Science.gov

Sample records for quantum computer architecture

  1. Layered Architecture for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Jones, N. Cody; Van Meter, Rodney; Fowler, Austin G.; McMahon, Peter L.; Kim, Jungsang; Ladd, Thaddeus D.; Yamamoto, Yoshihisa

    2012-07-01

    We develop a layered quantum-computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface-code quantum error correction. In doing so, we propose a new quantum-computer architecture based on optical control of quantum dots. The time scales of physical-hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum-dot architecture we study could solve such problems on the time scale of days.

  2. Quantum computation architecture using optical tweezers

    SciTech Connect

    Weitenberg, Christof; Kuhr, Stefan; Moelmer, Klaus; Sherson, Jacob F.

    2011-09-15

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the nonadiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 {mu}s, while keeping the error probability due to vibrational excitations and spontaneous scattering below 10{sup -3}. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable quantum computing.

  3. Experimental comparison of two quantum computing architectures

    PubMed Central

    Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher

    2017-01-01

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future. PMID:28325879

  4. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  5. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    PubMed

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator.

  6. A scalable architecture for quantum computation with molecular nanomagnets.

    PubMed

    Jenkins, M D; Zueco, D; Roubeau, O; Aromí, G; Majer, J; Luis, F

    2016-11-14

    A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.

  7. Cluster-based architecture for fault-tolerant quantum computation

    SciTech Connect

    Fujii, Keisuke; Yamamoto, Katsuji

    2010-04-15

    We present a detailed description of an architecture for fault-tolerant quantum computation, which is based on the cluster model of encoded qubits. In this cluster-based architecture, concatenated computation is implemented in a quite different way from the usual circuit-based architecture where physical gates are recursively replaced by logical gates with error-correction gadgets. Instead, some relevant cluster states, say fundamental clusters, are recursively constructed through verification and postselection in advance for the higher-level one-way computation, which namely provides error-precorrection of gate operations. A suitable code such as the Steane seven-qubit code is adopted for transversal operations. This concatenated construction of verified fundamental clusters has a simple transversal structure of logical errors, and achieves a high noise threshold {approx}3% for computation by using appropriate verification procedures. Since the postselection is localized within each fundamental cluster with the help of deterministic bare controlled-Z gates without verification, divergence of resources is restrained, which reconciles postselection with scalability.

  8. Cluster-based architecture for fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Yamamoto, Katsuji

    2010-04-01

    We present a detailed description of an architecture for fault-tolerant quantum computation, which is based on the cluster model of encoded qubits. In this cluster-based architecture, concatenated computation is implemented in a quite different way from the usual circuit-based architecture where physical gates are recursively replaced by logical gates with error-correction gadgets. Instead, some relevant cluster states, say fundamental clusters, are recursively constructed through verification and postselection in advance for the higher-level one-way computation, which namely provides error-precorrection of gate operations. A suitable code such as the Steane seven-qubit code is adopted for transversal operations. This concatenated construction of verified fundamental clusters has a simple transversal structure of logical errors, and achieves a high noise threshold ~3% for computation by using appropriate verification procedures. Since the postselection is localized within each fundamental cluster with the help of deterministic bare controlled-Z gates without verification, divergence of resources is restrained, which reconciles postselection with scalability.

  9. Adiabatic Quantum Computing and Quantum Walks: Algorithms and Architectures

    DTIC Science & Technology

    2011-02-15

    0807.0929 Title: Environment-Assisted Quantum Transport Authors: Patrick Rebentrost, Masoud Mohseni, Ivan Kassal, Seth Lloyd, Alán Aspuru-Guzik...this effect, Environment Assisted Quantum Transport (ENAQT).The use of environmental effects to enhance transport rates appears to be ubiquitous in

  10. An architecture for quantum computation with magnetically trapped Holmium atoms

    NASA Astrophysics Data System (ADS)

    Saffman, Mark; Hostetter, James; Booth, Donald; Collett, Jeffrey

    2016-05-01

    Outstanding challenges for scalable neutral atom quantum computation include correction of atom loss due to collisions with untrapped background gas, reduction of crosstalk during state preparation and measurement due to scattering of near resonant light, and the need to improve quantum gate fidelity. We present a scalable architecture based on loading single Holmium atoms into an array of Ioffe-Pritchard traps. The traps are formed by grids of superconducting wires giving a trap array with 40 μm period, suitable for entanglement via long range Rydberg gates. The states | F = 5 , M = 5 > and | F = 7 , M = 7 > provide a magic trapping condition at a low field of 3.5 G for long coherence time qubit encoding. The F = 11 level will be used for state preparation and measurement. The availability of different states for encoding, gate operations, and measurement, spectroscopically isolates the different operations and will prevent crosstalk to neighboring qubits. Operation in a cryogenic environment with ultra low pressure will increase atom lifetime and Rydberg gate fidelity by reduction of blackbody induced Rydberg decay. We will present a complete description of the architecture including estimates of achievable performance metrics. Work supported by NSF award PHY-1404357.

  11. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  12. Novel photonic bandgap based architectures for quantum computers and networks

    NASA Astrophysics Data System (ADS)

    Guney, Durdu

    All of the approaches for quantum information processing have their own advantages, but unfortunately also their own drawbacks. Ideally, one would merge the most attractive features of those different approaches in a single technology. We envision that large-scale photonic crystal (PC) integrated circuits and fibers could be the basis for robust and compact quantum circuits and processors of the next generation quantum computers and networking devices. Cavity QED, solid-state, and (non)linear optical models for computing, and optical fiber approach for communications are the most promising candidates to be improved through this novel technology. In our work, we consider both digital and analog quantum computing. In the digital domain, we first perform gate-level analysis. To achieve this task, we solve the Jaynes-Cummings Hamiltonian with time-dependent coupling parameters under the dipole and rotating-wave approximations for a 3D PC single-mode cavity with a sufficiently high Q-factor. We then exploit the results to show how to create a maximally entangled state of two atoms and how to implement several quantum logic gates: a dual-rail Hadamard gate, a dual-rail NOT gate, and a SWAP gate. In all of these operations, we synchronize atoms, as opposed to previous studies with PCs. The method has the potential for extension to N-atom entanglement, universal quantum logic operations, and the implementation of other useful, cavity QED-based quantum information processing tasks. In the next part of the digital domain, we study circuit-level implementations. We design and simulate an integrated teleportation and readout circuit on a single PC chip. The readout part of our device can not only be used on its own but can also be integrated with other compatible optical circuits to achieve atomic state detection. Further improvement of the device in terms of compactness and robustness is possible by integrating with sources and detectors in the optical regime. In the analog

  13. Simulation of Si:P spin-based quantum computer architecture

    SciTech Connect

    Chang Yiachung; Fang Angbo

    2008-11-07

    We present realistic simulation for single and double phosphorous donors in a silicon-based quantum computer design by solving a valley-orbit coupled effective-mass equation for describing phosphorous donors in strained silicon quantum well (QW). Using a generalized unrestricted Hartree-Fock method, we solve the two-electron effective-mass equation with quantum well confinement and realistic gate potentials. The effects of QW width, gate voltages, donor separation, and donor position shift on the lowest singlet and triplet energies and their charge distributions for a neighboring donor pair in the quantum computer(QC) architecture are analyzed. The gate tunability are defined and evaluated for a typical QC design. Estimates are obtained for the duration of spin half-swap gate operation.

  14. Toward a scalable quantum computing architecture with mixed species ion chains

    NASA Astrophysics Data System (ADS)

    Wright, John; Auchter, Carolyn; Chou, Chen-Kuan; Graham, Richard D.; Noel, Thomas W.; Sakrejda, Tomasz; Zhou, Zichao; Blinov, Boris B.

    2016-12-01

    We report on progress toward implementing mixed ion species quantum information processing for a scalable ion-trap architecture. Mixed species chains may help solve several problems with scaling ion-trap quantum computation to large numbers of qubits. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be bar{n} ≈ 130 quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion-photon entanglement with barium ions with a fidelity of F ≥ 0.84, which is an initial step towards remote ion-ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.

  15. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  16. Realistic neurons can compute the operations needed by quantum probability theory and other vector symbolic architectures.

    PubMed

    Stewart, Terrence C; Eliasmith, Chris

    2013-06-01

    Quantum probability (QP) theory can be seen as a type of vector symbolic architecture (VSA): mental states are vectors storing structured information and manipulated using algebraic operations. Furthermore, the operations needed by QP match those in other VSAs. This allows existing biologically realistic neural models to be adapted to provide a mechanistic explanation of the cognitive phenomena described in the target article by Pothos & Busemeyer (P&B).

  17. Quantum computers.

    PubMed

    Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L

    2010-03-04

    Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.

  18. Physical Architecture for a Universal Topological Quantum Computer based on a Network of Majorana Nanowires

    NASA Astrophysics Data System (ADS)

    Sau, Jay; Barkeshli, Maissam

    The idea of topological quantum computation (TQC) is to encode and manipulate quantum information in an intrinsically fault-tolerant manner by utilizing the physics of topologically ordered phases of matter. Currently, the most promising platforms for a topological qubit are either in terms of Majorana fermion zero modes (MZMs) in spin-orbit coupled superconducting nanowires or in terms of the Kitaev Z2 surface code. However, the topologically robust operations that are possible in these systems are not sufficient for realizing a universal gate set for topological quantum computation. Here, we show that an array of coupled semiconductor/superconductor nanowires with MZM edge states can be used to realize a more sophisticated type of non-Abelian defect, a genon in an Ising X Ising topological state. This leads to a possible implementation of the missing topologically protected pi/8 phase gate and thus paves a path for universal topological quantum computation based on semiconductor-superconductor nanowire technology. We provide detailed numerical estimates of the relevant energy scales, which we show to lie within accessible ranges. J. S. was supported by Microsoft Station Q, startup funds from the University of Maryland and NSF-JQI-PFC.

  19. Quantum Computers

    DTIC Science & Technology

    2010-03-04

    1227–1230 (2009). 31. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009). 32. Dür, W., Briegel, H...REVIEWS Quantum computers T. D. Ladd1{, F. Jelezko2, R. Laflamme3,4,5, Y. Nakamura6,7, C. Monroe8,9 & J. L. O’Brien10 Over the past several decades... quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing

  20. Quantum Computing

    DTIC Science & Technology

    1998-04-01

    information representation and processing technology, although faster than the wheels and gears of the Charles Babbage computation machine, is still in...the same computational complexity class as the Babbage machine, with bits of information represented by entities which obey classical (non-quantum...nuclear double resonances Charles M Bowden and Jonathan P. Dowling Weapons Sciences Directorate, AMSMI-RD-WS-ST Missile Research, Development, and

  1. Highly Parallel Computing Architectures by using Arrays of Quantum-dot Cellular Automata (QCA): Opportunities, Challenges, and Recent Results

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Benny N.

    2000-01-01

    There has been significant improvement in the performance of VLSI devices, in terms of size, power consumption, and speed, in recent years and this trend may also continue for some near future. However, it is a well known fact that there are major obstacles, i.e., physical limitation of feature size reduction and ever increasing cost of foundry, that would prevent the long term continuation of this trend. This has motivated the exploration of some fundamentally new technologies that are not dependent on the conventional feature size approach. Such technologies are expected to enable scaling to continue to the ultimate level, i.e., molecular and atomistic size. Quantum computing, quantum dot-based computing, DNA based computing, biologically inspired computing, etc., are examples of such new technologies. In particular, quantum-dots based computing by using Quantum-dot Cellular Automata (QCA) has recently been intensely investigated as a promising new technology capable of offering significant improvement over conventional VLSI in terms of reduction of feature size (and hence increase in integration level), reduction of power consumption, and increase of switching speed. Quantum dot-based computing and memory in general and QCA specifically, are intriguing to NASA due to their high packing density (10(exp 11) - 10(exp 12) per square cm ) and low power consumption (no transfer of current) and potentially higher radiation tolerant. Under Revolutionary Computing Technology (RTC) Program at the NASA/JPL Center for Integrated Space Microelectronics (CISM), we have been investigating the potential applications of QCA for the space program. To this end, exploiting the intrinsic features of QCA, we have designed novel QCA-based circuits for co-planner (i.e., single layer) and compact implementation of a class of data permutation matrices, a class of interconnection networks, and a bit-serial processor. Building upon these circuits, we have developed novel algorithms and QCA

  2. Architecture Adaptive Computing Environment

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    2006-01-01

    Architecture Adaptive Computing Environment (aCe) is a software system that includes a language, compiler, and run-time library for parallel computing. aCe was developed to enable programmers to write programs, more easily than was previously possible, for a variety of parallel computing architectures. Heretofore, it has been perceived to be difficult to write parallel programs for parallel computers and more difficult to port the programs to different parallel computing architectures. In contrast, aCe is supportable on all high-performance computing architectures. Currently, it is supported on LINUX clusters. aCe uses parallel programming constructs that facilitate writing of parallel programs. Such constructs were used in single-instruction/multiple-data (SIMD) programming languages of the 1980s, including Parallel Pascal, Parallel Forth, C*, *LISP, and MasPar MPL. In aCe, these constructs are extended and implemented for both SIMD and multiple- instruction/multiple-data (MIMD) architectures. Two new constructs incorporated in aCe are those of (1) scalar and virtual variables and (2) pre-computed paths. The scalar-and-virtual-variables construct increases flexibility in optimizing memory utilization in various architectures. The pre-computed-paths construct enables the compiler to pre-compute part of a communication operation once, rather than computing it every time the communication operation is performed.

  3. Quantum computation for quantum chemistry

    NASA Astrophysics Data System (ADS)

    Aspuru-Guzik, Alan

    2010-03-01

    Numerically exact simulation of quantum systems on classical computers is in general, an intractable computational problem. Computational chemists have made progress in the development of approximate methods to tackle complex chemical problems. The downside of these approximate methods is that their failure for certain important cases such as long-range charge transfer states in the case of traditional density functional theory. In 1982, Richard Feynman suggested that a quantum device should be able to simulate quantum systems (in our case, molecules) exactly using quantum computers in a tractable fashion. Our group has been working in the development of quantum chemistry algorithms for quantum devices. In this talk, I will describe how quantum computers can be employed to carry out numerically exact quantum chemistry and chemical reaction dynamics calculations, as well as molecular properties. Finally, I will describe our recent experimental quantum computation of the energy of the hydrogen molecule using an optical quantum computer.

