between lasing and steady state superradiance is presented. It is shown that lasing and steady state superradiance might be demonstrated in the same physical system, but in different parameter regimes. The parameter space between these two extreme limits is explored, and the benefits and drawbacks of operating a system at a given set of parameters, i.e. to achieve the most spectrally pure light source, are discussed. We also consider the phase stability of a laser that is locked to a cavity QED system comprised of atoms with an ultra-narrow optical transition. Although the atomic motion introduces Doppler broadening, the standing wave nature of the cavity causes saturated absorption, which can be used to achieve an extremely high degree of phase stabilization. The inhomogeneity introduced by finite atomic velocities can

  13. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    PubMed

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields. PMID:26086207

  14. General monogamy property of global quantum discord and the application

    SciTech Connect

    Liu, Si-Yuan; Zhang, Yu-Ran; Zhao, Li-Ming; Yang, Wen-Li; Fan, Heng

    2014-09-15

    We provide a family of general monogamy inequalities for global quantum discord (GQD), which can be considered as an extension of the usual discord monogamy inequality. It can be shown that those inequalities are satisfied under the similar condition for the holding of usual monogamy relation. We find that there is an intrinsic connection among them. Furthermore, we present a different type of monogamy inequality and prove that it holds under the condition that the bipartite GQDs do not increase when tracing out some subsystems. We also study the residual GQD based on the second type of monogamy inequality. As applications of those quantities, we investigate the GQDs and residual GQD in characterizing the quantum phase transition in the transverse field Ising model.

  15. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    PubMed

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  16. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis. PMID:25239063

  17. Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler.

    PubMed

    Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen

    2012-07-15

    We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.

  18. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits.

    PubMed

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs. PMID:26345412

  19. Discretized Light-Cone Quantization: Application to Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Andrew Chun-Nien

    In this work, a general method for solving quantum field theories, Discretized Light-Cone Quantization (DLCQ), is presented. The method is very straightforward and essentially consists of diagonalizing the light-cone Hamiltonian matrix for the mass spectrum and wavefunctions. This method has been applied successfully in the past of various one space, one time dimensional theories. In each of these past applications, the mass spectrum and wave functions were successfully obtained, and all results agree with previous analytical and numerical work. The success of DLCQ in 1 + 1 dimensions provides the hope of solving theories in three space and one time dimensions. The application to higher dimensions is much more involved than in 1 + 1 dimensions due to the need to introduce ultraviolet and infrared regulators, and invoke a renormalization scheme consistent with gauge invariance and Lorentz invariance. This is in addition to the extra work involved implementing two extra dimensions with their added degrees of freedom. In this paper, I will present the application of DLCQ to 3 + 1 dimensional Quantum Electrodynamics. The theoretical framework of DLCQ in the context of 3 + 1 QED is shown in the first 8 sections. Issues addressed include the question of self-induced inertias and normal ordering, the agreement of Feynman rule and light-cone answers for one-loop radiative corrections, and ultraviolet and infrared regulation. Many of the results presented here are applicable to quantum field theory in general. Unfortunately, solving 3 + 1 QED in this general framework has so far proven elusive due to a number of difficulties. These problems and a way around them using a truncated Fock space are presented in Section 7, with renormalization in this truncated space presented in Section 8. The next 5 sections show attempts to numerically solve 3 + 1 QED in a truncated Fock space by diagonalization of the Hamiltonian and by a variational calculation for the positronium system

  20. Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.

  1. Fully Programmable Ring-Resonator-Based Integrated Photonic Circuit for Phase Coherent Applications

    NASA Astrophysics Data System (ADS)

    Agarwal, Anjali; Toliver, Paul; Menendez, Ronald; Etemad, Shahab; Jackel, Janet; Young, Jeffrey; Banwell, Thomas; Little, B. E.; Chu, S. T.; Chen, Wei; Chen, Wenlu; Hryniewicz, J.; Johnson, F.; Gill, D.; King, O.; Davidson, R.; Donovan, K.; Delfyett, Peter J.

