Sample records for quantum communication protocol

  1. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  2. A kind of universal quantum secret sharing protocol

    NASA Astrophysics Data System (ADS)

    Chen, Xiu-Bo; Dou, Zhao; Xu, Gang; He, Xiao-Yu; Yang, Yi-Xian

    2017-01-01

    Universality is an important feature, but less researched in quantum communication protocols. In this paper, a kind of universal quantum secret sharing protocol is investigated. Firstly, we design a quantum secret sharing protocol based on the Borras-Plastino-Batle (BPB) state. Departing from previous research, our protocol has a salient feature in that participants in our protocol only need projective measurement instead of any unitary operations. It makes our protocol more flexible. Secondly, universality of quantum communication protocols is studied for the first time. More specifically, module division of quantum communication protocols and coupling between different modules are discussed. Our aforementioned protocol is analyzed as an example. On one hand, plenty of quantum states (the BPB-class states and the BPB-like-class states, which are proposed in this paper) could be used as carrier to perform our protocol. On the other hand, our protocol also could be regarded as a quantum private comparison protocol with a little revision. These features are rare for quantum communication protocols, and make our protocol more robust. Thirdly, entanglements of the BPB-class states are calculated in the Appendix.

  3. A kind of universal quantum secret sharing protocol.

    PubMed

    Chen, Xiu-Bo; Dou, Zhao; Xu, Gang; He, Xiao-Yu; Yang, Yi-Xian

    2017-01-12

    Universality is an important feature, but less researched in quantum communication protocols. In this paper, a kind of universal quantum secret sharing protocol is investigated. Firstly, we design a quantum secret sharing protocol based on the Borras-Plastino-Batle (BPB) state. Departing from previous research, our protocol has a salient feature in that participants in our protocol only need projective measurement instead of any unitary operations. It makes our protocol more flexible. Secondly, universality of quantum communication protocols is studied for the first time. More specifically, module division of quantum communication protocols and coupling between different modules are discussed. Our aforementioned protocol is analyzed as an example. On one hand, plenty of quantum states (the BPB-class states and the BPB-like-class states, which are proposed in this paper) could be used as carrier to perform our protocol. On the other hand, our protocol also could be regarded as a quantum private comparison protocol with a little revision. These features are rare for quantum communication protocols, and make our protocol more robust. Thirdly, entanglements of the BPB-class states are calculated in the Appendix.

  4. A kind of universal quantum secret sharing protocol

    PubMed Central

    Chen, Xiu-Bo; Dou, Zhao; Xu, Gang; He, Xiao-Yu; Yang, Yi-Xian

    2017-01-01

    Universality is an important feature, but less researched in quantum communication protocols. In this paper, a kind of universal quantum secret sharing protocol is investigated. Firstly, we design a quantum secret sharing protocol based on the Borras-Plastino-Batle (BPB) state. Departing from previous research, our protocol has a salient feature in that participants in our protocol only need projective measurement instead of any unitary operations. It makes our protocol more flexible. Secondly, universality of quantum communication protocols is studied for the first time. More specifically, module division of quantum communication protocols and coupling between different modules are discussed. Our aforementioned protocol is analyzed as an example. On one hand, plenty of quantum states (the BPB-class states and the BPB-like-class states, which are proposed in this paper) could be used as carrier to perform our protocol. On the other hand, our protocol also could be regarded as a quantum private comparison protocol with a little revision. These features are rare for quantum communication protocols, and make our protocol more robust. Thirdly, entanglements of the BPB-class states are calculated in the Appendix. PMID:28079109

  5. The Quantum Steganography Protocol via Quantum Noisy Channels

    NASA Astrophysics Data System (ADS)

    Wei, Zhan-Hong; Chen, Xiu-Bo; Niu, Xin-Xin; Yang, Yi-Xian

    2015-08-01

    As a promising branch of quantum information hiding, Quantum steganography aims to transmit secret messages covertly in public quantum channels. But due to environment noise and decoherence, quantum states easily decay and change. Therefore, it is very meaningful to make a quantum information hiding protocol apply to quantum noisy channels. In this paper, we make the further research on a quantum steganography protocol for quantum noisy channels. The paper proved that the protocol can apply to transmit secret message covertly in quantum noisy channels, and explicity showed quantum steganography protocol. In the protocol, without publishing the cover data, legal receivers can extract the secret message with a certain probability, which make the protocol have a good secrecy. Moreover, our protocol owns the independent security, and can be used in general quantum communications. The communication, which happen in our protocol, do not need entangled states, so our protocol can be used without the limitation of entanglement resource. More importantly, the protocol apply to quantum noisy channels, and can be used widely in the future quantum communication.

  6. Secure quantum communication using classical correlated channel

    NASA Astrophysics Data System (ADS)

    Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.

    2016-10-01

    We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

  7. Quantum CSMA/CD Synchronous Communication Protocol with Entanglement

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Zeng, Binyang; Gong, Lihua

    By utilizing the characteristics of quantum entanglement, a quantum synchronous communication protocol for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is presented. The proposed protocol divides the link into the busy time and leisure one, where the data frames are sent via classical channels and the distribution of quantum entanglement is supposed to be completed at leisure time and the quantum acknowledge frames are sent via quantum entanglement channels. The time span between two successfully delivered messages can be significantly reduced in this proposed protocol. It is shown that the performance of the CSMA/CD protocol can be improved significantly since the collision can be reduced to a certain extent. The proposed protocol has great significance in quantum communication.

  8. Three-step semiquantum secure direct communication protocol

    NASA Astrophysics Data System (ADS)

    Zou, XiangFu; Qiu, DaoWen

    2014-09-01

    Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0>, |1>}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.

  9. “Counterfactual” quantum protocols

    NASA Astrophysics Data System (ADS)

    Vaidman, L.

    2016-05-01

    The counterfactuality of recently proposed protocols is analyzed. A definition of “counterfactuality” is offered and it is argued that an interaction-free measurement (IFM) of the presence of an opaque object can be named “counterfactual”, while proposed “counterfactual” measurements of the absence of such objects are not counterfactual. The quantum key distribution protocols which rely only on measurements of the presence of the object are counterfactual, but quantum direct communication protocols are not. Therefore, the name “counterfactual” is not appropriate for recent “counterfactual” protocols which transfer quantum states by quantum direct communication.

  10. Two-party quantum key agreement protocols under collective noise channel

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Chen, Xiao-Guang; Qian, Song-Rong

    2018-06-01

    Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols' qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.

  11. Secure satellite communication using multi-photon tolerant quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.

    2015-09-01

    This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.

  12. Optimal approach to quantum communication using dynamic programming.

    PubMed

    Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D

    2007-10-30

    Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.

  13. Revisiting Deng et al.'s Multiparty Quantum Secret Sharing Protocol

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Hwang, Cheng-Chieh; Yang, Chun-Wei; Li, Chuan-Ming

    2011-09-01

    The multiparty quantum secret sharing protocol [Deng et al. in Chin. Phys. Lett. 23: 1084-1087, 2006] is revisited in this study. It is found that the performance of Deng et al.'s protocol can be much improved by using the techniques of block-transmission and decoy single photons. As a result, the qubit efficiency is improved 2.4 times and only one classical communication, a public discussion, and two quantum communications between each agent and the secret holder are needed rather than n classical communications, n public discussions, and 3n/2 quantum communications required in the original scheme.

  14. Secret-key-assisted private classical communication capacity over quantum channels

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Luo, Zhicheng; Brun, Todd

    2008-10-01

    We prove a regularized formula for the secret-key-assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak (e-print arXiv:quant-ph/0512015) on entanglement-assisted quantum communication capacity . This formula provides a family protocol, the private father protocol, under the resource inequality framework that includes private classical communication without secret-key assistance as a child protocol.

  15. Quantum private query with perfect user privacy against a joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2016-12-01

    The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication.

  16. Cryptanalysis and improvement of a quantum communication-based online shopping mechanism

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Ying-Hui; Jia, Heng-Yue

    2015-06-01

    Recently, Chou et al. (Electron Commer Res 14:349-367, 2014) presented a novel controlled quantum secure direct communication protocol which can be used for online shopping. The authors claimed that their protocol was immune to the attacks from both external eavesdropper and internal betrayer. However, we find that this protocol is vulnerable to the attack from internal betrayer. In this paper, we analyze the security of this protocol to show that the controller in this protocol is able to eavesdrop the secret information of the sender (i.e., the customer's shopping information), which indicates that it cannot be used for secure online shopping as the authors expected. Accordingly, an improvement of this protocol, which could resist the controller's attack, is proposed. In addition, we present another protocol which is more appropriate for online shopping. Finally, a discussion about the difference in detail of the quantum secure direct communication process between regular quantum communications and online shopping is given.

  17. Analysis and Improvement of Large Payload Bidirectional Quantum Secure Direct Communication Without Information Leakage

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu

    2018-02-01

    As we know, the information leakage problem should be avoided in a secure quantum communication protocol. Unfortunately, it is found that this problem does exist in the large payload bidirectional quantum secure direct communication (BQSDC) protocol (Ye Int. J. Quantum. Inf. 11(5), 1350051 2013) which is based on entanglement swapping between any two Greenberger-Horne-Zeilinger (GHZ) states. To be specific, one half of the information interchanged in this protocol is leaked out unconsciously without any active attack from an eavesdropper. Afterward, this BQSDC protocol is revised to the one without information leakage. It is shown that the improved BQSDC protocol is secure against the general individual attack and has some obvious features compared with the original one.

  18. Relativistic quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: molotkov@issp.ac.ru

    2011-03-15

    A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.

  19. Experimental plug and play quantum coin flipping.

    PubMed

    Pappa, Anna; Jouguet, Paul; Lawson, Thomas; Chailloux, André; Legré, Matthieu; Trinkler, Patrick; Kerenidis, Iordanis; Diamanti, Eleni

    2014-04-24

    Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications.

  20. Gaussian error correction of quantum states in a correlated noisy channel.

    PubMed

    Lassen, Mikael; Berni, Adriano; Madsen, Lars S; Filip, Radim; Andersen, Ulrik L

    2013-11-01

    Noise is the main obstacle for the realization of fault-tolerant quantum information processing and secure communication over long distances. In this work, we propose a communication protocol relying on simple linear optics that optimally protects quantum states from non-Markovian or correlated noise. We implement the protocol experimentally and demonstrate the near-ideal protection of coherent and entangled states in an extremely noisy channel. Since all real-life channels are exhibiting pronounced non-Markovian behavior, the proposed protocol will have immediate implications in improving the performance of various quantum information protocols.

  1. Private quantum computation: an introduction to blind quantum computing and related protocols

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph F.

    2017-06-01

    Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.

  2. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  3. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  4. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE PAGES

    Dasari, Venkat R.; Humble, Travis S.

    2016-10-10

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  5. OpenFlow arbitrated programmable network channels for managing quantum metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat R.; Humble, Travis S.

    Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less

  6. Clean Quantum and Classical Communication Protocols.

    PubMed

    Buhrman, Harry; Christandl, Matthias; Perry, Christopher; Zuiddam, Jeroen

    2016-12-02

    By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n-bit strings, showing that (in the absence of preshared entanglement) at most n+3 qubits or n+O(sqrt[n]) bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed cnot gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to 2n bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.

  7. Quantum Secure Group Communication.

    PubMed

    Li, Zheng-Hong; Zubairy, M Suhail; Al-Amri, M

    2018-03-01

    We propose a quantum secure group communication protocol for the purpose of sharing the same message among multiple authorized users. Our protocol can remove the need for key management that is needed for the quantum network built on quantum key distribution. Comparing with the secure quantum network based on BB84, we show our protocol is more efficient and securer. Particularly, in the security analysis, we introduce a new way of attack, i.e., the counterfactual quantum attack, which can steal information by "invisible" photons. This invisible photon can reveal a single-photon detector in the photon path without triggering the detector. Moreover, the photon can identify phase operations applied to itself, thereby stealing information. To defeat this counterfactual quantum attack, we propose a quantum multi-user authorization system. It allows us to precisely control the communication time so that the attack can not be completed in time.

  8. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD aremore » extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.« less

  9. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

    NASA Astrophysics Data System (ADS)

    Wu, FangZhou; Yang, GuoJian; Wang, HaiBo; Xiong, Jun; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

  10. Experimental quantum fingerprinting with weak coherent pulses

    PubMed Central

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586

  11. Experimental quantum fingerprinting with weak coherent pulses.

    PubMed

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-30

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  12. Experimental quantum fingerprinting with weak coherent pulses

    NASA Astrophysics Data System (ADS)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  13. Deterministic secure quantum communication using a single d-level system.

    PubMed

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-03-22

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhui; School of Computatioal Sciences, Korea Institute for Advanced Study, Seoul 130-722; Lee, Soojoon

    Extending the eavesdropping strategy devised by Zhang, Li, and Guo [Zhang, Li, and Guo, Phys. Rev. A 63, 036301 (2001)], we show that the multiparty quantum communication protocol based on entanglement swapping, which was proposed by Cabello (e-print quant-ph/0009025), is not secure. We modify the protocol so that entanglement swapping can secure multiparty quantum communication, such as multiparty quantum key distribution and quantum secret sharing of classical information, and show that the modified protocol is secure against the Zhang-Li-Guo strategy for eavesdropping as well as the basic intercept-resend attack.0.

  15. Experimental Quantum Coin Tossing

    NASA Astrophysics Data System (ADS)

    Molina-Terriza, G.; Vaziri, A.; Ursin, R.; Zeilinger, A.

    2005-01-01

    In this Letter we present the first implementation of a quantum coin-tossing protocol. This protocol belongs to a class of “two-party” cryptographic problems, where the communication partners distrust each other. As with a number of such two-party protocols, the best implementation of the quantum coin tossing requires qutrits, resulting in a higher security than using qubits. In this way, we have also performed the first complete quantum communication protocol with qutrits. In our experiment the two partners succeeded to remotely toss a row of coins using photons entangled in the orbital angular momentum. We also show the experimental bounds of a possible cheater and the ways of detecting him.

  16. Quantum Dialogue with Authentication Based on Bell States

    NASA Astrophysics Data System (ADS)

    Shen, Dongsu; Ma, Wenping; Yin, Xunru; Li, Xiaoping

    2013-06-01

    We propose an authenticated quantum dialogue protocol, which is based on a shared private quantum entangled channel. In this protocol, the EPR pairs are randomly prepared in one of the four Bell states for communication. By performing four Pauli operations on the shared EPR pairs to encode their shared authentication key and secret message, two legitimate users can implement mutual identity authentication and quantum dialogue without the help from the third party authenticator. Furthermore, due to the EPR pairs which are used for secure communication are utilized to implement authentication and the whole authentication process is included in the direct secure communication process, it does not require additional particles to realize authentication in this protocol. The updated authentication key provides the counterparts with a new authentication key for the next authentication and direct communication. Compared with other secure communication with authentication protocols, this one is more secure and efficient owing to the combination of authentication and direct communication. Security analysis shows that it is secure against the eavesdropping attack, the impersonation attack and the man-in-the-middle (MITM) attack.

  17. Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Naik, R. Lalu; Reddy, P. Chenna

    2015-12-01

    The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.

  18. Probabilistic direct counterfactual quantum communication

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng

    2017-02-01

    It is striking that the quantum Zeno effect can be used to launch a direct counterfactual communication between two spatially separated parties, Alice and Bob. So far, existing protocols of this type only provide a deterministic counterfactual communication service. However, this counterfactuality should be payed at a price. Firstly, the transmission time is much longer than a classical transmission costs. Secondly, the chained-cycle structure makes them more sensitive to channel noises. Here, we extend the idea of counterfactual communication, and present a probabilistic-counterfactual quantum communication protocol, which is proved to have advantages over the deterministic ones. Moreover, the presented protocol could evolve to a deterministic one solely by adjusting the parameters of the beam splitters. Project supported by the National Natural Science Foundation of China (Grant No. 61300203).

  19. Enhancing robustness of multiparty quantum correlations using weak measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in; Mishra, Utkarsh, E-mail: utkarsh@hri.res.in; Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhancesmore » the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.« less

  20. Controlled Bidirectional Quantum Secure Direct Communication

    PubMed Central

    Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan

    2014-01-01

    We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages. PMID:25006596

  1. Fundamental rate-loss trade-off for the quantum internet

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-11-01

    The quantum internet holds promise for achieving quantum communication--such as quantum teleportation and quantum key distribution (QKD)--freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result--putting a practical but general limitation on the quantum internet--enables us to grasp the potential of the future quantum internet.

  2. Fundamental rate-loss trade-off for the quantum internet.

    PubMed

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-11-25

    The quantum internet holds promise for achieving quantum communication-such as quantum teleportation and quantum key distribution (QKD)-freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result-putting a practical but general limitation on the quantum internet-enables us to grasp the potential of the future quantum internet.

  3. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Nilanjana, E-mail: n.datta@statslab.cam.ac.uk; Hsieh, Min-Hsiu, E-mail: Min-Hsiu.Hsieh@uts.edu.au; Oppenheim, Jonathan, E-mail: j.oppenheim@ucl.ac.uk

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol ofmore » coherent state merging as a primitive.« less

  4. Single-shot secure quantum network coding on butterfly network with free public communication

    NASA Astrophysics Data System (ADS)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  5. The Experimental Demonstration of High Efficiency Interaction-free Measurement for Quantum Counterfactual-like Communication.

    PubMed

    Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao

    2017-09-07

    We present an interaction-free measurement with quantum Zeno effect and a high efficiency η = 74.6% ± 0.15%. As a proof-of-principle demonstration, this measurement can be used to implement a quantum counterfactual-like communication protocol. Instead of a single photon state, we use a coherent light as the input source and show that the output agrees with the proposed quantum counterfactual communication protocol according to Salih et al. Although the counterfactuality is not achieved due to the presence of a few photons in the public channel, we show that the signal light is nearly absent in the public channel, which exhibits a proof-of-principle quantum counterfactual-like property of communication.

  6. Role of memory errors in quantum repeaters

    NASA Astrophysics Data System (ADS)

    Hartmann, L.; Kraus, B.; Briegel, H.-J.; Dür, W.

    2007-03-01

    We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory and (ii) introducing two operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e., without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an order of magnitude with reasonable overhead in physical resources. We outline the architecture of a quantum repeater that can possibly ensure intercontinental quantum communication.

  7. Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol.

    PubMed

    Branciard, Cyril; Gisin, Nicolas

    2011-07-08

    The simulation of quantum correlations with finite nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present a protocol that reproduces tripartite Greenberger-Horne-Zeilinger correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the tripartite Greenberger-Horne-Zeilinger state.

  8. Deterministic secure quantum communication using a single d-level system

    PubMed Central

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557

  9. Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Qian; Xu, Xu-Sheng; Xiong, Jun; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2017-11-01

    Microwave photons have become very important qubits in quantum communication, as the first quantum satellite has been launched successfully. Therefore, it is a necessary and meaningful task for ensuring the high security and efficiency of microwave-based quantum communication in practice. Here, we present an original polarization entanglement purification protocol for nonlocal microwave photons based on the cross-Kerr effect in circuit quantum electrodynamics (QED). Our protocol can solve the problem that the purity of maximally entangled states used for constructing quantum channels will decrease due to decoherence from environment noise. This task is accomplished by means of the polarization parity-check quantum nondemolition (QND) detector, the bit-flipping operation, and the linear microwave elements. The QND detector is composed of several cross-Kerr effect systems which can be realized by coupling two superconducting transmission line resonators to a superconducting molecule with the N -type level structure. We give the applicable experimental parameters of QND measurement system in circuit QED and analyze the fidelities. Our protocol has good applications in long-distance quantum communication assisted by microwave photons in the future, such as satellite quantum communication.

  10. Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network

    NASA Astrophysics Data System (ADS)

    Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-06-01

    We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.

  11. Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network

    NASA Astrophysics Data System (ADS)

    Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-02-01

    We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.

  12. A Hierarchical Modulation Coherent Communication Scheme for Simultaneous Four-State Continuous-Variable Quantum Key Distribution and Classical Communication

    NASA Astrophysics Data System (ADS)

    Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang

    2018-06-01

    We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.

  13. A Logical Analysis of Quantum Voting Protocols

    NASA Astrophysics Data System (ADS)

    Rad, Soroush Rafiee; Shirinkalam, Elahe; Smets, Sonja

    2017-12-01

    In this paper we provide a logical analysis of the Quantum Voting Protocol for Anonymous Surveying as developed by Horoshko and Kilin in (Phys. Lett. A 375, 1172-1175 2011). In particular we make use of the probabilistic logic of quantum programs as developed in (Int. J. Theor. Phys. 53, 3628-3647 2014) to provide a formal specification of the protocol and to derive its correctness. Our analysis is part of a wider program on the application of quantum logics to the formal verification of protocols in quantum communication and quantum computation.

  14. An economic and feasible Quantum Sealed-bid Auction protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Shi, Run-hua; Qin, Jia-qi; Peng, Zhen-wan

    2018-02-01

    We present an economic and feasible Quantum Sealed-bid Auction protocol using quantum secure direct communication based on single photons in both the polarization and the spatial-mode degrees of freedom, where each single photon can carry two bits of classical information. Compared with previous protocols, our protocol has higher efficiency. In addition, we propose a secure post-confirmation mechanism without quantum entanglement to guarantee the security and the fairness of the auction.

  15. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  16. Capacity estimation and verification of quantum channels with arbitrarily correlated errors.

    PubMed

    Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie

    2018-01-02

    The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.

  17. Generation of distributed W-states over long distances

    NASA Astrophysics Data System (ADS)

    Li, Yi

    2017-08-01

    Ultra-secure quantum communication between distant locations requires distributed entangled states between nodes. Various methodologies have been proposed to tackle this technological challenge, of which the so-called DLCZ protocol is the most promising and widely adopted scheme. This paper aims to extend this well-known protocol to a multi-node setting where the entangled W-state is generated between nodes over long distances. The generation of multipartite W-states is the foundation of quantum networks, paving the way for quantum communication and distributed quantum computation.

  18. Double C-NOT attack and counterattack on `Three-step semi-quantum secure direct communication protocol'

    NASA Astrophysics Data System (ADS)

    Gu, Jun; Lin, Po-hua; Hwang, Tzonelih

    2018-07-01

    Recently, Zou and Qiu (Sci China Phys Mech Astron 57:1696-1702, 2014) proposed a three-step semi-quantum secure direct communication protocol allowing a classical participant who does not have a quantum register to securely send his/her secret message to a quantum participant. However, this study points out that an eavesdropper can use the double C-NOT attack to obtain the secret message. To solve this problem, a modification is proposed.

  19. Quantum error correction assisted by two-way noisy communication

    PubMed Central

    Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.

    2014-01-01

    Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1

  20. Quantum error correction assisted by two-way noisy communication.

    PubMed

    Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H

    2014-11-26

    Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1

  1. Impersonation attack on a quantum secure direct communication and authentication protocol with improvement

    NASA Astrophysics Data System (ADS)

    Amerimehr, Ali; Hadain Dehkordi, Massoud

    2018-03-01

    We analyze the security of a quantum secure direct communication and authentication protocol based on single photons. We first give an impersonation attack on the protocol. The cryptanalysis shows that there is a gap in the authentication procedure of the protocol so that an opponent can reveal the secret information by an undetectable attempt. We then propose an improvement for the protocol and show it closes the gap by applying a mutual authentication procedure. In the improved protocol single photons are transmitted once in a session, so it is easy to implement as the primary protocol. Furthermore, we use a novel technique for secret order rearrangement of photons by which not only quantum storage is eliminated also a secret key can be reused securely. So the new protocol is applicable in practical approaches like embedded system devices.

  2. Quantum direct communication protocol strengthening against Pavičić’s attack

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Shi, Wei-Xu; Wang, Jian; Tang, Chao-Jing

    2015-12-01

    A quantum circuit providing an undetectable eavesdropping of information in message mode, which compromises all two-state ψ-ϕ quantum direct communication (QDC) protocols, has been recently proposed by Pavičić [Phys. Rev. A 87 (2013) 042326]. A modification of the protocol’s control mode is proposed, which improves users’ 25% detection probability of Eve to 50% at best, as that in ping-pong protocol. The modification also improves the detection probability of Wójcik’s attack [Phys. Rev. Lett 90 (2003) 157901] to 75% at best. The resistance against man-in-the-middle (MITM) attack as well as the discussion of security for four Bell state protocols is presented. As a result, the protocol security is strengthened both theoretically and practically, and quantum advantage of superdense coding is restored.

  3. Bidirectional Controlled Quantum Communication by Using a Seven-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Sang, Ming-huang; Li, Cong

    2018-03-01

    We propose a protocol for bidirectional controlled quantum communication by using a seven-qubit entangled state. In our protocol, Alice can teleport an arbitrary unknown two-qubit state to Bob, at the same time Bob can help Alice remotely prepares an arbitrary known single-qubit state. It is shown that, with the help of the controller Charlie, the total success probability of our protocol can reach 100%.

  4. Measurement device-independent quantum dialogue

    NASA Astrophysics Data System (ADS)

    Maitra, Arpita

    2017-12-01

    Very recently, the experimental demonstration of quantum secure direct communication (QSDC) with state-of-the-art atomic quantum memory has been reported (Zhang et al. in Phys Rev Lett 118:220501, 2017). Quantum dialogue (QD) falls under QSDC where the secrete messages are communicated simultaneously between two legitimate parties. The successful experimental demonstration of QSDC opens up the possibilities for practical implementation of QD protocols. Thus, it is necessary to analyze the practical security issues of QD protocols for future implementation. Since the very first proposal for QD by Nguyen (Phys Lett A 328:6-10, 2004), a large number of variants and extensions have been presented till date. However, all of those leak half of the secret bits to the adversary through classical communications of the measurement results. In this direction, motivated by the idea of Lo et al. (Phys Rev Lett 108:130503, 2012), we propose a measurement device-independent quantum dialogue scheme which is resistant to such information leakage as well as side-channel attacks. In the proposed protocol, Alice and Bob, two legitimate parties, are allowed to prepare the states only. The states are measured by an untrusted third party who may himself behave as an adversary. We show that our protocol is secure under this adversarial model. The current protocol does not require any quantum memory, and thus, it is inherently robust against memory attacks. Such robustness might not be guaranteed in the QSDC protocol with quantum memory (Zhang et al. 2017).

  5. Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload

    NASA Astrophysics Data System (ADS)

    Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun

    2018-06-01

    An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.

  6. Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload

    NASA Astrophysics Data System (ADS)

    Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun

    2018-03-01

    An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.

  7. Quantum internet: the certifiable road ahead

    NASA Astrophysics Data System (ADS)

    Elkouss, David; Lipinska, Victoria; Goodenough, Kenneth; Rozpedek, Filip; Kalb, Norbert; van Dam, Suzanne; Le Phuc, Thinh; Murta, Glaucia; Humphreys, Peter; Taminiau, Tim; Hanson, Ronald; Wehner, Stephanie

    A future quantum internet enables quantum communication between any two points on earth in order to solve problems which are provably impossible using classical communication. The most well-known application of quantum communication is quantum key distribution, which allows two users to establish an encryption key. However, many other applications are known ranging from protocols for clock synchronization, extending the baselines of telescopes to exponential savings in communication. Due to recent technological progress, we are now on the verge of seeing the first small-scale quantum communication networks being realized. Here, we present a roadmap towards the ultimate form of a quantum internet. Specifically, we identify stages of development that are distinguished by an ever increasing amount of functionality. Each stage supports a certain class of quantum protocols and is interesting in its own right. What's more, we propose a series of simple tests to certify that an experimental implementation has achieved a certain stage. Jointly, the stages and the certification tests will allow us to track and benchmark experimental progress in the years to come. This work is supported by STW, NWO VIDI and ERC Starting Grant.

  8. Quantum communication complexity of establishing a shared reference frame.

    PubMed

    Rudolph, Terry; Grover, Lov

    2003-11-21

    We discuss the aligning of spatial reference frames from a quantum communication complexity perspective. This enables us to analyze multiple rounds of communication and give several simple examples demonstrating tradeoffs between the number of rounds and the type of communication. Using a distributed variant of a quantum computational algorithm, we give an explicit protocol for aligning spatial axes via the exchange of spin-1/2 particles which makes no use of either exchanged entangled states, or of joint measurements. This protocol achieves a worst-case fidelity for the problem of "direction finding" that is asymptotically equivalent to the optimal average case fidelity achievable via a single forward communication of entangled states.

  9. Deterministic Secure Quantum Communication and Authentication Protocol based on Extended GHZ-W State and Quantum One-time Pad

    NASA Astrophysics Data System (ADS)

    Li, Na; Li, Jian; Li, Lei-Lei; Wang, Zheng; Wang, Tao

    2016-08-01

    A deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad is proposed. In the protocol, state | φ -> is used as the carrier. One photon of | φ -> state is sent to Alice, and Alice obtains a random key by measuring photons with bases determined by ID. The information of bases is secret to others except Alice and Bob. Extended GHZ-W states are used as decoy photons, the positions of which in information sequence are encoded with identity string ID of the legal user, and the eavesdropping detection rate reaches 81%. The eavesdropping detection based on extended GHZ-W state combines with authentication and the secret ID ensures the security of the protocol.