  4. Optical quantum computing.

    PubMed

    O'Brien, Jeremy L

    2007-12-07

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.

  5. Quantum walk computation

    SciTech Connect

    Kendon, Viv

    2014-12-04

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.

  6. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  7. Quantum robots and quantum computers

    SciTech Connect

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  8. Optimal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Mantri, Atul; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.

    2013-12-01

    Blind quantum computation allows a client with limited quantum capabilities to interact with a remote quantum computer to perform an arbitrary quantum computation, while keeping the description of that computation hidden from the remote quantum computer. While a number of protocols have been proposed in recent years, little is currently understood about the resources necessary to accomplish the task. Here, we present general techniques for upper and lower bounding the quantum communication necessary to perform blind quantum computation, and use these techniques to establish concrete bounds for common choices of the client’s quantum capabilities. Our results show that the universal blind quantum computation protocol of Broadbent, Fitzsimons, and Kashefi, comes within a factor of (8)/(3) of optimal when the client is restricted to preparing single qubits. However, we describe a generalization of this protocol which requires exponentially less quantum communication when the client has a more sophisticated device.

  9. Experimental quantum computing without entanglement.

    PubMed

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  10. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  11. Scalable optical quantum computer

    SciTech Connect

    Manykin, E A; Mel'nichenko, E V

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  12. Quantum Computing since Democritus

    NASA Astrophysics Data System (ADS)

    Aaronson, Scott

    2013-03-01

    1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.

  13. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  14. Cluster State Quantum Computing

    DTIC Science & Technology

    2012-12-01

    implementation of quantum computation,” Fortschr. Phys. 48, 771 (2000). [Dragoman01] D. Dragoman, “Proposal for a three-qubit teleportation experiment”, Phys...CLUSTER STATE QUANTUM COMPUTING DECEMBER 2012 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...From - To) NOV 2010 – OCT 2012 4. TITLE AND SUBTITLE CLUSTER STATE QUANTUM COMPUTING 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER N/A 5c

  15. The Rabi Quantum Computer

    DTIC Science & Technology

    2001-04-01

    example that other students learn to make quantum computers does not quite meet the RQC specification, consider useful in many fields . I also want to...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010869 TITLE: The Rabi Quantum Computer DISTRIBUTION: Approved for...comprise the compilation report: ADP010865 thru ADP010894 UNCLASSIFIED 5-1 The Rabi Quantum Computer Rudolph A. Krutar Advanced Information Technology’ U.S

  16. Cluster State Quantum Computation

    DTIC Science & Technology

    2014-02-01

    nearest neighbor cluster state has been shown to be a universal resource for MBQC thus we can say our quantum computer is universal. We note that...CLUSTER STATE QUANTUM COMPUTATION FEBRUARY 2014 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR FORCE...TITLE AND SUBTITLE CLUSTER STATE QUANTUM COMPUTATION 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6

  17. Computing architecture for autonomous microgrids

    DOEpatents

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .

  18. Algorithms versus architectures for computational chemistry

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Bauschlicher, C. W., Jr.

    1986-01-01

    The algorithms employed are computationally intensive and, as a result, increased performance (both algorithmic and architectural) is required to improve accuracy and to treat larger molecular systems. Several benchmark quantum chemistry codes are examined on a variety of architectures. While these codes are only a small portion of a typical quantum chemistry library, they illustrate many of the computationally intensive kernels and data manipulation requirements of some applications. Furthermore, understanding the performance of the existing algorithm on present and proposed supercomputers serves as a guide for future programs and algorithm development. The algorithms investigated are: (1) a sparse symmetric matrix vector product; (2) a four index integral transformation; and (3) the calculation of diatomic two electron Slater integrals. The vectorization strategies are examined for these algorithms for both the Cyber 205 and Cray XMP. In addition, multiprocessor implementations of the algorithms are looked at on the Cray XMP and on the MIT static data flow machine proposed by DENNIS.

  19. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  20. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2016-12-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  1. Quantum Analog Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  2. Quantum Computational Cryptography

    NASA Astrophysics Data System (ADS)

    Kawachi, Akinori; Koshiba, Takeshi

    As computational approaches to classical cryptography have succeeded in the establishment of the foundation of the network security, computational approaches even to quantum cryptography are promising, since quantum computational cryptography could offer richer applications than the quantum key distribution. Our project focused especially on the quantum one-wayness and quantum public-key cryptosystems. The one-wayness of functions (or permutations) is one of the most important notions in computational cryptography. First, we give an algorithmic characterization of quantum one-way permutations. In other words, we show a necessary and sufficient condition for quantum one-way permutations in terms of reflection operators. Second, we introduce a problem of distinguishing between two quantum states as a new underlying problem that is harder to solve than the graph automorphism problem. The new problem is a natural generalization of the distinguishability problem between two probability distributions, which are commonly used in computational cryptography. We show that the problem has several cryptographic properties and they enable us to construct a quantum publickey cryptosystem, which is likely to withstand any attack of a quantum adversary.

  3. Quantum computing with realistically noisy devices.

    PubMed

    Knill, E

    2005-03-03

    In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming that a quantum computer could be constructed, it would in practice be required to function with noisy devices called 'gates'. These gates cause decoherence of the fragile quantum states that are central to the computer's operation. The goal of so-called 'fault-tolerant quantum computing' is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources comparable to the digital resources available in today's computers, we show that non-trivial quantum computations at EPGs of as high as one per cent could be implemented.

  4. Reliability/redundancy trade-off evaluation for multiplexed architectures used to implement quantum dot based computing

    SciTech Connect

    Bhaduri, D.; Shukla, S. K.; Graham, P. S.; Gokhale, M.

    2004-01-01

    With the advent of nanocomputing, researchers have proposed Quantum Dot Cellular Automata (QCA) as one of the implementation technologies. The majority gate is one of the fundamental gates implementable with QCAs. Moreover, majority gates play an important role in defect-tolerant circuit implementations for nanotechnologies due to their use in redundancy mechanisms such as TMR, CTMR etc. Therefore, providing reliable implementation of majority logic using some redundancy mechanism is extremely important. This problem was addressed by von Neumann in 1956, in the form of 'majority multiplexing' and since then several analytical probabilistic models have been proposed to analyze majority multiplexing circuits. However, such analytical approaches are extremely challenging combinatorially and error prone. Also the previous analyses did not distinguish between permanent faults at the gates and transient faults due to noisy interconnects or noise effects on gates. In this paper, we provide explicit fault models for transient and permanent errors at the gates and noise effects at the interconnects. We model majority multiplexing in a probabilistic system description language, and use probabilistic model checking to analyze the effects of our fault models on the different reliability/redundancy trade-offs for majority multiplexing configurations. We also draw parallels with another fundamental logic gate multiplexing technique, namely NAND multiplexing. Tools and methodologies for analyzing redundant architectures that use majority gates will help logic designers to quickly evaluate the amount of redundancy needed to achieve a given level of reliability. VLSI designs at the nanoscale will utilize implementation fabrics prone to faults of permanent and transient nature, and the interconnects will be extensively affected by noise, hence the need for tools that can capture probabilistically quantified fault models and provide quick evaluation of the trade-offs. A comparative

  5. Quantum Information, Computation and Communication

    NASA Astrophysics Data System (ADS)

    Jones, Jonathan A.; Jaksch, Dieter

    2012-07-01

    Part I. Quantum Information: 1. Quantum bits and quantum gates; 2. An atom in a laser field; 3. Spins in magnetic fields; 4. Photon techniques; 5. Two qubits and beyond; 6. Measurement and entanglement; Part II. Quantum Computation: 7. Principles of quantum computing; 8. Elementary quantum algorithms; 9. More advanced quantum algorithms; 10. Trapped atoms and ions; 11. Nuclear magnetic resonance; 12. Large scale quantum computers; Part III. Quantum Communication: 13. Basics of information theory; 14. Quantum information; 15. Quantum communication; 16. Testing EPR; 17. Quantum cryptography; Appendixes; References; Index.

  6. Disciplines, models, and computers: the path to computational quantum chemistry.

    PubMed

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  7. Quantum computing with trapped ions

    SciTech Connect

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  8. Savannah River Site computing architecture

    SciTech Connect

    Not Available

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site's production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  9. Savannah River Site computing architecture

    SciTech Connect

    Not Available

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site`s production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  10. Ion Trap Quantum Computing

    DTIC Science & Technology

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  11. Parallel Architecture For Robotics Computation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1990-01-01

    Universal Real-Time Robotic Controller and Simulator (URRCS) is highly parallel computing architecture for control and simulation of robot motion. Result of extensive algorithmic study of different kinematic and dynamic computational problems arising in control and simulation of robot motion. Study led to development of class of efficient parallel algorithms for these problems. Represents algorithmically specialized architecture, in sense capable of exploiting common properties of this class of parallel algorithms. System with both MIMD and SIMD capabilities. Regarded as processor attached to bus of external host processor, as part of bus memory.

  12. Quantum computing: towards reality

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas

    2017-03-01

    The concept of computers that harness the laws of quantum mechanics has transformed our thinking about how information can be processed. Now the environment exists to make prototype devices a reality.

  13. Specialized computer architectures for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  14. Wireless Computing Architecture

    DTIC Science & Technology

    2009-07-01

    mechanisms are relevant to a broad spectrum of applications , but are particularly important to data broadcast in wireless distributed computing...significantly improve applications where reliable data broadcast is required. For example, unmanned aerial vehicles (UAVs) may use Rainbow to distribute ...68-74. 8. Dean, J., Ghemawat, S., “ MapReduce : simplified data processing on large clusters ”, Communications of the ACM, 51, 1, 2008, pp. 107-113

  15. Wireless Computing Architecture II

    DTIC Science & Technology

    2010-11-01

    responsible for running computation tasks as well as storing HDFS data blocks. This arrangement is consistent with that of Amazon Elastic MapReduce clusters ...unpredictable application demands and large data sets. For example, application demands may change in response to sudden weather shifts or ―surprise...comparing TCP throughput distributions for model-generated traces against those for actual traces randomly sampled from field data . Our modeling

  16. The case for biological quantum computer elements

    NASA Astrophysics Data System (ADS)

    Baer, Wolfgang; Pizzi, Rita

    2009-05-01

    An extension to vonNeumann's analysis of quantum theory suggests self-measurement is a fundamental process of Nature. By mapping the quantum computer to the brain architecture we will argue that the cognitive experience results from a measurement of a quantum memory maintained by biological entities. The insight provided by this mapping suggests quantum effects are not restricted to small atomic and nuclear phenomena but are an integral part of our own cognitive experience and further that the architecture of a quantum computer system parallels that of a conscious brain. We will then review the suggestions for biological quantum elements in basic neural structures and address the de-coherence objection by arguing for a self- measurement event model of Nature. We will argue that to first order approximation the universe is composed of isolated self-measurement events which guaranties coherence. Controlled de-coherence is treated as the input/output interactions between quantum elements of a quantum computer and the quantum memory maintained by biological entities cognizant of the quantum calculation results. Lastly we will present stem-cell based neuron experiments conducted by one of us with the aim of demonstrating the occurrence of quantum effects in living neural networks and discuss future research projects intended to reach this objective.

  17. VLSI Architectures for Computing DFT's

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Reed, I. S.; Pei, D. Y.

    1986-01-01

    Simplifications result from use of residue Fermat number systems. System of finite arithmetic over residue Fermat number systems enables calculation of discrete Fourier transform (DFT) of series of complex numbers with reduced number of multiplications. Computer architectures based on approach suitable for design of very-large-scale integrated (VLSI) circuits for computing DFT's. General approach not limited to DFT's; Applicable to decoding of error-correcting codes and other transform calculations. System readily implemented in VLSI.

  18. One-way quantum computation with circuit quantum electrodynamics

    SciTech Connect

    Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun

    2010-03-15

    In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.

  19. Quantum Computational Geodesics

    DTIC Science & Technology

    2010-01-01

    equation, a well-known nonlinear differential matrix equation, and L and iF (L) are Lax pairs (30–32). Some solutions to the geodesic equation...D2J j Dt2 +Rjikl ∂xi ∂t ∂xl ∂t Jk + Cj = 0, (91) the so-called “lifted Jacobi equation” (1). Nielsen and Dowling used the lifted Jacobi equation...quantum circuits (1, 28, 2). 27 6. References 1. Dowling , M. R.; Nielsen, M. A. The Geometry of Quantum Computation. Quantum Information and

  20. REVIEWS OF TOPICAL PROBLEMS: Quantum computers and quantum computations

    NASA Astrophysics Data System (ADS)

    Valiev, Kamil'A.

    2005-01-01

    This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review.

  1. An Early Quantum Computing Proposal

    SciTech Connect

    Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos; Daniels, Marcus G.; Gattiker, James R.; Hamada, Michael Scott; Howse, James Walter; Loncaric, Josip; Pakin, Scott D.; Somma, Rolando Diego; Vernon, Louis James

    2016-04-04

    The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems, it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for

  2. Computational quantum chemistry website

    SciTech Connect

    1997-08-22

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage.

  3. Optimal architectures for long distance quantum communication

    PubMed Central

    Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang

    2016-01-01

    Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances. PMID:26876670

  4. Abstract quantum computing machines and quantum computational logics

    NASA Astrophysics Data System (ADS)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto

    2016-06-01

    Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.

  5. Demonstration of blind quantum computing.

    PubMed

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2012-01-20

    Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  6. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  7. Quantum error correction and fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yi

    Quantum computers need to be protected by quantum error-correcting codes against decoherence. One of the most interesting and useful classes of quantum codes is the class of quantum stabilizer codes. Entanglement-assisted (EA) quantum codes are a class of stabilizer codes that make use of preshared entanglement between the sender and the receiver. We provide several code constructions for entanglement-assisted quantum codes. The MacWilliams identity for quantum codes leads to linear programming bounds on the minimum distance. We find new constraints on the simplified stabilizer group and the logical group, which help improve the linear programming bounds on entanglement-assisted quantum codes. The results also can be applied to standard stabilizer codes. In the real world, quantum gates are faulty. To implement quantum computation fault-tolerantly, quantum codes with certain properties are needed. We first analyze Knill's postselection scheme in a two-dimensional architecture. The error performance of this scheme is better than other known concatenated codes. Then we propose several methods to protect syndrome extraction against measurement errors.

  8. Quantum-dot cluster-state computing with encoded qubits

    SciTech Connect

    Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy

    2005-08-15

    A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection.