    2006-01-01

    A novel ring-resonator-based integrated photonic chip with ultrafine frequency resolution, providing programmable, stable, and accurate optical-phase control is demonstrated. The ability to manipulate the optical phase of the individual frequency components of a signal is a powerful tool for optical communications, signal processing, and RF photonics applications. As a demonstration of the power of these components, we report their use as programmable spectral-phase encoders (SPEs) and decoders for wavelength-division-multiplexing (WDM)-compatible optical code-division multiple access (OCDMA). Most important for the application here, the high resolution of these ring-resonator circuits makes possible the independent control of the optical phase of the individual tightly spaced frequency lines of a mode-locked laser (MLL). This unique approach allows us to limit the coded signal's spectral bandwidth, thereby allowing for high spectral efficiency (compared to other OCDMA systems) and compatibility with existing WDM systems with a rapidly reconfigurable set of codes. A four-user OCDMA system using polarization multiplexing is shown to operate at data rates of 2.5 Gb/s within a 40-GHz transparent optical window with a bit error rate (BER) better than 10-9 and a spectral efficiency of 25%.

  2. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    NASA Technical Reports Server (NTRS)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  3. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    PubMed

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. PMID:26277609

  4. Photonic quantum information: science and technology.

    PubMed

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  5. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V‑1 sec‑1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  6. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-09

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  7. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components.

    PubMed

    Sun, Xishan; Lan, Allan K; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-06-11

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm(3) LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement.

  8. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  9. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  10. Compact grating structure for application to filters and resonators in monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Wang, Te-Hui; Itoh, Tatsuo

    1987-12-01

    Possible high-Q circuits based on a low-loss crosstie-overlay slow-wave structure are proposed for monolithic microwave integrated circuits (MMICs). Various configurations and results for slow-wave factors are presented. This structure is used for construction of a frequency-selective reflector with a compact size. The effect of conductor loss is considered.

  11. A quantum Fredkin gate.

    PubMed

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently. PMID:27051868

  12. A quantum Fredkin gate

    PubMed Central

    Patel, Raj B.; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C.; Pryde, Geoff J.

    2016-01-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently. PMID:27051868

  13. A quantum Fredkin gate.

    PubMed

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  14. Improved Open- Circuit Voltage in ZnO–PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail

    PubMed Central

    Hoye, Robert L Z; Ehrler, Bruno; Böhm, Marcus L; Muñoz-Rojas, David; Altamimi, Rashid M; Alyamani, Ahmed Y; Vaynzof, Yana; Sadhanala, Aditya; Ercolano, Giorgio; Greenham, Neil C; Friend, Richard H; MacManus-Driscoll, Judith L; Musselman, Kevin P

    2014-01-01

    Colloidal quantum dot solar cells (CQDSCs) are attracting growing attention owing to significant improvements in efficiency. However, even the best depleted-heterojunction CQDSCs currently display open-circuit voltages (VOCs) at least 0.5 V below the voltage corresponding to the bandgap. We find that the tail of states in the conduction band of the metal oxide layer can limit the achievable device efficiency. By continuously tuning the zinc oxide conduction band position via magnesium doping, we probe this critical loss pathway in ZnO–PbSe CQDSCs and optimize the energetic position of the tail of states, thereby increasing both the VOC (from 408 mV to 608 mV) and the device efficiency. PMID:26225131

  15. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  16. Design and application of planar inductor-capacitor resonant circuit remote query sensors

    NASA Astrophysics Data System (ADS)

    Ong, Keat Ghee

    The objective of this dissertation is to develop a new remote query sensor technology capable of monitoring different environmental parameters. The sensor presented here is an inductor-capacitor resonant circuit that can be remotely interrogated with a single or pair of antennas via inductance coupling between the sensor and antenna(s). This dissertation describes the operational principle of the sensor technology, mutual inductance coupling, and details a procedure for designing application-specific sensors. The LC sensor is shown to be capable of monitoring environmental parameters such as humidity and pressure, and capable of measuring the complex permittivity of adjacently located materials. The LC sensor has been used to monitor the curing of different epoxies, determine the salt concentration in a solution, and determine the complex permittivity of different live bacteria and yeast cultures. Inherent in the sensor operation is error due to the respective location and orientation between the sensor and antenna(s). Analytic, numerical, and experimental efforts have been used to quantify this error, establishing the operating limits of the technology. Finally this dissertation discusses the possibilities and problems of miniaturizing the sensor technology, and extending the sensor monitoring range as needed.