  10. Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report

    DTIC Science & Technology

    2011-08-24

    REPORT Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: First Annual Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The...goal of this program is to establish a fundamental information-theoretic understand of quantum secure communication and to devise a practical...scalable implementation of quantum key distribution protocols in an integrated photonic architecture. We report our progress on experimental and

  11. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  12. Compensating the noise of a communication channel via asymmetric encoding of quantum information.

    PubMed

    Lucamarini, Marco; Kumar, Rupesh; Di Giuseppe, Giovanni; Vitali, David; Tombesi, Paolo

    2010-10-01

    An asymmetric preparation of the quantum states sent through a noisy channel can enable a new way to monitor and actively compensate the channel noise. The paradigm of such an asymmetric treatment of quantum information is the Bennett 1992 protocol, in which the counts in the two separate bases are in direct connection with the channel noise. Using this protocol as a guiding example, we show how to correct the phase drift of a communication channel without using reference pulses, interruptions of the quantum transmission, or public data exchanges.

  13. Entanglement-Assisted Communication System for NASA's Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Kwiat, Paul; Bernstein, Herb; Javadi, Hamid

    2016-01-01

    For this project we have studied various forms of quantum communication, and quantum-enhanced classical communication. In particular, we have performed the first realization of a novel quantum protocol, superdense teleportation. We have also showed that in some cases, the advantages of superdense coding (which enhances classical channel capacity by up to a factor of two) can be realized without the use of entanglement. Finally, we considered some more advanced protocols, with the goal to realize 'superactivation' - two entangled channels have capabilities beyond the sum of the individual channels-and conclude that more study is needed in this area.

  14. Multi-Hop Teleportation of an Unknown Qubit State Based on W States

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-04-01

    Quantum teleportation is important in quantum communication networks. Considering that quantum state information is also transmitted between two distant nodes, intermediated nodes are employed and two multi-hop teleportation protocols based on W state are proposed. One is hop-by-hop teleportation protocol and the other is the improved multi-hop teleportation protocol with centralized unitary transformation. In hop-by-hop protocol, the transmitted quantum state needs to be recovered at every node on the route. In improved multi-hop teleportation protocol with centralized unitary transformation, intermediate nodes need not to recover the transmitted quantum state. Compared to the hop-by-hop protocol, the improved protocol can reduce the transmission delay and improve the transmission efficiency.

  15. Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Wenping

    2016-02-01

    In this paper, we propose a new controlled quantum secure direct communication (CQSDC) protocol with single photons in both polarization and spatial-mode degrees of freedom. Based on the defined local collective unitary operations, the sender’s secret messages can be transmitted directly to the receiver through encoding secret messages on the particles. Only with the help of the third side, the receiver can reconstruct the secret messages. Each single photon in two degrees of freedom can carry two bits of information, so the cost of our protocol is less than others using entangled qubits. Moreover, the security of our QSDC network protocol is discussed comprehensively. It is shown that our new CQSDC protocol cannot only defend the outsider eavesdroppers’ several sorts of attacks but also the inside attacks. Besides, our protocol is feasible since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques.

  16. Entanglement distillation for quantum communication network with atomic-ensemble memories.

    PubMed

    Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo

    2014-10-06

    Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.

  17. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication

    NASA Astrophysics Data System (ADS)

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  18. Fast Entanglement Establishment via Local Dynamics for Quantum Repeater Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    Quantum entanglement is a necessity for future quantum communication networks, quantum internet, and long-distance quantum key distribution. The current approaches of entanglement distribution require high-delay entanglement transmission, entanglement swapping to extend the range of entanglement, high-cost entanglement purification, and long-lived quantum memories. We introduce a fundamental protocol for establishing entanglement in quantum communication networks. The proposed scheme does not require entanglement transmission between the nodes, high-cost entanglement swapping, entanglement purification, or long-lived quantum memories. The protocol reliably establishes a maximally entangled system between the remote nodes via dynamics generated by local Hamiltonians. The method eliminates the main drawbacks of current schemes allowing fast entanglement establishment with a minimized delay. Our solution provides a fundamental method for future long-distance quantum key distribution, quantum repeater networks, quantum internet, and quantum-networking protocols. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  19. Quantum Private Query Based on Bell State and Single Photons

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Chang, Yan; Zhang, Shi-Bin; Yang, Fan; Zhang, Yan

    2018-03-01

    Quantum private query (QPQ) can protect both user's and database holder's privacy. In this paper, we propose a novel quantum private query protocol based on Bell state and single photons. As far as we know, no one has ever proposed the QPQ based on Bell state. By using the decoherence-free (DF) states, our protocol can resist the collective noise. Besides that, our protocol is a one-way quantum protocol, which can resist the Trojan horse attack and reduce the communication complexity. Our protocol can not only guarantee the participants' privacy but also stand against an external eavesdropper.

  20. Quantum-key-distribution protocol with pseudorandom bases

    NASA Astrophysics Data System (ADS)

    Trushechkin, A. S.; Tregubov, P. A.; Kiktenko, E. O.; Kurochkin, Y. V.; Fedorov, A. K.

    2018-01-01

    Quantum key distribution (QKD) offers a way for establishing information-theoretical secure communications. An important part of QKD technology is a high-quality random number generator for the quantum-state preparation and for post-processing procedures. In this work, we consider a class of prepare-and-measure QKD protocols, utilizing additional pseudorandomness in the preparation of quantum states. We study one of such protocols and analyze its security against the intercept-resend attack. We demonstrate that, for single-photon sources, the considered protocol gives better secret key rates than the BB84 and the asymmetric BB84 protocols. However, the protocol strongly requires single-photon sources.

  1. Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-02-01

    In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.

  2. Quantum counterfactual communication without a weak trace

    NASA Astrophysics Data System (ADS)

    Arvidsson-Shukur, D. R. M.; Barnes, C. H. W.

    2016-12-01

    The classical theories of communication rely on the assumption that there has to be a flow of particles from Bob to Alice in order for him to send a message to her. We develop a quantum protocol that allows Alice to perceive Bob's message "counterfactually"; that is, without Alice receiving any particles that have interacted with Bob. By utilizing a setup built on results from interaction-free measurements, we outline a communication protocol whereby the information travels in the opposite direction of the emitted particles. In comparison to previous attempts on such protocols, this one is such that a weak measurement at the message source would not leave a weak trace that could be detected by Alice's receiver. While some interaction-free schemes require a large number of carefully aligned beam splitters, our protocol is realizable with two or more beam splitters. We demonstrate this protocol by numerically solving the time-dependent Schrödinger equation for a Hamiltonian that implements this quantum counterfactual phenomenon.

  3. Protecting single-photon entanglement with practical entanglement source

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  4. Quantum steganography with large payload based on entanglement swapping of χ-type entangled states

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Chen, Xiu-Bo; Luo, Ming-Xing; Niu, Xin-Xin; Yang, Yi-Xian

    2011-04-01

    In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.

  5. Continuous variable quantum key distribution with modulated entangled states.

    PubMed

    Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.

  6. Fundamental rate-loss trade-off for the quantum internet

    PubMed Central

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-01-01

    The quantum internet holds promise for achieving quantum communication—such as quantum teleportation and quantum key distribution (QKD)—freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka–Guha–Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result—putting a practical but general limitation on the quantum internet—enables us to grasp the potential of the future quantum internet. PMID:27886172

  7. Cut-and-paste restoration of entanglement transmission

    NASA Astrophysics Data System (ADS)

    Cuevas, Álvaro; Mari, Andrea; De Pasquale, Antonella; Orieux, Adeline; Massaro, Marcello; Sciarrino, Fabio; Mataloni, Paolo; Giovannetti, Vittorio

    2017-07-01

    The distribution of entangled quantum systems among two or more nodes of a network is a key task at the basis of quantum communication, quantum computation, and quantum cryptography. Unfortunately, the transmission lines used in this procedure can introduce so many perturbations and so much noise in the transmitted signal that they prevent the possibility of restoring quantum correlations in the received messages either by means of encoding optimization or by exploiting local operations and classical communication. In this work we present a procedure which allows one to improve the performance of some of these channels. The mechanism underpinning this result is a protocol which we dub cut and paste, as it consists in extracting and reshuffling the subcomponents of these communication lines, which finally succeed in correcting each other. The proof of this counterintuitive phenomenon, while improving our theoretical understanding of quantum entanglement, also has a direct application in the realization of quantum information networks based on imperfect and highly noisy communication lines. A quantum optics experiment, based on the transmission of single-photon polarization states, is also presented which provides a proof-of-principle test of the proposed protocol.

  8. Three-party quantum secure direct communication against collective noise

    NASA Astrophysics Data System (ADS)

    He, Ye-Feng; Ma, Wen-Ping

    2017-10-01

    Based on logical quantum states, two three-party quantum secure direct communication protocols are proposed, which can realize the exchange of the secret messages between three parties with the help of the measurement correlation property of six-particle entangled states. These two protocols can be immune to the collective-dephasing noise and the collective-rotation noise, respectively; neither of them has information leakage problem. The one-way transmission mode ensures that they can congenitally resist against the Trojan horse attacks and the teleportation attack. Furthermore, these two protocols are secure against other active attacks because of the use of the decoy state technology.

  9. Establishing rational networking using the DL04 quantum secure direct communication protocol

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Tang, Wallace K. S.; Tso, Raylin

    2018-06-01

    The first rational quantum secure direct communication scheme is proposed, in which we use the game theory with incomplete information to model the rational behavior of the participant, and give the strategy space and utility function. The rational participant can get his maximal utility when he performs the protocol faithfully, and then the Nash equilibrium of the protocol can be achieved. Compared to the traditional schemes, our scheme will be more practical in the presence of rational participant.

  10. Quantum Secure Direct Communication with Quantum Memory

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-01

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  11. Quantum Secure Direct Communication with Quantum Memory.

    PubMed

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-02

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  12. Free-Space Quantum Communication with a Portable Quantum Memory

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  13. Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Wei; Lin, Jason

    2016-07-01

    This work presents a strategy for constructing long-distance quantum communications among a number of remote users through collective-noise channel. With the assistance of semi-honest quantum certificate authorities (QCAs), the remote users can share a secret key through fault-tolerant entanglement swapping. The proposed protocol is feasible for large-scale distributed quantum networks with numerous users. Each pair of communicating parties only needs to establish the quantum channels and the classical authenticated channels with his/her local QCA. Thus, it enables any user to communicate freely without point-to-point pre-establishing any communication channels, which is efficient and feasible for practical environments.

  14. Quantum communication complexity advantage implies violation of a Bell inequality

    PubMed Central

    Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii

    2016-01-01

    We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600

  15. A New QKD Protocol Based upon Authentication by EPR Entanglement State

    NASA Astrophysics Data System (ADS)

    Abushgra, Abdulbast A.

    Cryptographic world has faced multiple challenges that are included in encoding and decoding transmitting information into a secure communication channel. Quantum cryptography may be another generation of the cryptography world, which is based on the law of physics. After decades of using the classical cryptography, there is an essential need to move a step forward through the most trusted systems, especially enormous amount of data flows through billions of communicating channels (e.g. The internet), and keeping this transmitting information away from eavesdropping is obligatory. Moreover, quantum cryptography has proved its standing against many weaknesses in the classical cryptography. One of these weaknesses is the ability to copy any type of information using a passive attack without an interruption, which is impossible in the quantum system. Theoretically, several quantum observables are utilized to diagnose an action of one particle. These observables are included in measuring mass, movement, speed, etc. The polarization of one photon occurs normally and randomly in the space. Any interruption that happens during sending of a light will cause a deconstruction of the light polarization. Therefore, particles' movement in a three-dimensional space is supported by Non-Cloning theory that makes eavesdroppers unable to interrupt a communication system. In case an eavesdropper tried to interrupt a photon, the photon will be destroyed after passing the photon into a quantum detector or any measurement device. In the last decades, many Quantum Key Distribution (QKD) protocols have been created to initiate a secret key during encoding and decoding transmitted data operations. Some of these protocols were proven un-secure based on the quantum attacks that were released early. Even though the power of physics is still active and the Non-Cloning theory is unbroken, some QKD protocols failed during the security measurements. The main reason of the failure is based on the inability to provide the authentication between the end users during the quantum and classical channels. The proposed QKD protocol was designed to utilize some advantages of quantum physics as well as solid functions that are used in the classical cryptography. The authentication is a requirement during different communication channels, where both legitimate parties must confirm their identities before starting to submit data (plain-text). Moreover, the protocol uses most needed scenarios to finish the communication without leaking important data. These scenarios have been approved in existing QKD protocols either by classical or quantum systems. The matrix techniques also are used as a part of the preparation of the authentication key, where the end users communicate by an EPR (related to Einstein, Podolsky, and Rosen theory in 1935 ) channel. The EPR channel will be supported by an entanglement of particles. If the EPR communication succeeded, transferring the converted plain-text is required. Finally, both end users will have an authenticated secret key, and the submission will be done without any interruption.

  16. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states

    NASA Astrophysics Data System (ADS)

    Farouk, Ahmed; Batle, J.; Elhoseny, M.; Naseri, Mosayeb; Lone, Muzaffar; Fedorov, Alex; Alkhambashi, Majid; Ahmed, Syed Hassan; Abdel-Aty, M.

    2018-04-01

    Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger-Horne-Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.

  17. Online evolution reconstruction from a single measurement record with random time intervals for quantum communication

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong

    2017-10-01

    Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.

  18. Gossip algorithms in quantum networks

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

  19. Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2013-01-01

    entanglement based quantum key distribution . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Extended dispersive-optics QKD (DO-QKD) protocol...2 2.3 Analysis of non-local correlations of entangled photon pairs for arbitrary dis- persion...Section 3). 2 Protocol Development 2.1 Achieving multiple secure bits per coincidence in time-energy entanglement based quantum key distribution High

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Sadlier, Ronald J

    We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.

  1. Partial hyperbolicity and attracting regions in 3-dimensional manifolds

    NASA Astrophysics Data System (ADS)

    Potrie, Rafael

    The need for reliable, fiber-based sources of entangled and paired photons has intensified in recent years because of potential uses in optical quantum communication and computing. In particular, indistinguishable photon sources are an inherent part of several quantum communication protocols and are needed to establish the viability of quantum communication networks. This thesis is centered around the development of such sources at telecommunication-band wavelengths. In this thesis, we describe experiments on entangled photon generation and the creation of quantum logic gates in the C-band, and on photon indistinguishability in the O-band. These experiments utilize the four-wave mixing process in fiber which occurs as a result of the Kerr nonlinearity, to create paired photons. To begin, we report the development of a source of 1550-nm polarization entangled photons in fiber. We then interface this source with a quantum Controlled-NOT gate, which is a universal quantum logic gate. We set experimental bounds on the process fidelity of the Controlled-NOT gate. Next, we report a demonstration of quantum interference between 1310-nm photons produced in independent sources. We demonstrate high quantum interference visibility, a signature of quantum indistinguishability, while using distinguishable pump photons. Together, these efforts constitute preliminary steps toward establishing the viability of fiber-based quantum communication, which will allow us to utilize existing infrastructure for implementing quantum communication protocols.

  2. Perfect quantum multiple-unicast network coding protocol

    NASA Astrophysics Data System (ADS)

    Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan

    2018-01-01

    In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

  3. Quantum Private Queries

    NASA Astrophysics Data System (ADS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-06-01

    We propose a cheat sensitive quantum protocol to perform a private search on a classical database which is efficient in terms of communication complexity. It allows a user to retrieve an item from the database provider without revealing which item he or she retrieved: if the provider tries to obtain information on the query, the person querying the database can find it out. The protocol ensures also perfect data privacy of the database: the information that the user can retrieve in a single query is bounded and does not depend on the size of the database. With respect to the known (quantum and classical) strategies for private information retrieval, our protocol displays an exponential reduction in communication complexity and in running-time computational complexity.

  4. Limitations on quantum key repeaters.

    PubMed

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  5. Towards communication-efficient quantum oblivious key distribution

    NASA Astrophysics Data System (ADS)

    Panduranga Rao, M. V.; Jakobi, M.

    2013-01-01

    Symmetrically private information retrieval, a fundamental problem in the field of secure multiparty computation, is defined as follows: A database D of N bits held by Bob is queried by a user Alice who is interested in the bit Db in such a way that (1) Alice learns Db and only Db and (2) Bob does not learn anything about Alice's choice b. While solutions to this problem in the classical domain rely largely on unproven computational complexity theoretic assumptions, it is also known that perfect solutions that guarantee both database and user privacy are impossible in the quantum domain. Jakobi [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.022301 83, 022301 (2011)] proposed a protocol for oblivious transfer using well-known quantum key device (QKD) techniques to establish an oblivious key to solve this problem. Their solution provided a good degree of database and user privacy (using physical principles like the impossibility of perfectly distinguishing nonorthogonal quantum states and the impossibility of superluminal communication) while being loss-resistant and implementable with commercial QKD devices (due to the use of the Scarani-Acin-Ribordy-Gisin 2004 protocol). However, their quantum oblivious key distribution (QOKD) protocol requires a communication complexity of O(NlogN). Since modern databases can be extremely large, it is important to reduce this communication as much as possible. In this paper, we first suggest a modification of their protocol wherein the number of qubits that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum communication complexity even further in such a way that only a few hundred qubits are needed to be transferred even for very large databases.

  6. Quantum repeaters using continuous-variable teleportation

    NASA Astrophysics Data System (ADS)

    Dias, Josephine; Ralph, T. C.

    2017-02-01

    Quantum optical states are fragile and can become corrupted when passed through a lossy communication channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum communications. Current protocols target specific discrete encodings, for example quantum bits encoded on the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the simplest implementation and find that while its range is limited it can still achieve useful improvements in the distance over which quantum entanglement of field amplitudes can be distributed.

  7. Quantum Algorithms and Protocols

    NASA Astrophysics Data System (ADS)

    Divincenzo, David

    2001-06-01

    Quantum Computing is better than classical computing, but not just because it speeds up some computations. Some of the best known quantum algorithms, like Grover's, may well have their most interesting applications in settings that involve the combination of computation and communication. Thus, Grover speeds up the appointment scheduling problem by reducing the amount of communication needed between two parties who want to find a common free slot on their calendars. I will review various other applications of this sort that are being explored. Other distributed computing protocols are required to have other attributes like obliviousness and privacy; I will discuss our recent applications involving quantum data hiding.

  8. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  9. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-03-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  10. An Improved Protocol for Controlled Deterministic Secure Quantum Communication Using Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Lin, Jason; Tsai, Chia-Wei; Hwang, Tzonelih

    2018-06-01

    In early 2009, Xiu et al. (Opt. Commun. 282(2) 333-337 2009) presented a controlled deterministic secure quantum communication (CDSQC) protocol via a newly constructed five-qubit entangled quantum state. Later, Qin et al. (Opt. Commun. 282(13), 2656-2658 2009) pointed out two security loopholes in Xiu et al.'s protocol: (1) A correlation-elicitation (CE) attack can reveal the entire secret message; (2) A leakage of partial information for the receiver is noticed. Then, Xiu et al. (Opt. Commun. 283(2), 344-347 2010) presented a revised CDSQC protocol to remedy the CE attack problem. However, the information leakage problem still remains open. This work proposes a new CDSQC protocol using the same five-qubit entangled state which can work without the above mentioned security problems. Moreover, the Trojan Horse attacks can be automatically avoided without using detecting devices in the new CDSQC.

  11. Quantum communication and information processing

    NASA Astrophysics Data System (ADS)

    Beals, Travis Roland

    Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.

  12. Comment on 'Quantum direct communication with authentication'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhan-jun; Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education of China, School of Physics and Material Science, Anhui University, Hefei 230039; Liu, Jun

    2007-02-15

    Two protocols of quantum direct communication with authentication [Phys. Rev. A 73, 042305 (2006)] were recently proposed by Lee, Lim, and Yang. In this paper we will show that in the two protocols the authenticator Trent should be prevented from knowing the secret message. The first protocol can be eavesdropped on by Trent using the intercept-measure-resend attack, while the second protocol can be eavesdropped on by Trent using a simple single-qubit measurement. To fix these leaks, we revise the original versions of the protocols by using the Pauli Z operation {sigma}{sub z} instead of the original bit-flip operation X. Asmore » a consequence, the attacks we present can be prevented and accordingly the protocol securities are improved.« less

  13. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim

    2015-03-01

    The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.

  14. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    PubMed

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  15. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    PubMed Central

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-01-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159

  16. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    PubMed

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  17. Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Ming; Qu, Zhi-Guo

    2016-11-01

    Quantum secure communication brings a new direction for information security. As an important component of quantum secure communication, deterministic joint remote state preparation (DJRSP) could securely transmit a quantum state with 100 % success probability. In this paper, we study how the efficiency of DJRSP is affected when qubits involved in the protocol are subjected to noise or decoherence. Taking a GHZ-based DJRSP scheme as an example, we study all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing and amplitude-damping noise. Our study shows that the fidelity of the output state depends on the phase factor, the amplitude factor and the noise parameter in the bit-flip noise, while the fidelity only depends on the amplitude factor and the noise parameter in the other three types of noise. And the receiver will get different output states depending on the first preparer's measurement result in the amplitude-damping noise. Our results will be helpful for improving quantum secure communication in real implementation.

  18. Quantum measurements of signals from the Alphasat TDP1 laser communication terminal

    NASA Astrophysics Data System (ADS)

    Elser, D.; Günthner, K.; Khan, I.; Stiller, B.; Bayraktar, Ö.; Müller, C. R.; Saucke, K.; Tröndle, D.; Heine, F.; Seel, S.; Greulich, P.; Zech, H.; Gütlich, B.; Richter, I.; Philipp-May, S.; Marquardt, Ch.; Leuchs, G.

    2017-09-01

    Quantum optics [1] can be harnessed to implement cryptographic protocols that are verifiably immune against any conceivable attack [2]. Even quantum computers, that will break most current public keys [3, 4], cannot harm quantum encryption. Based on these intriguing quantum features, metropolitan quantum networks have been implemented around the world [5-15]. However, the long-haul link between metropolitan networks is currently missing [16]. Existing fiber infrastructure is not suitable for this purpose since classical telecom repeaters cannot relay quantum states [2]. Therefore, optical satellite-to-ground communication [17-22] lends itself to bridge intercontinental distances for quantum communication [23-40].

  19. Heralded noiseless amplification for single-photon entangled state with polarization feature

    NASA Astrophysics Data System (ADS)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  20. Interactive simulations for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje; Rizzoli, Aluna

    2017-05-01

    Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.

  1. Fair loss-tolerant quantum coin flipping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Guido; Brassard, Gilles; Bussieres, Felix

    Coin flipping is a cryptographic primitive in which two spatially separated players, who do not trust each other, wish to establish a common random bit. If we limit ourselves to classical communication, this task requires either assumptions on the computational power of the players or it requires them to send messages to each other with sufficient simultaneity to force their complete independence. Without such assumptions, all classical protocols are so that one dishonest player has complete control over the outcome. If we use quantum communication, on the other hand, protocols have been introduced that limit the maximal bias that dishonestmore » players can produce. However, those protocols would be very difficult to implement in practice because they are susceptible to realistic losses on the quantum channel between the players or in their quantum memory and measurement apparatus. In this paper, we introduce a quantum protocol and we prove that it is completely impervious to loss. The protocol is fair in the sense that either player has the same probability of success in cheating attempts at biasing the outcome of the coin flip. We also give explicit and optimal cheating strategies for both players.« less

  2. Blind quantum computation over a collective-noise channel

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2016-05-01

    Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.

  3. Three-party Quantum Secure Direct Communication with Single Photons in both Polarization and Spatial-mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Wang, LiLi; Ma, WenPing; Wang, MeiLing; Shen, DongSu

    2016-05-01

    We present an efficient three-party quantum secure direct communication (QSDC) protocol with single photos in both polarization and spatial-mode degrees of freedom. The three legal parties' messages can be encoded on the polarization and the spatial-mode states of single photons independently with desired unitary operations. A party can obtain the other two parties' messages simultaneously through a quantum channel. Because no extra public information is transmitted in the classical channels, the drawback of information leakage or classical correlation does not exist in the proposed scheme. Moreover, the comprehensive security analysis shows that the presented QSDC network protocol can defend the outsider eavesdropper's several sorts of attacks. Compared with the single photons with only one degree of freedom, our protocol based on the single photons in two degrees of freedom has higher capacity. Since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques, the proposed protocol is practical.

  4. Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2012-05-09

    REPORT Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of...including the development of a large-alphabet quantum key distribution protocol that uses measurements in mutually unbiased bases. 1. REPORT DATE (DD-MM... quantum information, integrated optics, photonic integrated chip Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory

  5. Excessive distribution of quantum entanglement

    NASA Astrophysics Data System (ADS)

    Zuppardo, Margherita; Krisnanda, Tanjung; Paterek, Tomasz; Bandyopadhyay, Somshubhro; Banerjee, Anindita; Deb, Prasenjit; Halder, Saronath; Modi, Kavan; Paternostro, Mauro

    2016-01-01

    We classify entanglement distribution protocols based on whether or not entanglement gain is observed with respect to communicated and initial entanglement. We call a protocol nonexcessive if the gain of entanglement is bounded by the communicated entanglement and excessive if it violates this bound. We present examples of excessive protocols that achieve significant gain, independently of the presence of the initial and (or) communicated entanglement. We show that, for certain entanglement measures, excessive entanglement distribution is possible even with pure states, which sheds light on the possibility of formulating a unifying approach to quantifiers of quantum correlations. We point out a "catalytic" effect, where a protocol is turned into an excessive one by sending an intermediate particle (which does not change the initial entanglement) in advance of the designated carrier. Finally, we analyze the protocols in noisy scenarios and show that, under suitable conditions, excessive distribution may be the only way to achieve entanglement gain.

  6. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  7. Unification of quantum information theory

    NASA Astrophysics Data System (ADS)

    Abeyesinghe, Anura

    We present the unification of many previously disparate results in noisy quantum Shannon theory and the unification of all of noiseless quantum Shannon theory. More specifically we deal here with bipartite, unidirectional, and memoryless quantum Shannon theory. We find all the optimal protocols and quantify the relationship between the resources used, both for the one-shot and for the ensemble case, for what is arguably the most fundamental task in quantum information theory: sharing entangled states between a sender and a receiver. We find that all of these protocols are derived from our one-shot superdense coding protocol and relate nicely to each other. We then move on to noisy quantum information theory and give a simple, direct proof of the "mother" protocol, or rather her generalization to the Fully Quantum Slepian-Wolf protocol (FQSW). FQSW simultaneously accomplishes two goals: quantum communication-assisted entanglement distillation, and state transfer from the sender to the receiver. As a result, in addition to her other "children," the mother protocol generates the state merging primitive of Horodecki, Oppenheim, and Winter as well as a new class of distributed compression protocols for correlated quantum sources, which are optimal for sources described by separable density operators. Moreover, the mother protocol described here is easily transformed into the so-called "father" protocol, demonstrating that the division of single-sender/single-receiver protocols into two families was unnecessary: all protocols in the family are children of the mother.

  8. Fast, efficient error reconciliation for quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, W.T.; Lamoreaux, S.K.; Torgerson, J.R.

    2003-05-01

    We describe an error-reconciliation protocol, which we call Winnow, based on the exchange of parity and Hamming's 'syndrome' for N-bit subunits of a large dataset. The Winnow protocol was developed in the context of quantum-key distribution and offers significant advantages and net higher efficiency compared to other widely used protocols within the quantum cryptography community. A detailed mathematical analysis of the Winnow protocol is presented in the context of practical implementations of quantum-key distribution; in particular, the information overhead required for secure implementation is one of the most important criteria in the evaluation of a particular error-reconciliation protocol. The increasemore » in efficiency for the Winnow protocol is largely due to the reduction in authenticated public communication required for its implementation.« less

  9. Multi-Bit Quantum Private Query

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Xu; Liu, Xing-Tong; Wang, Jian; Tang, Chao-Jing

    2015-09-01

    Most of the existing Quantum Private Queries (QPQ) protocols provide only single-bit queries service, thus have to be repeated several times when more bits are retrieved. Wei et al.'s scheme for block queries requires a high-dimension quantum key distribution system to sustain, which is still restricted in the laboratory. Here, based on Markus Jakobi et al.'s single-bit QPQ protocol, we propose a multi-bit quantum private query protocol, in which the user can get access to several bits within one single query. We also extend the proposed protocol to block queries, using a binary matrix to guard database security. Analysis in this paper shows that our protocol has better communication complexity, implementability and can achieve a considerable level of security.