  9. Quantum computers: Definition and implementations

    NASA Astrophysics Data System (ADS)

    Pérez-Delgado, Carlos A.; Kok, Pieter

    2011-01-01

    The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.

  10. Cavity-based architecture to preserve quantum coherence and entanglement.

    PubMed

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-09-09

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.

  11. Cavity-based architecture to preserve quantum coherence and entanglement

    NASA Astrophysics Data System (ADS)

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-09-01

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.

  12. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction

  13. Quantum computing of semiclassical formulas.

    PubMed

    Georgeot, B; Giraud, O

    2008-04-01

    We show that semiclassical formulas such as the Gutzwiller trace formula can be implemented on a quantum computer more efficiently than on a classical device. We give explicit quantum algorithms which yield quantum observables from classical trajectories, and which alternatively test the semiclassical approximation by computing classical actions from quantum evolution. The gain over classical computation is in general quadratic, and can be larger in some specific cases.

  14. A surface code quantum computer in silicon.

    PubMed

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  15. A surface code quantum computer in silicon

    PubMed Central

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  16. Quantum Computing for Quantum Chemistry

    DTIC Science & Technology

    2010-09-01

    random walks as the decoherence became strong. Recent experiments on photosynthetic light -harvesting complexes observed long-lived excitonic coherences...by the light -harvesting complex. In Environment-assisted quantum walks in energy transfer of photosynthetic complexes, J. Chem. Phys. 129 (2008...a decohered quantum walk. Motivated by the experiments on the Fenna-Matthews-Olson (FMO) light -harvesting complex of green sulfur bacteria, we

  17. Quantum computing on encrypted data

    NASA Astrophysics Data System (ADS)

    Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  18. Quantum computing on encrypted data.

    PubMed

    Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  19. Fluxon-controlled quantum computer

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki

    2016-11-01

    We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e. joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.

  20. Quantum computing with defects.

    PubMed

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  1. Blueprint for a microwave trapped ion quantum computer

    PubMed Central

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.

    2017-01-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154

  2. Blueprint for a microwave trapped ion quantum computer.

    PubMed

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  3. Quantum computing: Efficient fault tolerance

    NASA Astrophysics Data System (ADS)

    Gottesman, Daniel

    2016-12-01

    Dealing with errors in a quantum computer typically requires complex programming and many additional quantum bits. A technique for controlling errors has been proposed that alleviates both of these problems.

  4. Savannah River Site computing architecture migration guide

    SciTech Connect

    Not Available

    1991-07-30

    The SRS Computing Architecture is a vision statement for site computing which enumerates the strategies which will guide SRS computing efforts for the 1990s. Each strategy is supported by a number of feature statements which clarify the strategy by providing additional detail. Since it is a strategic planning document, the Architecture has sitewide applicability and endorsement but does not attempt to specify implementation details. It does, however, specify that a document will be developed to guide the migration from the current site environment to that envisioned by the new architecture. The goal of this document, the SRS Computing Architecture Migration Guide, is to identify specific strategic and tactical tasks which would have to be completed to fully implement the architectural vision for site computing as well as a recommended sequence and timeframe for addressing these tasks. It takes into account the expected availability of technology, the existing installed base, and interdependencies among architectural components and objectives.

  5. Open Quantum Walks and Dissipative Quantum Computing

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco

    2012-02-01

    Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.

  6. Interfacing external quantum devices to a universal quantum computer.

    PubMed

    Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz

    2011-01-01

    We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.

  7. Towards quantum chemistry on a quantum computer.

    PubMed

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  8. Software Systems for High-performance Quantum Computing

    SciTech Connect

    Humble, Travis S; Britt, Keith A

    2016-01-01

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.

  9. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use

  10. Towards Quantum Computing With Light

    NASA Astrophysics Data System (ADS)

    Pysher, Matthew

    This thesis presents experimental progress towards the realization of an optical quantum computer. Quantum computers replace the bits used in classical computing with quantum systems and promise an exponential speedup over their classical counterparts for certain tasks such as integer factoring and the simulation of quantum systems. A recently proposed quantum computing protocol known as one-way quantum computing has paved the way for the use of light in a functional quantum computer. One-way quantum computing calls for the generation of a large (consisting of many subsystems) entangled state known as a cluster state to serve as a quantum register. Entangled states are comprised of subsystems linked in such a way that the state cannot be separated into individual components. A recent proposal has shown that is possible to make arbitrarily large cluster states by linking the resonant frequency modes of a single optical parametric oscillator (OPO). In this thesis, we present two major steps towards the creation of such a cluster state. Namely, we successfully design and test the exotic nonlinear crystal needed in this proposal and use a slight variation on this proposal to simultaneously create over 15 four-mode cluster states in a single OPO. We also explore the possibility of scaling down the physical size of an optical quantum computer by generating squeezed states of light in a compact optical waveguide. Additionally, we investigate photon-number-resolving measurements on continuous quantum light sources, which will be necessary to obtain the desired speedups for a quantum computer over a classical computer.

  11. Quantum Nash Equilibria and Quantum Computing

    NASA Astrophysics Data System (ADS)

    Fellman, Philip Vos; Post, Jonathan Vos

    In 2004, At the Fifth International Conference on Complex Systems, we drew attention to some remarkable findings by researchers at the Santa Fe Institute (Sato, Farmer and Akiyama, 2001) about hitherto unsuspected complexity in the Nash Equilibrium. As we progressed from these findings about heteroclinic Hamiltonians and chaotic transients hidden within the learning patterns of the simple rock-paper-scissors game to some related findings on the theory of quantum computing, one of the arguments we put forward was just as in the late 1990's a number of new Nash equilibria were discovered in simple bi-matrix games (Shubik and Quint, 1996; Von Stengel, 1997, 2000; and McLennan and Park, 1999) we would begin to see new Nash equilibria discovered as the result of quantum computation. While actual quantum computers remain rather primitive (Toibman, 2004), and the theory of quantum computation seems to be advancing perhaps a bit more slowly than originally expected, there have, nonetheless, been a number of advances in computation and some more radical advances in an allied field, quantum game theory (Huberman and Hogg, 2004) which are quite significant. In the course of this paper we will review a few of these discoveries and illustrate some of the characteristics of these new "Quantum Nash Equilibria". The full text of this research can be found at http://necsi.org/events/iccs6/viewpaper.php?id-234

  12. Simulating chemistry using quantum computers.

    PubMed

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  13. Algorithms on ensemble quantum computers.

    PubMed

    Boykin, P Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh

    2010-06-01

    In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and σ(z)(¼) as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement.

  14. Quantum Computing: Solving Complex Problems

    ScienceCinema

    DiVincenzo, David [IBM Watson Research Center

    2016-07-12

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  15. Quasicrystals and Quantum Computing

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    1997-03-01

    In Quantum (Q) Computing qubits form Q-superpositions for macroscopic times. One scheme for ultra-fast (Q) computing can be based on quasicrystals. Ultrafast processing in Q-coherent structures (and the very existence of durable Q-superpositions) may be 'consequence' of presence of entire manifold of integer arithmetic (A0, aleph-naught of Georg Cantor) at any 4-point of space-time, furthermore, at any point of any multidimensional phase space of (any) N-particle Q-system. The latter, apart from quasicrystals, can include dispersed and/or diluted systems (Berezin, 1994). In such systems such alleged centrepieces of Q-Computing as ability for fast factorization of long integers can be processed by sheer virtue of the fact that entire infinite pattern of prime numbers is instantaneously available as 'free lunch' at any instant/point. Infinitely rich pattern of A0 (including pattern of primes and almost primes) acts as 'independent' physical effect which directly generates Q-dynamics (and physical world) 'out of nothing'. Thus Q-nonlocality can be ultimately based on instantaneous interconnectedness through ever- the-same structure of A0 ('Platonic field' of integers).

  16. Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Dallaire-Demers, Pierre-Luc; Wilhelm, Frank K.

    2016-12-01

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counterintuitive macroscopic phenomena such as high-temperature superconductivity. In this paper, we provide a gate decomposition and an architecture for a quantum simulator used to simulate the Fermi-Hubbard model in a hybrid variational quantum-classical algorithm. We propose a simple planar implementation-independent layout of qubits that can also be used to simulate more general fermionic systems. By working through a concrete application, we show the gate decomposition used to simulate the Hamiltonian of a cluster of the Fermi-Hubbard model. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications.

  17. Geometric methods in quantum computation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    Recent advances in the physical sciences and engineering have created great hopes for new computational paradigms and substrates. One such new approach is the quantum computer, which holds the promise of enhanced computational power. Analogous to the way a classical computer is built from electrical circuits containing wires and logic gates, a quantum computer is built from quantum circuits containing quantum wires and elementary quantum gates to transport and manipulate quantum information. Therefore, design of quantum gates and quantum circuits is a prerequisite for any real application of quantum computation. In this dissertation we apply geometric control methods from differential geometry and Lie group representation theory to analyze the properties of quantum gates and to design optimal quantum circuits. Using the Cartan decomposition and the Weyl group, we show that the geometric structure of nonlocal two-qubit gates is a 3-Torus. After further reducing the symmetry, the geometric representation of nonlocal gates is seen to be conveniently visualized as a tetrahedron. Each point in this tetrahedron except on the base corresponds to a different equivalent class of nonlocal gates. This geometric representation is one of the cornerstones for the discussion on quantum computation in this dissertation. We investigate the properties of those two-qubit operations that can generate maximal entanglement. It is an astonishing finding that if we randomly choose a two-qubit operation, the probability that we obtain a perfect entangler is exactly one half. We prove that given a two-body interaction Hamiltonian, it is always possible to explicitly construct a quantum circuit for exact simulation of any arbitrary nonlocal two-qubit gate by turning on the two-body interaction for at most three times, together with at most four local gates. We also provide an analytic approach to construct a universal quantum circuit from any entangling gate supplemented with local gates

  18. Efficient Universal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G.

    2013-12-01

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party’s quantum computer without revealing either which computation is performed, or its input and output. The first party’s computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog⁡2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  19. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-06

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  20. Quantum computing accelerator I/O : LDRD 52750 final report.

    SciTech Connect

    Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.

    2003-12-01

    In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work.

  1. Electro-Optic Computing Architectures. Volume I

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW

  2. Quantum Information and Computing

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Ohya, Masanori; Watanabe, N.

    2006-03-01

    Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An

  3. Insecurity of quantum secure computations

    NASA Astrophysics Data System (ADS)

    Lo, Hoi-Kwong

    1997-08-01

    It had been widely claimed that quantum mechanics can protect private information during public decision in, for example, the so-called two-party secure computation. If this were the case, quantum smart-cards, storing confidential information accessible only to a proper reader, could prevent fake teller machines from learning the PIN (personal identification number) from the customers' input. Although such optimism has been challenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by showing that all one-sided two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions that cannot be computed securely in any two-sided two-party computation. Nevertheless, quantum cryptography remains useful in key distribution and can still provide partial security in ``quantum money'' proposed by Wiesner.

  4. Cryptography, quantum computation and trapped ions

    SciTech Connect

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  5. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  6. Quantum Estimation, meet Computational Statistics; Computational Statistics, meet Quantum Estimation

    NASA Astrophysics Data System (ADS)

    Ferrie, Chris; Granade, Chris; Combes, Joshua

    2013-03-01

    Quantum estimation, that is, post processing data to obtain classical descriptions of quantum states and processes, is an intractable problem--scaling exponentially with the number of interacting systems. Thankfully there is an entire field, Computational Statistics, devoted to designing algorithms to estimate probabilities for seemingly intractable problems. So, why not look to the most advanced machine learning algorithms for quantum estimation tasks? We did. I'll describe how we adapted and combined machine learning methodologies to obtain an online learning algorithm designed to estimate quantum states and processes.

  7. Computational Power of Quantum Machines, Quantum Grammars and Feasible Computation

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, E. V.

    This paper studies the computational power of quantum computers to explore as to whether they can recognize properties which are in nondeterministic polynomial-time class (NP) and beyond. To study the computational power, we use the Feynman's path integral (FPI) formulation of quantum mechanics. From a computational point of view the Feynman's path integral computes a quantum dynamical analogue of the k-ary relation computed by an Alternating Turing machine (ATM) using AND-OR Parallelism. Hence, if we can find a suitable mapping function between an instance of a mathematical problem and the corresponding interference problem, using suitable potential functions for which FPI can be integrated exactly, the computational power of a quantum computer can be bounded to that of an alternating Turing machine that can solve problems in NP (e.g, factorization problem) and in polynomial space. Unfortunately, FPI is exactly integrable only for a few problems (e.g., the harmonic oscillator) involving quadratic potentials; otherwise, they may be only approximately computable or noncomputable. This means we cannot in general solve all quantum dynamical problems exactly except for those special cases of quadratic potentials, e.g., harmonic oscillator. Since there is a one to one correspondence between the quantum mechanical problems that can be analytically solved and the path integrals that can be exactly evaluated, we can say that the noncomputability of FPI implies quantum unsolvability. This is the analogue of classical unsolvability. The Feynman's path graph can be considered as a semantic parse graph for the quantum mechanical sentence. It provides a semantic valuation function of the terminal sentence based on probability amplitudes to disambiguate a given quantum description and obtain an interpretation in a linear time. In Feynman's path integral, the kernels are partially ordered over time (different alternate paths acting concurrently at the same time) and multiplied

  8. Quantum computation using geometric algebra

    NASA Astrophysics Data System (ADS)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  9. A computer architecture for intelligent machines

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Saridis, G. N.

    1991-01-01

    The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  10. Quantum chromodynamics with advanced computing

    SciTech Connect

    Kronfeld, Andreas S.; /Fermilab

    2008-07-01

    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.

  11. The quantum computer game: citizen science

    NASA Astrophysics Data System (ADS)

    Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob

    2013-05-01

    Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.

  12. Switching from Computer to Microcomputer Architecture Education

    ERIC Educational Resources Information Center

    Bolanakis, Dimosthenis E.; Kotsis, Konstantinos T.; Laopoulos, Theodore

    2010-01-01

    In the last decades, the technological and scientific evolution of the computing discipline has been widely affecting research in software engineering education, which nowadays advocates more enlightened and liberal ideas. This article reviews cross-disciplinary research on a computer architecture class in consideration of its switching to…

  13. THE COMPUTER AND THE ARCHITECTURAL PROFESSION.

    ERIC Educational Resources Information Center

    HAVILAND, DAVID S.