  17. Discussion of integrated circuit (IC), multichip module (MCM), and MEMS applications fabricated through MOSIS

    NASA Astrophysics Data System (ADS)

    Peltier, Jennifer; Hansford, Wes

    1997-11-01

    Since inception 16 years ago, the MOSIS Service at the Information Sciences Institute of the University of Southern California has processed over thirty thousand IC Designs. Three years ago, it added access to commercial MultiChip Module (MCM) fabrication through MIDAS. To the list of standard offerings, MOSIS now introduces back end processing of MOSIS custom VLSI circuits for both suspended structure and diaphragm style MEMS. MOSIS presents an array of high- end VLSI technologies from various domestic foundries' standard processes for prototype and small volume quantities. Thus designers can develop low-cost IC's, MCM's and MEMS with a one-stop-shopping commerce style service. MOSIS functions as a 'transparent' third party interface between design and fabrication. The service offers ease of use through supported standard cell libraries and design tools, and with Internet design submission.Sharing the costs of NRE, masks and fabrication provides a low cost environment for users. MOSIS handles the front-end foundry tasks of data preparation and mask fabricate with fixed domestic and international price lists. MOSIS utilizes volume production lines at AMI, HP, Orbit, Vitesse, and MicroModule Systems. This paper discusses what MOSIS offers to the VLSI deign community, various applications fabricated through the service, as well as a conceptual design that draws from the various technologies discussed.

  18. Discussion of integrated circuit (IC), multichip module (MCM), and MEMS applications fabricated through MOSIS

    NASA Astrophysics Data System (ADS)

    Peltier, Jennifer; Hansford, Wes

    1997-11-01

    Since inception 16 years ago, the MOSIS Service at the Information Sciences Institute of the University of Southern California has processed over thirty thousand (30 K) IC Designs. Three years ago, it added access to commercial multichip module (MCM) fabrication through MIDAS. To the list of standard offerings, MOSIS now introduces back end processing of MOSIS custom VLSI circuits for both suspended structure and diaphragm style MEMS. MOSIS presents an array of high-end VLSI technologies from various domestic foundries' standard processes for prototype and small volume quantities. Thus designers can develop low-cost ICs, MCMs and (now) MEMS with a one-stop-shopping electronic commerce style service. MOSIS functions as a 'transparent' third party interface between design and fabrication. The service offers ease of use through supported standard cell libraries and design tools, and with Internet design submission. Sharing the costs of NRE, masks and fabrication provides a low cost environment for users. MOSIS handles the front-end foundry tasks of data preparation and mask fabrication with fixed domestic and international price lists. MOSIS utilizes volume production lines at AMI, HP, Orbit, Vitesse, and MicroModule Systems (MMS). This paper discusses what MOSIS offers to the VLSI design community, various applications fabricated through the service, as well as a conceptual design that draws from the various technologies discussed.

  19. Si-based light emitter in an integrated photonic circuit for smart biosensor applications

    NASA Astrophysics Data System (ADS)

    Germer, S.; Cherkouk, C.; Rebohle, L.; Helm, M.; Skorupa, W.

    2013-05-01

    The motivation for integrated Silicon-based optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here we present initial results in the integration and butt-coupling of a Si-based light emitting device (LED) [1-3] to a waveguide into a photonic circuit. Our first approach deals with the design, fabrication and characterization of the dielectric high contrast waveguide as an important component, beside the LED, for the development of a Si-based biodetection system. In this work we demonstrate design examples of Si3N4/SiO2-waveguides, which were calculated using MATLAB, the effective index method (EIM) and the finite element method (FEM), with a 0.45μm thick and 0.7μm wide core which shows a high confinement factor of ~74% and coupling efficiency of ~66% at 1.55μm, respectively. The fabrication was done by plasma enhanced chemical vapour deposition (PECVD), optical lithography and reactive ion etching (RIE). Additionally, we characterized the deposited layers via ellipsometry and the etched structures by scanning electron microscopy (SEM). The obtained results establish principles for Si-based LED butt-coupling to a powerful optical waveguide-based interconnect with effective light absorption and an adequate coupling efficiency.