  10. Aggregating quantum repeaters for the quantum internet

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Kato, Go

    2017-09-01

    The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.

  11. All-photonic quantum repeaters

    PubMed Central

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  12. Continuous-variable protocol for oblivious transfer in the noisy-storage model.

    PubMed

    Furrer, Fabian; Gehring, Tobias; Schaffner, Christian; Pacher, Christoph; Schnabel, Roman; Wehner, Stephanie

    2018-04-13

    Cryptographic protocols are the backbone of our information society. This includes two-party protocols which offer protection against distrustful players. Such protocols can be built from a basic primitive called oblivious transfer. We present and experimentally demonstrate here a quantum protocol for oblivious transfer for optical continuous-variable systems, and prove its security in the noisy-storage model. This model allows us to establish security by sending more quantum signals than an attacker can reliably store during the protocol. The security proof is based on uncertainty relations which we derive for continuous-variable systems, that differ from the ones used in quantum key distribution. We experimentally demonstrate in a proof-of-principle experiment the proposed oblivious transfer protocol for various channel losses by using entangled two-mode squeezed states measured with balanced homodyne detection. Our work enables the implementation of arbitrary two-party quantum cryptographic protocols with continuous-variable communication systems.

  13. Fault-tolerant quantum blind signature protocols against collective noise

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Hui; Li, Hui-Fang

    2016-10-01

    This work proposes two fault-tolerant quantum blind signature protocols based on the entanglement swapping of logical Bell states, which are robust against two kinds of collective noises: the collective-dephasing noise and the collective-rotation noise, respectively. Both of the quantum blind signature protocols are constructed from four-qubit decoherence-free (DF) states, i.e., logical Bell qubits. The initial message is encoded on the logical Bell qubits with logical unitary operations, which will not destroy the anti-noise trait of the logical Bell qubits. Based on the fundamental property of quantum entanglement swapping, the receiver simply performs two Bell-state measurements (rather than four-qubit joint measurements) on the logical Bell qubits to verify the signature, which makes the protocols more convenient in a practical application. Different from the existing quantum signature protocols, our protocols can offer the high fidelity of quantum communication with the employment of logical qubits. Moreover, we hereinafter prove the security of the protocols against some individual eavesdropping attacks, and we show that our protocols have the characteristics of unforgeability, undeniability and blindness.

  14. Quantum private query based on single-photon interference

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Wei; Sun, Ying; Lin, Song

    2016-08-01

    Quantum private query (QPQ) has become a research hotspot recently. Specially, the quantum key distribution (QKD)-based QPQ attracts lots of attention because of its practicality. Various such kind of QPQ protocols have been proposed based on different technologies of quantum communications. Single-photon interference is one of such technologies, on which the famous QKD protocol GV95 is just based. In this paper, we propose two QPQ protocols based on single-photon interference. The first one is simpler and easier to realize, and the second one is loss tolerant and flexible, and more practical than the first one. Furthermore, we analyze both the user privacy and the database privacy in the proposed protocols.

  15. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  16. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  17. A quantum light-emitting diode for the standard telecom window around 1,550 nm.

    PubMed

    Müller, T; Skiba-Szymanska, J; Krysa, A B; Huwer, J; Felle, M; Anderson, M; Stevenson, R M; Heffernan, J; Ritchie, D A; Shields, A J

    2018-02-28

    Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware.

  18. Practical secure quantum communications

    NASA Astrophysics Data System (ADS)

    Diamanti, Eleni

    2015-05-01

    We review recent advances in the field of quantum cryptography, focusing in particular on practical implementations of two central protocols for quantum network applications, namely key distribution and coin flipping. The former allows two parties to share secret messages with information-theoretic security, even in the presence of a malicious eavesdropper in the communication channel, which is impossible with classical resources alone. The latter enables two distrustful parties to agree on a random bit, again with information-theoretic security, and with a cheating probability lower than the one that can be reached in a classical scenario. Our implementations rely on continuous-variable technology for quantum key distribution and on a plug and play discrete-variable system for coin flipping, and necessitate a rigorous security analysis adapted to the experimental schemes and their imperfections. In both cases, we demonstrate the protocols with provable security over record long distances in optical fibers and assess the performance of our systems as well as their limitations. The reported advances offer a powerful toolbox for practical applications of secure communications within future quantum networks.

  19. Analysis of the secrecy of the running key in quantum encryption channels using coherent states of light

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Hughes, David H.; Malowicki, John; Bedi, Vijit

    2015-05-01

    Free-space optical communication channels offer secure links with low probability of interception and detection. Despite their point-to-point topology, additional security features may be required in privacy-critical applications. Encryption can be achieved at the physical layer by using quantized values of photons, which makes exploitation of such quantum communication links extremely difficult. One example of such technology is keyed communication in quantum noise, a novel quantum modulation protocol that offers ultra-secure communication with competitive performance characteristics. Its utilization relies on specific coherent measurements to decrypt the signal. The process of measurements is complicated by the inherent and irreducible quantum noise of coherent states. This problem is different from traditional laser communication with coherent detection; therefore continuous efforts are being made to improve the measurement techniques. Quantum-based encryption systems that use the phase of the signal as the information carrier impose aggressive requirements on the accuracy of the measurements when an unauthorized party attempts intercepting the data stream. Therefore, analysis of the secrecy of the data becomes extremely important. In this paper, we present the results of a study that had a goal of assessment of potential vulnerability of the running key. Basic results of the laboratory measurements are combined with simulation studies and statistical analysis that can be used for both conceptual improvement of the encryption approach and for quantitative comparison of secrecy of different quantum communication protocols.

  20. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  1. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.

    PubMed

    Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A

    2012-01-27

    Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.

  2. Experimental loss-tolerant quantum coin flipping

    PubMed Central

    Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang

    2011-01-01

    Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication. PMID:22127057

  3. Topics in quantum cryptography, quantum error correction, and channel simulation

    NASA Astrophysics Data System (ADS)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel simulation with quantum side information at the receiver. Our main theorem has two important corollaries: rate-distortion theory with quantum side information and common randomness distillation. Simple proofs of achievability of classical multi-terminal source coding problems can be made via a unified approach using the channel simulation theorem as building blocks. The fully quantum generalization of the problem is also conjectured with outer and inner bounds on the achievable rate pairs.

  4. Quantum Counterfactual Information Transmission Without a Weak Trace

    NASA Astrophysics Data System (ADS)

    Arvidsson Shukur, David; Barnes, Crispin

    The classical theories of communication rely on the assumption that there has to be a flow of particles from Bob to Alice in order for him to send a message to her. We have developed a quantum protocol that allows Alice to perceive Bob's message ``counterfactually''. That is, without Alice receiving any particles that have interacted with Bob. By utilising a setup built on results from interaction-free measurements and the quantum Zeno effect, we outline a communication protocol in which the information travels in the opposite direction of the emitted particles. In comparison to previous attempts on such protocols, this one is such that a weak measurement at the message source would not leave a weak trace that could be detected by Alice's receiver. Whilst some interaction-free schemes require a large number of carefully aligned beam-splitters, our protocol is realisable with two or more beam-splitters. Furthermore, we outline how Alice's obtained classical Fisher information between a weak variable at Bob's laboratory is negligible in our scheme. We demonstrate this protocol by numerically solving the time-dependent Schrödinger Equation (TDSE) for a Hamiltonian that implements this quantum counterfactual phenomenon.

  5. Loss-tolerant quantum secure positioning with weak laser sources

    NASA Astrophysics Data System (ADS)

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; Chitambar, Eric; Evans, Philip G.; Qi, Bing

    2016-09-01

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. Recently, it has been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit. Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. In this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.

  6. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-06-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature.

  7. Two-Step Deterministic Remote Preparation of an Arbitrary Quantum State

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Yan, Feng-Li

    2010-11-01

    We present a two-step deterministic remote state preparation protocol for an arbitrary quhit with the aid of a three-particle Greenberger—Horne—Zeilinger state. Generalization of this protocol for higher-dimensional Hilbert space systems among three parties is also given. We show that only single-particle von Neumann measurements, local operations, and classical communication are necessary. Moreover, since the overall information of the quantum state can be divided into two different pieces, which may be at different locations, this protocol may be useful in the quantum information field.

  8. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay.

    PubMed

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-06-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature.

  9. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay

    PubMed Central

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-01-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature. PMID:27247078

  10. Fundamental limits of repeaterless quantum communications

    PubMed Central

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-01-01

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters. PMID:28443624

  11. Fundamental limits of repeaterless quantum communications.

    PubMed

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-04-26

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed 'teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.

  12. Self-referenced continuous-variable quantum key distribution protocol

    DOE PAGES

    Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin; ...

    2015-10-21

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  13. Self-referenced continuous-variable quantum key distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel Beom Soo; Sarovar, Mohan; Brif, Constantin

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of themore » protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. Furthermore, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  14. Self-Referenced Continuous-Variable Quantum Key Distribution Protocol

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lütkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan

    2015-10-01

    We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice's and Bob's measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.

  15. Security of a single-state semi-quantum key distribution protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Mateus, Paulo

    2018-06-01

    Semi-quantum key distribution protocols are allowed to set up a secure secret key between two users. Compared with their full quantum counterparts, one of the two users is restricted to perform some "classical" or "semi-quantum" operations, which potentially makes them easily realizable by using less quantum resource. However, the semi-quantum key distribution protocols mainly rely on a two-way quantum channel. The eavesdropper has two opportunities to intercept the quantum states transmitted in the quantum communication stage. It may allow the eavesdropper to get more information and make the security analysis more complicated. In the past ten years, many semi-quantum key distribution protocols have been proposed and proved to be robust. However, there are few works concerning their unconditional security. It is doubted that how secure the semi-quantum ones are and how much noise they can tolerate to establish a secure secret key. In this paper, we prove the unconditional security of a single-state semi-quantum key distribution protocol proposed by Zou et al. (Phys Rev A 79:052312, 2009). We present a complete proof from information theory aspect by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we figure out an error threshold value such that for all error rates that are less than this threshold value, the secure secret key can be established between the legitimate users definitely. Otherwise, the users should abort the protocol. We make an illustration of the protocol under the circumstance that the reverse quantum channel is a depolarizing one with parameter q. Additionally, we compare the error threshold value with some full quantum protocols and several existing semi-quantum ones whose unconditional security proofs have been provided recently.

  16. Long-distance measurement-device-independent multiparty quantum communication.

    PubMed

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-06

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  17. Quantum communication complexity using the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Anwer, Hammad; Hameedi, Alley; Bourennane, Mohamed

    2015-07-01

    The quantum Zeno effect (QZE) is the phenomenon in which the unitary evolution of a quantum state is suppressed, e.g., due to frequent measurements. Here, we investigate the use of the QZE in a class of communication complexity problems (CCPs). Quantum entanglement is known to solve certain CCPs beyond classical constraints. However, recent developments have yielded CCPs for which superclassical results can be obtained using only communication of a single d -level quantum state (qudit) as a resource. In the class of CCPs considered here, we show quantum reduction of complexity in three ways: using (i) entanglement and the QZE, (ii) a single qudit and the QZE, and (iii) a single qudit. We have performed a proof of concept experimental demonstrations of three party CCP protocol based on single-qubit communication with and without QZE.

  18. Twenty Seven Years of Quantum Cryptography!

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    2011-03-01

    One of the fundamental goals of cryptographic research is to minimize the assumptions underlying the protocols that enable secure communications between pairs or groups of users. In 1984, building on earlier research by Stephen Wiesner, Charles Bennett and Gilles Brassard showed how quantum physics could be harnessed to provide information-theoretic security for protocols such as the distribution of cryptographic keys, which enables two parties to secure their conventional communications. Bennett and Brassard and colleagues performed a proof-of-principle quantum key distribution (QKD) experiment with single-photon quantum state transmission over a 32-cm air path in 1991. This seminal experiment led other researchers to explore QKD in optical fibers and over line-of-sight outdoor atmospheric paths (``free-space''), resulting in dramatic increases in range, bit rate and security. These advances have been enabled by improvements in sources and single-photon detectors. Also in 1991 Artur Ekert showed how the security of QKD could be related to quantum entanglement. This insight led to a deeper understanding and proof of QKD security with practical sources and detectors in the presence of transmission loss and channel noise. Today, QKD has been implemented over ranges much greater than 100km in both fiber and free-space, multi-node network testbeds have been demonstrated, and satellite-based QKD is under study in several countries. ``Quantum hacking'' researchers have shown the importance of extending security considerations to the classical devices that produce and detect the photon quantum states. New quantum cryptographic protocols such as secure identification have been proposed, and others such as quantum secret splitting have been demonstrated. It is now possible to envision quantum cryptography providing a more secure alternative to present-day cryptographic methods for many secure communications functions. My talk will survey these remarkable developments.

  19. Quantum teleportation between distant matter qubits.

    PubMed

    Olmschenk, S; Matsukevich, D N; Maunz, P; Hayes, D; Duan, L-M; Monroe, C

    2009-01-23

    Quantum teleportation is the faithful transfer of quantum states between systems, relying on the prior establishment of entanglement and using only classical communication during the transmission. We report teleportation of quantum information between atomic quantum memories separated by about 1 meter. A quantum bit stored in a single trapped ytterbium ion (Yb+) is teleported to a second Yb+ atom with an average fidelity of 90% over a replete set of states. The teleportation protocol is based on the heralded entanglement of the atoms through interference and detection of photons emitted from each atom and guided through optical fibers. This scheme may be used for scalable quantum computation and quantum communication.

  20. Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication Using Coherent States

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Guo, Ying

    2017-02-01

    A continuous-variable measurement-device-independent (CV-MDI) multipartite quantum communication protocol is designed to realize multipartite communication based on the GHZ state analysis using Gaussian coherent states. It can remove detector side attack as the multi-mode measurement is blindly done in a suitable Black Box. The entanglement-based CV-MDI multipartite communication scheme and the equivalent prepare-and-measurement scheme are proposed to analyze the security and guide experiment, respectively. The general eavesdropping and coherent attack are considered for the security analysis. Subsequently, all the attacks are ascribed to coherent attack against imperfect links. The asymptotic key rate of the asymmetric configuration is also derived with the numeric simulations illustrating the performance of the proposed protocol.

  1. High-dimensional quantum cloning and applications to quantum hacking

    PubMed Central

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim

    2017-01-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219

  2. High-dimensional quantum cloning and applications to quantum hacking.

    PubMed

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  3. Field test of a practical secure communication network with decoy-state quantum cryptography.

    PubMed

    Chen, Teng-Yun; Liang, Hao; Liu, Yang; Cai, Wen-Qi; Ju, Lei; Liu, Wei-Yue; Wang, Jian; Yin, Hao; Chen, Kai; Chen, Zeng-Bing; Peng, Cheng-Zhi; Pan, Jian-Wei

    2009-04-13

    We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.

  4. A large-alphabet three-party quantum key distribution protocol based on orbital and spin angular momenta hybrid entanglement

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Luo, Mingxing; Zhang, Jun; Pieprzyk, Josef; Pan, Lei; Orgun, Mehmet A.

    2018-07-01

    The orthogonality of the orbital angular momentum (OAM) eigenstates enables a single photon carry an arbitrary number of bits. Moreover, additional degrees of freedom (DOFs) of OAM can span a high-dimensional Hilbert space, which could greatly increase information capacity and security. Moreover, the use of the spin angular momentum-OAM hybrid entangled state can increase Shannon dimensionality, because photons can be hybrid entangled in multiple DOFs. Based on these observations, we develop a hybrid entanglement quantum key distribution (QKD) protocol to achieve three-party quantum key distribution without classical message exchanges. In our proposed protocol, a communicating party uses a spatial light modulator (SLM) and a specific phase hologram to modulate photons' OAM state. Similarly, the other communicating parties use their SLMs and the fixed different phase holograms to modulate the OAM entangled photon pairs, producing the shared key among the parties Alice, Bob and Charlie without classical message exchanges. More importantly, when the same operation is repeated for every party, our protocol could be extended to a multiple-party QKD protocol.

  5. Improving Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication with Optical Amplifiers*

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang

    2017-08-01

    The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.

  6. Focus on Quantum Memory

    NASA Astrophysics Data System (ADS)

    Brennen, Gavin; Giacobino, Elisabeth; Simon, Christoph

    2015-05-01

    Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.

  7. Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states

    NASA Astrophysics Data System (ADS)

    Wang, Meihong; Qin, Zhongzhong; Wang, Yu; Su, Xiaolong

    2017-08-01

    Multipartite Einstein-Podolsky-Rosen (EPR) steering is a useful quantum resource for quantum communication in quantum networks. It has potential applications in secure quantum communication, such as one-sided device-independent quantum key distribution and quantum secret sharing. By distributing optical modes of a multipartite entangled state to space-separated quantum nodes, a local quantum network can be established. Based on the existing multipartite EPR steering in a local quantum network, secure quantum communication protocol can be accomplished. In this manuscript, we present swapping schemes for EPR steering between two space-separated Gaussian multipartite entangled states, which can be used to connect two space-separated quantum networks. Two swapping schemes, including the swapping between a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state and an EPR entangled state and that between two tripartite GHZ entangled states, are analyzed. Various types of EPR steering are presented after the swapping of two space-separated independent multipartite entanglement states without direct interaction, which can be used to implement quantum communication between two quantum networks. The presented schemes provide technical reference for more complicated quantum networks with EPR steering.

  8. Quantum fingerprinting with coherent states and a constant mean number of photons

    NASA Astrophysics Data System (ADS)

    Arrazola, Juan Miguel; Lütkenhaus, Norbert

    2014-06-01

    We present a protocol for quantum fingerprinting that is ready to be implemented with current technology and is robust to experimental errors. The basis of our scheme is an implementation of the signal states in terms of a coherent state in a superposition of time-bin modes. Experimentally, this requires only the ability to prepare coherent states of low amplitude and to interfere them in a balanced beam splitter. The states used in the protocol are arbitrarily close in trace distance to states of O (log2n) qubits, thus exhibiting an exponential separation in abstract communication complexity compared to the classical case. The protocol uses a number of optical modes that is proportional to the size n of the input bit strings but a total mean photon number that is constant and independent of n. Given the expended resources, our protocol achieves a task that is provably impossible using classical communication only. In fact, even in the presence of realistic experimental errors and loss, we show that there exist a large range of input sizes for which our quantum protocol transmits an amount of information that can be more than two orders of magnitude smaller than a classical fingerprinting protocol.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less

  10. Loss-tolerant quantum secure positioning with weak laser sources

    DOE PAGES

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; ...

    2016-09-14

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less

  11. Experimental purification of two-atom entanglement.

    PubMed

    Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J

    2006-10-19

    Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.

  12. Long distance quantum teleportation

    NASA Astrophysics Data System (ADS)

    Xia, Xiu-Xiu; Sun, Qi-Chao; Zhang, Qiang; Pan, Jian-Wei

    2018-01-01

    Quantum teleportation is a core protocol in quantum information science. Besides revealing the fascinating feature of quantum entanglement, quantum teleportation provides an ultimate way to distribute quantum state over extremely long distance, which is crucial for global quantum communication and future quantum networks. In this review, we focus on the long distance quantum teleportation experiments, especially those employing photonic qubits. From the viewpoint of real-world application, both the technical advantages and disadvantages of these experiments are discussed.

  13. Intrication temporelle et communication quantique

    NASA Astrophysics Data System (ADS)

    Bussieres, Felix

    Quantum communication is the art of transferring a quantum state from one place to another and the study of tasks that can be accomplished with it. This thesis is devoted to the development of tools and tasks for quantum communication in a real-world setting. These were implemented using an underground optical fibre link deployed in an urban environment. The technological and theoretical innovations presented here broaden the range of applications of time-bin entanglement through new methods of manipulating time-bin qubits, a novel model for characterizing sources of photon pairs, new ways of testing non-locality and the design and the first implementation of a new loss-tolerant quantum coin-flipping protocol. Manipulating time-bin qubits. A single photon is an excellent vehicle in which a qubit, the fundamental unit of quantum information, can be encoded. In particular, the time-bin encoding of photonic qubits is well suited for optical fibre transmission. Before this thesis, the applications of quantum communication based on the time-bin encoding were limited due to the lack of methods to implement arbitrary operations and measurements. We have removed this restriction by proposing the first methods to realize arbitrary deterministic operations on time-bin qubits as well as single qubit measurements in an arbitrary basis. We applied these propositions to the specific case of optical measurement-based quantum computing and showed how to implement the feedforward operations, which are essential to this model. This therefore opens new possibilities for creating an optical quantum computer, but also for other quantum communication tasks. Characterizing sources of photon pairs. Experimental quantum communication requires the creation of single photons and entangled photons. These two ingredients can be obtained from a source of photon pairs based on non-linear spontaneous processes. Several tasks in quantum communication require a precise knowledge of the properties of the source being used. We developed and implemented a fast and simple method to characterize a source of photon pairs. This method is well suited for a realistic setting where experimental conditions, such as channel transmittance, may fluctuate, and for which the characterization of the source has to be done in real time. Testing the non-locality of time-bin entanglement. Entanglement is a resource needed for the realization of many important tasks in quantum communication. It also allows two physical systems to be correlated in a way that cannot be explained by classical physics; this manifestation of entanglement is called non-locality. We built a source of time-bin entangled photonic qubits and characterized it with the new methods implementing arbitrary single qubit measurements that we developed. This allowed us to reveal the non-local nature of our source of entanglement in ways that were never implemented before. It also opens the door to study previously untested features of non-locality using this source. Theses experiments were performed in a realistic setting where quantum (non-local) correlations were observed even after transmission of one of the entangled qubits over 12.4 km of an underground optical fibre. Flipping quantum coins. Quantum coin-flipping is a quantum cryptographic primitive proposed in 1984, that is when the very first steps of quantum communication were being taken, where two players alternate in sending classical and quantum information in order to generate a shared random bit. The use of quantum information is such that a potential cheater cannot force the outcome to his choice with certainty. Classically, however, one of the players can always deterministically choose the outcome. Unfortunately, the security of all previous quantum coin-flipping protocols is seriously compromised in the presence of losses on the transmission channel, thereby making this task impractical. We found a solution to this problem and obtained the first loss-tolerant quantum coin-flipping protocol whose security is independent of the amount of the losses. We have also experimentally demonstrated our loss-tolerant protocol using our source of time-bin entanglement combined with our arbitrary single qubit measurement methods. This experiment took place in a realistic setting where qubits travelled over an underground optical fibre link. This new task thus joins quantum key distribution as a practical application of quantum communication. Keywords. quantum communication, photonics, time-bin encoding, source of photon pairs, heralded single photon source, entanglement, non-locality, time-bin entanglement, hybrid entanglement, quantum network, quantum cryptography, quantum coin-flipping, measurement-based quantum computation, telecommunication, optical fibre, nonlinear optics.

  14. Surface code quantum communication.

    PubMed

    Fowler, Austin G; Wang, David S; Hill, Charles D; Ladd, Thaddeus D; Van Meter, Rodney; Hollenberg, Lloyd C L

    2010-05-07

    Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate of existing protocols is low as two-way classical communication is used. By using a surface code across the repeater chain and generating Bell pairs between neighboring stations with probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way communication can be avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.

  15. Quantum Communication Using Coherent Rejection Sampling

    NASA Astrophysics Data System (ADS)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-01

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  16. A probabilistic quantum communication protocol using mixed entangled channel

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Dhara, Arpan

    2016-05-01

    Qubits are realized as polarization state of photons or as superpositions of the spin states of electrons. In this paper we propose a scheme to probabilistically teleport an unknown arbitrary two-qubit state using a non-maximally entangled GHZ- like state and a non-maximally Bell state simultaneously as quantum channels. We also discuss the success probability of our scheme. We perform POVM in the protocol which is operationally advantageous. In our scheme we show that the non-maximal quantum resources perform better than maximal resources.

  17. Authenticated communication from quantum readout of PUFs

    NASA Astrophysics Data System (ADS)

    Škorić, Boris; Pinkse, Pepijn W. H.; Mosk, Allard P.

    2017-08-01

    Quantum readout of physical unclonable functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: A verifier can check if received classical data were sent by the PUF holder. We call this modification QR-d or, in the case of the optical-PUF implementation, QSA-d. We discuss how QSA-d can be operated in a parallel way. We also present a protocol for authenticating quantum states.

  18. Secure quantum private information retrieval using phase-encoded queries

    NASA Astrophysics Data System (ADS)

    Olejnik, Lukasz

    2011-08-01

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.230502 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  19. Secure quantum private information retrieval using phase-encoded queries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olejnik, Lukasz

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offersmore » substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.« less

  20. Implementing controlled-unitary operations over the butterfly network

    NASA Astrophysics Data System (ADS)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-01

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  1. Implementing controlled-unitary operations over the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  2. Two Quantum Protocols for Oblivious Set-member Decision Problem

    NASA Astrophysics Data System (ADS)

    Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2015-10-01

    In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.

  3. Two Quantum Protocols for Oblivious Set-member Decision Problem

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2015-01-01

    In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology. PMID:26514668

  4. Two Quantum Protocols for Oblivious Set-member Decision Problem.

    PubMed

    Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2015-10-30

    In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.

  5. Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Adesso, Gerardo; Xie, Changde; Peng, Kunchi

    2009-08-01

    We demonstrate the capability of continuous variable Gaussian states to communicate multipartite quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly entangled multimode state can be faithfully teleported between two teams each comprising many cooperative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable unconditional quantum teamwork implementations for any arrangement of the teams. These perfect continuous variable maximally multipartite entangled resources are typical among pure Gaussian states and are unaffected by the entanglement frustration occurring in multiqubit states.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  7. Controller-Independent Bidirectional Direct Communication with Four-Qubit Cluster States

    NASA Astrophysics Data System (ADS)

    Cao, Yong; Zha, Xin-Wei; Wang, Shu-Kai

    2018-03-01

    We propose a feasible scheme for implementing bidirectional quantum direct communication protocol using four-qubit cluster states. In this scheme, the quantum channel between the sender Alice and the receiver Bob consists of an ordered sequence of cluster states which are prepared by Alice. After ensuring the security of quantum channel, according to the secret messages, the sender will perform the unitary operation and the receiver can obtain different secret messages in a deterministic way.

  8. Experimental demonstration on the deterministic quantum key distribution based on entangled photons.

    PubMed

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-02-10

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified "Ping-Pong"(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.

  9. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    PubMed Central

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  10. General Approach to Quantum Channel Impossibility by Local Operations and Classical Communication.

    PubMed

    Cohen, Scott M

    2017-01-13

    We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that the set of quantum channels that are not LOCC is not closed and that there exist channels that can be implemented by LOCC either in one round or in three rounds that are on the boundary of the set of all LOCC channels. Although every LOCC protocol must implement a separable quantum channel, it is a very difficult task to determine whether or not a given channel is separable. Fortunately, prior knowledge that the channel is separable is not required for application of our method.

  11. Controlled Bidirectional Hybrid of Remote State Preparation and Quantum Teleportation via Seven-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Zha, Xin-Wei; Yang, Yu-Quan

    2018-01-01

    We propose a new protocol of implementing four-party controlled joint remote state preparation and meanwhile realizing controlled quantum teleportation via a seven-qubit entangled state. That is to say, Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of supervisors Fred and David. Compared with previous studies for the schemes of solely bidirectional quantum teleportation and remote state preparation, the new protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose.

  12. Robust bidirectional links for photonic quantum networks

    PubMed Central

    Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state–independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069

  13. Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Sheng, Yu-Bo

    2017-10-01

    Entanglement purification plays a fundamental role in long-distance quantum communication. In the paper, we put forward the first polarization entanglement purification protocol (EPP) for one type of nonlocal logic-qubit entanglement, i.e., concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, resorting to the photon-atom interaction in low-quality (Q) cavity. In contrast to existing EPPs, this protocol can purify the bit-flip error and phase-flip error in both physic and logic level. Instead of measuring the photons directly, this protocol only requires to measure the atom states to judge whether the protocol is successful. In this way, the purified logic entangled states can be preserved for further application. Moreover, it makes this EPP repeatable so as to obtain a higher fidelity of logic entangled states. As the logic-qubit entanglement utilizes the quantum error correction (QEC) codes, which has an inherent stability against noise and decoherence, this EPP combined with the QEC codes may provide a double protection for the entanglement from the channel noise and may have potential applications in long-distance quantum communication.

  14. Experimental bit commitment based on quantum communication and special relativity.

    PubMed

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H

    2013-11-01

    Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.

  15. Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states

    NASA Astrophysics Data System (ADS)

    Jiang, Dong-Huan; Xu, Guang-Bao

    2018-07-01

    Based on locally indistinguishable orthogonal product states, we propose a novel multiparty quantum key agreement (QKA) protocol. In this protocol, the private key information of each party is encoded as some orthogonal product states that cannot be perfectly distinguished by local operations and classical communications. To ensure the security of the protocol with small amount of decoy particles, the different particles of each product state are transmitted separately. This protocol not only can make each participant fairly negotiate a shared key, but also can avoid information leakage in the maximum extent. We give a detailed security proof of this protocol. From comparison result with the existing QKA protocols, we can know that the new protocol is more efficient.