    THE ROLE OF ADVANCING TECHNOLOGY IN THE FIELD OF ARCHITECTURE IS DISCUSSED IN THIS REPORT. PROBLEMS IN COMMUNICATION AND THE DESIGN PROCESS ARE IDENTIFIED. ADVANTAGES AND DISADVANTAGES OF COMPUTERS ARE MENTIONED IN RELATION TO MAN AND MACHINE INTERACTION. PRESENT AND FUTURE IMPLICATIONS OF COMPUTER USAGE ARE IDENTIFIED AND DISCUSSED WITH RESPECT…

  14. Monte Carlo simulations on SIMD computer architectures

    SciTech Connect

    Burmester, C.P.; Gronsky, R.; Wille, L.T.

    1992-03-01

    Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SMM) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.

  15. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.

    PubMed

    Lau, Hoi-Kwan; Plenio, Martin B

    2016-09-02

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  16. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-09-01

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  17. Quantum computing measurement and intelligence

    NASA Astrophysics Data System (ADS)

    Ezziane, Zoheir

    One of the grand challenges in the nanoscopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high-reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing "zero-one" based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the sheer scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such minuscule devices are difficult to articulate and answer. This article illustrates and discusses two types of quantum algorithms as follows: (1) a simple quantum algorithm and (2) a quantum search algorithm. This article also presents a review of recent advances in quantum computing and intelligence and presents major achievements and obstacles for researchers in the near future.

  18. Delegating private quantum computations12

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne

    2015-09-01

    We give a protocol for the delegation of quantum computation on encrypted data. More specifically, we show that in a client-server scenario, where the client holds the encryption key for an encrypted quantum register held by the server, it is possible for the server to perform a universal set of quantum gates on the quantum data. All Clifford group gates are non-interactive, while the remaining non-Clifford group gate that we implement (the p/8 gate) requires the client to prepare and send a single random auxiliary qubit (chosen among four possibilities), and exchange classical communication. This construction improves on previous work, which requires either multiple auxiliary qubits or two-way quantum communication. Using a reduction to an entanglement-based protocol, we show privacy against any adversarial server according to a simulation-based security definition.

  19. Architectural Implications of Cloud Computing

    DTIC Science & Technology

    2011-10-24

    Mellon University Final Thoughts 1 Cloud Computing is in essence an economic model • It is a different way to acquire and manage IT resources...Cloud (EC2): http://aws.amazon.com/ec2/ • Amazon Simple Storage Solution (S3): http://aws.amazon.com/s3/ • Eucalyptus Systems: http

  20. Quantum-enhanced Sensing and Efficient Quantum Computation

    DTIC Science & Technology

    2015-07-27

    AFRL-AFOSR-UK-TR-2015-0039 Quantum -enhanced sensing and efficient quantum computation Ian Walmsley THE UNIVERSITY OF...COVERED (From - To) 1 February 2013 - 31 January 2015 4. TITLE AND SUBTITLE Quantum -enhanced sensing and efficient quantum computation 5a. CONTRACT...accuracy. The system was used to improve quantum boson sampling tests. 15. SUBJECT TERMS EOARD, Quantum Information Processing, Transition Edge Sensors

  1. Electromagnetic physics models for parallel computing architectures

    SciTech Connect

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-11-21

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Finally, the results of preliminary performance evaluation and physics validation are presented as well.

  2. Electromagnetic physics models for parallel computing architectures

    DOE PAGES

    Amadio, G.; Ananya, A.; Apostolakis, J.; ...

    2016-11-21

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part ofmore » the GeantV project. Finally, the results of preliminary performance evaluation and physics validation are presented as well.« less

  3. Electromagnetic Physics Models for Parallel Computing Architectures

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  4. Advanced high-performance computer system architectures

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. I.

    2007-02-01

    Convergence of computer systems and communication technologies are moving to switched high-performance modular system architectures on the basis of high-speed switched interconnections. Multi-core processors become more perspective way to high-performance system, and traditional parallel bus system architectures (VME/VXI, cPCI/PXI) are moving to new higher speed serial switched interconnections. Fundamentals in system architecture development are compact modular component strategy, low-power processor, new serial high-speed interface chips on the board, and high-speed switched fabric for SAN architectures. Overview of advanced modular concepts and new international standards for development high-performance embedded and compact modular systems for real-time applications are described.

  5. A Short Survey on Quantum Computers

    SciTech Connect

    Kanamori, Yoshito; Yoo, Seong-Moo; Pan, W. D.; Sheldon, Frederick T

    2006-01-01

    Quantum computing is an emerging technology. The clock frequency of current computer processor systems may reach about 40 GHz within the next 10 years. By then, one atom may represent one bit. Electrons under such conditions are no longer described by classical physics and a new model of the computer may be necessary by then. The quantum computer is one proposal that may have merit in dealing with the problems associated with the fact that certain important computationally intense problems present that current (classical) computers cannot solve because they require too much processing time. For example, Shor's algorithm performs factoring a large integer in polynomial time while classical factoring algorithms can do it in exponential time. In this paper we briefly survey the current status of quantum computers, quantum computer systems, and quantum simulators. Keywords Classical computers, quantum computers, quantum computer systems, quantum simulators, Shor's algorithm.

  6. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  7. Parallel architectures for computing cyclic convolutions

    NASA Technical Reports Server (NTRS)

    Yeh, C.-S.; Reed, I. S.; Truong, T. K.

    1983-01-01

    In the paper two parallel architectural structures are developed to compute one-dimensional cyclic convolutions. The first structure is based on the Chinese remainder theorem and Kung's pipelined array. The second structure is a direct mapping from the mathematical definition of a cyclic convolution to a computational architecture. To compute a d-point cyclic convolution the first structure needs d/2 inner product cells, while the second structure and Kung's linear array require d cells. However, to compute a cyclic convolution, the second structure requires less time than both the first structure and Kung's linear array. Another application of the second structure is to multiply a Toeplitz matrix by a vector. A table is listed to compare these two structures and Kung's linear array. Both structures are simple and regular and are therefore suitable for VLSI implementation.

  8. Evaluation of Visual Computer Simulator for Computer Architecture Education

    ERIC Educational Resources Information Center

    Imai, Yoshiro; Imai, Masatoshi; Moritoh, Yoshio

    2013-01-01

    This paper presents trial evaluation of a visual computer simulator in 2009-2011, which has been developed to play some roles of both instruction facility and learning tool simultaneously. And it illustrates an example of Computer Architecture education for University students and usage of e-Learning tool for Assembly Programming in order to…

  9. Atomic physics: A milestone in quantum computing

    NASA Astrophysics Data System (ADS)

    Bartlett, Stephen D.

    2016-08-01

    Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

  10. Nanophotonic quantum computer based on atomic quantum transistor

    SciTech Connect

    Andrianov, S N; Moiseev, S A

    2015-10-31

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  11. Highly parallel computer architecture for robotic computation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Bejczy, Anta K. (Inventor)

    1991-01-01

    In a computer having a large number of single instruction multiple data (SIMD) processors, each of the SIMD processors has two sets of three individual processor elements controlled by a master control unit and interconnected among a plurality of register file units where data is stored. The register files input and output data in synchronism with a minor cycle clock under control of two slave control units controlling the register file units connected to respective ones of the two sets of processor elements. Depending upon which ones of the register file units are enabled to store or transmit data during a particular minor clock cycle, the processor elements within an SIMD processor are connected in rings or in pipeline arrays, and may exchange data with the internal bus or with neighboring SIMD processors through interface units controlled by respective ones of the two slave control units.

  12. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    SciTech Connect

    Larsen, R.S.; /SLAC

    2008-04-22

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.

  13. Implementing a computing architecture with WISDOM

    SciTech Connect

    Zebrowski, J.R.

    1991-01-01

    Over the past two years, the Savannah River Site (SRS) work force has expanded by more than 6000 employees. This large influx of personnel, in conjunction with the limited office space, has resulted in an overcrowding problem on site. To alleviate some of the overcrowding, Westinghouse Savannah River Company (WSRC) has been in the process of leasing space from several office buildings within Aiken, SC. Brookhaven, the latest off-site office building to be leased, is the starting point for a new direction in office automation which will eventually spread throughout SRS. The computing architecture in place at Brookhaven was designed to adhere to the SRS computer architecture guidelines as published by the WSRC Computer Architecture Standards Team (CAST). At the heart of the Brookhaven implementation is a Workstation Integration System for DOS, OS/2 and Macintosh (WISDOM). The key features of the WISDOM system include: it's utilization of a Local Area Network (LAN), it's Graphical User Interface (GUI), it's cross-platform capability, it's portable user interface, and the installation program. To begin, I will give an overview of the network architecture, then discuss WISDOM in detail, mention some platform integration problems that need to be addressed and conclude with a summary of the user benefits that WISDOM provides.

  14. Implementing a computing architecture with WISDOM

    SciTech Connect

    Zebrowski, J.R.

    1991-12-31

    Over the past two years, the Savannah River Site (SRS) work force has expanded by more than 6000 employees. This large influx of personnel, in conjunction with the limited office space, has resulted in an overcrowding problem on site. To alleviate some of the overcrowding, Westinghouse Savannah River Company (WSRC) has been in the process of leasing space from several office buildings within Aiken, SC. Brookhaven, the latest off-site office building to be leased, is the starting point for a new direction in office automation which will eventually spread throughout SRS. The computing architecture in place at Brookhaven was designed to adhere to the SRS computer architecture guidelines as published by the WSRC Computer Architecture Standards Team (CAST). At the heart of the Brookhaven implementation is a Workstation Integration System for DOS, OS/2 and Macintosh (WISDOM). The key features of the WISDOM system include: it`s utilization of a Local Area Network (LAN), it`s Graphical User Interface (GUI), it`s cross-platform capability, it`s portable user interface, and the installation program. To begin, I will give an overview of the network architecture, then discuss WISDOM in detail, mention some platform integration problems that need to be addressed and conclude with a summary of the user benefits that WISDOM provides.

  15. Computer graphics in architecture and engineering

    NASA Technical Reports Server (NTRS)

    Greenberg, D. P.

    1975-01-01

    The present status of the application of computer graphics to the building profession or architecture and its relationship to other scientific and technical areas were discussed. It was explained that, due to the fragmented nature of architecture and building activities (in contrast to the aerospace industry), a comprehensive, economic utilization of computer graphics in this area is not practical and its true potential cannot now be realized due to the present inability of architects and structural, mechanical, and site engineers to rely on a common data base. Future emphasis will therefore have to be placed on a vertical integration of the construction process and effective use of a three-dimensional data base, rather than on waiting for any technological breakthrough in interactive computing.

  16. Continuous-Variable Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2012-12-01

    Blind quantum computation is a secure delegated quantum computing protocol where Alice, who does not have sufficient quantum technology at her disposal, delegates her computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice’s input, output, and algorithm. Protocols of blind quantum computation have been proposed for several qudit measurement-based computation models, such as the graph state model, the Affleck-Kennedy-Lieb-Tasaki model, and the Raussendorf-Harrington-Goyal topological model. Here, we consider blind quantum computation for the continuous-variable measurement-based model. We show that blind quantum computation is possible for the infinite squeezing case. We also show that the finite squeezing causes no additional problem in the blind setup apart from the one inherent to the continuous-variable measurement-based quantum computation.

  17. ASCR Workshop on Quantum Computing for Science

    SciTech Connect

    Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward; Gaitan, Frank; Humble, Travis; Jordan, Stephen; Landahl, Andrew J; Love, Peter; Lucas, Robert; Preskill, John; Muller, Richard P.; Svore, Krysta; Wiebe, Nathan; Williams, Carl

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  18. Course 10: Basic Concepts in Quantum Computation

    NASA Astrophysics Data System (ADS)

    Ekert, A.; Hayden, P. M.; Inamori, H.

    Contents 1 Qubits, gates and networks 2 Quantum arithmetic and function evaluations 3 Algorithms and their complexity 4 From interferometers to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional quantum dynamics 11 Decoherence and recoherence 12 Concluding remarks

  19. Efficient tree codes on SIMD computer architectures

    NASA Astrophysics Data System (ADS)

    Olson, Kevin M.

    1996-11-01

    This paper describes changes made to a previous implementation of an N -body tree code developed for a fine-grained, SIMD computer architecture. These changes include (1) switching from a balanced binary tree to a balanced oct tree, (2) addition of quadrupole corrections, and (3) having the particles search the tree in groups rather than individually. An algorithm for limiting errors is also discussed. In aggregate, these changes have led to a performance increase of over a factor of 10 compared to the previous code. For problems several times larger than the processor array, the code now achieves performance levels of ~ 1 Gflop on the Maspar MP-2 or roughly 20% of the quoted peak performance of this machine. This percentage is competitive with other parallel implementations of tree codes on MIMD architectures. This is significant, considering the low relative cost of SIMD architectures.

  20. Computational quantum field theory

    NASA Astrophysics Data System (ADS)

    Grobe, Rainer

    2006-05-01

    I will give an overview on recent attempts to solve the time-dependent Dirac equation for the electron-positron field operator. These numerical solutions permit a first temporally and spatially resolved insight into the mechanisms of how an electron-positron pair can be created from vacuum in a very strong force field. This approach has helped to illuminate a wide range of controversial questions. Some of these questions arise for complicated physical situations such as how an electron scatters off a supercritical potential barrier (Klein paradox). This requires the application of quantum field theory to study the combined effect of the pair-production due to the supercriticality of the potential together with the scattering at the barrier involving the Pauli-principle. Other phenomena include Schr"odinger's Zitterbewegung and the localization problem for a relativistic particle. This work has been supported by the NSF and Research Corporation. P. Krekora, K. Cooley, Q. Su and R. Grobe, Phys. Rev. Lett. 95, 070403 (2005). P. Krekora, Q. Su and R. Grobe, Phys. Rev. Lett. 93, 043004 (2004). P. Krekora, Q. Su and R. Grobe, Phys. Rev. Lett. 92, 040406 (2004).

  1. Computing architecture for telerobots in earth orbit

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Dotson, R. S.; Szakaly, Z.

    1987-01-01

    Based on generic operational and computational requirements associated with the control of telerobots in earth orbit, a multibus-based distributed but integrated computing architecture is proposed. An experimental system of that kind under development at the Jet Propulsion Laboratory (JPL) is briefly described. It uses Intel Multibus I at both control station and remote robot (telerobot) computing nodes. An essential element within each multibus is a Unified (or Universal) Computer Control Subsystem (UCCS) for telerobot and control station motor components. The two multibus-based computing nodes can be linked by parallel or high speed serial links for real-time data transmission and for closing the real-time bilateral (force-reflecting) control loop between telerobot and control station. The experimental system is briefly commented, followed by a brief discussion of future development plans and possibilities.