  20. Facile preparation and multifunctional applications of boron nitride quantum dots

    NASA Astrophysics Data System (ADS)

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2015-11-01

    Boron nitride quantum dots are obtained by a facile sonication-solvothermal technique. They are proven to be promising fluorescent bioimaging probes for bioimaging with remarkably low cytotoxicity and easily integrated into high-performance proton exchange membranes. This work will probably trigger research interest in BN and its new applications in a variety of fields.Boron nitride quantum dots are obtained by a facile sonication-solvothermal technique. They are proven to be promising fluorescent bioimaging probes for bioimaging with remarkably low cytotoxicity and easily integrated into high-performance proton exchange membranes. This work will probably trigger research interest in BN and its new applications in a variety of fields. Electronic supplementary information (ESI) available: AFM images of BN nanosheets, TEM, HRTEM and AFM images of BN QDs prepared in DMSO, digital photographs of DMF, DMSO, DMF with the addition of BN raw materials and DMSO with the addition of BN raw materials, UV-vis and FTIR spectra of the BN QDs, cell viability of the BN QDs, a summary of cell viabilities of different fluorescent QDs, digital photographs and CLSM images of the as-prepared PEMs, TGA and DSC curves of the PEMs, and AFM images of the PEMs. See DOI: 10.1039/c5nr05960g

  1. Detecting Secondary Bottlenecks in Parallel Quantum Chemistry Applications Using MPI

    NASA Astrophysics Data System (ADS)

    Mahajan, Reema; Kranzlmüller, Dieter; Volkert, Jens; Hansmann, Ulrich H. E.; Höfinger, Siegfried

    Profiling tools such as gprof and ssrun are used to analyze the run-time performance of a scientific application. The profiling is done in serial and in parallel mode using MPI as the communication interface. The application is a quantum chemistry program using Hartree Fock theory and Pulays DIIS method. An extensive set of test cases is taken into account in order to reach uniform conclusions. A known problem with decreased parallel scalability can thus be narrowed down to a single subroutine responsible for the reduction in Speed Up. The critical module is analyzed and a typical pitfall with triple matrix multiplications is identified. After overhauling the critical subroutine re-examination of the run-time behavior shows significantly improved performance and markedly improved parallel scalability. The lessons learned here might be of interest to other people working in similar fields with similar problems.

  2. SU-E-E-08: Applications of the Quantization of Coupled Circuits in Radiation Physics (design of Klystron, Bremsstrahlung, Synchrotron)

    SciTech Connect

    Ulmer, W

    2015-06-15

    Purpose: During the past decade the quantization of coupled/forced electromagnetic circuits with or without Ohm’s resistance has gained the subject of some fundamental studies, since even problems of quantum electrodynamics can be solved in an elegant manner, e.g. the creation of quantized electromagnetic fields. In this communication, we shall use these principles to describe optimization procedures in the design of klystrons, synchrotron irradiation and high energy bremsstrahlung. Methods: The base is the Hamiltonian of an electromagnetic circuit and the extension to coupled circuits, which allow the study of symmetries and perturbed symmetries in a very apparent way (SU2, SU3, SU4). The introduction resistance and forced oscillators for the emission and absorption in such coupled systems provides characteristic resonance conditions, and atomic orbitals can be described by that. The extension to virtual orbitals leads to creation of bremsstrahlung, if the incident electron (velocity v nearly c) is described by a current, which is associated with its inductivitance and the virtual orbital to the charge distribution (capacitance). Coupled systems with forced oscillators can be used to amplify drastically the resonance frequencies to describe klystrons and synchrotron radiation. Results: The cross-section formula for bremsstrahlung given by the propagator method of Feynman can readily be derived. The design of klystrons and synchrotrons inclusive the radiation outcome can be described and optimized by the determination of the mutual magnetic couplings between the oscillators induced by the currents. Conclusions: The presented methods of quantization of circuits inclusive resistance provide rather a straightforward way to understand complex technical processes such as creation of bremsstrahlung or creation of radiation by klystrons and synchrotrons. They can either be used for optimization procedures and, last but not least, for pedagogical purposes with regard to

  3. Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Bauters, Jared F.

    The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.