  16. Long-Range Big Quantum-Data Transmission.

    PubMed

    Zwerger, M; Pirker, A; Dunjko, V; Briegel, H J; Dür, W

    2018-01-19

    We introduce an alternative type of quantum repeater for long-range quantum communication with improved scaling with the distance. We show that by employing hashing, a deterministic entanglement distillation protocol with one-way communication, one obtains a scalable scheme that allows one to reach arbitrary distances, with constant overhead in resources per repeater station, and ultrahigh rates. In practical terms, we show that, also with moderate resources of a few hundred qubits at each repeater station, one can reach intercontinental distances. At the same time, a measurement-based implementation allows one to tolerate high loss but also operational and memory errors of the order of several percent per qubit. This opens the way for long-distance communication of big quantum data.

  17. Long-Range Big Quantum-Data Transmission

    NASA Astrophysics Data System (ADS)

    Zwerger, M.; Pirker, A.; Dunjko, V.; Briegel, H. J.; Dür, W.

    2018-01-01

    We introduce an alternative type of quantum repeater for long-range quantum communication with improved scaling with the distance. We show that by employing hashing, a deterministic entanglement distillation protocol with one-way communication, one obtains a scalable scheme that allows one to reach arbitrary distances, with constant overhead in resources per repeater station, and ultrahigh rates. In practical terms, we show that, also with moderate resources of a few hundred qubits at each repeater station, one can reach intercontinental distances. At the same time, a measurement-based implementation allows one to tolerate high loss but also operational and memory errors of the order of several percent per qubit. This opens the way for long-distance communication of big quantum data.

  18. Partial quantum information.

    PubMed

    Horodecki, Michał; Oppenheim, Jonathan; Winter, Andreas

    2005-08-04

    Information--be it classical or quantum--is measured by the amount of communication needed to convey it. In the classical case, if the receiver has some prior information about the messages being conveyed, less communication is needed. Here we explore the concept of prior quantum information: given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the partial information one system needs, conditioned on its prior information. We find that it is given by the conditional entropy--a quantity that was known previously, but lacked an operational meaning. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, then sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a protocol that we term 'quantum state merging' which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, noiseless coding with side information, multiple access channels and assisted entanglement distillation.

  19. Generating the Local Oscillator "Locally" in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko

    2015-10-01

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.

  20. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    NASA Astrophysics Data System (ADS)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ±0.018 , and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  1. Direct and reverse secret-key capacities of a quantum channel.

    PubMed

    Pirandola, Stefano; García-Patrón, Raul; Braunstein, Samuel L; Lloyd, Seth

    2009-02-06

    We define the direct and reverse secret-key capacities of a memoryless quantum channel as the optimal rates that entanglement-based quantum-key-distribution protocols can reach by using a single forward classical communication (direct reconciliation) or a single feedback classical communication (reverse reconciliation). In particular, the reverse secret-key capacity can be positive for antidegradable channels, where no forward strategy is known to be secure. This property is explicitly shown in the continuous variable framework by considering arbitrary one-mode Gaussian channels.

  2. Comment on: Supervisory Asymmetric Deterministic Secure Quantum Communication

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Tsai, Chia-Wei; Hwang, Tzonelih

    2012-12-01

    In 2010, Xiu et al. (Optics Communications 284:2065-2069, 2011) proposed several applications based on a new secure four-site distribution scheme using χ-type entangled states. This paper points out that one of these applications, namely, supervisory asymmetric deterministic secure quantum communication, is subject to an information leakage problem, in which the receiver can extract two bits of a three-bit secret message without the supervisor's permission. An enhanced protocol is proposed to resolve this problem.

  3. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Sadlier, Ronald J

    Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulationsmore » of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.« less

  5. Quantum Communication Using Coherent Rejection Sampling.

    PubMed

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-22

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995)PLRAAN1050-294710.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); CMPHAY0010-361610.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); PRLTAO0031-900710.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009)PRLAAZ1364-502110.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  6. Towards a Quantum Memory assisted MDI-QKD node

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-04-01

    The creation of large quantum network that permits the communication of quantum states and the secure distribution of cryptographic keys requires multiple operational quantum memories. In this work we present our progress towards building a prototypical quantum network that performs the memory-assisted measurement device independent QKD protocol. Currently our network combines the quantum part of the BB84 protocol with room-temperature quantum memory operation, while still maintaining relevant quantum bit error rates for single-photon level operation. We will also discuss our efforts to use a network of two room temperature quantum memories, receiving, storing and transforming randomly polarized photons in order to realize Bell state measurements. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801, the National Science Foundation, Grant Number PHY-1404398 and the Simons Foundation, Grant Number SBF241180.

  7. Effect of source tampering in the security of quantum cryptography

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu; Jiang, Mu-Sheng; Ma, Xiang-Chun; Lo, Hoi-Kwong; Liang, Lin-Mei

    2015-08-01

    The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum key distribution (MDI-QKD), the source becomes the only region exploitable by a potential eavesdropper (Eve). Phase randomization is a cornerstone assumption in most discrete-variable (DV) quantum communication protocols (e.g., QKD, quantum coin tossing, weak-coherent-state blind quantum computing, and so on), and the violation of such an assumption is thus fatal to the security of those protocols. In this paper, we show a simple quantum hacking strategy, with commercial and homemade pulsed lasers, by Eve that allows her to actively tamper with the source and violate such an assumption, without leaving a trace afterwards. Furthermore, our attack may also be valid for continuous-variable (CV) QKD, which is another main class of QKD protocol, since, excepting the phase random assumption, other parameters (e.g., intensity) could also be changed, which directly determine the security of CV-QKD.

  8. Experimental verification of multipartite entanglement in quantum networks

    PubMed Central

    McCutcheon, W.; Pappa, A.; Bell, B. A.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; Rarity, J. G.; Tame, M. S.

    2016-01-01

    Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications. PMID:27827361

  9. Quantum key management

    DOEpatents

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  10. Fair and optimistic quantum contract signing

    NASA Astrophysics Data System (ADS)

    Paunković, N.; Bouda, J.; Mateus, P.

    2011-12-01

    We present a fair and optimistic quantum-contract-signing protocol between two clients that requires no communication with the third trusted party during the exchange phase. We discuss its fairness and show that it is possible to design such a protocol for which the probability of a dishonest client to cheat becomes negligible and scales as N-1/2, where N is the number of messages exchanged between the clients. Our protocol is not based on the exchange of signed messages: Its fairness is based on the laws of quantum mechanics. Thus, it is abuse free, and the clients do not have to generate new keys for each message during the exchange phase. We discuss a real-life scenario when measurement errors and qubit-state corruption due to noisy channels and imperfect quantum memories occur and argue that for a real, good-enough measurement apparatus, transmission channels, and quantum memories, our protocol would still be fair. Apart from stable quantum memories, the other segments of our protocol could be implemented by today's technology, as they require in essence the same type of apparatus as the one needed for the Bennett-Brassard 1984 (BB84) cryptographic protocol. Finally, we briefly discuss two alternative versions of the protocol, one that uses only two states [based on the Bennett 1992 (B92) protocol] and the other that uses entangled pairs, and show that it is possible to generalize our protocol to an arbitrary number of clients.

  11. In quantum direct communication an undetectable eavesdropper can always tell Ψ from Φ Bell states in the message mode

    NASA Astrophysics Data System (ADS)

    Pavičić, Mladen

    2013-04-01

    We show that in any quantum direct communication protocol that is based on Ψ and Φ Bell states, an eavesdropper can always tell Ψ from Φ states without altering the transmission in any way in the message mode. This renders all protocols that make use of only one Ψ state and one Φ state completely insecure in the message mode. All four-Bell-state protocols require a revision and this might be of importance for new implementations of entanglement-based cryptographic protocols. The detection rate of an eavesdropper is 25% per control transmission, i.e., a half of the rate in the two-state (ping-pong) protocol. An eavesdropper can detect control probes with certainty in the standard control transmission without a photon in the Alice-to-Bob's travel mode and with near certainty in a transmission with a fake photon in the travel mode. Resending of measured control photons via the travel mode would make an eavesdropper completely invisible.

  12. No information flow using statistical fluctuations and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Larsson, Jan-Åke

    2004-04-01

    The communication protocol of Home and Whitaker [

    Phys. Rev. A 67, 022306 (2003)
    ] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack, internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.

  13. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  14. Two-dimensional distributed-phase-reference protocol for quantum key distribution.

    PubMed

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-22

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  15. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    PubMed Central

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-01-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable. PMID:28004821

  16. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-06

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  17. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  18. Fundamental rate-loss tradeoff for optical quantum key distribution.

    PubMed

    Takeoka, Masahiro; Guha, Saikat; Wilde, Mark M

    2014-10-24

    Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels-a long-standing open problem in optical quantum information theory-and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.

  19. Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2017-08-01

    We propose a protocol for complete Bell-state analysis for two superconducting-quantum-interference-device qubits. The Bell-state analysis could be completed by using a sequence of microwave pulses designed by the transitionless tracking algorithm, which is a useful method in the technique of shortcut to adiabaticity. After the whole process, the information for distinguishing four Bell states will be encoded on two auxiliary qubits, while the Bell states remain unchanged. One can read out the information by detecting the auxiliary qubits. Thus the Bell-state analysis is nondestructive. The numerical simulations show that the protocol possesses a high success probability of distinguishing each Bell state with current experimental technology even when decoherence is taken into account. Thus, the protocol may have potential applications for the information readout in quantum communications and quantum computations in superconducting quantum networks.

  20. Evaluation of counterfactuality in counterfactual communication protocols

    NASA Astrophysics Data System (ADS)

    Arvidsson-Shukur, D. R. M.; Barnes, C. H. W.; Gottfries, A. N. O.

    2017-12-01

    We provide an in-depth investigation of parameter estimation in nested Mach-Zehnder interferometers (NMZIs) using two information measures: the Fisher information and the Shannon mutual information. Protocols for counterfactual communication have, so far, been based on two different definitions of counterfactuality. In particular, some schemes have been based on NMZI devices, and have recently been subject to criticism. We provide a methodology for evaluating the counterfactuality of these protocols, based on an information-theoretical framework. More specifically, we make the assumption that any realistic quantum channel in MZI structures will have some weak uncontrolled interaction. We then use the Fisher information of this interaction to measure counterfactual violations. The measure is used to evaluate the suggested counterfactual communication protocol of H. Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502]. The protocol of D. R. M. Arvidsson-Shukur and C. H. W. Barnes [Phys. Rev. A 94, 062303 (2016), 10.1103/PhysRevA.94.062303], based on a different definition, is evaluated with a probability measure. Our results show that the definition of Arvidsson-Shukur and Barnes is satisfied by their scheme, while that of Salih et al. is only satisfied by perfect quantum channels. For realistic devices the latter protocol does not achieve its objective.

  1. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong

    2017-02-01

    We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.

  2. Iterated Gate Teleportation and Blind Quantum Computation.

    PubMed

    Pérez-Delgado, Carlos A; Fitzsimons, Joseph F

    2015-06-05

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.

  3. Detecting incapacity of a quantum channel.

    PubMed

    Smith, Graeme; Smolin, John A

    2012-06-08

    Using unreliable or noisy components for reliable communication requires error correction. But which noise processes can support information transmission, and which are too destructive? For classical systems any channel whose output depends on its input has the capacity for communication, but the situation is substantially more complicated in the quantum setting. We find a generic test for incapacity based on any suitable forbidden transformation--a protocol for communication with a channel passing our test would also allow one to implement the associated forbidden transformation. Our approach includes both known quantum incapacity tests--positive partial transposition and antidegradability (no cloning)--as special cases, putting them both on the same footing.

  4. Scalable quantum information processing with photons and atoms

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO) coupling and topological bands with ultracold bosonic atoms. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observe. On the other hand, utilizing a two-dimensional spin-dependent optical superlattice and a single layer of atom cloud, we directly observed the four-body ring-exchange coupling and the Anyonic fractional statistics.

  5. Experimental realization of a feedback optical parametric amplifier with four-wave mixing

    NASA Astrophysics Data System (ADS)

    Pan, Xiaozhou; Chen, Hui; Wei, Tianxiang; Zhang, Jun; Marino, Alberto M.; Treps, Nicolas; Glasser, Ryan T.; Jing, Jietai

    2018-04-01

    Optical parametric amplifiers (OPAs) play a fundamental role in the generation of quantum correlation for quantum information processing and quantum metrology. In order to increase the communication fidelity of the quantum information protocol and the measurement precision of quantum metrology, it requires a high degree of quantum correlation. In this Rapid Communication we report a feedback optical parametric amplifier that employs a four-wave mixing (FWM) process as the underlying OPA and a beam splitter as the feedback controller. We first construct a theoretical model for this feedback-based FWM process and experimentally study the effect of the feedback control on the quantum properties of the system. Specifically, we find that the quantum correlation between the output fields can be enhanced by tuning the strength of the feedback.

  6. Pilot-aided feedforward data recovery in optical coherent communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing

    2017-09-19

    A method and a system for pilot-aided feedforward data recovery are provided. The method and system include a receiver including a strong local oscillator operating in a free running mode independent of a signal light source. The phase relation between the signal light source and the local oscillator source is determined based on quadrature measurements on pilot pulses from the signal light source. Using the above phase relation, information encoded in an incoming signal can be recovered, optionally for use in communication with classical coherent communication protocols and quantum communication protocols.

  7. Two-qubit correlations revisited: average mutual information, relevant (and useful) observables and an application to remote state preparation

    NASA Astrophysics Data System (ADS)

    Giorda, Paolo; Allegra, Michele

    2017-07-01

    Understanding how correlations can be used for quantum communication protocols is a central goal of quantum information science. While many authors have linked the global measures of correlations such as entanglement or discord to the performance of specific protocols, in general the latter may require only correlations between specific observables. In this work, we first introduce a general measure of correlations for two-qubit states, based on the classical mutual information between local observables. Our measure depends on the state’s purity and the symmetry in the correlation distribution, according to which we provide a classification of maximally mixed marginal states (MMMS). We discuss the complementarity relation between correlations and coherence. By focusing on a simple yet paradigmatic example, i.e. the remote state preparation protocol, we introduce a method to systematically define the proper protocol-tailored measures of the correlations. The method is based on the identification of those correlations that are relevant (useful) for the protocol. On the one hand, the approach allows the role of the symmetry of the correlation distribution to be discussed in determining the efficiency of the protocol, both for MMMS and general two-qubit quantum states, and on the other hand, it allows an optimized protocol for non-MMMS to be devised, which is more efficient with respect to the standard one. Overall, our findings clarify how the key resources in simple communication protocols are the purity of the state used and the symmetry of the correlation distribution.

  8. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    NASA Astrophysics Data System (ADS)

    Li, Tao; Deng, Fu-Guo

    2015-10-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  9. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-10-27

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  10. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  11. An in fiber experimental approach to photonic quantum digital signatures that does not require quantum memory

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Donaldon, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2014-10-01

    Classical digital signatures are commonly used in e-mail, electronic financial transactions and other forms of electronic communications to ensure that messages have not been tampered with in transit, and that messages are transferrable. The security of commonly used classical digital signature schemes relies on the computational difficulty of inverting certain mathematical functions. However, at present, there are no such one-way functions which have been proven to be hard to invert. With enough computational resources certain implementations of classical public key cryptosystems can be, and have been, broken with current technology. It is nevertheless possible to construct information-theoretically secure signature schemes, including quantum digital signature schemes. Quantum signature schemes can be made information theoretically secure based on the laws of quantum mechanics, while classical comparable protocols require additional resources such as secret communication and a trusted authority. Early demonstrations of quantum digital signatures required quantum memory, rendering them impractical at present. Our present implementation is based on a protocol that does not require quantum memory. It also uses the new technique of unambiguous quantum state elimination, Here we report experimental results for a test-bed system, recorded with a variety of different operating parameters, along with a discussion of aspects of the system security.

  12. An Analysis of Error Reconciliation Protocols for use in Quantum Key Distribution

    DTIC Science & Technology

    2012-02-01

    offers another alternative for exchanging a symmetric key without compromising security. Quantum cryptography is the use of quantum mechanics to... quantum money), and, more significantly for our purposes here, a method for the transmission of two or three messages in such a way that reading...well as two channels. A quantum channel is used to communicate qubits (photons), and it is assumed that only active eavesdropping may take place on

  13. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    DOE PAGES

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  14. Deterministic error correction for nonlocal spatial-polarization hyperentanglement

    PubMed Central

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681

  15. Deterministic error correction for nonlocal spatial-polarization hyperentanglement.

    PubMed

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-02-10

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

  16. Counterfactuality of ‘counterfactual’ communication

    NASA Astrophysics Data System (ADS)

    Vaidman, L.

    2015-11-01

    The counterfactuality of the recently proposed protocols for direct quantum communication is analyzed. It is argued that the protocols can be counterfactual only for one value of the transmitted bit. The protocols achieve a reduced probability of detection of the particle in the transmission channel by increasing the number of paths in the channel. However, this probability is not lower than the probability of detecting a particle actually passing through such a multi-path channel, which was found to be surprisingly small. The relation between security and counterfactuality of the protocols is discussed. An analysis of counterfactuality of the protocols in the framework of the Bohmian interpretation is performed.

  17. Minimally complex ion traps as modules for quantum communication and computing

    NASA Astrophysics Data System (ADS)

    Nigmatullin, Ramil; Ballance, Christopher J.; de Beaudrap, Niel; Benjamin, Simon C.

    2016-10-01

    Optically linked ion traps are promising as components of network-based quantum technologies, including communication systems and modular computers. Experimental results achieved to date indicate that the fidelity of operations within each ion trap module will be far higher than the fidelity of operations involving the links; fortunately internal storage and processing can effectively upgrade the links through the process of purification. Here we perform the most detailed analysis to date on this purification task, using a protocol which is balanced to maximise fidelity while minimising the device complexity and the time cost of the process. Moreover we ‘compile down’ the quantum circuit to device-level operations including cooling and shuttling events. We find that a linear trap with only five ions (two of one species, three of another) can support our protocol while incorporating desirable features such as global control, i.e. laser control pulses need only target an entire zone rather than differentiating one ion from its neighbour. To evaluate the capabilities of such a module we consider its use both as a universal communications node for quantum key distribution, and as the basic repeating unit of a quantum computer. For the latter case we evaluate the threshold for fault tolerant quantum computing using the surface code, finding acceptable fidelities for the ‘raw’ entangling link as low as 83% (or under 75% if an additional ion is available).

  18. Finite-time quantum entanglement in propagating squeezed microwaves.

    PubMed

    Fedorov, K G; Pogorzalek, S; Las Heras, U; Sanz, M; Yard, P; Eder, P; Fischer, M; Goetz, J; Xie, E; Inomata, K; Nakamura, Y; Di Candia, R; Solano, E; Marx, A; Deppe, F; Gross, R

    2018-04-23

    Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of non-commuting observables between two subsystems. At the same time, these subsystems themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication. Here, we generate propagating microwave TMS states by a beam splitter distributing single mode squeezing emitted from distinct Josephson parametric amplifiers along two output paths. We experimentally study the fundamental dephasing process of quantum cross-correlations in continuous-variable propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain the insight into finite-time entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

  19. No information flow using statistical fluctuations and quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jan-Aake

    2004-04-01

    The communication protocol of Home and Whitaker [Phys. Rev. A 67, 022306 (2003)] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack,more » internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less

  1. Two-step complete polarization logic Bell-state analysis.

    PubMed

    Sheng, Yu-Bo; Zhou, Lan

    2015-08-26

    The Bell state plays a significant role in the fundamental tests of quantum mechanics, such as the nonlocality of the quantum world. The Bell-state analysis is of vice importance in quantum communication. Existing Bell-state analysis protocols usually focus on the Bell-state encoding in the physical qubit directly. In this paper, we will describe an alternative approach to realize the near complete logic Bell-state analysis for the polarized concatenated Greenberger-Horne-Zeilinger (C-GHZ) state with two logic qubits. We show that the logic Bell-state can be distinguished in two steps with the help of the parity-check measurement (PCM) constructed by the cross-Kerr nonlinearity. This approach can be also used to distinguish arbitrary C-GHZ state with N logic qubits. As both the recent theoretical and experiment work showed that the C-GHZ state has its robust feature in practical noisy environment, this protocol may be useful in future long-distance quantum communication based on the logic-qubit entanglement.

  2. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection

    DOE PAGES

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.; ...

    2015-10-21

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less

  3. Gaussification and entanglement distillation of continuous-variable systems: a unifying picture.

    PubMed

    Campbell, Earl T; Eisert, Jens

    2012-01-13

    Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced.

  4. High-speed quantum networking by ship

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney

    2016-11-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  5. High-speed quantum networking by ship

    PubMed Central

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; Van Meter, Rodney

    2016-01-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet. PMID:27805001

  6. High-speed quantum networking by ship.

    PubMed

    Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney

    2016-11-02

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  7. Experimental demonstration of graph-state quantum secret sharing.

    PubMed

    Bell, B A; Markham, D; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S

    2014-11-21

    Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing--an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks.

  8. Deterministic and efficient quantum cryptography based on Bell's theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zengbing; Pan Jianwei; Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg

    2006-05-15

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.

  9. Optimized decoy state QKD for underwater free space communication

    NASA Astrophysics Data System (ADS)

    Lopes, Minal; Sarwade, Nisha

    Quantum cryptography (QC) is envisioned as a solution for global key distribution through fiber optic, free space and underwater optical communication due to its unconditional security. In view of this, this paper investigates underwater free space quantum key distribution (QKD) model for enhanced transmission distance, secret key rates and security. It is reported that secure underwater free space QKD is feasible in the clearest ocean water with the sifted key rates up to 207kbps. This paper extends this work by testing performance of optimized decoy state QKD protocol with underwater free space communication model. The attenuation of photons, quantum bit error rate and the sifted key generation rate of underwater quantum communication is obtained with vector radiative transfer theory and Monte Carlo method. It is observed from the simulations that optimized decoy state QKD evidently enhances the underwater secret key transmission distance as well as secret key rates.

  10. Generation of an arbitrary concatenated Greenberger-Horne-Zeilinger state with single photons

    NASA Astrophysics Data System (ADS)

    Chen, Shan-Shan; Zhou, Lan; Sheng, Yu-Bo

    2017-02-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new kind of logic-qubit entangled state, which may have extensive applications in future quantum communication. In this letter, we propose a protocol for constructing an arbitrary C-GHZ state with single photons. We exploit the cross-Kerr nonlinearity for this purpose. This protocol has some advantages over previous protocols. First, it only requires two kinds of cross-Kerr nonlinearities to generate single phase shifts  ±θ. Second, it is not necessary to use sophisticated m-photon Toffoli gates. Third, this protocol is deterministic and can be used to generate an arbitrary C-GHZ state. This protocol may be useful in future quantum information processing based on the C-GHZ state.

  11. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  12. Parameter Estimation with Almost No Public Communication for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano

    2018-06-01

    One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rate. This introduces a trade-off between the secret key rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-variable QKD is not subject to this constraint as the whole raw keys can be used for both parameter estimation and secret key generation, without compromising the security. First, we show that this property holds for measurement-device-independent (MDI) protocols, as a consequence of the fact that in a MDI protocol the correlations between Alice and Bob are postselected by the measurement performed by an untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI protocols can simulate device-dependent one-way QKD with arbitrarily high precision.

  13. Free-space quantum key distribution by rotation-invariant twisted photons.

    PubMed

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-08

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  14. Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-01

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  15. Network-Centric Quantum Communications

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    2014-03-01

    Single-photon quantum communications (QC) offers ``future-proof'' cryptographic security rooted in the laws of physics. Today's quantum-secured communications cannot be compromised by unanticipated future technological advances. But to date, QC has only existed in point-to-point instantiations that have limited ability to address the cyber security challenges of our increasingly networked world. In my talk I will describe a fundamentally new paradigm of network-centric quantum communications (NQC) that leverages the network to bring scalable, QC-based security to user groups that may have no direct user-to-user QC connectivity. With QC links only between each of N users and a trusted network node, NQC brings quantum security to N2 user pairs, and to multi-user groups. I will describe a novel integrated photonics quantum smartcard (``QKarD'') and its operation in a multi-node NQC test bed. The QKarDs are used to implement the quantum cryptographic protocols of quantum identification, quantum key distribution and quantum secret splitting. I will explain how these cryptographic primitives are used to provide key management for encryption, authentication, and non-repudiation for user-to-user communications. My talk will conclude with a description of a recent demonstration that QC can meet both the security and quality-of-service (latency) requirements for electric grid control commands and data. These requirements cannot be met simultaneously with present-day cryptography.

  16. Higher-dimensional communication complexity problems: Classical protocols versus quantum ones based on Bell's theorem or prepare-transmit-measure schemes

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Żukowski, Marek

    2017-04-01

    Communication complexity problems (CCPs) are tasks in which separated parties attempt to compute a function whose inputs are distributed among the parties. Their communication is limited so that not all inputs can be sent. We show that broad classes of Bell inequalities can be mapped to CCPs and that a quantum violation of a Bell inequality is a necessary and sufficient condition for an enhancement of the related CCP beyond its classical limitation. However, one can implement CCPs by transmitting a quantum system, encoding no more information than is allowed in the CCP, and extracting information by performing measurements. We show that for a large class of Bell inequalities, the improvement of the CCP associated with a quantum violation of a Bell inequality can be no greater than the improvement obtained from quantum prepare-transmit-measure strategies.

  17. Bidirectional and Asymmetric Controlled Quantum Information Transmission via Five-qubit Brown State

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-hui; Jiang, Min

    2017-05-01

    We put forward a new protocol of deterministic controlled bidirectional quantum information transmission, using a five-qubit Brown state. That is to say Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of the supervisor Charlie. In terms of physical implementations, only a CNOT gate, one Bell-state measurement and one qubit measurement are used in our protocol. Compared with previous study for solely bidirectional quantum teleportation and solely bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose, i.e., no matter whether the transmitted state is known or unknown, the state information can be transmitted with each other via a five-qubit Brown state under the control of the third party as a supervisor.

  18. Time-reversal-symmetric single-photon wave packets for free-space quantum communication.

    PubMed

    Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G

    2015-05-01

    Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.

  19. Faithful Entanglement Sharing for Quantum Communication Against Collective Noise

    NASA Astrophysics Data System (ADS)

    Niu, Hui-Chong; Ren, Bao-Cang; Wang, Tie-Jun; Hua, Ming; Deng, Fu-Guo

    2012-08-01

    We present an economical setup for faithful entanglement sharing against collective noise. It is composed of polarizing beam splitters, half wave plates, polarization independent wavelength division multiplexers, and frequency shifters. An arbitrary qubit error on the polarization state of each photon in a multi-photon system caused by the noisy channel can be rejected, without resorting to additional qubits, fast polarization modulators, and nondestructive quantum nondemolition detectors. Its success probability is in principle 100%, which is independent of the noise parameters, and it can be applied directly in any one-way quantum communication protocol based on entanglement.

  20. Coherent communication with continuous quantum variables

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  1. Information trade-offs for optical quantum communication.

    PubMed

    Wilde, Mark M; Hayden, Patrick; Guha, Saikat

    2012-04-06

    Recent work has precisely characterized the achievable trade-offs between three key information processing tasks-classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this Letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space or fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels. © 2012 American Physical Society

  2. Masking Quantum Information is Impossible

    NASA Astrophysics Data System (ADS)

    Modi, Kavan; Pati, Arun Kumar; SenDe, Aditi; Sen, Ujjwal

    2018-06-01

    Classical information encoded in composite quantum states can be completely hidden from the reduced subsystems and may be found only in the correlations. Can the same be true for quantum information? If quantum information is hidden from subsystems and spread over quantum correlation, we call it masking of quantum information. We show that while this may still be true for some restricted sets of nonorthogonal quantum states, it is not possible for arbitrary quantum states. This result suggests that quantum qubit commitment—a stronger version of the quantum bit commitment—is not possible in general. Our findings may have potential applications in secret sharing and future quantum communication protocols.

  3. Super-dense teleportation for space applications

    NASA Astrophysics Data System (ADS)

    Zeitler, Chris; Graham, Trent M.; Chapman, Joseph; Bernstein, Herbert; Kwiat, Paul G.