  2. Roadmap to the SRS computing architecture

    SciTech Connect

    Johnson, A.

    1994-07-05

    This document outlines the major steps that must be taken by the Savannah River Site (SRS) to migrate the SRS information technology (IT) environment to the new architecture described in the Savannah River Site Computing Architecture. This document proposes an IT environment that is {open_quotes}...standards-based, data-driven, and workstation-oriented, with larger systems being utilized for the delivery of needed information to users in a client-server relationship.{close_quotes} Achieving this vision will require many substantial changes in the computing applications, systems, and supporting infrastructure at the site. This document consists of a set of roadmaps which provide explanations of the necessary changes for IT at the site and describes the milestones that must be completed to finish the migration.

  3. Experimental demonstration of blind quantum computing

    NASA Astrophysics Data System (ADS)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joe; Zeilinger, Anton; Walther, Philip

    2012-02-01

    Quantum computers are among the most promising applications of quantum-enhanced technologies. Quantum effects such as superposition and entanglement enable computational speed-ups that are unattainable using classical computers. The challenges in realising quantum computers suggest that in the near future, only a few facilities worldwide will be capable of operating such devices. In order to exploit these computers, users would seemingly have to give up their privacy. It was recently shown that this is not the case and that, via the universal blind quantum computation protocol, quantum mechanics provides a way to guarantee that the user's data remain private. Here, we demonstrate the first experimental version of this protocol using polarisation-entangled photonic qubits. We demonstrate various blind one- and two-qubit gate operations as well as blind versions of the Deutsch's and Grover's algorithms. When the technology to build quantum computers becomes available, this will become an important privacy-preserving feature of quantum information processing.

  4. Nonlinear hierarchical substructural parallelism and computer architecture

    NASA Technical Reports Server (NTRS)

    Padovan, Joe

    1989-01-01

    Computer architecture is investigated in conjunction with the algorithmic structures of nonlinear finite-element analysis. To help set the stage for this goal, the development is undertaken by considering the wide-ranging needs associated with the analysis of rolling tires which possess the full range of kinematic, material and boundary condition induced nonlinearity in addition to gross and local cord-matrix material properties.

  5. Ancilla-driven universal blind quantum computation

    NASA Astrophysics Data System (ADS)

    Sueki, Takahiro; Koshiba, Takeshi; Morimae, Tomoyuki

    2013-06-01

    Blind quantum computation is a new quantum secure protocol, which enables Alice who does not have enough quantum technology to delegate her computation to Bob who has a fully fledged quantum power without revealing her input, output, and algorithm. So far, blind quantum computation has been considered only for the circuit model and the measurement-based model. Here we consider the possibility and the limitation of blind quantum computation in the ancilla-driven model, which is a hybrid of the circuit and the measurement-based models.

  6. Novel Architectures and Devices for Computing

    NASA Astrophysics Data System (ADS)

    Waugh, Frederick Rogers

    1995-01-01

    This thesis explores some of the more unusual architectures and devices being considered today as the basis for information processing, emphasizing architectures that are highly parallel and devices that are extremely small compared to current standards. The first part of this thesis theoretically and numerically analyzes analog electronic neural networks in which competition within neuron clusters leads to pattern classification and feature extraction abilities. Global stability theorems, derived using a Liapunov approach, provide general guidelines for network design and operation. The theorems state that with continuous-time updating, competitive networks converge only to fixed points, while with discrete -time, parallel updating, they converge to either fixed points or period-two limit cycles. A stability criterion guarantees that discrete-time networks converge only to fixed points when a quantity related to the neuron gain, or transfer function slope, is sufficiently small. A set of analytical phase diagrams for competitive associative memories is derived using a combination of statistical mechanics and nonlinear dynamics. The diagrams classify attractor types as a function of pattern storage fraction and neuron gain. Numerical tests agree well with the diagrams. Analog annealing, a technique for improving network performance by reducing neuron gain, is shown to improve performance in an analog associative memory by dramatically reducing the number of fixed points. The number of fixed points decreases exponentially with network size with a scaling exponent that decreases with neuron gain. Numerical data based on fixed-point counts in small networks support the results. The second part of this thesis discusses low-temperature tunneling measurements at zero magnetic field through double and triple quantum dots with adjustable inter-dot coupling, fabricated in a GaAs/AlGaAs heterostructure. The devices have capacitances so small that the charging energy of

  7. Geometry of quantum computation with qutrits.

    PubMed

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  8. Brain Neurons as Quantum Computers:

    NASA Astrophysics Data System (ADS)

    Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.

    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.

  9. Quantum chemistry simulation on quantum computers: theories and experiments.

    PubMed

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  10. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2016-12-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  11. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    PubMed

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  12. Holonomic Quantum Computation in Subsystems

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan

    2009-08-01

    We introduce a generalized method of holonomic quantum computation (HQC) based on encoding in subsystems. As an application, we propose a scheme for applying holonomic gates to unencoded qubits by the use of a noisy ancillary qubit. This scheme does not require initialization in a subspace since all dynamical effects factor out as a transformation on the ancilla. We use this approach to show how fault-tolerant HQC can be realized via 2-local Hamiltonians with perturbative gadgets.

  13. Multibit gates for quantum computing.

    PubMed

    Wang, X; Sørensen, A; Mølmer, K

    2001-04-23

    We present a general technique to implement products of many qubit operators communicating via a joint harmonic oscillator degree of freedom in a quantum computer. By conditional displacements and rotations we can implement Hamiltonians which are trigonometric functions of qubit operators. With such operators we can effectively implement higher order gates such as Toffoli gates and C(n)-NOT gates, and we show that the entire Grover search algorithm can be implemented in a direct way.

  14. Fast semivariogram computation using FPGA architectures

    NASA Astrophysics Data System (ADS)

    Lagadapati, Yamuna; Shirvaikar, Mukul; Dong, Xuanliang

    2015-02-01

    The semivariogram is a statistical measure of the spatial distribution of data and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. The semivariogram is a plot of semivariances for different lag distances between pixels. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O(n2). Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz, but they can perform tens of thousands of calculations per clock cycle while operating in the low range of power. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. The design consists of several modules dedicated to the constituent computational tasks. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. Anisotropic semivariogram implementation is anticipated to be an extension of the current architecture, ostensibly based on refinements to the current modules. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans are utilized for the experiments

  15. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    PubMed

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  16. Quantum Computing and the Onset of Quantum Chaotic Motion

    DTIC Science & Technology

    2007-11-02

    for Nuclear Theory Program on "Chaos and Interactions: from Nuclei to Quantum Dots’", University of Washington, Seattle, USA, 17 July, 2002. I...to Quantum Dots’", University of Washington, Seattle, USA, 17 July, 2002. G. Casati “Quantum computers and quantum chaos” Institute for Nuclear...Theory Program on "Chaos and Interactions: from Nuclei to Quantum Dots’", University of Washington, Seattle, USA, 17 July, 2002. 2. Scientific

  17. Experimental one-way quantum computing.

    PubMed

    Walther, P; Resch, K J; Rudolph, T; Schenck, E; Weinfurter, H; Vedral, V; Aspelmeyer, M; Zeilinger, A

    2005-03-10

    Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

  18. Computational multiqubit tunnelling in programmable quantum annealers

    PubMed Central

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  19. Universal quantum computation using the discrete-time quantum walk

    SciTech Connect

    Lovett, Neil B.; Cooper, Sally; Everitt, Matthew; Trevers, Matthew; Kendon, Viv

    2010-04-15

    A proof that continuous-time quantum walks are universal for quantum computation, using unweighted graphs of low degree, has recently been presented by A. M. Childs [Phys. Rev. Lett. 102, 180501 (2009)]. We present a version based instead on the discrete-time quantum walk. We show that the discrete-time quantum walk is able to implement the same universal gate set and thus both discrete and continuous-time quantum walks are computational primitives. Additionally, we give a set of components on which the discrete-time quantum walk provides perfect state transfer.

  20. Efficient simulation of open quantum system in duality quantum computing

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Long, Gui-Lu

    2016-11-01

    Practical quantum systems are open systems due to interactions with their environment. Understanding the evolution of open systems dynamics is important for quantum noise processes , designing quantum error correcting codes, and performing simulations of open quantum systems. Here we proposed an efficient quantum algorithm for simulating the evolution of an open quantum system on a duality quantum computer. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality algorithm, the time evolution of open quantum system is realized by using Kraus operators which is naturally realized in duality quantum computing. Compared to the Lloyd's quantum algorithm [Science.273, 1073(1996)] , the dependence on the dimension of the open quantum system in our algorithm is decreased. Moreover, our algorithm uses a truncated Taylor series of the evolution operators, exponentially improving the performance on the precision compared with existing quantum simulation algorithms with unitary evolution operations.

  1. The Quantum Human Computer (QHC) Hypothesis

    ERIC Educational Resources Information Center

    Salmani-Nodoushan, Mohammad Ali

    2008-01-01

    This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…

  2. Hybrid VLSI/QCA Architecture for Computing FFTs

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarres, Katayoon; Spotnitz, Matthew

    2003-01-01

    A data-processor architecture that would incorporate elements of both conventional very-large-scale integrated (VLSI) circuitry and quantum-dot cellular automata (QCA) has been proposed to enable the highly parallel and systolic computation of fast Fourier transforms (FFTs). The proposed circuit would complement the QCA-based circuits described in several prior NASA Tech Briefs articles, namely Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), Vol. 25, No. 10 (October 2001), page 42; Compact Interconnection Networks Based on Quantum Dots (NPO-20855) Vol. 27, No. 1 (January 2003), page 32; and Bit-Serial Adder Based on Quantum Dots (NPO-20869), Vol. 27, No. 1 (January 2003), page 35. The cited prior articles described the limitations of very-large-scale integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCAbased signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes.

  3. Developing a Distributed Computing Architecture at Arizona State University.

    ERIC Educational Resources Information Center

    Armann, Neil; And Others

    1994-01-01

    Development of Arizona State University's computing architecture, designed to ensure that all new distributed computing pieces will work together, is described. Aspects discussed include the business rationale, the general architectural approach, characteristics and objectives of the architecture, specific services, and impact on the university…

  4. Frances: A Tool for Understanding Computer Architecture and Assembly Language

    ERIC Educational Resources Information Center

    Sondag, Tyler; Pokorny, Kian L.; Rajan, Hridesh

    2012-01-01

    Students in all areas of computing require knowledge of the computing device including software implementation at the machine level. Several courses in computer science curricula address these low-level details such as computer architecture and assembly languages. For such courses, there are advantages to studying real architectures instead of…

  5. Non-unitary probabilistic quantum computing

    NASA Technical Reports Server (NTRS)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  6. Quantum computing: In the 'death zone'?

    NASA Astrophysics Data System (ADS)

    van Dam, Wim

    2007-04-01

    An event advertised as the first demonstration of a commercial quantum computer raises the question of how far one can go with a 'do not care' attitude towards imperfections, without losing the quantum advantage.

  7. Embracing the quantum limit in silicon computing.

    PubMed

    Morton, John J L; McCamey, Dane R; Eriksson, Mark A; Lyon, Stephen A

    2011-11-16

    Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer.

  8. Computer architecture evaluation for structural dynamics computations: Project summary

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1989-01-01

    The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.

  9. Computing Architecture for the ngVLA

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Glendenning, Brian; Hiriart, R.

    2017-01-01

    Computing challenges for the Next Generation Very Large Array (ngVLA) are not always the ones that first come to mind. Current design concepts have visibility data rates which allow the permanent storage of the raw visibility data, and although challenging, the calibration and imaging processing for the ngVLA is not beyond the capabilities of existing systems (let alone those that will exist when ngVLA construction is completed). Design goals include a system that supports a wide range of PI-driven projects, end to end data management, and the production of science ready data products. This should be accomplished while minimizing the operating costs of an array consisting of hundreds of elements distributed over an area of nearly 100,000 km2. We discuss a proposed architecture of the computing system, design constraints for a detailed design, and some possible design choices and their implications.

  10. Blind topological measurement-based quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-01-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  11. Contextuality supplies the 'magic' for quantum computation.

    PubMed

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-19

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.

  12. Characterization of scalable ion traps for quantum computation

    NASA Astrophysics Data System (ADS)

    Epstein, R. J.; Bollinger, J. J.; Leibfried, D.; Seidelin, S.; Britton, J.; Wesenberg, J. H.; Shiga, N.; Amini, J. M.; Blakestad, R. B.; Brown, K. R.; Home, J. P.; Itano, W. M.; Jost, J. D.; Langer, C.; Ozeri, R.; Wineland, D. J.

    2007-03-01

    We discuss the experimental characterization of several scalable ion trap architectures for quantum information processing. We have developed an apparatus for testing planar ion trap chips which features: a standardized chip carrier for ease of interchanging traps, a single-laser Raman cooling scheme, and photo-ionization loading of Mg^+ ions. The primary benchmark for a given trap is the heating rate of the ion motional degrees of freedom, which can reduce multi-ion quantum gate fidelities. As the heating rate depends on the ion trap geometry and materials, our testing apparatus allows for efficient iteration and optimization of trap parameters. With the recent ability to fabricate planar traps with sufficiently low heating rates for quantum computation ^2, we describe current results on the simulation and fabrication of planar traps with multiple intersecting trapping zones for versatile ion choreography. S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006). J. Kim, et al., Quantum Inf. Comput. 5, 515 (2005).

  13. Quantum computing. Defining and detecting quantum speedup.

    PubMed

    Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias

    2014-07-25

    The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question.

  14. Prospects for quantum computation with trapped ions

    SciTech Connect

    Hughes, R.J.; James, D.F.V.

    1997-12-31

    Over the past decade information theory has been generalized to allow binary data to be represented by two-state quantum mechanical systems. (A single two-level system has come to be known as a qubit in this context.) The additional freedom introduced into information physics with quantum systems has opened up a variety of capabilities that go well beyond those of conventional information. For example, quantum cryptography allows two parties to generate a secret key even in the presence of eavesdropping. But perhaps the most remarkable capabilities have been predicted in the field of quantum computation. Here, a brief survey of the requirements for quantum computational hardware, and an overview of the in trap quantum computation project at Los Alamos are presented. The physical limitations to quantum computation with trapped ions are discussed.