  4. Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications

    NASA Astrophysics Data System (ADS)

    Zhuge, Jing; Verhulst, Anne S.; Vandenberghe, William G.; Dehaene, Wim; Huang, Ru; Wang, Yangyuan; Groeseneken, Guido

    2011-08-01

    This paper investigates the potential of tunnel field-effect transistors (TFETs), with emphasis on short-gate TFETs, by simulation for low-power digital applications having a supply voltage lower than 0.5 V. A transient study shows that the tunneling current has a negligible contribution in charging and discharging the gate capacitance of TFETs. In spite of a higher resistance region in the short-gate TFET, the gate (dis)charging speed still meets low-voltage application requirements. A circuit analysis is performed on short-gate TFETs with different materials, such as Si, Ge and heterostructures in terms of voltage overshoot, delay, static power, energy consumption and energy delay product (EDP). These results are compared to MOSFET and full-gate TFET performance. It is concluded that short-gate heterostructure TFETs (Ge-source for nTFET, In0.6Ga0.4As-source for pTFET) are promising candidates to extend the supply voltage to lower than 0.5 V because they combine the advantage of a low Miller capacitance, due to the short-gate structures, and strong drive current in TFETs, due to the narrow bandgap material in the source. At a supply voltage of 0.4 V and for an EOT and channel length of 0.6 nm and 40 nm, respectively, a three-stage inverter chain based on short-gate heterostructure TFETs saves 40% energy consumption per cycle at the same delay and shows 60%-75% improvement of EDP at the same static power, compared to its full-gate counterpart. When compared to the MOSFET, better EDP can be achieved in the heterostructure TFET especially at low static power consumption.

  5. Quantum superpositions and entanglement of thermal states at high temperatures and their applications to quantum-information processing

    SciTech Connect

    Jeong, Hyunseok; Ralph, Timothy C.

    2007-10-15

    We study characteristics of superpositions and entanglement of thermal states at high temperatures and discuss their applications to quantum-information processing. We introduce thermal-state qubits and thermal-Bell states, which are a generalization of pure-state qubits and Bell states to thermal mixtures. A scheme is then presented to discriminate between the four thermal-Bell states without photon number resolving detection but with Kerr nonlinear interactions and two single-photon detectors. This enables one to perform quantum teleportation and gate operations for quantum computation with thermal-state qubits.

  6. Synthesis and characterization of aqueous quantum dots for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Hui

    Quantum Dots (QDs) are semiconductor nanocrystals (1˜20 nm) exhibiting distinctive photoluminescence (PL) properties due to the quantum confinement effect. Having many advantages over organic dyes, such as broad excitation and resistance to photobleaching, QDs are widely used in bioapplications as one of most exciting nanobiotechnologies. To date, most commercial QDs are synthesized through the traditional organometallic method and contain toxic elements, such as cadmium, lead, mercury, arsenic, etc. The overall goal of this thesis study is to develop an aqueous synthesis method to produce nontoxic quantum dots with strong emission and good stability, suitable for biomedical imaging applications. Firstly, an aqueous, simple, environmentally friendly synthesis method was developed. With cadmium sulfide (CdS) QDs as an example system, various processing parameters and capping molecules were examined to improve the synthesis and optimize the PL properties. The obtained water soluble QDs exhibited ultra small size (˜5 nm), strong PL and good stability. Thereafter, using the aqueous method, the zinc sulfide (ZnS) QDs were synthesized with different capping molecules, i.e., 3-mercaptopropionic acid (MPA) and 3-(mercaptopropyl)trimethoxysilane (MPS). Especially, via a newly developed capping molecule replacement method, the present ZnS QDs exhibited bright blue emission with a quantum yield of 75% and more than 60 days lifetime in the ambient conditions. Two cytotoxicity tests with human endothelial cells verified the nontoxicity of the ZnS QDs by cell counting with Trypan blue staining and fluorescence assay with Alamar Blue. Taking advantage of the versatile surface chemistry, several strategies were explored to conjugate the water soluble QDs with biomolecules, i.e., antibody and streptavidin. Accordingly, the imaging of Salmonella t. cells and biotinylated microbeads has been successfully demonstrated. In addition, polyethylenimine (PEI)-QDs complex was formed and