    2016-03-01

    Establishing a quantum communication network would provide advantages in areas such as security and information processing. Such a network would require the implementation of quantum teleportation between remote parties. However, for photonic "qudits" of dimension greater than two, this teleportation always fails due to the inability to carry out the required quantum Bell-state measurement. A quantum communication protocol called Superdense Teleportation (SDT) can allow the reconstruction of a state without the usual 2-photon Bell-state measurements, enabling the protocol to succeed deterministically even for high dimensional qudits. This technique restricts the class of states transferred to equimodular states, a type of superposition state where each term can differ from the others in phase but not in amplitude; this restricted space of transmitted states allows the transfer to occur deterministically. We report on our implementation of SDT using photon pairs that are entangled in both polarization and temporal mode. After encoding the phases of the desired equimodular state on the signal photon, we perform a complete tomography on the idler photon to verify that we properly prepared the chosen state. Beyond our tabletop demonstration, we are working towards an implementation between a space platform in low earth orbit and a ground telescope, to demonstrate the feasibility of space-based quantum communication. We will discuss the various challenges presented by moving the experiment out of the laboratory, and our proposed solutions to make Superdense Teleportation realizable in the space setting.

  4. Remote preparation of an atomic quantum memory.

    PubMed

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Jürgen; Weber, Markus; Weinfurter, Harald

    2007-02-02

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.

  5. Towards scalable quantum communication and computation: Novel approaches and realizations

    NASA Astrophysics Data System (ADS)

    Jiang, Liang

    Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as candidates for naturally error-free quantum computation. We propose a scheme to unambiguously detect the anyonic statistics in spin lattice realizations using ultra-cold atoms in an optical lattice. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit.

  6. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  7. Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State

    NASA Astrophysics Data System (ADS)

    Ding, Shang-Ping; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-06-01

    Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes many physical qubits in a logic qubit will have important applications in both quantum communication and computation. In this paper, we will describe an entanglement concentration protocol (ECP) for electronic C-GHZ state, by exploiting the electronic polarization beam splitters (PBSs) and charge detection. This protocol has several advantages. First, the parties do not need to know the exact coefficients of the initial less-entangled C-GHZ state, which makes this protocol feasible. Second, with the help of charge detection, the distilled maximally entangled C-GHZ state can be remained for future application. Third, this protocol can be repeated to obtain a higher success probability. We hope that this protocol can be useful in future quantum computation based on electrons.

  8. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective

    PubMed Central

    Bylicka, B.; Chruściński, D.; Maniscalco, S.

    2014-01-01

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763

  9. Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters

    NASA Astrophysics Data System (ADS)

    Buterakos, Donovan; Barnes, Edwin; Economou, Sophia E.

    2017-10-01

    Quantum repeaters are nodes in a quantum communication network that allow reliable transmission of entanglement over large distances. It was recently shown that highly entangled photons in so-called graph states can be used for all-photonic quantum repeaters, which require substantially fewer resources compared to atomic-memory-based repeaters. However, standard approaches to building multiphoton entangled states through pairwise probabilistic entanglement generation severely limit the size of the state that can be created. Here, we present a protocol for the deterministic generation of large photonic repeater states using quantum emitters such as semiconductor quantum dots and defect centers in solids. We show that arbitrarily large repeater states can be generated using only one emitter coupled to a single qubit, potentially reducing the necessary number of photon sources by many orders of magnitude. Our protocol includes a built-in redundancy, which makes it resilient to photon loss.

  10. An improved control mode for the ping-pong protocol operation in imperfect quantum channels

    NASA Astrophysics Data System (ADS)

    Zawadzki, Piotr

    2015-07-01

    Quantum direct communication (QDC) can bring confidentiality of sensitive information without any encryption. A ping-pong protocol, a well-known example of entanglement-based QDC, offers asymptotic security in a perfect quantum channel. However, it has been shown (Wójcik in Phys Rev Lett 90(15):157901, 2003. doi:10.1103/PhysRevLett.90.157901) that it is not secure in the presence of losses. Moreover, legitimate parities cannot rely on dense information coding due to possible undetectable eavesdropping even in the perfect setting (Pavičić in Phys Rev A 87(4):042326, 2013. doi:10.1103/PhysRevA.87.042326). We have identified the source of the above-mentioned weaknesses in the incomplete check of the EPR pair coherence. We propose an improved version of the control mode, and we discuss its relation to the already-known attacks that undermine the QDC security. It follows that the new control mode detects these attacks with high probability and independently on a quantum channel type. As a result, an asymptotic security of the QDC communication can be maintained for imperfect quantum channels, also in the regime of dense information coding.

  11. On the security of semi-device-independent QKD protocols

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anubhav; Ray, Maharshi; Veynar, Ryszard; Pawłowski, Marcin

    2018-06-01

    While fully device-independent security in (BB84-like) prepare-and-measure quantum key distribution (QKD) is impossible, it can be guaranteed against individual attacks in a semi-device-independent (SDI) scenario, wherein no assumptions are made on the characteristics of the hardware used except for an upper bound on the dimension of the communicated system. Studying security under such minimal assumptions is especially relevant in the context of the recent quantum hacking attacks wherein the eavesdroppers can not only construct the devices used by the communicating parties but are also able to remotely alter their behavior. In this work, we study the security of a SDIQKD protocol based on the prepare-and-measure quantum implementation of a well-known cryptographic primitive, the random access code (RAC). We consider imperfect detectors and establish the critical values of the security parameters (the observed success probability of the RAC and the detection efficiency) required for guaranteeing security against eavesdroppers with and without quantum memory. Furthermore, we suggest a minimal characterization of the preparation device in order to lower the requirements for establishing a secure key.

  12. Unconditional security of entanglement-based continuous-variable quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Kogias, Ioannis; Xiang, Yu; He, Qiongyi; Adesso, Gerardo

    2017-01-01

    The need for secrecy and security is essential in communication. Secret sharing is a conventional protocol to distribute a secret message to a group of parties, who cannot access it individually but need to cooperate in order to decode it. While several variants of this protocol have been investigated, including realizations using quantum systems, the security of quantum secret sharing schemes still remains unproven almost two decades after their original conception. Here we establish an unconditional security proof for entanglement-based continuous-variable quantum secret sharing schemes, in the limit of asymptotic keys and for an arbitrary number of players. We tackle the problem by resorting to the recently developed one-sided device-independent approach to quantum key distribution. We demonstrate theoretically the feasibility of our scheme, which can be implemented by Gaussian states and homodyne measurements, with no need for ideal single-photon sources or quantum memories. Our results contribute to validating quantum secret sharing as a viable primitive for quantum technologies.

  13. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    NASA Astrophysics Data System (ADS)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  14. A Quantum Private Query Protocol for Enhancing both User and Database Privacy

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Hua; Bai, Xue-Wei; Li, Lei-Lei; Shi, Wei-Min; Yang, Yu-Guang

    2018-01-01

    In order to protect the privacy of query user and database, some QKD-based quantum private query (QPQ) protocols were proposed. Unfortunately some of them cannot resist internal attack from database perfectly; some others can ensure better user privacy but require a reduction of database privacy. In this paper, a novel two-way QPQ protocol is proposed to ensure the privacy of both sides of communication. In our protocol, user makes initial quantum states and derives the key bit by comparing initial quantum state and outcome state returned from database by ctrl or shift mode instead of announcing two non-orthogonal qubits as others which may leak part secret information. In this way, not only the privacy of database be ensured but also user privacy is strengthened. Furthermore, our protocol can also realize the security of loss-tolerance, cheat-sensitive, and resisting JM attack etc. Supported by National Natural Science Foundation of China under Grant Nos. U1636106, 61572053, 61472048, 61602019, 61502016; Beijing Natural Science Foundation under Grant Nos. 4152038, 4162005; Basic Research Fund of Beijing University of Technology (No. X4007999201501); The Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201510005016

  15. Quantum generalisation of feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.

    2017-09-01

    We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.

  16. Quantum key distribution with prepare-and-measure Bell test

    PubMed Central

    Tan, Yong-gang

    2016-01-01

    The prepare-and-measure quantum key distribution (QKD) has the merits of fast speed, high key generation rate, and easy implementation. However, the detector side channel attacks greatly undermine the security of the key bits. The eavesdropper, Eve, exploits the flaws of the detectors to obtain illegal information without violating quantum principles. It means that she can intervene in the communication without being detected. A prepare-and-measure Bell test protocol will be proposed. By randomly carrying out Bell test at the side of the information receiver, Bob, Eve’s illegal information gain within the detector side channel attack can be well bounded. This protocol does not require any improvement on the detectors used in available prepare-and-measure QKD. Though we only illustrate its application in the BB84 protocol, it is applicable for any prepare-and-measure QKD. PMID:27733771

  17. The broadcast classical-quantum capacity region of a two-phase bidirectional relaying channel

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian

    2015-10-01

    We studied a three-node quantum network that enables bidirectional communication between two nodes with a half-duplex relay node for transmitting classical messages. A decode-and-forward protocol is used to perform the communication in two phases. In the first phase, the messages of two nodes are transmitted to the relay node. The capacity of the first phase is well known by previous works. In the second phase, the relay node broadcasts a re-encoded composition to the two nodes. We determine the capacity region of the broadcast phase. To the best of our knowledge, this is the first paper analyzing quantum bidirectional relay networks.

  18. Controlled mutual quantum entity authentication with an untrusted third party

    NASA Astrophysics Data System (ADS)

    Kang, Min-Sung; Heo, Jino; Hong, Chang-Ho; Yang, Hyung-Jin; Han, Sang-Wook; Moon, Sung

    2018-07-01

    We propose a quantum control entity mutual authentication protocol that can be executed in environments involving an untrusted third party. In general, the third party, referred to as Charlie, can be an entity such as a telephone company, server, financial company, or login webpage for a portal service. Most communication protocols controlled by third parties are vulnerable to internal attacks. In this study, we present two solutions that make use of an entanglement correlation checking method and random numbers against an internal attack by an untrusted third party.

  19. Orthogonal-state-based cryptography in quantum mechanics and local post-quantum theories

    NASA Astrophysics Data System (ADS)

    Aravinda, S.; Banerjee, Anindita; Pathak, Anirban; Srikanth, R.

    2014-02-01

    We introduce the concept of cryptographic reduction, in analogy with a similar concept in computational complexity theory. In this framework, class A of crypto-protocols reduces to protocol class B in a scenario X, if for every instance a of A, there is an instance b of B and a secure transformation X that reproduces a given b, such that the security of b guarantees the security of a. Here we employ this reductive framework to study the relationship between security in quantum key distribution (QKD) and quantum secure direct communication (QSDC). We show that replacing the streaming of independent qubits in a QKD scheme by block encoding and transmission (permuting the order of particles block by block) of qubits, we can construct a QSDC scheme. This forms the basis for the block reduction from a QSDC class of protocols to a QKD class of protocols, whereby if the latter is secure, then so is the former. Conversely, given a secure QSDC protocol, we can of course construct a secure QKD scheme by transmitting a random key as the direct message. Then the QKD class of protocols is secure, assuming the security of the QSDC class which it is built from. We refer to this method of deduction of security for this class of QKD protocols, as key reduction. Finally, we propose an orthogonal-state-based deterministic key distribution (KD) protocol which is secure in some local post-quantum theories. Its security arises neither from geographic splitting of a code state nor from Heisenberg uncertainty, but from post-measurement disturbance.

  20. Tomographic quantum cryptography: equivalence of quantum and classical key distillation.

    PubMed

    Bruss, Dagmar; Christandl, Matthias; Ekert, Artur; Englert, Berthold-Georg; Kaszlikowski, Dagomir; Macchiavello, Chiara

    2003-08-29

    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. For an important class of protocols, which exploit tomographically complete measurements on entangled pairs of any dimension, we show that the noise threshold for classical advantage distillation is identical with the threshold for quantum entanglement distillation. As a consequence, the two distillation procedures are equivalent: neither offers a security advantage over the other.

  1. FPGA and USB based control board for quantum random number generator

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wan, Xu; Zhang, Hong-Fei; Gao, Yuan; Chen, Teng-Yun; Liang, Hao

    2009-09-01

    The design and implementation of FPGA-and-USB-based control board for quantum experiments are discussed. The usage of quantum true random number generator, control- logic in FPGA and communication with computer through USB protocol are proposed in this paper. Programmable controlled signal input and output ports are implemented. The error-detections of data frame header and frame length are designed. This board has been used in our decoy-state based quantum key distribution (QKD) system successfully.

  2. Efficient and universal quantum key distribution based on chaos and middleware

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Quantum key distribution (QKD) promises unconditionally secure communications, however, the low bit rate of QKD cannot meet the requirements of high-speed applications. Despite the many solutions that have been proposed in recent years, they are neither efficient to generate the secret keys nor compatible with other QKD systems. This paper, based on chaotic cryptography and middleware technology, proposes an efficient and universal QKD protocol that can be directly deployed on top of any existing QKD system without modifying the underlying QKD protocol and optical platform. It initially takes the bit string generated by the QKD system as input, periodically updates the chaotic system, and efficiently outputs the bit sequences. Theoretical analysis and simulation results demonstrate that our protocol can efficiently increase the bit rate of the QKD system as well as securely generate bit sequences with perfect statistical properties. Compared with the existing methods, our protocol is more efficient and universal, it can be rapidly deployed on the QKD system to increase the bit rate when the QKD system becomes the bottleneck of its communication system.

  3. Secure Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Malik, Mehul

    Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this thesis, I present new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that were secure against any intercept-resend jamming attacks. The second technology presented in this thesis is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly gaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this thesis is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. I discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. In addition, I present a study characterizing the effects of turbulence on a communication system using OAM modes for encoding. The fourth and final technology presented in this thesis is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. I use this technique to characterize the quantum state of a photon with a dimensionality of d = 27, and visualize its rotation in the natural basis of OAM.

  4. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  5. Defense frontier analysis of quantum cryptographic systems.

    PubMed

    Slutsky, B; Rao, R; Sun, P C; Tancevski, L; Fainman, S

    1998-05-10

    When a quantum cryptographic system operates in the presence of background noise, security of the key can be recovered by a procedure called key distillation. A key-distillation scheme effective against so-called individual (bitwise-independent) eavesdropping attacks involves sacrifice of some of the data through privacy amplification. We derive the amount of data sacrifice sufficient to defend against individual eavesdropping attacks in both BB84 and B92 protocols and show in what sense the communication becomes secure as a result. We also compare the secrecy capacity of various quantum cryptosystems, taking into account data sacrifice during key distillation, and conclude that the BB84 protocol may offer better performance characteristics than the B92.

  6. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client.

    PubMed

    Zhang, P; Aungskunsiri, K; Martín-López, E; Wabnig, J; Lobino, M; Nock, R W; Munns, J; Bonneau, D; Jiang, P; Li, H W; Laing, A; Rarity, J G; Niskanen, A O; Thompson, M G; O'Brien, J L

    2014-04-04

    We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering.

  7. Improvement of reliability in multi-interferometer-based counterfactual deterministic communication with dissipation compensation.

    PubMed

    Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao

    2018-02-05

    The direct counterfactual quantum communication (DCQC) is a surprising phenomenon that quantum information can be transmitted without using any carriers of physical particles. The nested interferometers are promising devices for realizing DCQC as long as the number of interferometers goes to be infinity. Considering the inevitable loss or dissipation in practical experimental interferometers, we analyze the dependence of reliability on the number of interferometers, and show that the reliability of direct communication is being rapidly degraded with the large number of interferometers. Furthermore, we simulate and test this counterfactual deterministic communication protocol with a finite number of interferometers, and demonstrate the improvement of the reliability using dissipation compensation in interferometers.

  8. Quantum Secure Conditional Direct Communication via EPR Pairs

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Yan, Fengli; Wang, Zhixi

    Two schemes for quantum secure conditional direct communication are proposed, where a set of EPR pairs of maximally entangled particles in Bell states, initially made by the supervisor Charlie, but shared by the sender Alice and the receiver Bob, functions as quantum information channels for faithful transmission. After insuring the security of the quantum channel and obtaining the permission of Charlie (i.e., Charlie is trustworthy and cooperative, which means the "conditional" in the two schemes), Alice and Bob begin their private communication under the control of Charlie. In the first scheme, Alice transmits secret message to Bob in a deterministic manner with the help of Charlie by means of Alice's local unitary transformations, both Alice and Bob's local measurements, and both of Alice and Charlie's public classical communication. In the second scheme, the secure communication between Alice and Bob can be achieved via public classical communication of Charlie and Alice, and the local measurements of both Alice and Bob. The common feature of these protocols is that the communications between two communication parties Alice and Bob depend on the agreement of the third side Charlie. Moreover, transmitting one bit secret message, the sender Alice only needs to apply a local operation on her one qubit and send one bit classical information. We also show that the two schemes are completely secure if quantum channels are perfect.

  9. Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Wang, Tao; Li, Huasheng; Zhou, Yingming; Zeng, Guihua

    2016-09-01

    We propose and experimentally demonstrate a continuous-variable quantum key distribution (CV-QKD) protocol using dual-phase-modulated coherent states. We show that the modulation scheme of our protocol works equivalently to that of the Gaussian-modulated coherent-states (GMCS) protocol, but shows better experimental feasibility in the plug-and-play configuration. Besides, it waives the necessity of propagation of a local oscillator (LO) between legitimate users and generates a real local LO for quantum measurement. Our protocol is proposed independent of the one-way GMCS QKD without sending a LO [Opt. Lett. 40, 3695 (2015), 10.1364/OL.40.003695; Phys. Rev. X 5, 041009 (2015), 10.1103/PhysRevX.5.041009; Phys. Rev. X 5, 041010 (2015), 10.1103/PhysRevX.5.041010]. In those recent works, the system stability will suffer the impact of polarization drifts induced by environmental perturbations, and two independent frequency-locked laser sources are necessary to achieve reliable coherent detection. In the proposed protocol, these previous problems can be resolved. We derive the security bounds for our protocol against collective attacks, and we also perform a proof-of-principle experiment to confirm the utility of our proposal in real-life applications. Such an efficient scheme provides a way of removing the security loopholes associated with the transmitting LO, which have been a notoriously hard problem in continuous-variable quantum communication.

  10. Secure Communications

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    The first practical application of quantum physics examined in this book is quantum cryptography. Quantum cryptography is a relatively recent invention (it dates back from the mid 1980s) but I chose it because it allows me to illustrate the fundamental principles with a minimum number of intermediate steps. I shall begin with a short summary of classical cryptography, reviewing briefly the two systems which are currently used today: the secret key system and the public key system. Quantum cryptography is not a new method for dissimulating the meaning of a message, but it allows one to be certain that no spy has accessed it. There exist many quantum cryptography protocols and various experimental devices have been proposed for implementing them. The simplest device is based on polarization, a concept which will be introduced first in the case of of light polarization, and then in that of photon polarization. The use of photon polarization gives the simplest implementation of the protocol proposed in 1984 by Bennett and Brassard, which is known by the acronym formed with their initials, the BB84 protocol.

  11. Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fang-Fang; Li, Tao; Long, Gui-Lu, E-mail: gllong@tsinghua.edu.cn

    Hyperentanglement, defined as the entanglement in multiple degrees of freedom (DOFs) of a photonic quantum system, has attracted much attention recently as it can improve the channel capacity of quantum communication largely. Here we present a refined hyperentanglement purification protocol (hyper-EPP) for two-photon systems in mixed hyperentangled states in both the spatial-mode and polarization DOFs, assisted by cavity quantum electrodynamics. By means of the spatial (polarization) quantum state transfer process, the quantum states that are discarded in the previous hyper-EPPs can be preserved. That is, the spatial (polarization) state of a four-photon system with high fidelity can be transformed intomore » another four-photon system with low fidelity, not disturbing its polarization (spatial) state, which makes this hyper-EPP take the advantage of possessing a higher efficiency.« less

  12. Quantum discord bounds the amount of distributed entanglement.

    PubMed

    Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M

    2012-08-17

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

  13. Path Entanglement of Continuous-Variable Quantum Microwaves

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2013-03-01

    Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.

  14. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication

    NASA Astrophysics Data System (ADS)

    Su, Zhaofeng; Guan, Ji; Li, Lvzhou

    2018-01-01

    Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.

  15. Triple-server blind quantum computation using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua

    2014-04-01

    Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.

  16. Phase space dynamics and control of the quantum particles associated to hypergraph states

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2015-05-01

    As today's nanotechnology focus becomes primarily oriented toward production and manipulation of materials at the subatomic level, allowing the performance and complexity of interconnects where the device density accepts more than hundreds devices on a single chip, the manipulation of semiconductor nanostructures at the subatomic level sets its prime tasks on preserving and adequate transmission of information encoded in specified (quantum) states. The presented study employs the quantum communication protocol based on the hypergraph network model where the numerical solutions of equations of motion of quantum particles are associated to vertices (assembled with device chip), which follow specific controllable paths in the phase space. We address these findings towards ultimate quest for prediction and selective control of quantum particle trajectories. In addition, presented protocols could represent valuable tool for reducing background noise and uncertainty in low-dimensional and operationally meaningful, scalable complex systems.

  17. Finite-data-size study on practical universal blind quantum computation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Li, Qiong

    2018-07-01

    The universal blind quantum computation with weak coherent pulses protocol is a practical scheme to allow a client to delegate a computation to a remote server while the computation hidden. However, in the practical protocol, a finite data size will influence the preparation efficiency in the remote blind qubit state preparation (RBSP). In this paper, a modified RBSP protocol with two decoy states is studied in the finite data size. The issue of its statistical fluctuations is analyzed thoroughly. The theoretical analysis and simulation results show that two-decoy-state case with statistical fluctuation is closer to the asymptotic case than the one-decoy-state case with statistical fluctuation. Particularly, the two-decoy-state protocol can achieve a longer communication distance than the one-decoy-state case in this statistical fluctuation situation.

  18. Security Analysis of Measurement-Device-Independent Quantum Key Distribution in Collective-Rotation Noisy Environment

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhang, Yu; Wen, Shuang; Li, Lei-lei; Li, Jian

    2018-01-01

    Noise is a problem that communication channels cannot avoid. It is, thus, beneficial to analyze the security of MDI-QKD in noisy environment. An analysis model for collective-rotation noise is introduced, and the information theory methods are used to analyze the security of the protocol. The maximum amount of information that Eve can eavesdrop is 50%, and the eavesdropping can always be detected if the noise level ɛ ≤ 0.68. Therefore, MDI-QKD protocol is secure as quantum key distribution protocol. The maximum probability that the relay outputs successful results is 16% when existing eavesdropping. Moreover, the probability that the relay outputs successful results when existing eavesdropping is higher than the situation without eavesdropping. The paper validates that MDI-QKD protocol has better robustness.

  19. Heralded quantum steering over a high-loss channel

    PubMed Central

    Weston, Morgan M.; Slussarenko, Sergei; Chrzanowski, Helen M.; Wollmann, Sabine; Shalm, Lynden K.; Verma, Varun B.; Allman, Michael S.; Nam, Sae Woo; Pryde, Geoff J.

    2018-01-01

    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8 ± 0.1 dB of added loss, equivalent to approximately 80 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater. PMID:29322093

  20. Heralded quantum steering over a high-loss channel.

    PubMed

    Weston, Morgan M; Slussarenko, Sergei; Chrzanowski, Helen M; Wollmann, Sabine; Shalm, Lynden K; Verma, Varun B; Allman, Michael S; Nam, Sae Woo; Pryde, Geoff J

    2018-01-01

    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8 ± 0.1 dB of added loss, equivalent to approximately 80 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater.

  1. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.

  2. Creation of backdoors in quantum communications via laser damage

    NASA Astrophysics Data System (ADS)

    Makarov, Vadim; Bourgoin, Jean-Philippe; Chaiwongkhot, Poompong; Gagné, Mathieu; Jennewein, Thomas; Kaiser, Sarah; Kashyap, Raman; Legré, Matthieu; Minshull, Carter; Sajeed, Shihan

    2016-09-01

    Practical quantum communication (QC) protocols are assumed to be secure provided implemented devices are properly characterized and all known side channels are closed. We show that this is not always true. We demonstrate a laser-damage attack capable of modifying device behavior on demand. We test it on two practical QC systems for key distribution and coin tossing, and show that newly created deviations lead to side channels. This reveals that laser damage is a potential security risk to existing QC systems, and necessitates their testing to guarantee security.

  3. Experimentally feasible security check for n-qubit quantum secret sharing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, Stefan; Huber, Marcus; Hiesmayr, Beatrix C.

    In this article we present a general security strategy for quantum secret sharing (QSS) protocols based on the scheme presented by Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59, 1829 (1999)]. We focus on a generalization of the HBB protocol to n communication parties thus including n-partite Greenberger-Horne-Zeilinger states. We show that the multipartite version of the HBB scheme is insecure in certain settings and impractical when going to large n. To provide security for such QSS schemes in general we use the framework presented by some of the authors [M. Huber, F. Mintert, A. Gabriel, B. C. Hiesmayr,more » Phys. Rev. Lett. 104, 210501 (2010)] to detect certain genuine n-partite entanglement between the communication parties. In particular, we present a simple inequality which tests the security.« less

  4. The Importance of Time and Frequency Reference in Quantum Astronomy and Quantum Communications

    DTIC Science & Technology

    2007-11-01

    simulator, but the same general results are valid for optical fiber and also different quantum state transmission technologies (i.e. Entangled Photons ...protocols [6]). The Matlab simulation starts from a sequence of pulses of duration Ton; the number of photons per pulse has been implemented like a...astrophysical emission mechanisms or scattering processes by measuring the statistics of the arrival time of each incoming photon . This line of research will be

  5. Quantum secret information equal exchange protocol based on dense coding

    NASA Astrophysics Data System (ADS)

    Jiang, Ying-Hua; Zhang, Shi-Bin; Dai, Jin-Qiao; Shi, Zhi-Ping

    2018-04-01

    In this paper, we design a novel quantum secret information equal exchange protocol, which implements the equal exchange of secret information between the two parties with the help of semi-trusted third party (TP). In the protocol, EPR pairs prepared by the TP are, respectively, distributed to both the communication parties. Then, the two parties perform Pauli operation on each particle and return the new particles to TP, respectively. TP measures each new pair with Bell basis and announces the measurement results. Both parties deduce the secret information of each other according to the result of announcement by TP. Finally, the security analysis shows that this protocol solves the problem about equal exchange of secret information between two parties and verifies the security of semi-trusted TPs. It proves that the protocol can effectively resist glitch attacks, intercept retransmission attacks and entanglement attack.

  6. Protocol for Direct Counterfactual Quantum Communication

    NASA Astrophysics Data System (ADS)

    Salih, Hatim; Li, Zheng-Hong; Al-Amri, M.; Zubairy, M. Suhail

    2013-04-01

    It has long been assumed in physics that for information to travel between two parties in empty space, “Alice” and “Bob,” physical particles have to travel between them. Here, using the “chained” quantum Zeno effect, we show how, in the ideal asymptotic limit, information can be transferred between Alice and Bob without any physical particles traveling between them.

  7. Subcarrier Wave Quantum Key Distribution in Telecommunication Network with Bitrate 800 kbit/s

    NASA Astrophysics Data System (ADS)

    Gleim, A. V.; Nazarov, Yu. V.; Egorov, V. I.; Smirnov, S. V.; Bannik, O. I.; Chistyakov, V. V.; Kynev, S. M.; Anisimov, A. A.; Kozlov, S. A.; Vasiliev, V. N.

    2015-09-01

    In the course of work on creating the first quantum communication network in Russia we demonstrated quantum key distribution in metropolitan optical network infrastructure. A single-pass subcarrier wave quantum cryptography scheme was used in the experiments. BB84 protocol with strong reference was chosen for performing key distribution. The registered sifted key rate in an optical cable with 1.5 dB loss was 800 Kbit/s. Signal visibility exceeded 98%, and quantum bit error rate value was 1%. The achieved result is a record for this type of systems.

  8. All linear optical quantum memory based on quantum error correction.

    PubMed

    Gingrich, Robert M; Kok, Pieter; Lee, Hwang; Vatan, Farrokh; Dowling, Jonathan P

    2003-11-21

    When photons are sent through a fiber as part of a quantum communication protocol, the error that is most difficult to correct is photon loss. Here we propose and analyze a two-to-four qubit encoding scheme, which can recover the loss of one qubit in the transmission. This device acts as a repeater, when it is placed in series to cover a distance larger than the attenuation length of the fiber, and it acts as an optical quantum memory, when it is inserted in a fiber loop. We call this dual-purpose device a "quantum transponder."

  9. Multi-user quantum key distribution with entangled photons from an AlGaAs chip

    NASA Astrophysics Data System (ADS)

    Autebert, C.; Trapateau, J.; Orieux, A.; Lemaître, A.; Gomez-Carbonell, C.; Diamanti, E.; Zaquine, I.; Ducci, S.