  15. Quantum computing with incoherent resources and quantum jumps.

    PubMed

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  16. Some Thoughts Regarding Practical Quantum Computing

    NASA Astrophysics Data System (ADS)

    Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey

    2006-03-01

    Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.

  17. A High Performance COTS Based Computer Architecture

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  18. Quantum Computer Games: Schrodinger Cat and Hounds

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  19. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  20. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  1. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-18

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  2. Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket

    NASA Astrophysics Data System (ADS)

    Béjanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Earnest, C. T.; McRae, C. R. H.; Shiri, D.; Bateman, J. D.; Rohanizadegan, Y.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.; Mariantoni, M.

    2016-10-01

    Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error-correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and the measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: the quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted microwires—the three-dimensional wires—that push directly on a microfabricated chip, making electrical contact. A small wire cross section (approximately 1 mm), nearly nonmagnetic components, and functionality at low temperatures make the quantum socket ideal for operating solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from dc to 8 GHz, with a contact resistance of approximately 150 m Ω , an impedance mismatch of approximately 10 Ω , and minimal cross talk. As a proof of principle, we fabricate and use a quantum socket to measure high-quality superconducting resonators at a temperature of approximately 10 mK. Quantum error-correction codes such as the surface code will largely benefit from the quantum socket, which will make it possible to address qubits located on a two-dimensional lattice. The present implementation of the socket could be readily extended to accommodate a

  3. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  4. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  5. Quantum Computing in a Piece of Glass

    DTIC Science & Technology

    2011-01-01

    enabling technology. Additionally, we give credence to the projection operator approach of Sec. 4 by applying it to a quantum teleportation (QT...computing gates. 5. QUANTUM TELEPORTATION IN GLASS To best illustrate how a quantum algorithm can be encoded within a single hologram we will focus...our attention on quantum teleportation (QT ). This three qubit gate lives in an 8-dimensional state space. It exhibits all the essential features we

  6. Quantum Computation and NP-Complete Problems

    NASA Astrophysics Data System (ADS)

    Nishino, Tetsuro

    In this paper, we show the following two results on the relationships between quantum computers and NP-complete problems. First, we develop a theory of bulk quantum computation such as NMR (Nuclear Magnetic Resonance) quantum computation. For this purpose, we first define bulk quantum Turing machine (BQTM for short) as a model of bulk quantum computation. Then, we show that BQTMs can solve certain instances of NP-complete problems efficiently. Next, we show that the algorithm designed by Abrams and Lloyd can be simulated by a deterministic Turing machine in polynomial space. This suggests that their algorithm, which is based on non-standard quantum mechanics, can be simulated by a standard QTM with exponential time slow down.

  7. Parallel Environment for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank; Diaz, Bruno Julia

    2009-03-01

    To facilitate numerical study of noise and decoherence in QC algorithms,and of the efficacy of error correction schemes, we have developed a Fortran 90 quantum computer simulator with parallel processing capabilities. It permits rapid evaluation of quantum algorithms for a large number of qubits and for various ``noise'' scenarios. State vectors are distributed over many processors, to employ a large number of qubits. Parallel processing is implemented by the Message-Passing Interface protocol. A description of how to spread the wave function components over many processors, along with how to efficiently describe the action of general one- and two-qubit operators on these state vectors will be delineated.Grover's search and Shor's factoring algorithms with noise will be discussed as examples. A major feature of this work is that concurrent versions of the algorithms can be evaluated with each version subject to diverse noise effects, corresponding to solving a stochastic Schrodinger equation. The density matrix for the ensemble of such noise cases is constructed using parallel distribution methods to evaluate its associated entropy. Applications of this powerful tool is made to delineate the stability and correction of QC processes using Hamiltonian based dynamics.

  8. Composite nonadiabatic holonomic quantum computation

    NASA Astrophysics Data System (ADS)

    Xu, G. F.; Zhao, P. Z.; Xing, T. H.; Sjöqvist, Erik; Tong, D. M.

    2017-03-01

    Nonadiabatic holonomic quantum computation has a robust feature in suppressing control errors because of its holonomic feature. However, this kind of robust feature is challenged since the usual way of realizing nonadiabatic holonomic gates introduces errors due to systematic errors in the control parameters. To resolve this problem, we here propose a composite scheme to realize nonadiabatic holonomic gates. Our scheme can suppress systematic errors while preserving holonomic robustness. It is particularly useful when the evolution period is shorter than the coherence time. We further show that our composite scheme can be protected by decoherence-free subspaces. In this case, the strengthened robust feature of our composite gates and the coherence stabilization virtue of decoherence-free subspaces are combined.

  9. Architectures and Applications for Scalable Quantum Information Systems

    DTIC Science & Technology

    2007-01-01

    collaboration between computer science and physical sciences involving four groups: MIT, providing experimental quantum technology parameters and...quantum information processing system. Our project was a collaborative computer science and physical sciences effort involving four groups working in tight...Automate QRAM / QCL / Q QCC ARQOptimizers QASM QCPOL Layout Tools QIR • Approach: • Open-source • Layered hierarchy • Results: • Physical requirements

  10. Malleable architecture generator for FPGA computing

    NASA Astrophysics Data System (ADS)

    Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang

    1996-10-01

    The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.

  11. Performing quantum computing experiments in the cloud

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  12. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  13. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits.

    PubMed

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A; Carretta, Stefano

    2015-11-13

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence.

  14. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

    PubMed Central

    Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano

    2015-01-01

    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516

  15. Universal quantum computation with weakly integral anyons

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Hong, Seung-Moon; Wang, Zhenghan

    2015-08-01

    Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons with current technology all belong to a class that is called weakly integral—anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions—, the quantum double of . Since all anyons in have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.

  16. Video Encryption and Decryption on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin

    2015-08-01

    A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.

  17. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  18. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    Lubos Mitas

    2011-01-26

    NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13

  19. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  20. Conceptual aspects of geometric quantum computation

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.

    2016-10-01

    Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.

  1. Hyper-parallel photonic quantum computation with coupled quantum dots

    PubMed Central

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-01-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

  2. Magnetic resonance force microscopy and a solid state quantum computer.

    SciTech Connect

    Pelekhov, D. V.; Martin, I.; Suter, A.; Reagor, D. W.; Hammel, P. C.

    2001-01-01

    A Quantum Computer (QC) is a device that utilizes the principles of Quantum Mechanics to perform computations. Such a machine would be capable of accomplishing tasks not achievable by means of any conventional digital computer, for instance factoring large numbers. Currently it appears that the QC architecture based on an array of spin quantum bits (qubits) embedded in a solid-state matrix is one of the most promising approaches to fabrication of a scalable QC. However, the fabrication and operation of a Solid State Quantum Computer (SSQC) presents very formidable challenges; primary amongst these are: (1) the characterization and control of the fabrication process of the device during its construction and (2) the readout of the computational result. Magnetic Resonance Force Microscopy (MRFM)--a novel scanning probe technique based on mechanical detection of magnetic resonance-provides an attractive means of addressing these requirements. The sensitivity of the MRFM significantly exceeds that of conventional magnetic resonance measurement methods, and it has the potential for single electron spin detection. Moreover, the MRFM is capable of true 3D subsurface imaging. These features will make MRFM an invaluable tool for the implementation of a spin-based QC. Here we present the general principles of MRFM operation, the current status of its development and indicate future directions for its improvement.

  3. Innovative architectures for dense multi-microprocessor computers

    NASA Technical Reports Server (NTRS)

    Donaldson, Thomas; Doty, Karl; Engle, Steven W.; Larson, Robert E.; O'Reilly, John G.

    1988-01-01

    The results of a Phase I Small Business Innovative Research (SBIR) project performed for the NASA Langley Computational Structural Mechanics Group are described. The project resulted in the identification of a family of chordal-ring interconnection architectures with excellent potential to serve as the basis for new multimicroprocessor (MMP) computers. The paper presents examples of how computational algorithms from structural mechanics can be efficiently implemented on the chordal-ring architecture.

  4. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  5. Materials Frontiers to Empower Quantum Computing

    SciTech Connect

    Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher

    2015-06-11

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.

  6. Differential geometric treewidth estimation in adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Jonckheere, Edmond; Brun, Todd

    2016-10-01

    The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.

  7. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    SciTech Connect

    Potok, Thomas E; Schuman, Catherine D; Young, Steven R; Patton, Robert M; Spedalieri, Federico; Liu, Jeremy; Yao, Ke-Thia; Rose, Garrett; Chakma, Gangotree

    2016-01-01

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determine network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.

  8. Reducing computational complexity of quantum correlations

    NASA Astrophysics Data System (ADS)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2015-12-01

    We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.

  9. Decoherence and a simple quantum computer

    SciTech Connect

    Chuang, I.L.; Yamamoto, Y.; Laflamme, R.

    1995-10-01

    The authors analyze the effect of decoherence on the operation of part of a simple quantum computer. The results indicate that quantum bit coding techniques may be used to mitigate the effects of two sources of decoherence - amplitude damping and phase randomization.

  10. Is the Brain a Quantum Computer?

    ERIC Educational Resources Information Center

    Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul

    2006-01-01

    We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…

  11. Quantum computing Hyper Terahertz Facility opens

    NASA Astrophysics Data System (ADS)

    Singh Chadha, Kulvinder

    2016-01-01

    A new facility has opened at the University of Surrey to use terahertz radiation for quantum computing. The Hyper Terahertz Facility (HTF) is a joint collaboration between the University of Surrey and the National Physical Laboratory (NPL).

  12. Optimised resource construction for verifiable quantum computation

    NASA Astrophysics Data System (ADS)

    Kashefi, Elham; Wallden, Petros

    2017-04-01

    Recent developments have brought the possibility of achieving scalable quantum networks and quantum devices closer. From the computational point of view these emerging technologies become relevant when they are no longer classically simulatable. Hence a pressing challenge is the construction of practical methods to verify the correctness of the outcome produced by universal or non-universal quantum devices. A promising approach that has been extensively explored is the scheme of verification via encryption through blind quantum computation. We present here a new construction that simplifies the required resources for any such verifiable protocol. We obtain an overhead that is linear in the size of the input (computation), while the security parameter remains independent of the size of the computation and can be made exponentially small (with a small extra cost). Furthermore our construction is generic and could be applied to any universal or non-universal scheme with a given underlying graph.

  13. Iterated Gate Teleportation and Blind Quantum Computation.

    PubMed

    Pérez-Delgado, Carlos A; Fitzsimons, Joseph F

    2015-06-05

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.

  14. Iterated Gate Teleportation and Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.

    2015-06-01

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.

  15. Delayed Commutation in Quantum Computer Networks

    NASA Astrophysics Data System (ADS)

    García-Escartín, Juan Carlos; Chamorro-Posada, Pedro

    2006-09-01

    In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communication. We propose a nonclassical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes, we can route a qubit packet after part of it has left the network node.

  16. Braid group representation on quantum computation

    SciTech Connect

    Aziz, Ryan Kasyfil; Muchtadi-Alamsyah, Intan

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  17. Dilution Refrigerator Technology for Scalable Quantum Computing

    DTIC Science & Technology

    2014-05-22

    has successfully designed, built, tested, and delivered a cryogen free dilution refrigerator for scalable quantum computing. This document is intended... Cryogenics , quantum computing REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...W911NF-10-C-0004. High Precision Devices, Inc. has successfully designed, built, tested, and delivered a cryogen free dilution refrigerator for

  18. Quantum Computer Circuit Analysis and Design

    DTIC Science & Technology

    2009-02-01

    is a first order nonlinear differential matrix equation of the Lax type. This report gives derivations of the Levi-Civita connection, Riemann...computational paths in the )2( nSU manifold. It is a nonlinear first-order differential matrix equation of the same form as the Lax equation for...I. L. Quantum Information and Computation; Cambridge University Press, 2000. 2. Dowling , M. R.; Nielsen, M. A. The Geometry of Quantum

  19. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    PubMed

    Menges, Achim

    2012-03-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.

  20. EDITORIAL: Quantum Computing and the Feynman Festival

    NASA Astrophysics Data System (ADS)

    Brandt, Howard E.; Kim, Young S.; Man'ko, Margarita A.

    2003-12-01

    The Feynman Festival is a new interdisciplinary conference developed for studying Richard Feynman and his physics. The first meeting of this new conference series was held at the University of Maryland on 23--28 August 2002 (http://www.physics.umd.edu/robot/feynman.html) and the second meeting is scheduled for August 2004 at the same venue. According to Feynman, the different aspects of nature are different aspects of the same thing. Therefore, the ultimate purpose of the conference is to find Feynman's same thing from all different theories. For this reason, the first meeting of the Festival did not begin with a fixed formula, but composed its scientific programme based on responses from the entire physics community. The conference drew the most enthusiastic response from the community of quantum computing, the field initiated by Feynman. Encouraged by the response, we decided to edit a special issue of Journal of Optics B: Quantum and Semiclassical Optics on quantum computing in connection with the first Feynman Festival. The authorship is not restricted to the participants of the Feynman Festival, and all interested parties were encouraged to submit their papers on this subject. Needless to say, all the papers were peer reviewed according to the well-established standards of the journal. The subject of quantum computing is not restricted to building and operating computers. It requires a deeper understanding of how quantum mechanics works in materials as well as in our minds. Indeed, it covers the basic foundations of quantum mechanics, measurement theory, information theory, quantum optics, atomic physics and condensed matter physics. It may be necessary to develop new mathematical tools to accommodate the language that nature speaks. It is gratifying to note that this special issue contains papers covering all these aspects of quantum computing. As Feynman noted, we could be discussing these diversified issues to study one problem. In our case, this `one

  1. Acausal measurement-based quantum computing

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2014-07-01

    In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.

  2. Rate-loss analysis of an efficient quantum repeater architecture

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Krovi, Hari; Fuchs, Christopher A.; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2015-08-01

    We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared state's fidelity and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range, and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.

  3. Waveguide-QED-based photonic quantum computation.

    PubMed

    Zheng, Huaixiu; Gauthier, Daniel J; Baranger, Harold U

    2013-08-30

    We propose a new scheme for quantum computation using flying qubits--propagating photons in a one-dimensional waveguide interacting with matter qubits. Photon-photon interactions are mediated by the coupling to a four-level system, based on which photon-photon π-phase gates (CONTROLLED-NOT) can be implemented for universal quantum computation. We show that high gate fidelity is possible, given recent dramatic experimental progress in superconducting circuits and photonic-crystal waveguides. The proposed system can be an important building block for future on-chip quantum networks.