  7. External cavity quantum cascade lasers for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Tsai, Tracy

    Mid-infrared spectroscopy is a powerful tool in monitoring trace gases for applications in atmospheric science, industrial processes, and homeland security. However, although current mid-infrared spectrometers (i.e. Fourier Transform Spectrometers or FTS) have a wide spectral range for multi-species and/or broadband molecular detection, they are too large with slow scan rates for practical use in high resolution spectroscopic applications. Quantum cascade lasers (QCLs) are compact, powerful, and efficient mid-infrared sources that can be quantum engineered with broadband gain profiles. Placed inside a diffraction grating based external cavity arrangement, they can easily provide >100 cm -1 frequency range with a spectral resolution limited by the laser linewidth (˜10-3 cm-1). Therefore, the external cavity quantum cascade laser (EC-QCL) provides both high spectral resolution and a wide frequency range. This thesis describes the study and development of EC-QCLs for spectroscopic applications. A new active wavelength method is presented to simplify the spectrometer system by allowing for reliable operation of the EC-QCL without additional wavelength diagnostic equipment. Typically, such equipment must be added to the spectrometer, because the grating equation is inaccurate in describing the EC-QCL output wavelength due to spectral misalignment of other wavelength-selective resonances in the EC-QCL. The active wavelength locking method automatically controls the EC-QCL wavelength, which improves the accuracy of the grating equation to 0.06 cm-1 and offers an ultimate 3σ precision of 0.042 cm-1. For industrial spectroscopic sensing applications in which scan rates must be on the order of kilohertz so that the turbulent gas system can be approximated as a quasi-stable one, a fast-wavelength-scanning folded EC-QCL design capable of 1 kHz scan rate is presented. Two modes of operation have been studied: 1) low resolution pulsed mode and 2) high resolution continuous

  8. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-01

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range.

  9. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-01

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range. PMID:27607711

  10. Proceedings of the International Workshop on Quantum Effect Physics, Electronics, and Applications

    NASA Astrophysics Data System (ADS)

    Smith, Henry

    1992-12-01

    Quantum Effects Physics, Electronics, and Applications contains contributions presented at an international workshop held in Luxor, Egypt on 6-10 Jan. 1992. Topics covered include: (1) competing concepts and technologies with quantum effects; (2) theoretical calculations and models of bandstructures, transport, fluctuations, and noise in confined geometries; (3) nanofabrication; (4) transport experiments; (5) optical prpoerties and spectroscopy results in vertical superlattices, wires, dots, and arrays of dots and antidots; (6) resonant tunnelling and Coulomb blockade; and (7) applications based on quantum phenomena.

  11. Quantum memristors

    PubMed Central

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  12. Quantum memristors.

    PubMed

    Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  13. Quantum memristors.

    PubMed

    Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  14. Quantum memristors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  15. PMGA and its application in area and power optimization for ternary FPRM circuit

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Kangping, Li; Huihong, Zhang

    2016-01-01

    Based on the research of population migration algorithms (PMAs), a population migration genetic algorithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY13F040003), the National Natural Science Foundation of China (Nos. 61234002, 61306041), and the K. C. Wong Magna Fund in Ningbo University.

  16. Recent advances on integrated quantum communications

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Diamanti, Eleni

    2016-08-01

    In recent years, the use of integrated technologies for applications in the field of quantum information processing and communications has made great progress. The resulting devices feature valuable characteristics such as scalability, reproducibility, low cost and interconnectivity, and have the potential to revolutionize our computation and communication practices in the future, much in the way that electronic integrated circuits have drastically transformed our information processing capacities since the last century. Among the multiple applications of integrated quantum technologies, this review will focus on typical components of quantum communication systems and on overall integrated system operation characteristics. We are interested in particular in the use of photonic integration platforms for developing devices necessary in quantum communications, including sources, detectors and both passive and active optical elements. We also illustrate the challenges associated with performing quantum communications on chip, by using the case study of quantum key distribution—the most advanced application of quantum information science. We conclude with promising perspectives in this field.

  17. LSB Based Quantum Image Steganography Algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Zhao, Na; Wang, Luo

    2016-01-01

    Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.

  18. Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2016-04-01

    Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.

  19. Fluorinated graphene films with graphene quantum dots for electronic applications

    NASA Astrophysics Data System (ADS)

    Antonova, I. V.; Nebogatikova, N. A.; Prinz, V. Ya.