    2016-12-01

    In view of real-world applications of quantum information technologies, the combination of miniature quantum resources with existing fibre networks is a crucial issue. Among such resources, on-chip entangled photon sources play a central role for applications spanning quantum communications, computing and metrology. Here, we use a semiconductor source of entangled photons operating at room temperature in conjunction with standard telecom components to demonstrate multi-user quantum key distribution, a core protocol for securing communications in quantum networks. The source consists of an AlGaAs chip-emitting polarisation entangled photon pairs over a large bandwidth in the main telecom band around 1550 nm without the use of any off-chip compensation or interferometric scheme; the photon pairs are directly launched into a dense wavelength division multiplexer (DWDM) and secret keys are distributed between several pairs of users communicating through different channels. We achieve a visibility measured after the DWDM of 87% and show long-distance key distribution using a 50-km standard telecom fibre link between two network users. These results illustrate a promising route to practical, resource-efficient implementations adapted to quantum network infrastructures.

  10. Metropolitan all-pass and inter-city quantum communication network.

    PubMed

    Chen, Teng-Yun; Wang, Jian; Liang, Hao; Liu, Wei-Yue; Liu, Yang; Jiang, Xiao; Wang, Yuan; Wan, Xu; Cai, Wei-Qi; Ju, Lei; Chen, Luo-Kan; Wang, Liu-Jun; Gao, Yuan; Chen, Kai; Peng, Cheng-Zhi; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-12-20

    We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60 km.

  11. Improving security of the ping-pong protocol

    NASA Astrophysics Data System (ADS)

    Zawadzki, Piotr

    2013-01-01

    A security layer for the asymptotically secure ping-pong protocol is proposed and analyzed in the paper. The operation of the improvement exploits inevitable errors introduced by the eavesdropping in the control and message modes. Its role is similar to the privacy amplification algorithms known from the quantum key distribution schemes. Messages are processed in blocks which guarantees that an eavesdropper is faced with a computationally infeasible problem as long as the system parameters are within reasonable limits. The introduced additional information preprocessing does not require quantum memory registers and confidential communication is possible without prior key agreement or some shared secret.

  12. Some conservative estimates in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2006-08-15

    Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q{sub c} {approx} 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation H(Q{sub c})=C-bar({rho})/2, where {rho} is the density matrix of the input ensemble, C-bar({rho}) is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q.

  13. Device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hänggi, Esther

    2010-12-01

    In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.

  14. Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond.

    PubMed

    Blok, M S; Kalb, N; Reiserer, A; Taminiau, T H; Hanson, R

    2015-01-01

    Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.

  15. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    In quantum teleportation, neither Alice nor Bob acquires any classical knowledge on teleported states. The teleportation protocol is said to be oblivious to both parties. In remote state preparation (RSP), it is assumed that Alice is given complete classical knowledge on the state that is to be prepared by Bob. Recently, Leung and Shor [e-print quant-ph/0201008] showed that the same amount of classical information as that in teleportation needs to be transmitted in any exact and deterministic RSP protocol that is oblivious to Bob. Assuming that the dimension of subsystems in the prior-entangled state is the same as the dimensionmore » of the input space, we study similar RSP protocols, but not necessarily oblivious to Bob. We show that in this case Bob's quantum operation can be safely assumed to be a unitary transformation. We then derive an equation that is a necessary and sufficient condition for such a protocol to exist. By studying this equation, we show that one-qubit RSP requires two classical bits of communication, which is the same amount as in teleportation, even if the protocol is not assumed oblivious to Bob. For higher dimensions, it is still an open question whether the amount of classical communication can be reduced by abandoning oblivious conditions.« less

  17. Completely device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Aguilar, Edgar A.; Ramanathan, Ravishankar; Kofler, Johannes; Pawłowski, Marcin

    2016-08-01

    Quantum key distribution (QKD) is a provably secure way for two distant parties to establish a common secret key, which then can be used in a classical cryptographic scheme. Using quantum entanglement, one can reduce the necessary assumptions that the parties have to make about their devices, giving rise to device-independent QKD (DIQKD). However, in all existing protocols to date the parties need to have an initial (at least partially) random seed as a resource. In this work, we show that this requirement can be dropped. Using recent advances in the fields of randomness amplification and randomness expansion, we demonstrate that it is sufficient for the message the parties want to communicate to be (partially) unknown to the adversaries—an assumption without which any type of cryptography would be pointless to begin with. One party can use her secret message to locally generate a secret sequence of bits, which can then be openly used by herself and the other party in a DIQKD protocol. Hence our work reduces the requirements needed to perform secure DIQKD and establish safe communication.

  18. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruifang; Lassen, Mikael; Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby

    2010-07-15

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variablemore » entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.« less

  19. A Framework for Bounding Nonlocality of State Discrimination

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.; Leung, Debbie; Mančinska, Laura; Ozols, Maris

    2013-11-01

    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper Quantum nonlocality without entanglement (Bennett et al., Phys Rev A 59:1070-1091, 1999), we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the “rotated” domino states, resolving a long-standing open question (Bennett et al., Phys Rev A 59:1070-1091, 1999).

  20. Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corndorf, Eric; Liang Chuang; Kanter, Gregory S.

    2005-06-15

    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performancemore » criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.« less

  1. Quantum correlations in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.

    2018-03-01

    Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.

  2. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  3. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels.

    PubMed

    Takeoka, Masahiro; Seshadreesan, Kaushik P; Wilde, Mark M

    2017-10-13

    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  4. High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits

    NASA Astrophysics Data System (ADS)

    Cai, Jiarui; Pan, Ziwen; Wang, Tie-Jun; Wang, Sihai; Wang, Chuan

    2016-11-01

    Hyper-entanglement is a system constituted by photons entangled in multiple degrees of freedom (DOF), being considered as a promising way of increasing channel capacity and guaranteeing powerful eavesdropping safeguard. In this work, we propose a coding scheme based on a 3-particle hyper-entanglement of polarization and orbital angular momentum (OAM) system and its application as a quantum secure direct communication (QSDC) protocol. The OAM values are specially encoded by Fibonacci sequence and the polarization carries information by defined unitary operations. The internal relations of the secret message enhances security due to principle of quantum mechanics and Fibonacci sequence. We also discuss the coding capacity and security property along with some simulation results to show its superiority and extensibility.

  5. Quantum secret sharing using orthogonal multiqudit entangled states

    NASA Astrophysics Data System (ADS)

    Bai, Chen-Ming; Li, Zhi-Hui; Liu, Cheng-Ji; Li, Yong-Ming

    2017-12-01

    In this work, we investigate the distinguishability of orthogonal multiqudit entangled states under restricted local operations and classical communication. According to these properties, we propose a quantum secret sharing scheme to realize three types of access structures, i.e., the ( n, n)-threshold, the restricted (3, n)-threshold and restricted (4, n)-threshold schemes (called LOCC-QSS scheme). All cooperating players in the restricted threshold schemes are from two disjoint groups. In the proposed protocol, the participants use the computational basis measurement and classical communication to distinguish between those orthogonal states and reconstruct the original secret. Furthermore, we also analyze the security of our scheme in four primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.

  6. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  7. Experimental measurement-device-independent quantum key distribution.

    PubMed

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-27

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  8. Multi-party Measurement-Device-Independent Quantum Key Distribution Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Liu, Chuanqi; Zhu, Changhua; Ma, Shuquan; Pei, Changxing

    2018-03-01

    We propose a novel multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on cluster states. A four-photon analyzer which can distinguish all the 16 cluster states serves as the measurement device for four-party MDI-QKD. Any two out of four participants can build secure keys after the analyzers obtains successful outputs and the two participants perform post-processing. We derive a security analysis for the protocol, and analyze the key rates under different values of polarization misalignment. The results show that four-party MDI-QKD is feasible over 280 km in the optical fiber channel when the key rate is about 10- 6 with the polarization misalignment parameter 0.015. Moreover, our work takes an important step toward a quantum communication network.

  9. Quantum teleportation and information splitting via four-qubit cluster state and a Bell state

    NASA Astrophysics Data System (ADS)

    Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai

    2017-10-01

    Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.

  10. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases

    NASA Astrophysics Data System (ADS)

    Pezzè, Luca; Ciampini, Mario A.; Spagnolo, Nicolò; Humphreys, Peter C.; Datta, Animesh; Walmsley, Ian A.; Barbieri, Marco; Sciarrino, Fabio; Smerzi, Augusto

    2017-09-01

    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

  11. Generalized teleportation by quantum walks

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shang, Yun; Xue, Peng

    2017-09-01

    We develop a generalized teleportation scheme based on quantum walks with two coins. For an unknown qubit state, we use two-step quantum walks on the line and quantum walks on the cycle with four vertices for teleportation. For any d-dimensional states, quantum walks on complete graphs and quantum walks on d-regular graphs can be used for implementing teleportation. Compared with existing d-dimensional states teleportation, prior entangled state is not required and the necessary maximal entanglement resource is generated by the first step of quantum walk. Moreover, two projective measurements with d elements are needed by quantum walks on the complete graph, rather than one joint measurement with d^2 basis states. Quantum walks have many applications in quantum computation and quantum simulations. This is the first scheme of realizing communicating protocol with quantum walks, thus opening wider applications.

  12. Memory attacks on device-independent quantum cryptography.

    PubMed

    Barrett, Jonathan; Colbeck, Roger; Kent, Adrian

    2013-01-04

    Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party).

  13. Monogamy relation in multipartite continuous-variable quantum teleportation

    NASA Astrophysics Data System (ADS)

    Lee, Jaehak; Ji, Se-Wan; Park, Jiyong; Nha, Hyunchul

    2016-12-01

    Quantum teleportation (QT) is a fundamentally remarkable communication protocol that also finds many important applications for quantum informatics. Given a quantum entangled resource, it is crucial to know to what extent one can accomplish the QT. This is usually assessed in terms of output fidelity, which can also be regarded as an operational measure of entanglement. In the case of multipartite communication when each communicator possesses a part of an N -partite entangled state, not all pairs of communicators can achieve a high fidelity due to the monogamy property of quantum entanglement. We here investigate how such a monogamy relation arises in multipartite continuous-variable (CV) teleportation, particularly when using a Gaussian entangled state. We show a strict monogamy relation, i.e., a sender cannot achieve a fidelity higher than optimal cloning limit with more than one receiver. While this seems rather natural owing to the no-cloning theorem, a strict monogamy relation still holds even if the sender is allowed to individually manipulate the reduced state in collaboration with each receiver to improve fidelity. The local operations are further extended to non-Gaussian operations such as photon subtraction and addition, and we demonstrate that the Gaussian cloning bound cannot be beaten by more than one pair of communicators. Furthermore, we investigate a quantitative form of monogamy relation in terms of teleportation capability, for which we show that a faithful monogamy inequality does not exist.

  14. New Forms of Matter in Optical Lattices

    DTIC Science & Technology

    2016-05-19

    Daley, A. M. Läuchli, and P. Zoller Thermal vs. Entanglement Entropy: A Measurement Protocol for Fermionic Atoms with a Quantum Gas Microscope...J. A. Edge, E. Taylor, S. Zhang, S. Trotzky, J. H. Thywissen Transverse Demagnetization Dynamics of a Unitary Fermi Gas Science 344, 722 (2014...Jiang, J Ignacio Cirac, Peter Zoller, Mikhail D Lukin, "Topologically Protected Quantum State Transfer in a Chiral Spin Liquid , "Nature Communications

  15. Noise Analysis of Simultaneous Quantum Key Distribution and Classical Communication Scheme Using a True Local Oscillator

    DOE PAGES

    Qi, Bing; Lim, Charles Ci Wen

    2018-05-07

    Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact thatmore » the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary’s point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. In conclusion, we conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.« less

  16. Noise Analysis of Simultaneous Quantum Key Distribution and Classical Communication Scheme Using a True Local Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing; Lim, Charles Ci Wen

    Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact thatmore » the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary’s point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. In conclusion, we conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.« less

  17. Noise Analysis of Simultaneous Quantum Key Distribution and Classical Communication Scheme Using a True Local Oscillator

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lim, Charles Ci Wen

    2018-05-01

    Recently, we proposed a simultaneous quantum and classical communication (SQCC) protocol where random numbers for quantum key distribution and bits for classical communication are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Such a scheme could be appealing in practice since a single coherent communication system can be used for multiple purposes. However, previous studies show that the SQCC protocol can tolerate only very small phase noise. This makes it incompatible with the coherent communication scheme using a true local oscillator (LO), which presents a relatively high phase noise due to the fact that the signal and the LO are generated from two independent lasers. We improve the phase noise tolerance of the SQCC scheme using a true LO by adopting a refined noise model where phase noises originating from different sources are treated differently: on the one hand, phase noise associated with the coherent receiver may be regarded as trusted noise since the detector can be calibrated locally and the photon statistics of the detected signals can be determined from the measurement results; on the other hand, phase noise due to the instability of fiber interferometers may be regarded as untrusted noise since its randomness (from the adversary's point of view) is hard to justify. Simulation results show the tolerable phase noise in this refined noise model is significantly higher than that in the previous study, where all of the phase noises are assumed to be untrusted. We conduct an experiment to show that the required phase stability can be achieved in a coherent communication system using a true LO.

  18. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-10-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  19. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-05-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0‧⟩ state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0‧⟩. By using the |0‧⟩ state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping-pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).

  20. Position-based coding and convex splitting for private communication over quantum channels

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.

    2017-10-01

    The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The ɛ -one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than ɛ \\in (0,1). The present paper provides a lower bound on the ɛ -one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the "alternate" smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.

  1. Heralded amplification of path entangled quantum states

    NASA Astrophysics Data System (ADS)

    Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.

    2017-06-01

    Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.

  2. Robust quantum entanglement generation and generation-plus-storage protocols with spin chains

    NASA Astrophysics Data System (ADS)

    Estarellas, Marta P.; D'Amico, Irene; Spiller, Timothy P.

    2017-04-01

    Reliable quantum communication and/or processing links between modules are a necessary building block for various quantum processing architectures. Here we consider a spin-chain system with alternating strength couplings and containing three defects, which impose three domain walls between topologically distinct regions of the chain. We show that—in addition to its useful, high-fidelity, quantum state transfer properties—an entangling protocol can be implemented in this system, with optional localization and storage of the entangled states. We demonstrate both numerically and analytically that, given a suitable initial product-state injection, the natural dynamics of the system produces a maximally entangled state at a given time. We present detailed investigations of the effects of fabrication errors, analyzing random static disorder both in the diagonal and off-diagonal terms of the system Hamiltonian. Our results show that the entangled state formation is very robust against perturbations of up to ˜10 % the weaker chain coupling, and also robust against timing injection errors. We propose a further protocol, which manipulates the chain in order to localize and store each of the entangled qubits. The engineering of a system with such characteristics would thus provide a useful device for quantum information processing tasks involving the creation and storage of entangled resources.

  3. Deterministic delivery of remote entanglement on a quantum network.

    PubMed

    Humphreys, Peter C; Kalb, Norbert; Morits, Jaco P J; Schouten, Raymond N; Vermeulen, Raymond F L; Twitchen, Daniel J; Markham, Matthew; Hanson, Ronald

    2018-06-01

    Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7 . Moving beyond current two-node networks 8-13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

  4. Experimental temporal quantum steering

    PubMed Central

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam; Nori, Franco

    2016-01-01

    Temporal steering is a form of temporal correlation between the initial and final state of a quantum system. It is a temporal analogue of the famous Einstein-Podolsky-Rosen (spatial) steering. We demonstrate, by measuring the photon polarization, that temporal steering allows two parties to verify if they have been interacting with the same particle, even if they have no information about what happened with the particle in between the measurements. This is the first experimental study of temporal steering. We also performed experimental tests, based on the violation of temporal steering inequalities, of the security of two quantum key distribution protocols against individual attacks. Thus, these results can lead to applications for secure quantum communications and quantum engineering. PMID:27901121

  5. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides

    NASA Astrophysics Data System (ADS)

    Lemonde, M.-A.; Meesala, S.; Sipahigil, A.; Schuetz, M. J. A.; Lukin, M. D.; Loncar, M.; Rabl, P.

    2018-05-01

    We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.

  6. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less

  7. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    DOE PAGES

    Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen; ...

    2017-10-27

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less

  8. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides.

    PubMed

    Lemonde, M-A; Meesala, S; Sipahigil, A; Schuetz, M J A; Lukin, M D; Loncar, M; Rabl, P

    2018-05-25

    We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.

  9. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Kiktenko, E. O.; Trushechkin, A. S.; Lim, C. C. W.; Kurochkin, Y. V.; Fedorov, A. K.

    2017-10-01

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. The proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.

  10. Progress in satellite quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bedington, Robert; Arrazola, Juan Miguel; Ling, Alexander

    2017-08-01

    Quantum key distribution (QKD) is a family of protocols for growing a private encryption key between two parties. Despite much progress, all ground-based QKD approaches have a distance limit due to atmospheric losses or in-fibre attenuation. These limitations make purely ground-based systems impractical for a global distribution network. However, the range of communication may be extended by employing satellites equipped with high-quality optical links. This manuscript summarizes research and development which is beginning to enable QKD with satellites. It includes a discussion of protocols, infrastructure, and the technical challenges involved with implementing such systems, as well as a top level summary of on-going satellite QKD initiatives around the world.

  11. Establishing security of quantum key distribution without monitoring disturbance

    NASA Astrophysics Data System (ADS)

    Koashi, Masato

    2015-10-01

    In conventional quantum key distribution (QKD) protocols, the information leak to an eavesdropper is estimated through the basic principle of quantum mechanics dictated in the original version of Heisenberg's uncertainty principle. The amount of leaked information on a shared sifted key is bounded from above essentially by using information-disturbance trade-off relations, based on the amount of signal disturbance measured via randomly sampled or inserted probe signals. Here we discuss an entirely different avenue toward the private communication, which does not rely on the information disturbance trade-off relations and hence does not require a monitoring of signal disturbance. The independence of the amount of privacy amplification from that of disturbance tends to give it a high tolerance on the channel noises. The lifting of the burden of precise statistical estimation of disturbance leads to a favorable finite-key-size effect. A protocol based on the novel principle can be implemented by only using photon detectors and classical optics tools: a laser, a phase modulator, and an interferometer. The protocol resembles the differential-phase-shift QKD protocol in that both share a simple binary phase shift keying on a coherent train of weak pulses from a laser. The difference lies in the use of a variable-delay interferometer in the new protocol, which randomly changes the combination of pulse pairs to be superposed. This extra randomness has turned out to be enough to upper-bound the information extracted by the eavesdropper, regardless of how they have disturbed the quantum signal.

  12. Beating the classical limits of information transmission using a quantum decoder

    NASA Astrophysics Data System (ADS)

    Chapman, Robert J.; Karim, Akib; Huang, Zixin; Flammia, Steven T.; Tomamichel, Marco; Peruzzo, Alberto

    2018-01-01

    Encoding schemes and error-correcting codes are widely used in information technology to improve the reliability of data transmission over real-world communication channels. Quantum information protocols can further enhance the performance in data transmission by encoding a message in quantum states; however, most proposals to date have focused on the regime of a large number of uses of the noisy channel, which is unfeasible with current quantum technology. We experimentally demonstrate quantum enhanced communication over an amplitude damping noisy channel with only two uses of the channel per bit and a single entangling gate at the decoder. By simulating the channel using a photonic interferometric setup, we experimentally increase the reliability of transmitting a data bit by greater than 20 % for a certain damping range over classically sending the message twice. We show how our methodology can be extended to larger systems by simulating the transmission of a single bit with up to eight uses of the channel and a two-bit message with three uses of the channel, predicting a quantum enhancement in all cases.

  13. Quantum computation over the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.

    2011-07-15

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglementmore » resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.« less

  14. Quantum cryptography using coherent states: Randomized encryption and key generation

    NASA Astrophysics Data System (ADS)

    Corndorf, Eric

    With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority. While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven. Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified. In an effort to provably satisfy the cryptographic objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.

  15. An impurity-induced gap system as a quantum data bus for quantum state transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less

  16. Joining the quantum state of two photons into one

    NASA Astrophysics Data System (ADS)

    Vitelli, Chiara; Spagnolo, Nicolò; Aparo, Lorenzo; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo

    2013-07-01

    Photons are the ideal carriers of quantum information for communication. Each photon can have a single or multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes and so on. However, as photons do not interact, multiplexing and demultiplexing the quantum information across photons has not been possible hitherto. Here, we introduce and demonstrate experimentally a physical process, named `quantum joining', in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional Hilbert space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence provide a flexible quantum interconnect to bridge multiparticle protocols of quantum information with multidegree-of-freedom ones, with possible applications in future quantum networking.

  17. Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    2004-05-01

    Quantum key distribution (QKD) uses single-photon communications to generate the shared, secret random number sequences that are used to encrypt and decrypt secret communications. The unconditional security of QKD is based on the interplay between fundamental principles of quantum physics and information theory. An adversary can neither successfully tap the transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). QKD could be particularly attractive for free-space optical communications, both ground-based and for satellites. I will describe a QKD experiment performed over multi-kilometer line-of-sight paths, which serves as a model for a satellite-to-ground key distribution system. The system uses single-photon polarization states, without active polarization switching, and for the first time implements the complete BB84 QKD protocol including, reconciliation, privacy amplification and the all-important authentication stage. It is capable of continuous operation throughout the day and night, achieving the self-sustaining production of error-free, shared, secret bits. I will also report on the results of satellite-to-ground QKD modeling.

  18. Quantum Cryptography in Existing Telecommunications Infrastructure

    NASA Astrophysics Data System (ADS)

    Rogers, Daniel; Bienfang, Joshua; Mink, Alan; Hershman, Barry; Nakassis, Anastase; Tang, Xiao; Ma, Lijun; Su, David; Williams, Carl; Clark, Charles

    2006-03-01

    Quantum cryptography has shown the potential for ultra-secure communications. However, all systems demonstrated to date operate at speeds that make them impractical for performing continuous one-time-pad encryption of today's broadband communications. By adapting clock and data recovery techniques from modern telecommunications engineering practice, and by designing and implementing expeditious error correction and privacy amplification algorithms, we have demonstrated error-corrected and privacy-amplified key rates up to 1.0 Mbps over a free-space link with a 1.25 Gbps clock. Using new detectors with improved timing resolution, careful wavelength selection and an increased clock speed, we expect to quadruple the transmission rate over a 1.5 km free-space link. We have identified scalable solutions for delivering sustained one-time-pad encryption at 10 Mbps, thus making it possible to integrate quantum cryptography with first-generation Ethernet protocols.

  19. The Road to DLCZ Protocol in Rubidium Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Chang; Pu, Yunfei; Jiang, Nan; Chang, Wei; Zhang, Sheng; CenterQuantum Information, InstituteInterdisciplinary Information Sciences, Tsinghua Univ Team

    2017-04-01

    Quantum communication is the powerful approach achieving a fully secure information transferal. The DLCZ protocol ensures that photon linearly decays with transferring distance increasing, which improves the success potential and shortens the time to build up an entangled channel. Apart from that, it provides an advanced idea that building up a quantum internet based on different nodes connected to different sites and themselves. In our laboratory, three sets of laser-cooled Rubidium 87 ensemble have been built. Two of them serve as the single photon emitter, which generate the entanglement between ensemble and photon. What's more, crossed AODs are equipped to multiplex and demultiplex optical circuit so that ensemble is divided into 2 hundred of 2D sub-memory cells. And the third ensemble is used as quantum telecommunication, which converts 780nm photon into telecom-wavelength one. And we have been building double-MOT system, which provides more atoms in ensemble and larger optical density.

  20. Additive Classical Capacity of Quantum Channels Assisted by Noisy Entanglement.

    PubMed

    Zhuang, Quntao; Zhu, Elton Yechao; Shor, Peter W

    2017-05-19

    We give a capacity formula for the classical information transmission over a noisy quantum channel, with separable encoding by the sender and limited resources provided by the receiver's preshared ancilla. Instead of a pure state, we consider the signal-ancilla pair in a mixed state, purified by a "witness." Thus, the signal-witness correlation limits the resource available from the signal-ancilla correlation. Our formula characterizes the utility of different forms of resources, including noisy or limited entanglement assistance, for classical communication. With separable encoding, the sender's signals across multiple channel uses are still allowed to be entangled, yet our capacity formula is additive. In particular, for generalized covariant channels, our capacity formula has a simple closed form. Moreover, our additive capacity formula upper bounds the general coherent attack's information gain in various two-way quantum key distribution protocols. For Gaussian protocols, the additivity of the formula indicates that the collective Gaussian attack is the most powerful.

  1. Continuous-variable Measurement-device-independent Quantum Relay Network with Phase-sensitive Amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhao, Wei; Guo, Ying

    2018-01-01

    Continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is now heading towards solving the practical problem of implementing scalable quantum networks. In this paper, we show that a solution can come from deploying an optical amplifier in the CV-MDI system, aiming to establish a high-rate quantum network. We suggest an improved CV-MDI protocol using the EPR states coupled with optical amplifiers. It can implement a practical quantum network scheme, where the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Despite the possibility that the relay could be completely tampered with and imperfect links are subject to the powerful attacks, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Furthermore, we show that the use of optical amplifiers can compensate the inherent imperfections and improve the secret key rate of the CV-MDI system.

  2. Lossless quantum data compression and secure direct communication

    NASA Astrophysics Data System (ADS)

    Boström, Kim

    2004-07-01

    This thesis deals with the encoding and transmission of information through a quantum channel. A quantum channel is a quantum mechanical system whose state is manipulated by a sender and read out by a receiver. The individual state of the channel represents the message. The two topics of the thesis comprise 1) the possibility of compressing a message stored in a quantum channel without loss of information and 2) the possibility to communicate a message directly from one party to another in a secure manner, that is, a third party is not able to eavesdrop the message without being detected. The main results of the thesis are the following. A general framework for variable-length quantum codes is worked out. These codes are necessary to make lossless compression possible. Due to the quantum nature of the channel, the encoded messages are in general in a superposition of different lengths. It is found to be impossible to compress a quantum message without loss of information if the message is not apriori known to the sender. In the other case it is shown that lossless quantum data compression is possible and a lower bound on the compression rate is derived. Furthermore, an explicit compression scheme is constructed that works for arbitrarily given source message ensembles. A quantum cryptographic protocol - the “ping-pong protocol” - is presented that realizes the secure direct communication of classical messages through a quantum channel. The security of the protocol against arbitrary eavesdropping attacks is proven for the case of an ideal quantum channel. In contrast to other quantum cryptographic protocols, the ping-pong protocol is deterministic and can thus be used to transmit a random key as well as a composed message. The protocol is perfectly secure for the transmission of a key, and it is quasi-secure for the direct transmission of a message. The latter means that the probability of successful eavesdropping exponentially decreases with the length of the message. Diese Dissertation behandelt die Kodierung und Verschickung von Information durch einen Quantenkanal. Ein Quantenkanal besteht aus einem quantenmechanischen System, welches vom Sender manipuliert und vom Empfänger ausgelesen werden kann. Dabei repräsentiert der individuelle Zustand des Kanals die Nachricht. Die zwei Themen der Dissertation umfassen 1) die Möglichkeit, eine Nachricht in einem Quantenkanal verlustfrei zu komprimieren und 2) die Möglichkeit eine Nachricht von einer Partei zu einer einer anderen direkt und auf sichere Weise zu übermitteln, d.h. ohne dass es einer dritte Partei möglich ist, die Nachricht abzuhören und dabei unerkannt zu bleiben. Die wesentlichen Ergebnisse der Dissertation sind die folgenden. Ein allgemeiner Formalismus für Quantencodes mit variabler Länge wird ausgearbeitet. Diese Codes sind notwendig um verlustfreie Kompression zu ermöglichen. Wegen der Quantennatur des Kanals sind die codierten Nachrichten allgemein in einer Superposition von verschiedenen Längen. Es zeigt sich, daß es unmöglich ist eine Quantennachricht verlustfrei zu komprimieren, wenn diese dem Sender nicht apriori bekannt ist. Im anderen Falle wird die Möglichkeit verlustfreier Quantenkompression gezeigt und eine untere Schranke für die Kompressionsrate abgeleitet. Des weiteren wird ein expliziter Kompressionsalgorithmus konstruiert, der für beliebig vorgegebene Ensembles aus Quantennachrichten funktioniert. Ein quantenkryptografisches Prokoll - das “Ping-Pong Protokoll” - wird vorgestellt, welches die sichere direkte übertragung von klassischen Nachrichten durch einen Quantenkanal ermöglicht. Die Sicherheit des Protokolls gegen beliebige Abhörangriffe wird bewiesen für den Fall eines idealen Quantenkanals. Im Gegensatz zu anderen quantenkryptografischen Verfahren ist das Ping-Pong Protokoll deterministisch und kann somit sowohl für die Übermittlung eines zufälligen Schlüssels als auch einer komponierten Nachricht verwendet werden. Das Protokoll is perfekt sicher für die Übertragung eines Schlüssels und quasi-sicher für die direkte Übermittlung einer Nachricht. Letzteres bedeutet, dass die Wahrscheinlichkeit eines erfolgreichen Abhörangriffs exponenziell mit der Länge der Nachricht abnimmt.

  3. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  4. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency.