  4. Quantum computing in a piece of glass

    NASA Astrophysics Data System (ADS)

    Miller, Warner A.; Alsing, Paul M.; Kreymerman, Grigoriy; McDonald, Jonathan R.; Tison, Christopher

    2011-05-01

    Quantum gates and simple quantum algorithms can be designed utilizing the diffraction phenomena of a photon within a multiplexed holographic element. The quantum eigenstates we use are the photon's linear momentum (LM) as measured by the number of waves of tilt across the aperture. Two properties of quantum computing within the circuit model make this approach attractive. First, any conditional measurement can be commuted in time with any unitary quantum gate - the timeless nature of quantum computing. Second, photon entanglement can be encoded as a superposition state of a single photon in a higher-dimensional state space afforded by LM. Our theoretical and numerical results indicate that OptiGrate's photo-thermal refractive (PTR) glass is an enabling technology. We will review our previous design of a quantum projection operator and give credence to this approach on a representative quantum gate grounded on coupled-mode theory and numerical simulations, all with parameters consistent with PTR glass. We discuss the strengths (high efficiencies, robustness to environment) and limitations (scalability, crosstalk) of this technology. While not scalable, the utility and robustness of such optical elements for broader quantum information processing applications can be substantial.

  5. Quantum Fourier transform in computational basis

    NASA Astrophysics Data System (ADS)

    Zhou, S. S.; Loke, T.; Izaac, J. A.; Wang, J. B.

    2017-03-01

    The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor's factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - δ and digit accuracy ɛ for each Fourier coefficient. Its time complexity depends polynomially on log (N), where N is the problem size, and linearly on 1/δ and 1/ɛ . We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.

  6. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges

    NASA Astrophysics Data System (ADS)

    Saffman, M.

    2016-10-01

    We present a review of quantum computation with neutral atom qubits. After an overview of architectural options and approaches to preparing large qubit arrays we examine Rydberg mediated gate protocols and fidelity for two- and multi-qubit interactions. Quantum simulation and Rydberg dressing are alternatives to circuit based quantum computing for exploring many body quantum dynamics. We review the properties of the dressing interaction and provide a quantitative figure of merit for the complexity of the coherent dynamics that can be accessed with dressing. We conclude with a summary of the current status and an outlook for future progress.

  7. Simulating physical phenomena with a quantum computer

    NASA Astrophysics Data System (ADS)

    Ortiz, Gerardo

    2003-03-01

    In a keynote speech at MIT in 1981 Richard Feynman raised some provocative questions in connection to the exact simulation of physical systems using a special device named a ``quantum computer'' (QC). At the time it was known that deterministic simulations of quantum phenomena in classical computers required a number of resources that scaled exponentially with the number of degrees of freedom, and also that the probabilistic simulation of certain quantum problems were limited by the so-called sign or phase problem, a problem believed to be of exponential complexity. Such a QC was intended to mimick physical processes exactly the same as Nature. Certainly, remarks coming from such an influential figure generated widespread interest in these ideas, and today after 21 years there are still some open questions. What kind of physical phenomena can be simulated with a QC?, How?, and What are its limitations? Addressing and attempting to answer these questions is what this talk is about. Definitively, the goal of physics simulation using controllable quantum systems (``physics imitation'') is to exploit quantum laws to advantage, and thus accomplish efficient imitation. Fundamental is the connection between a quantum computational model and a physical system by transformations of operator algebras. This concept is a necessary one because in Quantum Mechanics each physical system is naturally associated with a language of operators and thus can be considered as a possible model of quantum computation. The remarkable result is that an arbitrary physical system is naturally simulatable by another physical system (or QC) whenever a ``dictionary'' between the two operator algebras exists. I will explain these concepts and address some of Feynman's concerns regarding the simulation of fermionic systems. Finally, I will illustrate the main ideas by imitating simple physical phenomena borrowed from condensed matter physics using quantum algorithms, and present experimental

  8. A Simple Physical Optics Algorithm Perfect for Parallel Computing Architecture

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Cwik, T.

    1994-01-01

    A reflector antenna computer program based upon a simple discreet approximation of the radiation integral has proven to be extremely easy to adapt to the parallel computing architecture of the modest number of large-gain computing elements such as are used in the Intel iPSC and Touchstone Delta parallel machines.

  9. Robust dynamical decoupling for quantum computing and quantum memory.

    PubMed

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  10. Irreconcilable difference between quantum walks and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Meyer, David A.

    2016-06-01

    Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.

  11. Universal quantum computation in a semiconductor quantum wire network

    NASA Astrophysics Data System (ADS)

    Sau, Jay D.; Tewari, Sumanta; Das Sarma, S.

    2010-11-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10-3 to 10-4 in ordinary unprotected quantum computation.

  12. Simulating fermions on a quantum computer

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Gubernatis, J. E.; Knill, E.; Laflamme, R.

    2002-07-01

    The real-time probabilistic simulation of quantum systems in classical computers is known to be limited by the so-called dynamical sign problem, a problem leading to exponential complexity. In 1981 Richard Feynman raised some provocative questions in connection to the "exact imitation" of such systems using a special device named a "quantum computer". Feynman hesitated about the possibility of imitating fermion systems using such a device. Here we address some of his concerns and, in particular, investigate the simulation of fermionic systems. We show how quantum computers avoid the sign problem in some cases by reducing the complexity from exponential to polynomial. Our demonstration is based upon the use of isomorphisms of algebras. We present specific quantum algorithms that illustrate the main points of our algebraic approach.

  13. A heterogeneous hierarchical architecture for real-time computing

    SciTech Connect

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  14. Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols

    DTIC Science & Technology

    2007-11-20

    REPORT NUMBER Institute for Quantum Studies and Department of Physics Texas A&M University College Station, TX 77843- 4242 9. SPONSORING / MONITORING...September 30, 2007 Principal Investigators: Marlan 0. Scully and M. Subail Zubairy Institute for Quantum Studies and Department of Physics Texas A&M...Thus, N has a simple physical meaning: It is the ratio of the delay time of the buffer and the pulse duration and corresponds to the number of

  15. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  16. Integrated computer control system architectural overview

    SciTech Connect

    Van Arsdall, P.

    1997-06-18

    This overview introduces the NIF Integrated Control System (ICCS) architecture. The design is abstract to allow the construction of many similar applications from a common framework. This summary lays the essential foundation for understanding the model-based engineering approach used to execute the design.

  17. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    PubMed

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  18. Triple-server blind quantum computation using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua

    2014-04-01

    Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.

  19. Towards a fullerene-based quantum computer

    NASA Astrophysics Data System (ADS)

    Benjamin, Simon C.; Ardavan, Arzhang; Briggs, G. Andrew D.; Britz, David A.; Gunlycke, Daniel; Jefferson, John; Jones, Mark A. G.; Leigh, David F.; Lovett, Brendon W.; Khlobystov, Andrei N.; Lyon, S. A.; Morton, John J. L.; Porfyrakis, Kyriakos; Sambrook, Mark R.; Tyryshkin, Alexei M.

    2006-05-01

    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realizing such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input/output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed.

  20. Nanoscale solid-state quantum computing

    NASA Astrophysics Data System (ADS)

    Ardavan, A.; Austwick, M.; Benjamin, S.C.; Briggs, G.A.D.; Dennis, T.J.S.; Ferguson, A.; Hasko, D.G.; Kanai, M.; Khlobystov, A.N.; Lovett, B.W.; Morley, G.W.; Oliver, R.A.; Pettifor, D.G.; Porfyrakis, K.; Reina, J.H.; Rice, J.H.; Smith, J.D.; Taylor, R.A.; Williams, D.A.; Adelmann, C.; Mariette, H.; Hamers, R.J.

    2003-07-01

    Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.

  1. Integrated optics architecture for trapped-ion quantum information processing

    NASA Astrophysics Data System (ADS)

    Kielpinski, D.; Volin, C.; Streed, E. W.; Lenzini, F.; Lobino, M.

    2016-12-01

    Standard schemes for trapped-ion quantum information processing (QIP) involve the manipulation of ions in a large array of interconnected trapping potentials. The basic set of QIP operations, including state initialization, universal quantum logic, and state detection, is routinely executed within a single array site by means of optical operations, including various laser excitations as well as the collection of ion fluorescence. Transport of ions between array sites is also routinely carried out in microfabricated trap arrays. However, it is still not possible to perform optical operations in parallel across all array sites. The lack of this capability is one of the major obstacles to scalable trapped-ion QIP and presently limits exploitation of current microfabricated trap technology. Here we present an architecture for scalable integration of optical operations in trapped-ion QIP. We show theoretically that diffractive mirrors, monolithically fabricated on the trap array, can efficiently couple light between trap array sites and optical waveguide arrays. Integrated optical circuits constructed from these waveguides can be used for sequencing of laser excitation and fluorescence collection. Our scalable architecture supports all standard QIP operations, as well as photon-mediated entanglement channels, while offering substantial performance improvements over current techniques.

  2. Short Introduction to Quantum Computation

    DTIC Science & Technology

    2007-11-02

    Yves Pomeau. Lattice-gas automata for the navier - stokes equa- tion. Physical Review Letters, 56(14):1505–1508, 1986. [8] Stephen Wolfram. Cellular...quantum mechanical descrip- tion. Secondly, since all nonrelativistic dynamics at the nano-scale are governed by the Schroedinger wave equation with a

  3. Plasmon Resonators for Quantum Computing

    DTIC Science & Technology

    2007-06-01

    quantum dot. For free atoms this strong coupling is achieved using high Q optical resonators, such as ultra-low-loss bulk Fabry - Perot cavities or...TR-07-0487 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited UL 13. ABSTRACT (Maximum 200 words) The

  4. Information-theoretic temporal Bell inequality and quantum computation

    SciTech Connect

    Morikoshi, Fumiaki

    2006-05-15

    An information-theoretic temporal Bell inequality is formulated to contrast classical and quantum computations. Any classical algorithm satisfies the inequality, while quantum ones can violate it. Therefore, the violation of the inequality is an immediate consequence of the quantumness in the computation. Furthermore, this approach suggests a notion of temporal nonlocality in quantum computation.

  5. Introduction to Quantum Information/Computing

    DTIC Science & Technology

    2005-06-01

    mωX + iP) sqrt(2mhω) BCS Theory – Named for John Bardeen , Leon Cooper, and Robert Schrieffer. According to theory, the...Theory and Reliable Communication, John Wiley & Sons 1998 2. M.A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge...France and by John Wiley & Sons. 6. H. Goldstein, Classical Mechanics, 1950 Addison-Wesley Publishing Company, Inc. 7. L.S. Brown and G

  6. Entanglement and Quantum Computation: An Overview

    SciTech Connect

    Perez, R.B.

    2000-06-27

    This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.

  7. Investigating Architectural Issues in Neuromorphic Computing

    DTIC Science & Technology

    2009-06-01

    approaching other difficult to scale applications like Parallel Discrete Event Simulation (PDES). PDES applications are models of physical processes...architectures with the need to communicate events to all affected elements 4    within the simulation . PDES applications typically do not scale well...dendrites with axons at junctures called synapses. Neurons produce electrical signals along these pathways. The signals may either excite or inhibit

  8. Efficient quantum computing of complex dynamics.

    PubMed

    Benenti, G; Casati, G; Montangero, S; Shepelyansky, D L

    2001-11-26

    We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more significant than the errors of random noise in gate operations.

  9. Computations in quantum mechanics made easy

    NASA Astrophysics Data System (ADS)

    Korsch, H. J.; Rapedius, K.

    2016-09-01

    Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.

  10. Linear Optical Quantum Computing in a Single Spatial Mode

    NASA Astrophysics Data System (ADS)

    Walmsley, Ian

    2014-05-01

    We present a scheme for linear optical quantum computing using time-bin encoded qubits in a single spatial mode. This scheme allows arbitrary numbers of qubits to be encoded in the same mode, circumventing the requirement for many spatial modes that challenges the scalability of other schemes, and exploiting the inherent stability and robustness of time-frequency optical modes. This approach leverages the architecture of modern telecommunications systems, and opens a door to very high dimensional Hilbert spaces while maintaining compact device designs. Further, temporal encodings benefit from intrinsic robustness to inhomogeneities in transmission mediums. These advantages have been recognized in works exploring the preparation of time-frequency entangled states both for tests of fundamental quantum phenomena, and for quantum communications technologies including key distribution and teleportation. Here we extend this idea to computation. In particular, we present methods for single-qubit operations and heralded controlled phase (CPhase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn scheme. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84 /pm 0.07. An analysis of the performance of current technologies suggests that our scheme offers a promising route for the construction of quantum circuits beyond the few-qubit level. In addition, we foresee that our investigation may motivate further development of the approaches presented into a regime in which time bins are temporally overlapped and frequency based manipulations become necessary, opening up encodings of even higher densities. This work was supported by the Engineering and Physical Sciences Research Council (EP/H03031X/1), the European Commission project Q-ESSENCE (248095) and the Air Force Office of Scientific Research

  11. Universal two-body-Hamiltonian quantum computing

    NASA Astrophysics Data System (ADS)

    Nagaj, Daniel

    2012-03-01

    We present a Hamiltonian quantum-computation scheme universal for quantum computation. Our Hamiltonian is a sum of a polynomial number (in the number of gates L in the quantum circuit) of constant-norm, time-independent, two-body interaction terms. Furthermore, each qubit in the system interacts only with a constant number of other qubits in a three-layer, geometrically local layout. The computer runs in three steps—it starts in a simple initial product state, evolves according to a time-independent Hamiltonian for time of order L2 (up to logarithmic factors), and finishes with a two-qubit measurement. Our model improves previous universal two-local-Hamiltonian constructions, as it avoids using perturbation gadgets and large energy-penalty terms in the Hamiltonian, which would result in a large required run time.

  12. Ancilla-driven universal quantum computation

    SciTech Connect

    Anders, Janet; Browne, Dan E.; Oi, Daniel K. L.; Kashefi, Elham; Andersson, Erika

    2010-08-15

    We introduce a model of quantum computation intermediate between the gate-based and measurement-based models. A quantum register is manipulated remotely with the help of a single ancilla that ''drives'' the evolution of the register. The fully controlled ancilla qubit is coupled to the computational register only via a fixed unitary two-qubit interaction and then measured in suitable bases, driving both single- and two-qubit operations on the register. Arbitrary single-qubit operations directly on register qubits are not needed. We characterize all interactions E that induce a unitary, stepwise deterministic measurement back-action on the register sufficient to implement any quantum channel. Our scheme offers experimental advantages for computation, state preparation, and generalized measurements, since no tunable control of the register is required.