    2016-06-01

    This work analyzes carrier transport, the relaxation of non-equilibrium charge, and the electronic structure of fluorinated graphene (FG) films with graphene quantum dots (GQDs). The FG films with GQDs were fabricated by means of chemical functionalization in an aqueous solution of hydrofluoric acid. High fluctuations of potential relief inside the FG barriers have been detected in the range of up to 200 mV. A phenomenological expression that describes the dependence of the time of non-equilibrium charge emission from GQDs on quantum confinement levels and film thickness (potential barrier parameters between GQDs) is suggested. An increase in the degree of functionalization leads to a decrease in GQD size, the removal of the GQD effect on carrier transport, and the relaxation of non-equilibrium charge. The study of the electronic properties of FG films with GQDs has revealed a unipolar resistive switching effect in the films with a relatively high degree of fluorination and a high current modulation (up to ON/OFF ˜ 104-105) in transistor-like structures with a lower degree of fluorination. 2D films with GQDs are believed to have considerable potential for various electronic applications (nonvolatile memory, 2D connections with optical control and logic elements).

  20. The (in)adequacy of applicative use of quantum cryptography in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Turkanović, Muhamed; Hölbl, Marko

    2014-10-01

    Recently quantum computation and cryptography principles are exploited in the design of security systems for wireless sensor networks (WSNs), which are consequently named as quantum WSN. Quantum cryptography is presumably secure against any eavesdropper and thus labeled as providing unconditional security. This paper tries to analyze the aspect of the applicative use of quantum principles in WSN. The outcome of the analysis elaborates a summary about the inadequacy of applicative use of quantum cryptography in WSN and presents an overview of all possible applicative challenges and problems while designing quantum-based security systems for WSN. Since WSNs are highly complex frameworks, with many restrictions and constraints, every security system has to be fully compatible and worthwhile. The aim of the paper was to contribute a verdict about this topic, backed up by equitable facts.

  1. Systematic analysis of CMOS-micromachined inductors with application to mixer matching circuits

    NASA Astrophysics Data System (ADS)

    Wu, Jerry Chun-Li

    The growing demand for consumer voice and data communication systems and military communication applications has created a need for low-power, low-cost, high-performance radio-frequency (RF) front-end. To achieve this goal, bringing passive components, especially inductors, to silicon is imperative. On-chip passive components such as inductors and capacitors generally enhance the reliability and efficiency of silicon-integrated RF cells. They can provide circuit solutions with superior performance and contribute to a higher level of integration. With passive components on chip, there is a great opportunity to have transformers, filters, and matching networks on chip. However, inductors on silicon have a low quality factor (Q) due to both substrate and metal loss. This dissertation demonstrates the systematic analysis of inductors fabricated using standard complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical (MEMS) system technologies. We report system-on-chip inductor modeling, simulation, and measurements of effective inductance and quality factors. In this analysis methodology, a number of systematic simulations are performed on regular and micromachined inductors with different parameters such as spiral topology, number of turns, outer diameter, thickness, and percentage of substrate removed by using micromachining technologies. Three different novel support structures of the micromachined spiral inductor are proposed, analyzed, and implemented for larger size suspended inductors. The sensitivity of the structure support and different degree of substrate etching by post-processing is illustrated. The results provide guidelines for the selection of inductor parameters, post-processing methodologies, and its spiral supports to meet the RF design specifications and the stability requirements for mobile communication. The proposed CMOS-micromachined inductor is used in a low cost-effective double-balanced Gilbert mixer with on-chip matching

  2. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  3. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  4. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied. PMID:27387370

  5. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    PubMed

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  6. Measuring User Similarity Using Electric Circuit Analysis: Application to Collaborative Filtering

    PubMed Central

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user–item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems PMID:23145095

  7. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.

    PubMed

    Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A

    2011-02-25

    We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.

  8. QUANTUM OPTICS. Universal linear optics.

    PubMed

    Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J; Silverstone, Joshua W; Shadbolt, Peter J; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Marshall, Graham D; Thompson, Mark G; Matthews, Jonathan C F; Hashimoto, Toshikazu; O'Brien, Jeremy L; Laing, Anthony

    2015-08-14

    Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies. PMID:26160375

  9. Module failure isolation circuit for paralleled inverters. [preventing system failure during power conditioning for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1979-01-01

    A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.