    PubMed

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A; Chen, Ying-Cheng

    2018-05-04

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  5. Novel systems and methods for quantum communication, quantum computation, and quantum simulation

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey Vyacheslavovich

    Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.

  6. Achieving the Holevo bound via a bisection decoding protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosati, Matteo; Giovannetti, Vittorio

    2016-06-15

    We present a new decoding protocol to realize transmission of classical information through a quantum channel at asymptotically maximum capacity, achieving the Holevo bound and thus the optimal communication rate. At variance with previous proposals, our scheme recovers the message bit by bit, making use of a series of “yes-no” measurements, organized in bisection fashion, thus determining which codeword was sent in log{sub 2} N steps, N being the number of codewords.

  7. Entangled singularity patterns of photons in Ince-Gauss modes

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.

  8. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  9. Efficient Entanglement Concentration of Nonlocal Two-Photon Polarization-Time-Bin Hyperentangled States

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Hang; Yu, Wen-Xuan; Wu, Xiao-Yuan; Gao, Cheng-Yan; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2018-03-01

    We present two different hyperentanglement concentration protocols (hyper-ECPs) for two-photon systems in nonlocal polarization-time-bin hyperentangled states with known parameters, including Bell-like and cluster-like states, resorting to the parameter splitting method. They require only one of two parties in quantum communication to operate her photon in the process of entanglement concentration, not two, and they have the maximal success probability. They work with linear optical elements and have good feasibility in experiment, especially in the case that there are a big number of quantum data exchanged as the parties can obtain the information about the parameters of the nonlocal hyperentangled states by sampling a subset of nonlocal hyperentangled two-photon systems and measuring them. As the quantum state of photons in the time-bin degree of freedom suffers from less noise in an optical-fiber channel, these hyper-ECPs may have good applications in practical long-distance quantum communication in the future.

  10. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography.

    PubMed

    Larocque, Hugo; Gagnon-Bischoff, Jérémie; Mortimer, Dominic; Zhang, Yingwen; Bouchard, Frédéric; Upham, Jeremy; Grillo, Vincenzo; Boyd, Robert W; Karimi, Ebrahim

    2017-08-21

    The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.

  11. Vibrons in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature.

    PubMed

    Pouthier, Vincent

    2012-11-07

    A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range.

  12. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE PAGES

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; ...

    2017-11-24

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  13. Provably secure and high-rate quantum key distribution with time-bin qudits

    PubMed Central

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2017-01-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system. PMID:29202028

  14. Provably secure and high-rate quantum key distribution with time-bin qudits.

    PubMed

    Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J

    2017-11-01

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.

  15. Provably secure and high-rate quantum key distribution with time-bin qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton

    The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less

  16. Deterministic quantum teleportation of atomic qubits.

    PubMed

    Barrett, M D; Chiaverini, J; Schaetz, T; Britton, J; Itano, W M; Jost, J D; Knill, E; Langer, C; Leibfried, D; Ozeri, R; Wineland, D J

    2004-06-17

    Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.

  17. A special attack on the multiparty quantum secret sharing of secure direct communication using single photons

    NASA Astrophysics Data System (ADS)

    Qin, Su-Juan; Gao, Fei; Wen, Qiao-Yan; Zhu, Fu-Chen

    2008-11-01

    The security of a multiparty quantum secret sharing protocol [L.F. Han, Y.M. Liu, J. Liu, Z.J. Zhang, Opt. Commun. 281 (2008) 2690] is reexamined. It is shown that any one dishonest participant can obtain all the transmitted secret bits by a special attack, where the controlled- (-iσy) gate is employed to invalidate the role of the random phase shift operation. Furthermore, a possible way to resist this attack is discussed.

  18. Experimental realization of an entanglement access network and secure multi-party computation

    NASA Astrophysics Data System (ADS)

    Chang, X.-Y.; Deng, D.-L.; Yuan, X.-X.; Hou, P.-Y.; Huang, Y.-Y.; Duan, L.-M.

    2016-07-01

    To construct a quantum network with many end users, it is critical to have a cost-efficient way to distribute entanglement over different network ends. We demonstrate an entanglement access network, where the expensive resource, the entangled photon source at the telecom wavelength and the core communication channel, is shared by many end users. Using this cost-efficient entanglement access network, we report experimental demonstration of a secure multiparty computation protocol, the privacy-preserving secure sum problem, based on the network quantum cryptography.

  19. Experimental realization of an entanglement access network and secure multi-party computation

    NASA Astrophysics Data System (ADS)

    Chang, Xiuying; Deng, Donglin; Yuan, Xinxing; Hou, Panyu; Huang, Yuanyuan; Duan, Luming; Department of Physics, University of Michigan Collaboration; CenterQuantum Information in Tsinghua University Team

    2017-04-01

    To construct a quantum network with many end users, it is critical to have a cost-efficient way to distribute entanglement over different network ends. We demonstrate an entanglement access network, where the expensive resource, the entangled photon source at the telecom wavelength and the core communication channel, is shared by many end users. Using this cost-efficient entanglement access network, we report experimental demonstration of a secure multiparty computation protocol, the privacy-preserving secure sum problem, based on the network quantum cryptography.

  20. Device independence for two-party cryptography and position verification with memoryless devices

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jérémy; Thinh, Le Phuc; Kaniewski, Jedrzej; Helsen, Jonas; Wehner, Stephanie

    2018-06-01

    Quantum communication has demonstrated its usefulness for quantum cryptography far beyond quantum key distribution. One domain is two-party cryptography, whose goal is to allow two parties who may not trust each other to solve joint tasks. Another interesting application is position-based cryptography whose goal is to use the geographical location of an entity as its only identifying credential. Unfortunately, security of these protocols is not possible against an all powerful adversary. However, if we impose some realistic physical constraints on the adversary, there exist protocols for which security can be proven, but these so far relied on the knowledge of the quantum operations performed during the protocols. In this work we improve the device-independent security proofs of Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004] for two-party cryptography (with memoryless devices) and we add a security proof for device-independent position verification (also memoryless devices) under different physical constraints on the adversary. We assess the quality of the devices by observing a Bell violation, and, as for Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004], security can be attained for any violation of the Clauser-Holt-Shimony-Horne inequality.

  1. Distilling Gaussian states with Gaussian operations is impossible.

    PubMed

    Eisert, J; Scheel, S; Plenio, M B

    2002-09-23

    We show that no distillation protocol for Gaussian quantum states exists that relies on (i) arbitrary local unitary operations that preserve the Gaussian character of the state and (ii) homodyne detection together with classical communication and postprocessing by means of local Gaussian unitary operations on two symmetric identically prepared copies. This is in contrast to the finite-dimensional case, where entanglement can be distilled in an iterative protocol using two copies at a time. The ramifications for the distribution of Gaussian states over large distances will be outlined. We also comment on the generality of the approach and sketch the most general form of a Gaussian local operation with classical communication in a bipartite setting.

  2. Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Ren, Bao-Cang; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-10-01

    Hyperentanglement has significant applications in quantum information processing. Here we present an efficient hyperentanglement concentration protocol (hyper-ECP) for partially hyperentangled Bell states simultaneously entangled in polarization, spatial-mode and time-bin degrees of freedom (DOFs) with the parameter-splitting method, where the parameters of the partially hyperentangled Bell states are known to the remote parties. In this hyper-ECP, only one remote party is required to perform some local operations on the three DOFs of a photon, only the linear optical elements are considered, and the success probability can achieve the maximal value. Our hyper-ECP can be easily generalized to concentrate the N-photon partially hyperentangled Greenberger-Horne-Zeilinger states with known parameters, where the multiple DOFs have largely improved the channel capacity of long-distance quantum communication. All of these make our hyper-ECP more practical and useful in high-capacity long-distance quantum communication.

  3. Quantum storage of orbital angular momentum entanglement in an atomic ensemble.

    PubMed

    Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can

    2015-02-06

    Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3%±0.8% and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.

  4. Quantum technology and cryptology for information security

    NASA Astrophysics Data System (ADS)

    Naqvi, Syed; Riguidel, Michel

    2007-04-01

    Cryptology and information security are set to play a more prominent role in the near future. In this regard, quantum communication and cryptography offer new opportunities to tackle ICT security. Quantum Information Processing and Communication (QIPC) is a scientific field where new conceptual foundations and techniques are being developed. They promise to play an important role in the future of information Security. It is therefore essential to have a cross-fertilizing development between quantum technology and cryptology in order to address the security challenges of the emerging quantum era. In this article, we discuss the impact of quantum technology on the current as well as future crypto-techniques. We then analyse the assumptions on which quantum computers may operate. Then we present our vision for the distribution of security attributes using a novel form of trust based on Heisenberg's uncertainty; and, building highly secure quantum networks based on the clear transmission of single photons and/or bundles of photons able to withstand unauthorized reading as a result of secure protocols based on the observations of quantum mechanics. We argue how quantum cryptographic systems need to be developed that can take advantage of the laws of physics to provide long-term security based on solid assumptions. This requires a structured integration effort to deploy quantum technologies within the existing security infrastructure. Finally, we conclude that classical cryptographic techniques need to be redesigned and upgraded in view of the growing threat of cryptanalytic attacks posed by quantum information processing devices leading to the development of post-quantum cryptography.

  5. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Kómár, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D.

    2014-08-01

    The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.

  6. Exponential rise of dynamical complexity in quantum computing through projections.

    PubMed

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-10-10

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

  7. Room temperature solid-state quantum emitters in the telecom range.

    PubMed

    Zhou, Yu; Wang, Ziyu; Rasmita, Abdullah; Kim, Sejeong; Berhane, Amanuel; Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam; Aharonovich, Igor; Gao, Wei-Bo

    2018-03-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.

  8. Prefixed-threshold real-time selection method in free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Wenyuan; Xu, Feihu; Lo, Hoi-Kwong

    2018-03-01

    Free-space quantum key distribution allows two parties to share a random key with unconditional security, between ground stations, between mobile platforms, and even in satellite-ground quantum communications. Atmospheric turbulence causes fluctuations in transmittance, which further affect the quantum bit error rate and the secure key rate. Previous postselection methods to combat atmospheric turbulence require a threshold value determined after all quantum transmission. In contrast, here we propose a method where we predetermine the optimal threshold value even before quantum transmission. Therefore, the receiver can discard useless data immediately, thus greatly reducing data storage requirements and computing resources. Furthermore, our method can be applied to a variety of protocols, including, for example, not only single-photon BB84 but also asymptotic and finite-size decoy-state BB84, which can greatly increase its practicality.

  9. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less

  10. W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution

    PubMed Central

    Zhu, Changhua; Xu, Feihu; Pei, Changxing

    2015-01-01

    W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289

  11. Fault-tolerant simple quantum-bit commitment unbreakable by individual attacks

    NASA Astrophysics Data System (ADS)

    Shimizu, Kaoru; Imoto, Nobuyuki

    2002-03-01

    This paper proposes a simple scheme for quantum-bit commitment that is secure against individual particle attacks, where a sender is unable to use quantum logical operations to manipulate multiparticle entanglement for performing quantum collective and coherent attacks. Our scheme employs a cryptographic quantum communication channel defined in a four-dimensional Hilbert space and can be implemented by using single-photon interference. For an ideal case of zero-loss and noiseless quantum channels, our basic scheme relies only on the physical features of quantum states. Moreover, as long as the bit-flip error rates are sufficiently small (less than a few percent), we can improve our scheme and make it fault tolerant by adopting simple error-correcting codes with a short length. Compared with the well-known Brassard-Crepeau-Jozsa-Langlois 1993 (BCJL93) protocol, our scheme is mathematically far simpler, more efficient in terms of transmitted photon number, and better tolerant of bit-flip errors.

  12. Side-channel-free quantum key distribution.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano

    2012-03-30

    Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.

  13. Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.

    PubMed

    Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can

    2017-12-21

    We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.

  14. Experimental Measurement-Device-Independent Entanglement Detection

    NASA Astrophysics Data System (ADS)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  15. Experimental Measurement-Device-Independent Entanglement Detection

    PubMed Central

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  16. High-speed noise-free optical quantum memory

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  17. Linear-Optics-Based Entanglement Concentration of Four-Photon χ-type States for Quantum Communication Network

    NASA Astrophysics Data System (ADS)

    Li, Tao; Deng, Fu-Guo

    2014-09-01

    We present an efficient entanglement concentration protocol (ECP) for partially entangled four-photon χ-type states in the first time with only linear optical elements and single-photon detectors. Without any ancillary particles, the parties in quantum communication network can obtain a subset of four-photon systems in the standard | χ 00> state from a set of four-photon systems in a partially entangled χ-type state with the parameter-splitting method developed by Ren et al. (Phys. Rev. A 88:012302, 2013). The present ECP has the optimal success probability which is determined by the component with the minimal probability amplitude in the initial state. Moreover, it is easy to implement this ECP in experiment.

  18. Stochastic gradient ascent outperforms gamers in the Quantum Moves game

    NASA Astrophysics Data System (ADS)

    Sels, Dries

    2018-04-01

    In a recent work on quantum state preparation, Sørensen and co-workers [Nature (London) 532, 210 (2016), 10.1038/nature17620] explore the possibility of using video games to help design quantum control protocols. The authors present a game called "Quantum Moves" (https://www.scienceathome.org/games/quantum-moves/) in which gamers have to move an atom from A to B by means of optical tweezers. They report that, "players succeed where purely numerical optimization fails." Moreover, by harnessing the player strategies, they can "outperform the most prominent established numerical methods." The aim of this Rapid Communication is to analyze the problem in detail and show that those claims are untenable. In fact, without any prior knowledge and starting from a random initial seed, a simple stochastic local optimization method finds near-optimal solutions which outperform all players. Counterdiabatic driving can even be used to generate protocols without resorting to numeric optimization. The analysis results in an accurate analytic estimate of the quantum speed limit which, apart from zero-point motion, is shown to be entirely classical in nature. The latter might explain why gamers are reasonably good at the game. A simple modification of the BringHomeWater challenge is proposed to test this hypothesis.

  19. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  20. Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Kogias, Ioannis; Adesso, Gerardo; He, Qiongyi

    2017-01-01

    We derive laws for the distribution of quantum steering among different parties in multipartite Gaussian states under Gaussian measurements. We prove that a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality holds quantitatively for a recently introduced measure of Gaussian steering. We then define the residual Gaussian steering, stemming from the monogamy inequality, as an indicator of collective steering-type correlations. For pure three-mode Gaussian states, the residual acts as a quantifier of genuine multipartite steering, and is interpreted operationally in terms of the guaranteed key rate in the task of secure quantum secret sharing. Optimal resource states for the latter protocol are identified, and their possible experimental implementation discussed. Our results pin down the role of multipartite steering for quantum communication.

  1. Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-08-01

    Higher channel capacity and security are difficult to reach in a noisy channel. The loss of photons and the distortion of the qubit state are caused by noise. To solve these problems, in our study, a hyperentangled Bell state is used to design faithful deterministic secure quantum communication and authentication protocol over collective-rotation and collective-dephasing noisy channel, which doubles the channel capacity compared with using an ordinary Bell state as a carrier; a logical hyperentangled Bell state immune to collective-rotation and collective-dephasing noise is constructed. The secret message is divided into several parts to transmit, however the identity strings of Alice and Bob are reused. Unitary operations are not used. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province, China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province, China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).

  2. Detecting relay attacks on RFID communication systems using quantum bits

    NASA Astrophysics Data System (ADS)

    Jannati, Hoda; Ardeshir-Larijani, Ebrahim

    2016-11-01

    RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.

  3. Exploring the Implementation of Steganography Protocols on Quantum Audio Signals

    NASA Astrophysics Data System (ADS)

    Chen, Kehan; Yan, Fei; Iliyasu, Abdullah M.; Zhao, Jianping

    2018-02-01

    Two quantum audio steganography (QAS) protocols are proposed, each of which manipulates or modifies the least significant qubit (LSQb) of the host quantum audio signal that is encoded as an FRQA (flexible representation of quantum audio) audio content. The first protocol (i.e. the conventional LSQb QAS protocol or simply the cLSQ stego protocol) is built on the exchanges between qubits encoding the quantum audio message and the LSQb of the amplitude information in the host quantum audio samples. In the second protocol, the embedding procedure to realize it implants information from a quantum audio message deep into the constraint-imposed most significant qubit (MSQb) of the host quantum audio samples, we refer to it as the pseudo MSQb QAS protocol or simply the pMSQ stego protocol. The cLSQ stego protocol is designed to guarantee high imperceptibility between the host quantum audio and its stego version, whereas the pMSQ stego protocol ensures that the resulting stego quantum audio signal is better immune to illicit tampering and copyright violations (a.k.a. robustness). Built on the circuit model of quantum computation, the circuit networks to execute the embedding and extraction algorithms of both QAS protocols are determined and simulation-based experiments are conducted to demonstrate their implementation. Outcomes attest that both protocols offer promising trade-offs in terms of imperceptibility and robustness.

  4. Engineering two-photon high-dimensional states through quantum interference

    PubMed Central

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  5. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  6. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Komar, Peter; Kessler, Eric; Bishof, Michael; Jiang, Liang; Sorensen, Anders; Ye, Jun; Lukin, Mikhail

    2014-05-01

    Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision metrology and quantum networks, we propose here a quantum, cooperative protocol for the operation of a network consisting of geographically remote optical atomic clocks. Using non-local entangled states, we demonstrate an optimal utilization of the global network resources, and show that such a network can be operated near the fundamental limit set by quantum theory yielding an ultra-precise clock signal. Furthermore, the internal structure of the network, combined with basic techniques from quantum communication, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. See also: Komar et al. arXiv:1310.6045 (2013) and Kessler et al. arXiv:1310.6043 (2013).

  7. Experimental violation of local causality in a quantum network.

    PubMed

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-16

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  8. Room temperature solid-state quantum emitters in the telecom range

    PubMed Central

    Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam

    2018-01-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. PMID:29670945

  9. Experimental violation of local causality in a quantum network

    PubMed Central

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-01-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols. PMID:28300068

  10. Experimental violation of local causality in a quantum network

    NASA Astrophysics Data System (ADS)

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  11. Relativistic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  12. Experimental realization of an entanglement access network and secure multi-party computation

    PubMed Central

    Chang, X.-Y.; Deng, D.-L.; Yuan, X.-X.; Hou, P.-Y.; Huang, Y.-Y.; Duan, L.-M.

    2016-01-01

    To construct a quantum network with many end users, it is critical to have a cost-efficient way to distribute entanglement over different network ends. We demonstrate an entanglement access network, where the expensive resource, the entangled photon source at the telecom wavelength and the core communication channel, is shared by many end users. Using this cost-efficient entanglement access network, we report experimental demonstration of a secure multiparty computation protocol, the privacy-preserving secure sum problem, based on the network quantum cryptography. PMID:27404561

  13. Making the decoy-state measurement-device-independent quantum key distribution practically useful

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Heng; Yu, Zong-Wen; Wang, Xiang-Bin

    2016-04-01

    The relatively low key rate seems to be the major barrier to its practical use for the decoy-state measurement-device-independent quantum key distribution (MDI-QKD). We present a four-intensity protocol for the decoy-state MDI-QKD that hugely raises the key rate, especially in the case in which the total data size is not large. Also, calculations show that our method makes it possible for secure private communication with fresh keys generated from MDI-QKD with a delay time of only a few seconds.

  14. Coherent state amplification using frequency conversion and a single photon source

    NASA Astrophysics Data System (ADS)

    Kasture, Sachin

    2017-11-01

    Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.

  15. Integrated quantum key distribution sender unit for daily-life implementations

    NASA Astrophysics Data System (ADS)

    Mélen, Gwenaelle; Vogl, Tobias; Rau, Markus; Corrielli, Giacomo; Crespi, Andrea; Osellame, Roberto; Weinfurter, Harald

    2016-03-01

    Unlike currently implemented encryption schemes, Quantum Key Distribution provides a secure way of generating and distributing a key among two parties. Although a multitude of research platforms has been developed, the integration of QKD units within classical communication systems remains a tremendous challenge. The recently achieved maturity of integrated photonic technologies could be exploited to create miniature QKD add-ons that could extend the primary function of various existing systems such as mobile devices or optical stations. In this work we report on an integrated optics module enabling secure short-distance communication for, e.g., quantum access schemes. Using BB84-like protocols, Alice's mobile low-cost device can exchange secure key and information everywhere within a trusted node network. The new optics platform (35×20×8mm) compatible with current smartphone's technology generates NIR faint polarised laser pulses with 100MHz repetition rate. Fully automated beam tracking and live basis-alignment on Bob's side ensure user-friendly operation with a quantum link efficiency as high as 50% stable over a few seconds.

  16. A Family of Quantum Protocols

    NASA Astrophysics Data System (ADS)

    Devetak, Igor; Harrow, Aram W.; Winter, Andreas

    2004-12-01

    We introduce three new quantum protocols involving noisy quantum channels and entangled states, and relate them operationally and conceptually with four well-known old protocols. Two of the new protocols (the mother and father) can generate the other five “child” protocols by direct application of teleportation and superdense coding, and can be derived in turn by making the old protocols “coherent.” This gives very simple proofs for two famous old protocols (the hashing inequality and quantum channel capacity) and provides the basis for optimal trade-off curves in several quantum information processing tasks.

  17. Secure entanglement distillation for double-server blind quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2013-07-12

    Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.

  18. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-03-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  19. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-06-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  20. Quantum key distribution protocol based on contextuality monogamy

    NASA Astrophysics Data System (ADS)

    Singh, Jaskaran; Bharti, Kishor; Arvind

    2017-06-01

    The security of quantum key distribution (QKD) protocols hinges upon features of physical systems that are uniquely quantum in nature. We explore the role of quantumness, as qualified by quantum contextuality, in a QKD scheme. A QKD protocol based on the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) contextuality scenario using a three-level quantum system is presented. We explicitly show the unconditional security of the protocol by a generalized contextuality monogamy relationship based on the no-disturbance principle. This protocol provides a new framework for QKD which has conceptual and practical advantages over other protocols.

  1. Technical Assessment: Integrated Photonics

    DTIC Science & Technology

    2015-10-01

    in global internet protocol traffic as a function of time by local access technology. Photonics continues to play a critical role in enabling this...communication networks. This has enabled services like the internet , high performance computing, and power-efficient large-scale data centers. The...signal processing, quantum information science, and optics for free space applications. However major obstacles challenge the implementation of

  2. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta

    2017-08-01

    This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

  3. Analysis of limiting information characteristics of quantum-cryptography protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sych, D V; Grishanin, Boris A; Zadkov, Viktor N

    2005-01-31

    The problem of increasing the critical error rate of quantum-cryptography protocols by varying a set of letters in a quantum alphabet for space of a fixed dimensionality is studied. Quantum alphabets forming regular polyhedra on the Bloch sphere and the continual alphabet equally including all the quantum states are considered. It is shown that, in the absence of basis reconciliation, a protocol with the tetrahedral alphabet has the highest critical error rate among the protocols considered, while after the basis reconciliation, a protocol with the continual alphabet possesses the highest critical error rate. (quantum optics and quantum computation)

  4. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  5. Quantum Tomography Protocols with Positivity are Compressed Sensing Protocols (Open Access)

    DTIC Science & Technology

    2015-12-08

    ARTICLE OPEN Quantum tomography protocols with positivity are compressed sensing protocols Amir Kalev1, Robert L Kosut2 and Ivan H Deutsch1...Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well...designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal

  6. Quantum Transduction with Adaptive Control

    NASA Astrophysics Data System (ADS)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  7. Quantum Transduction with Adaptive Control.

    PubMed

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  8. On a simple attack, limiting the range transmission of secret keys in a system of quantum cryptography based on coding in a sub-carrier frequency

    NASA Astrophysics Data System (ADS)

    Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.; Potapova, T. A.

    2017-03-01

    In the paper by Gleim et al (2016 Opt. Express 24 2619), it was declared that the system of quantum cryptography, exploiting quantum key distribution (QKD) protocol BB84 with the additional reference state and encoding in a sub-carrier, is able to distribute secret keys at a distance of 210 km. The following shows that a simple attack realized with a beam splitter results in a loss of privacy of the keys over substantially smaller distances. It turns out that the actual length of the secret key transmission for the QKD system encoding in the sub-carrier frequency is ten times less than that declared in Gleim et al (2016 Opt. Express 24 2619). Therefore it is impossible to safely use the keys when distributed at a larger length of the communication channel than shown below. The maximum communication distance does not exceed 22 km, even in the most optimistic scenario.

  9. Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Feng

    2018-05-01

    Universal quantum gates and quantum error correction (QEC) lie at the heart of quantum-information science. Large-scale quantum computing depends on a universal set of quantum gates, in which some gates may be easily carried out, while others are restricted to certain physical systems. There is a unique three-qubit quantum gate called the Deutsch gate [D (θ )], from which a circuit can be constructed so that any feasible quantum computing is attainable. We design an easily realizable D (θ ) by using the Rydberg blockade of neutral atoms, where θ can be tuned to any value in [0 ,π ] by adjusting the strengths of external control fields. Using similar protocols, we further show that both the Toffoli and controlled-not gates can be achieved with only three laser pulses. The Toffoli gate, being universal for classical reversible computing, is also useful for QEC, which plays an important role in quantum communication and fault-tolerant quantum computation. The possibility and speed of realizing these gates shed light on the study of quantum information with neutral atoms.

  10. Multiparty Quantum Key Agreement Based on Quantum Search Algorithm

    PubMed Central

    Cao, Hao; Ma, Wenping

    2017-01-01

    Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover’s algorithm. A novel example of protocols with 5 – party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks. PMID:28332610

  11. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-07-15

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less

  12. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2008-07-01

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).

  13. Memory assisted free space quantum communication

    NASA Astrophysics Data System (ADS)

    Jordaan, Bertus; Namazi, Mehdi; Goham, Connor; Shahrokhshahi, Reihaneh; Vallone, Giuseppe; Villoresi, Paolo; Figueroa, Eden

    2016-05-01

    A quantum memory assisted node between different quantum channels has the capability to modify and synchronize its output, allowing for easy connectivity, and advanced cryptography protocols. We present the experimental progress towards the storage of single photon level pulses carrying random polarization qubits into a dual rail room temperature quantum memory (RTQM) after ~ 20m of free space propagation. The RTQM coherently stores the input pulses through electromagnetically induced transparency (EIT) of a warm 87 Rb vapor and filters the output by polarization elements and temperature-controlled etalon resonators. This allows the characterization of error rates for each polarization basis and the testing of the synchronization ability of the quantum memory. This work presents a steppingstone towards quantum key distribution and quantum repeater networks. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180.B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  14. No Quantum Realization of Extremal No-Signaling Boxes

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ravishankar; Tuziemski, Jan; Horodecki, Michał; Horodecki, Paweł

    2016-07-01

    The study of quantum correlations is important for fundamental reasons as well as for quantum communication and information processing tasks. On the one hand, it is of tremendous interest to derive the correlations produced by measurements on separated composite quantum systems from within the set of all correlations obeying the no-signaling principle of relativity, by means of information-theoretic principles. On the other hand, an important ongoing research program concerns the formulation of device-independent cryptographic protocols based on quantum nonlocal correlations for the generation of secure keys, and the amplification and expansion of random bits against general no-signaling adversaries. In both these research programs, a fundamental question arises: Can any measurements on quantum states realize the correlations present in pure extremal no-signaling boxes? Here, we answer this question in full generality showing that no nontrivial (not local realistic) extremal boxes of general no-signaling theories can be realized in quantum theory. We then explore some important consequences of this fact.

  15. No-cloning of quantum steering

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Yi; Lambert, Neill; Liao, Teh-Lu; Nori, Franco; Li, Che-Ming

    2016-06-01

    Einstein-Podolsky-Rosen (EPR) steering allows two parties to verify their entanglement, even if one party’s measurements are untrusted. This concept has not only provided new insights into the nature of non-local spatial correlations in quantum mechanics, but also serves as a resource for one-sided device-independent quantum information tasks. Here, we investigate how EPR steering behaves when one-half of a maximally entangled pair of qudits (multidimensional quantum systems) is cloned by a universal cloning machine. We find that EPR steering, as verified by a criterion based on the mutual information between qudits, can only be found in one of the copy subsystems but not both. We prove that this is also true for the single-system analogue of EPR steering. We find that this restriction, which we term ‘no-cloning of quantum steering’, elucidates the physical reason why steering can be used to secure sources and channels against cloning-based attacks when implementing quantum communication and quantum computation protocols.

  16. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  17. Relativistic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.; Nazin, S. S.

    2003-07-01

    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistitic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not empoly collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of "antedate" coding).

  18. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our schememore » is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.« less

  19. N multipartite GHZ states in quantum networks

    NASA Astrophysics Data System (ADS)

    Caprara Vivoli, Valentina; Wehner, Stephanie

    Nowadays progress in experimental quantum physics has brought to a significant control on systems like nitrogen-vacancy centres, ion traps, and superconducting qubit clusters. These systems can constitute the key cells of future quantum networks, where tasks like quantum communication at large scale and quantum cryptography can be achieved. It is, though, still not clear which approaches can be used to generate such entanglement at large distances using only local operations on or between at most two adjacent nodes. Here, we analyse three protocols that are able to generate genuine multipartite entanglement between an arbitrary large number of parties. In particular, we focus on the generation of the Greenberger-Horne-Zeilinger state. Moreover, the performances of the three methods are numerically compared in the scenario of a decoherence model both in terms of fidelity and entanglement generation rate. V.C.V. is founded by a NWO Vidi Grant, and S.W. is founded by STW Netherlands.

  20. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks

    NASA Astrophysics Data System (ADS)

    Armstrong, Seiji; Wang, Meng; Teh, Run Yan; Gong, Qihuang; He, Qiongyi; Janousek, Jiri; Bachor, Hans-Albert; Reid, Margaret D.; Lam, Ping Koy

    2015-02-01

    Einstein, Podolsky and Rosen (EPR) pointed out in their famous paradox that two quantum-entangled particles can have perfectly correlated positions and momenta. Such correlations give evidence for the nonlocality of quantum mechanics and form the basis for quantum cryptography and teleportation. EPR steering is the nonlocality associated with the EPR paradox and has traditionally been investigated between only two parties. Using optical networks and efficient detection, we present experimental observations of multiparty EPR steering and of the genuine entanglement of three intense optical beams. We entangle the quadrature phase amplitudes of distinct fields, in analogy to the position-momentum entanglement of the original paradox. Our experiments complement tests of quantum mechanics that have entangled small systems or have demonstrated tripartite inseparability. Our methods establish principles for the development of multiparty quantum communication protocols with asymmetric observers, and can be extended to qubits, whether photonic, atomic, superconducting, or otherwise.

  1. Experimental measurement-device-independent quantum digital signatures.

    PubMed

    Roberts, G L; Lucamarini, M; Yuan, Z L; Dynes, J F; Comandar, L C; Sharpe, A W; Shields, A J; Curty, M; Puthoor, I V; Andersson, E

    2017-10-23

    The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.

  2. Nonclassicality thresholds for multiqubit states: Numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruca, Jacek; Zukowski, Marek; Laskowski, Wieslaw

    2010-07-15

    States that strongly violate Bell's inequalities are required in many quantum-informational protocols as, for example, in cryptography, secret sharing, and the reduction of communication complexity. We investigate families of such states with a numerical method which allows us to reveal nonclassicality even without direct knowledge of Bell's inequalities for the given problem. An extensive set of numerical results is presented and discussed.

  3. Quantum solution to a class of two-party private summation problems

    NASA Astrophysics Data System (ADS)

    Shi, Run-Hua; Zhang, Shun

    2017-09-01

    In this paper, we define a class of special two-party private summation (S2PPS) problems and present a common quantum solution to S2PPS problems. Compared to related classical solutions, our solution has advantages of higher security and lower communication complexity, and especially it can ensure the fairness of two parties without the help of a third party. Furthermore, we investigate the practical applications of our proposed S2PPS protocol in many privacy-preserving settings with big data sets, including private similarity decision, anonymous authentication, social networks, secure trade negotiation, secure data mining.

  4. Secure alignment of coordinate systems using quantum correlation

    NASA Astrophysics Data System (ADS)

    Rezazadeh, F.; Mani, A.; Karimipour, V.

    2017-08-01

    We show that two parties far apart can use shared entangled states and classical communication to align their coordinate systems with a very high fidelity. Moreover, compared with previous methods proposed for such a task, i.e., sending parallel or antiparallel pairs or groups of spin states, our method has the extra advantages of using single-qubit measurements and also being secure, so that third parties do not extract any information about the aligned coordinate system established between the two parties. The latter property is important in many other quantum information protocols in which measurements inevitably play a significant role.

  5. Quantum communication using a multiqubit entangled channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose, Shohini, E-mail: sghose@wlu.ca; Institute for Quantum Computing, University of Waterloo, Ontario; Hamel, Angele

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  6. Quantum communication using a multiqubit entangled channel

    NASA Astrophysics Data System (ADS)

    Ghose, Shohini; Hamel, Angele

    2015-12-01

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  7. Ultra-Dense Quantum Communication Using Integrated Photonic Architecture: Second Quarterly Report

    DTIC Science & Technology

    2011-04-30

    photon ( bpp ), while guaranteeing absolute security at high communication rates of 1 Gbps or more. The following sections detail the progress towards...security for 400-ps period in QKD protocol. In Year 3, we target 0.1-0.2 dB/cm to achieve 5 ns delay and 8 bpp . Total loss in the Franson interferometer is...and spatial degrees of freedom. This component is described in more detail in Sect. III A. 5. Multiplexing is used to scale up data rate beyond 10 bpp

  8. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  9. Practical issues in quantum-key-distribution postprocessing

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.

    2010-01-01

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  10. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    PubMed

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  11. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-01-01

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability. PMID:26487083

  12. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    NASA Astrophysics Data System (ADS)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  13. Experimental quantum-cryptography scheme based on orthogonal states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro

    2010-12-15

    Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal statesmore » are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.« less

  14. Semi-quantum Dialogue Based on Single Photons

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu; Ye, Chong-Qiang

    2018-02-01

    In this paper, we propose two semi-quantum dialogue (SQD) protocols by using single photons as the quantum carriers, where one requires the classical party to possess the measurement capability and the other does not have this requirement. The security toward active attacks from an outside Eve in the first SQD protocol is guaranteed by the complete robustness of present semi-quantum key distribution (SQKD) protocols, the classical one-time pad encryption, the classical party's randomization operation and the decoy photon technology. The information leakage problem of the first SQD protocol is overcome by the classical party' classical basis measurements on the single photons carrying messages which makes him share their initial states with the quantum party. The security toward active attacks from Eve in the second SQD protocol is guaranteed by the classical party's randomization operation, the complete robustness of present SQKD protocol and the classical one-time pad encryption. The information leakage problem of the second SQD protocol is overcome by the quantum party' classical basis measurements on each two adjacent single photons carrying messages which makes her share their initial states with the classical party. Compared with the traditional information leakage resistant QD protocols, the advantage of the proposed SQD protocols lies in that they only require one party to have quantum capabilities. Compared with the existing SQD protocol, the advantage of the proposed SQD protocols lies in that they only employ single photons rather than two-photon entangled states as the quantum carriers. The proposed SQD protocols can be implemented with present quantum technologies.

  15. Multi-server blind quantum computation over collective-noise channels

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Liu, Lin; Song, Xiuli

    2018-03-01

    Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.

  16. Calculation of key reduction for B92 QKD protocol

    NASA Astrophysics Data System (ADS)

    Mehic, Miralem; Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2015-05-01

    It is well known that Quantum Key Distribution (QKD) can be used with the highest level of security for distribution of the secret key, which is further used for symmetrical encryption. B92 is one of the oldest QKD protocols. It uses only two non-orthogonal states, each one coding for one bit-value. It is much faster and simpler when compared to its predecessors, but with the idealized maximum efficiencies of 25% over the quantum channel. B92 consists of several phases in which initial key is significantly reduced: secret key exchange, extraction of the raw key (sifting), error rate estimation, key reconciliation and privacy amplification. QKD communication is performed over two channels: the quantum channel and the classical public channel. In order to prevent a man-in-the-middle attack and modification of messages on the public channel, authentication of exchanged values must be performed. We used Wegman-Carter authentication because it describes an upper bound for needed symmetric authentication key. We explained the reduction of the initial key in each of QKD phases.

  17. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    NASA Astrophysics Data System (ADS)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources.

  18. Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.

    PubMed

    Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu

    2016-12-01

    Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.

  19. Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wang, Qinan; Wong, Cardythy

    2017-02-01

    Recently, Chau [Phys. Rev. A 92, 062324 (2015), 10.1103/PhysRevA.92.062324] introduced an experimentally feasible qudit-based quantum-key-distribution (QKD) scheme. In that scheme, one bit of information is phase encoded in the prepared state in a 2n-dimensional Hilbert space in the form (|i > ±|j >) /√{2 } with n ≥2 . For each qudit prepared and measured in the same two-dimensional Hilbert subspace, one bit of raw secret key is obtained in the absence of transmission error. Here we show that by modifying the basis announcement procedure, the same experimental setup can generate n bits of raw key for each qudit prepared and measured in the same basis in the noiseless situation. The reason is that in addition to the phase information, each qudit also carries information on the Hilbert subspace used. The additional (n -1 ) bits of raw key comes from a clever utilization of this extra piece of information. We prove the unconditional security of this modified protocol and compare its performance with other existing provably secure qubit- and qudit-based protocols on market in the one-way classical communication setting. Interestingly, we find that for the case of n =2 , the secret key rate of this modified protocol using nondegenerate random quantum code to perform one-way entanglement distillation is equal to that of the six-state scheme.

  20. Intrinsic retrieval efficiency for quantum memories: A three-dimensional theory of light interaction with an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming

    2018-03-01

    Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boche, H., E-mail: boche@tum.de; Janßen, G., E-mail: gisbert.janssen@tum.de

    We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary inmore » an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.« less

  2. Free-Space Quantum Signatures Using Heterodyne Measurements

    NASA Astrophysics Data System (ADS)

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-01

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  3. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  4. Quantum cryptography and applications in the optical fiber network

    NASA Astrophysics Data System (ADS)

    Luo, Yuhui

    2005-09-01

    Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications.

  5. General immunity and superadditivity of two-way Gaussian quantum cryptography.

    PubMed

    Ottaviani, Carlo; Pirandola, Stefano

    2016-03-01

    We consider two-way continuous-variable quantum key distribution, studying its security against general eavesdropping strategies. Assuming the asymptotic limit of many signals exchanged, we prove that two-way Gaussian protocols are immune to coherent attacks. More precisely we show the general superadditivity of the two-way security thresholds, which are proven to be higher than the corresponding one-way counterparts in all cases. We perform the security analysis first reducing the general eavesdropping to a two-mode coherent Gaussian attack, and then showing that the superadditivity is achieved by exploiting the random on/off switching of the two-way quantum communication. This allows the parties to choose the appropriate communication instances to prepare the key, accordingly to the tomography of the quantum channel. The random opening and closing of the circuit represents, in fact, an additional degree of freedom allowing the parties to convert, a posteriori, the two-mode correlations of the eavesdropping into noise. The eavesdropper is assumed to have no access to the on/off switching and, indeed, cannot adapt her attack. We explicitly prove that this mechanism enhances the security performance, no matter if the eavesdropper performs collective or coherent attacks.

  6. General immunity and superadditivity of two-way Gaussian quantum cryptography

    PubMed Central

    Ottaviani, Carlo; Pirandola, Stefano

    2016-01-01

    We consider two-way continuous-variable quantum key distribution, studying its security against general eavesdropping strategies. Assuming the asymptotic limit of many signals exchanged, we prove that two-way Gaussian protocols are immune to coherent attacks. More precisely we show the general superadditivity of the two-way security thresholds, which are proven to be higher than the corresponding one-way counterparts in all cases. We perform the security analysis first reducing the general eavesdropping to a two-mode coherent Gaussian attack, and then showing that the superadditivity is achieved by exploiting the random on/off switching of the two-way quantum communication. This allows the parties to choose the appropriate communication instances to prepare the key, accordingly to the tomography of the quantum channel. The random opening and closing of the circuit represents, in fact, an additional degree of freedom allowing the parties to convert, a posteriori, the two-mode correlations of the eavesdropping into noise. The eavesdropper is assumed to have no access to the on/off switching and, indeed, cannot adapt her attack. We explicitly prove that this mechanism enhances the security performance, no matter if the eavesdropper performs collective or coherent attacks. PMID:26928053

  7. Proof-of-principle test of coherent-state continuous variable quantum key distribution through turbulent atmosphere (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd

    2016-10-01

    Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a general entangling cloner collective attack (modeled using data obtained from the state measurement results on both trusted sides of the protocol), that allows to purify the noise added in the quantum channel . Our security analysis of coherent-state protocol also took into account the effect of imperfect channel estimation, limited post-processing efficiency and finite data ensemble size on the performance of the protocol. In this regime we observe the positive key rate even without the need of applying post-selection. We show the positive improvement of the key rate with increase of the modulation variance, still remaining low enough to tolerate the transmittance fluctuations. The obtained results show that coherent-state CV QKD protocol that uses real free-space atmospheric channel can withstand negative influence of transmittance fluctuations, limited post-processing efficiency, imperfect channel estimation and other finite-size effects, and be successfully implemented. Our result paves the way to the full-scale implementation of the CV QKD in real free-space channels at mid-range distances.

  8. Cryptanalysis and Improvement of the Semi-quantum Secret Sharing Protocol

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Shibin; Chang, Yan

    2017-08-01

    Recently, Xie et al. Int. J. Theor. Phys. 54, 3819-3824, (2015) proposed a Semi-quantum secret sharing protocol (SQSS). Yin et al. Int. J. Theor. Phys. 55: 4027-4035, (2016) pointed out that this protocol suffers from the intercept-resend attack. Yin et al. also proposed an improved protocol. However, we find out that Yin et al.'s paper has some problems, we analyze Yin et al.'s paper, then proposed the improved semi-quantum secret sharing protocol. Our protocol is more secure and efficient, most importantly, our protocol satisfies the condition of semi-quantum.

  9. Blind quantum computation with identity authentication

    NASA Astrophysics Data System (ADS)

    Li, Qin; Li, Zhulin; Chan, Wai Hong; Zhang, Shengyu; Liu, Chengdong

    2018-04-01

    Blind quantum computation (BQC) allows a client with relatively few quantum resources or poor quantum technologies to delegate his computational problem to a quantum server such that the client's input, output, and algorithm are kept private. However, all existing BQC protocols focus on correctness verification of quantum computation but neglect authentication of participants' identity which probably leads to man-in-the-middle attacks or denial-of-service attacks. In this work, we use quantum identification to overcome such two kinds of attack for BQC, which will be called QI-BQC. We propose two QI-BQC protocols based on a typical single-server BQC protocol and a double-server BQC protocol. The two protocols can ensure both data integrity and mutual identification between participants with the help of a third trusted party (TTP). In addition, an unjammable public channel between a client and a server which is indispensable in previous BQC protocols is unnecessary, although it is required between TTP and each participant at some instant. Furthermore, the method to achieve identity verification in the presented protocols is general and it can be applied to other similar BQC protocols.

  10. Eavesdropping on the improved three-party quantum secret sharing protocol

    NASA Astrophysics Data System (ADS)

    Gao, Gan

    2011-02-01

    Lin et al. [Song Lin, Fei Gao, Qiao-yan Wen, Fu-chen Zhu, Opt. Commun. 281 (2008) 4553] pointed out that the multiparty quantum secret sharing protocol [Zhan-jun Zhang, Gan Gao, Xin Wang, Lian-fang Han, Shou-hua Shi, Opt. Commun. 269 (2007) 418] is not secure and proposed an improved three-party quantum secret sharing protocol. In this paper, we study the security of the improved three-party quantum secret sharing protocol and find that it is still not secure. Finally, a further improved three-party quantum secret sharing protocol is proposed.

  11. Upper bounds on secret-key agreement over lossy thermal bosonic channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2017-12-01

    Upper bounds on the secret-key-agreement capacity of a quantum channel serve as a way to assess the performance of practical quantum-key-distribution protocols conducted over that channel. In particular, if a protocol employs a quantum repeater, achieving secret-key rates exceeding these upper bounds is evidence of having a working quantum repeater. In this paper, we extend a recent advance [Liuzzo-Scorpo et al., Phys. Rev. Lett. 119, 120503 (2017), 10.1103/PhysRevLett.119.120503] in the theory of the teleportation simulation of single-mode phase-insensitive Gaussian channels such that it now applies to the relative entropy of entanglement measure. As a consequence of this extension, we find tighter upper bounds on the nonasymptotic secret-key-agreement capacity of the lossy thermal bosonic channel than were previously known. The lossy thermal bosonic channel serves as a more realistic model of communication than the pure-loss bosonic channel, because it can model the effects of eavesdropper tampering and imperfect detectors. An implication of our result is that the previously known upper bounds on the secret-key-agreement capacity of the thermal channel are too pessimistic for the practical finite-size regime in which the channel is used a finite number of times, and so it should now be somewhat easier to witness a working quantum repeater when using secret-key-agreement capacity upper bounds as a benchmark.

  12. Entanglement distillation protocols and number theory

    NASA Astrophysics Data System (ADS)

    Bombin, H.; Martin-Delgado, M. A.

    2005-09-01

    We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set ZDn associated with Bell diagonal states is a module rather than a vector space. We find that a partition of ZDn into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D . When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

  13. Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Chen, Zhen-Yu; Ji, Sai; Wang, Hai-Bin; Zhang, Jun

    2017-10-01

    A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |-〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.

  14. Three-input majority function as the unique optimal function for the bias amplification using nonlocal boxes

    NASA Astrophysics Data System (ADS)

    Mori, Ryuhei

    2016-11-01

    Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006), 10.1103/PhysRevLett.96.250401] showed that shared nonlocal boxes with a CHSH (Clauser, Horne, Shimony, and Holt) probability greater than 3/+√{6 } 6 yield trivial communication complexity. There still exists a gap with the maximum CHSH probability 2/+√{2 } 4 achievable by quantum mechanics. It is an interesting open question to determine the exact threshold for the trivial communication complexity. Brassard et al.'s idea is based on recursive bias amplification by the three-input majority function. It was not obvious if another choice of function exhibits stronger bias amplification. We show that the three-input majority function is the unique optimal function, so that one cannot improve the threshold 3/+√{6 } 6 by Brassard et al.'s bias amplification. In this work, protocols for computing the function used for the bias amplification are restricted to be nonadaptive protocols or a particular adaptive protocol inspired by Pawłowski et al.'s protocol for information causality [Nature (London) 461, 1101 (2009), 10.1038/nature08400]. We first show an adaptive protocol inspired by Pawłowski et al.'s protocol, and then show that the adaptive protocol improves upon nonadaptive protocols. Finally, we show that the three-input majority function is the unique optimal function for the bias amplification if we apply the adaptive protocol to each step of the bias amplification.

  15. The engineering of a scalable multi-site communications system utilizing quantum key distribution (QKD)

    NASA Astrophysics Data System (ADS)

    Tysowski, Piotr K.; Ling, Xinhua; Lütkenhaus, Norbert; Mosca, Michele

    2018-04-01

    Quantum key distribution (QKD) is a means of generating keys between a pair of computing hosts that is theoretically secure against cryptanalysis, even by a quantum computer. Although there is much active research into improving the QKD technology itself, there is still significant work to be done to apply engineering methodology and determine how it can be practically built to scale within an enterprise IT environment. Significant challenges exist in building a practical key management service (KMS) for use in a metropolitan network. QKD is generally a point-to-point technique only and is subject to steep performance constraints. The integration of QKD into enterprise-level computing has been researched, to enable quantum-safe communication. A novel method for constructing a KMS is presented that allows arbitrary computing hosts on one site to establish multiple secure communication sessions with the hosts of another site. A key exchange protocol is proposed where symmetric private keys are granted to hosts while satisfying the scalability needs of an enterprise population of users. The KMS operates within a layered architectural style that is able to interoperate with various underlying QKD implementations. Variable levels of security for the host population are enforced through a policy engine. A network layer provides key generation across a network of nodes connected by quantum links. Scheduling and routing functionality allows quantum key material to be relayed across trusted nodes. Optimizations are performed to match the real-time host demand for key material with the capacity afforded by the infrastructure. The result is a flexible and scalable architecture that is suitable for enterprise use and independent of any specific QKD technology.

  16. Cryptography in the Bounded-Quantum-Storage Model

    NASA Astrophysics Data System (ADS)

    Schaffner, Christian

    2007-09-01

    This thesis initiates the study of cryptographic protocols in the bounded-quantum-storage model. On the practical side, simple protocols for Rabin Oblivious Transfer, 1-2 Oblivious Transfer and Bit Commitment are presented. No quantum memory is required for honest players, whereas the protocols can only be broken by an adversary controlling a large amount of quantum memory. The protocols are efficient, non-interactive and can be implemented with today's technology. On the theoretical side, new entropic uncertainty relations involving min-entropy are established and used to prove the security of protocols according to new strong security definitions. For instance, in the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers, the uncertainty relation allows to prove the security of QKD protocols while tolerating considerably higher error rates compared to the standard model with unbounded adversaries.

  17. Measurement-only verifiable blind quantum computing with quantum input verification

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2016-10-01

    Verifiable blind quantum computing is a secure delegated quantum computing where a client with a limited quantum technology delegates her quantum computing to a server who has a universal quantum computer. The client's privacy is protected (blindness), and the correctness of the computation is verifiable by the client despite her limited quantum technology (verifiability). There are mainly two types of protocols for verifiable blind quantum computing: the protocol where the client has only to generate single-qubit states and the protocol where the client needs only the ability of single-qubit measurements. The latter is called the measurement-only verifiable blind quantum computing. If the input of the client's quantum computing is a quantum state, whose classical efficient description is not known to the client, there was no way for the measurement-only client to verify the correctness of the input. Here we introduce a protocol of measurement-only verifiable blind quantum computing where the correctness of the quantum input is also verifiable.

  18. Resource cost results for one-way entanglement distillation and state merging of compound and arbitrarily varying quantum sources

    NASA Astrophysics Data System (ADS)

    Boche, H.; Janßen, G.

    2014-08-01

    We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. ["Universal quantum state merging," J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.

  19. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.

    PubMed

    Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D

    2015-11-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.

  20. Probing free-space quantum channels with laboratory-based experiments

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2017-06-01

    Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a postselection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.

  1. Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Marangon, Davide G.; Canale, Matteo; Savorgnan, Ilaria; Bacco, Davide; Barbieri, Mauro; Calimani, Simon; Barbieri, Cesare; Laurenti, Nicola; Villoresi, Paolo

    2015-04-01

    The unconditional security in the creation of cryptographic keys obtained by quantum key distribution (QKD) protocols will induce a quantum leap in free-space communication privacy in the same way that we are beginning to realize secure optical fiber connections. However, free-space channels, in particular those with long links and the presence of atmospheric turbulence, are affected by losses, fluctuating transmissivity, and background light that impair the conditions for secure QKD. Here we introduce a method to contrast the atmospheric turbulence in QKD experiments. Our adaptive real time selection (ARTS) technique at the receiver is based on the selection of the intervals with higher channel transmissivity. We demonstrate, using data from the Canary Island 143-km free-space link, that conditions with unacceptable average quantum bit error rate which would prevent the generation of a secure key can be used once parsed according to the instantaneous scintillation using the ARTS technique.

  2. Multihop teleportation of two-qubit state via the composite GHZ-Bell channel

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Gong, Yan-Xiao; Zhang, Zai-Chen

    2017-01-01

    A multihop teleportation protocol in quantum communication network is introduced to teleport an arbitrary two-qubit state, between two nodes without directly sharing entanglement pairs. Quantum channels are built among neighbor nodes based on a five-qubit entangled system composed of GHZ and Bell pairs. The von Neumann measurements in all intermediate nodes and the source node are implemented, and then the measurement outcomes are sent to the destination node independently. After collecting all the measurement outcomes at the destination node, an efficient method is proposed to calculate the unitary operations for transforming the receiver's states to the state teleported. Therefore, only adopting the proper unitary operations at the destination node, the desired quantum state can be recovered perfectly. The transmission flexibility and efficiency of quantum network with composite GHZ-Bell channel are improved by transmitting measurement outcomes of all nodes in parallelism and reducing hop-by-hop teleportation delay.

  3. A review on single photon sources in silicon carbide.

    PubMed

    Lohrmann, A; Johnson, B C; McCallum, J C; Castelletto, S

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  4. Quantum secret sharing using the d-dimensional GHZ state

    NASA Astrophysics Data System (ADS)

    Bai, Chen-Ming; Li, Zhi-Hui; Xu, Ting-Ting; Li, Yong-Ming

    2017-03-01

    We propose a quantum secret sharing scheme that uses an orthogonal pair of n-qudit GHZ states and local distinguishability. In the proposed protocol, the participants use an X-basis measurement and classical communication to distinguish between the two orthogonal states and reconstruct the original secret. We also present (2, n)-threshold and generalized restricted (2, n)-threshold schemes that enable any two cooperating players from two disjoint groups to always reconstruct the secret. Compared to the existing scheme by Rahaman and Parker (Phys Rev A 91:022330, 2015), the proposed scheme is more general and the access structure contains more authorized sets.

  5. Experimental Raman adiabatic transfer of optical states in rubidium

    NASA Astrophysics Data System (ADS)

    Appel, Jürgen; Figueroa, Eden; Vewinger, Frank; Marzlin, Karl-Peter; Lvovsky, Alexander

    2007-06-01

    An essential element of a quantum optical communication network is a tool for transferring and/or distributing quantum information between optical modes (possibly of different frequencies) in a loss- and decoherence-free fashion. We present a theory [1] and an experimental demonstration [2] of a protocol for routing and frequency conversion of optical quantum information via electromagnetically-induced transparency in an atomic system with multiple excited levels. Transfer of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line. [1] F. Vewinger, J. Appel, E. Figueroa, A. I. Lvovsky, quant-ph/0611181 [2] J. Appel, K.-P. Marzlin, A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006)

  6. Experimental quantum-cryptography scheme based on orthogonal states

    NASA Astrophysics Data System (ADS)

    Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo

    2010-12-01

    Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.75.1239 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.

  7. Quantum cryptography as a retrodiction problem.

    PubMed

    Werner, A H; Franz, T; Werner, R F

    2009-11-27

    We propose a quantum key distribution protocol based on a quantum retrodiction protocol, known as the Mean King problem. The protocol uses a two way quantum channel. We show security against coherent attacks in a transmission-error free scenario, even if Eve is allowed to attack both transmissions. This establishes a connection between retrodiction and key distribution.

  8. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.

    PubMed

    Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2017-09-28

    It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.

  9. Local Gaussian operations can enhance continuous-variable entanglement distillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shengli; Loock, Peter van; Institute of Theoretical Physics I, Universitaet Erlangen-Nuernberg, Staudtstrasse 7/B2, DE-91058 Erlangen

    2011-12-15

    Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations both the performance and the efficiency of existing distillation protocols can be enhanced. We find that such an enhancement through local Gaussian unitaries can be obtained even when the initially shared Gaussian entangled states are mixed, as, for instance, after their distribution through a lossy-fiber communication channel.

  10. Proposal for founding mistrustful quantum cryptography on coin tossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian; Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ,

    2003-07-01

    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process, or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multiparty computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signaling constraints into account. The best that can be hoped for, in general, aremore » quantum protocols which are computationally secure against quantum attack. Here a method is described for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin-tossing protocol. No security proof is attempted, but reasons are sketched why these protocols might resist quantum computational attack.« less

  11. The application of microwave photonic detection in quantum communication

    NASA Astrophysics Data System (ADS)

    Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi

    2018-03-01

    Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.

  12. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-06-30

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.

  13. Quantum enigma cipher as a generalization of the quantum stream cipher

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro

    2016-09-01

    Various types of randomizations for the quantum stream cipher by Y00 protocol have been developed so far. In particular, it must be noted that the analysis of immunity against correlation attacks with a new type of randomization by Hirota and Kurosawa prompted a new look at the quantum stream cipher by Y00 protocol (Quant. Inform. Process. 6(2) 2007). From the preceding study on the quantum stream cipher, we recognized that the quantum stream cipher by Y00 protocol would be able to be generalized to a new type of physical cipher that has potential to exceed the Shannon limit by installing additional randomization mechanisms, in accordance with the law of quantum mechanics. We call this new type of physical random cipher the quantum enigma cipher. In this article, we introduce the recent developments for the quantum stream cipher by Y00 protocol and future plans toward the quantum enigma cipher.

  14. Symmetrically private information retrieval based on blind quantum computing

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling

    2015-05-01

    Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.

  15. Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters

    NASA Astrophysics Data System (ADS)

    Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter

    2018-05-01

    As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.

  16. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  17. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, Patrick; Winter, Andreas; Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB

    We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR (Einstein-Podolsky-Rosen) pairs and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to requiremore » no communication whatsoever, the best known protocol for dilution, discovered by H.-K. Lo and S. Popescu [Phys. Rev. Lett. 83, 1459 (1999)], requires exchange of a number of bits that is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of 'embezzling entanglement' (W. van Dam and P. Hayden, e-print quant-ph/0201041)« less

  19. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  20. Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2012-02-03

    and tae have the same right singular vectors , and their singular-value decompositions can be written as tab = uabsabv †, (30) tae = uaesaev †, (31...freedom such as polarization or spatial modes), making its implementation ideal for fiber optics networks. (iii) The protocol promises unprecedented...well as temporal correlations. In particular, using 8 wavelength channels for an additional 3 bpp and two polarization states for one additional bpp

Top