  10. Quantum memristors

    DOE PAGES

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less

  11. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    NASA Technical Reports Server (NTRS)

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  12. The application of standardized control and interface circuits to three dc to dc power converters.

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  13. SEMICONDUCTOR INTEGRATED CIRCUITS: A high-performance, low-power σ Δ ADC for digital audio applications

    NASA Astrophysics Data System (ADS)

    Hao, Luo; Yan, Han; Cheung, Ray C. C.; Xiaoxia, Han; Shaoyu, Ma; Peng, Ying; Dazhong, Zhu

    2010-05-01

    A high-performance low-power σ Δ analog-to-digital converter (ADC) for digital audio applications is described. It consists of a 2-1 cascaded σ Δ modulator and a decimation filter. Various design optimizations are implemented in the system design, circuit implementation and layout design, including a high-overload-level coefficient-optimized modulator architecture, a power-efficient class A/AB operational transconductance amplifier, as well as a multi-stage decimation filter conserving area and power consumption. The ADC is implemented in the SMIC 0.18-μm CMOS mixed-signal process. The experimental chip achieves a peak signal-to-noise-plus-distortion ratio of 90 dB and a dynamic range of 94 dB over 22.05-kHz audio band and occupies 2.1 mm2, which dissipates only 2.1 mA quiescent current in the analog circuits.

  14. Quantum Entanglement: A Fundamental Concept Finding its Applications

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    Entanglement, according to the Austrian physicist Erwin Schrödinger the Essence of Quantum Mechanics, has been known for a long time now to be the source of a number of paradoxical and counterintuitive phenomena. Of those the most remarkable one is usually called non-locality and it is at the heart of the Einstein-Podolsky-Rosen Paradox and of the fact that Quantum Mechanics violates Bell's inequalities. Recent years saw an emergence of novel ideas in entanglement of three or more particles. Most recently it turned out that entanglement is an important concept in the development of quantum communication, quantum cryptography and quantum computation. First explicit experimental realizations with two or more photons include quantum dense coding and quantum teleportation.

  15. A potential application in quantum networks—Deterministic quantum operation sharing schemes with Bell states

    NASA Astrophysics Data System (ADS)

    Zhang, KeJia; Zhang, Long; Song, TingTing; Yang, YingHui

    2016-06-01

    In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing (QOS). Following these unique ideas, three QOS schemes, the "HIEC" (The scheme whose messages are hidden in the entanglement correlation), "HIAO" (The scheme whose messages are hidden with the assistant operations) and "HIMB" (The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.

  16. On the physical realizability of quantum stochastic walks

    NASA Astrophysics Data System (ADS)

    Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank

    Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.

  17. Growth and fabrication of proximity-coupled topological quantum wire circuits from thin InAs films

    NASA Astrophysics Data System (ADS)

    Kan, Carolyn; Xue, Chi; Bai, Yang; Eckstein, James

    The realization of topological states in strongly spin orbit coupled semiconductors proximity-coupled to conventional superconductors requires delicate materials engineering. Key areas for improvement include the crystalline quality of the semiconductor itself, but a high-quality interface between the semiconductor and superconductor is essential. Recent results have demonstrated the necessity of forming an in situ interface to eliminate the ``soft gap'' observed in earlier experiments. While much work has focused on vertically grown nanowires, we take a lithographic approach to fabricating quantum wires out of MBE-grown thin films, which allow for increased flexibility and scalability of device structures. Notably, our films are grown entirely in situ in linked MBE systems, vastly improving interface transmission and cleanliness. Aspects of growth architecture aimed toward increasing the InAs mobility, such as substrate choice and layer structure, are also discussed.

  18. Application of Input-State of the System Transformation for Linearization of Selected Electrical Circuits

    NASA Astrophysics Data System (ADS)

    Zawadzki, Andrzej; Różowicz, Sebastian

    2016-05-01

    The paper presents a transformation of nonlinear electric circuit into linear one through changing coordinates (local diffeomorphism) with the use of closed feedback loop. The necessary conditions that must be fulfilled by nonlinear system to enable carrying out linearizing procedures are presented. Numerical solutions of state equations for the nonlinear system and equivalent linearized system are included.

  19. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    ERIC Educational Resources Information Center

    Sjoberg, Daniel

    2008-01-01

    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  20. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications

    PubMed Central

    Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547