  13. Computer Architecture. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning research and development in the field of computer architecture. Design of computer systems, microcomputer components, and digital networks are among the topics discussed. Multimicroprocessor system performance, software development, and aerospace avionics applications are also included. (Contains 50-250 citations and includes a subject term index and title list.)

  14. The Contribution of Visualization to Learning Computer Architecture

    ERIC Educational Resources Information Center

    Yehezkel, Cecile; Ben-Ari, Mordechai; Dreyfus, Tommy

    2007-01-01

    This paper describes a visualization environment and associated learning activities designed to improve learning of computer architecture. The environment, EasyCPU, displays a model of the components of a computer and the dynamic processes involved in program execution. We present the results of a research program that analysed the contribution of…

  15. Distributed Computing Environment: An Architecture For Supporting Change?

    DTIC Science & Technology

    1995-11-01

    Distributed Computing Environment (DCE) has been in development for about five years but has only been widely used in the last two years. It consists...these services form an architecture for distributed computing that enables users to carry out the new, cheaper operations they require with the

  16. No-go theorem for passive single-rail linear optical quantum computing.

    PubMed

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  17. Middleware in Modern High Performance Computing System Architectures

    SciTech Connect

    Engelmann, Christian; Ong, Hong Hoe; Scott, Stephen L

    2007-01-01

    A recent trend in modern high performance computing (HPC) system architectures employs ''lean'' compute nodes running a lightweight operating system (OS). Certain parts of the OS as well as other system software services are moved to service nodes in order to increase performance and scalability. This paper examines the impact of this HPC system architecture trend on HPC ''middleware'' software solutions, which traditionally equip HPC systems with advanced features, such as parallel and distributed programming models, appropriate system resource management mechanisms, remote application steering and user interaction techniques. Since the approach of keeping the compute node software stack small and simple is orthogonal to the middleware concept of adding missing OS features between OS and application, the role and architecture of middleware in modern HPC systems needs to be revisited. The result is a paradigm shift in HPC middleware design, where single middleware services are moved to service nodes, while runtime environments (RTEs) continue to reside on compute nodes.

  18. Superconducting Qubits for Quantum Computation

    DTIC Science & Technology

    2006-05-31

    based on the Aharonov - Casher effect for flux tunneling, and the extension of the concept of the quantum non-demolition measurements to the measurement...consists of a Bloch transistor included in the superconducting loop with finite inductance and uses the Aharonov - Casher effect to modulate the flux...tunneling amplitude. The Aharonov - Casher effect in a simple system of Josephson junctions is of considerable interest of its own, and we expect that the

  19. JPRS Report. Science & Technology, Japan: Computer Architecture

    DTIC Science & Technology

    2007-11-02

    No 3, 1987, pp 650-651. [HIBI86] Information provided by Y. Hibino of NTT. [KNUT73] D.E. Knuth , "The Art of Computer Programming," Vol 3: Sorting... computation model, and have been engaged in the experimental generation of a neural network description language, a compiler and simulators and in...functions by simulation. For the simulations, we used simulators implemented by software on conventional types of computers (LISP machine, VAX

  20. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    PubMed

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  1. Fault tolerant hypercube computer system architecture

    NASA Technical Reports Server (NTRS)

    Madan, Herb S. (Inventor); Chow, Edward (Inventor)

    1989-01-01

    A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node

  2. Towards universal quantum computation through relativistic motion

    PubMed Central

    Bruschi, David Edward; Sabín, Carlos; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette

    2016-01-01

    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes. PMID:26860584

  3. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  4. Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation

    SciTech Connect

    Mizel, Ari

    2004-07-01

    Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  5. Random Numbers and Quantum Computers

    ERIC Educational Resources Information Center

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  6. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  7. Percolation, Renormalization, and Quantum Computing with Nondeterministic Gates

    NASA Astrophysics Data System (ADS)

    Kieling, K.; Rudolph, T.; Eisert, J.

    2007-09-01

    We apply a notion of static renormalization to the preparation of entangled states for quantum computing, exploiting ideas from percolation theory. Such a strategy yields a novel way to cope with the randomness of nondeterministic quantum gates. This is most relevant in the context of optical architectures, where probabilistic gates are common, and cold atoms in optical lattices, where hole defects occur. We demonstrate how to efficiently construct cluster states without the need for rerouting, thereby avoiding a massive amount of conditional dynamics; we furthermore show that except for a single layer of gates during the preparation, all subsequent operations can be shifted to the final adapted single-qubit measurements. Remarkably, cluster state preparation is achieved using essentially the same scaling in resources as if deterministic gates were available.

  8. Quantum game simulator, using the circuit model of quantum computation

    NASA Astrophysics Data System (ADS)

    Vlachos, Panagiotis; Karafyllidis, Ioannis G.

    2009-10-01

    We present a general two-player quantum game simulator that can simulate any two-player quantum game described by a 2×2 payoff matrix (two strategy games).The user can determine the payoff matrices for both players, their strategies and the amount of entanglement between their initial strategies. The outputs of the simulator are the expected payoffs of each player as a function of the other player's strategy parameters and the amount of entanglement. The simulator also produces contour plots that divide the strategy spaces of the game in regions in which players can get larger payoffs if they choose to use a quantum strategy against any classical one. We also apply the simulator to two well-known quantum games, the Battle of Sexes and the Chicken game. Program summaryProgram title: Quantum Game Simulator (QGS) Catalogue identifier: AEED_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEED_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3416 No. of bytes in distributed program, including test data, etc.: 583 553 Distribution format: tar.gz Programming language: Matlab R2008a (C) Computer: Any computer that can sufficiently run Matlab R2008a Operating system: Any system that can sufficiently run Matlab R2008a Classification: 4.15 Nature of problem: Simulation of two player quantum games described by a payoff matrix. Solution method: The program calculates the matrices that comprise the Eisert setup for quantum games based on the quantum circuit model. There are 5 parameters that can be altered. We define 3 of them as constant. We play the quantum game for all possible values for the other 2 parameters and store the results in a matrix. Unusual features: The software provides an easy way of simulating any two-player quantum games. Running time: Approximately

  9. Adiabatic graph-state quantum computation

    NASA Astrophysics Data System (ADS)

    Antonio, B.; Markham, D.; Anders, J.

    2014-11-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of \\dot{H} as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated.

  10. Aerodynamic optimization studies on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  11. A silicon-based surface code quantum computer

    NASA Astrophysics Data System (ADS)

    O'Gorman, Joe; Nickerson, Naomi H.; Ross, Philipp; Morton, John Jl; Benjamin, Simon C.

    2016-02-01

    Individual impurity atoms in silicon can make superb individual qubits, but it remains an immense challenge to build a multi-qubit processor: there is a basic conflict between nanometre separation desired for qubit-qubit interactions and the much larger scales that would enable control and addressing in a manufacturable and fault-tolerant architecture. Here we resolve this conflict by establishing the feasibility of surface code quantum computing using solid-state spins, or ‘data qubits’, that are widely separated from one another. We use a second set of ‘probe’ spins that are mechanically separate from the data qubits and move in and out of their proximity. The spin dipole-dipole interactions give rise to phase shifts; measuring a probe’s total phase reveals the collective parity of the data qubits along the probe’s path. Using a protocol that balances the systematic errors due to imperfect device fabrication, our detailed simulations show that substantial misalignments can be handled within fault-tolerant operations. We conclude that this simple ‘orbital probe’ architecture overcomes many of the difficulties facing solid-state quantum computing, while minimising the complexity and offering qubit densities that are several orders of magnitude greater than other systems.

  12. LINCS: Livermore's network architecture. [Octopus computing network

    SciTech Connect

    Fletcher, J.G.

    1982-01-01

    Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessing process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking.

  13. Blind Quantum Computing with Weak Coherent Pulses

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-01

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.

  14. Blind quantum computing with weak coherent pulses.

    PubMed

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-18

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.

  15. Simulations of Probabilities for Quantum Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  16. Quantum computation with Turaev-Viro codes

    SciTech Connect

    Koenig, Robert; Kuperberg, Greg; Reichardt, Ben W.

    2010-12-15

    For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.

  17. Panel on future directions in parallel computer architecture

    SciTech Connect

    VanTilborg, A.M. )

    1989-06-01

    One of the program highlights of the 15th Annual International Symposium on Computer Architecture, held May 30 - June 2, 1988 in Honolulu, was a panel session on future directions in parallel computer architecture. The panel was organized and chaired by the author, and was comprised of Prof. Jack Dennis (NASA Ames Research Institute for Advanced Computer Science), Prof. H.T. Kung (Carnegie Mellon), and Dr. Burton Smith (Tera Computer Company). The objective of the panel was to identify the likely trajectory of future parallel computer system progress, particularly from the sandpoint of marketplace acceptance. Approximately 250 attendees participated in the session, in which each panelist began with a ten minute viewgraph explanation of his views, followed by an open and sometimes lively exchange with the audience and fellow panelists. The session ran for ninety minutes.

  18. Neuromorphic Computing – From Materials Research to Systems Architecture Roundtable

    SciTech Connect

    Schuller, Ivan K.; Stevens, Rick; Pino, Robinson; Pechan, Michael

    2015-10-29

    Computation in its many forms is the engine that fuels our modern civilization. Modern computation—based on the von Neumann architecture—has allowed, until now, the development of continuous improvements, as predicted by Moore’s law. However, computation using current architectures and materials will inevitably—within the next 10 years—reach a limit because of fundamental scientific reasons. DOE convened a roundtable of experts in neuromorphic computing systems, materials science, and computer science in Washington on October 29-30, 2015 to address the following basic questions: Can brain-like (“neuromorphic”) computing devices based on new material concepts and systems be developed to dramatically outperform conventional CMOS based technology? If so, what are the basic research challenges for materials sicence and computing? The overarching answer that emerged was: The development of novel functional materials and devices incorporated into unique architectures will allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer. To address this challenge, the following issues were considered: The main differences between neuromorphic and conventional computing as related to: signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning New neuromorphic architectures needed to: produce lower energy consumption, potential novel nanostructured materials, and enhanced computation Device and materials properties needed to implement functions such as: hysteresis, stability, and fault tolerance Comparisons of different implementations: spin torque, memristors, resistive switching, phase change, and optical schemes for enhanced breakthroughs in performance, cost, fault tolerance, and/or manufacturability.

  19. High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation

    NASA Astrophysics Data System (ADS)

    House, M. G.; Bartlett, I.; Pakkiam, P.; Koch, M.; Peretz, E.; van der Heijden, J.; Kobayashi, T.; Rogge, S.; Simmons, M. Y.

    2016-10-01

    We report the development of a high-sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead designed to minimize the geometric requirements of a charge sensor for scalable quantum-computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography, and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single-electron transistor (rf SET) with which to make a comparison of the charge-detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1 compared with an integration time of 55 ns for the rf SET. This level of sensitivity is suitable for fast (<15 μ s ) single-spin readout in quantum-information applications, with a significantly reduced geometric footprint compared to the rf SET.

  20. LIBRA: A high-performance balanced computer architecture for Prolog

    SciTech Connect

    Mills, J.W.

    1988-01-01

    Four reduced-instruction-set computer (RISC) architectures for Prolog are presented: the Simple Abstract Machine (SAM), the Logic Programming Windowed RISC I (LOW RISC I), the LOW RISC II, and the Logical Inference Balanced RISC Architecture (LIBRA). An informal methodology for the semantic-based design of computer architectures relates the design of each architecture to its predecessor. The suitability of each architecture for Prolog is evaluated using macro expansions for each WAM instruction, from which execution speed, code density, memory usage, branch frequency, standard logical inferences per second, benchmark logical inferences per second and the semantic gap of each architecture relative to Prolog are calculated. The final design, the LIBRA, is 2.3 times as fast as the Berkeley PLM without interleaved memory, and 15 times as fast with eight-way instruction and data memory interleaving, reaching an estimated execution speed of 7.5 million standard logical inferences per second. The LIBRA's performance is due to parallelized tag and data operations, pipelining, reduced branch frequency, and complex single-cycle instructions.

  1. Advanced Computing Architectures for Cognitive Processing

    DTIC Science & Technology

    2009-07-01

    AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. FOR THE DIRECTOR: / s ... s / LOK YAN EDWARD J. JONES, Deputy Chief Work Unit Manager Advanced Computing Division...ELEMENT NUMBER 62702F 6. AUTHOR( S ) Gregory D. Peterson 5d. PROJECT NUMBER 459T 5e. TASK NUMBER AC 5f. WORK UNIT NUMBER CP 7. PERFORMING

  2. Optically Driven Spin Based Quantum Dots for Quantum Computing

    DTIC Science & Technology

    2008-01-01

    system approach to quantum optics, Lecture Notes in Physics (Springer, Berlin, 1993). [5] H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (1993...Electrical Engineering and Computer Science Department of Physics Harrison M. Randall Laboratory of Physics The University of Michigan Ann Arbor, MI...48109 Phone: 734-764-4469 Email: dst@umich.edu Co-Principal Investigator: L.J. Sham Department of Physics The University of California – San

  3. Deterministic quantum computation with one photonic qubit

    NASA Astrophysics Data System (ADS)

    Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.

    2015-07-01

    We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.

  4. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report

  5. Adiabatic cluster-state quantum computing

    SciTech Connect

    Bacon, Dave; Flammia, Steven T.

    2010-09-15

    Models of quantum computation (QC) are important because they change the physical requirements for achieving universal QC. For example, one-way QC requires the preparation of an entangled ''cluster'' state, followed by adaptive measurement on this state, a set of requirements which is different from the standard quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.

  6. Heterogeneous computer architecture for embedded real-time image interpretation

    NASA Astrophysics Data System (ADS)

    Salinger, Jeremy A.

    1993-10-01

    A heterogeneous parallel-processing computer architecture is being developed for embedded real-time interpretation of images and other data collected from sensors on mobile platforms. The Advanced Target Cueing and Recognition Engine (ATCURE) architecture includes specialized subsystems for input/output, image processing, numeric processing, and symbolic processing. Different specialization is provided for each subsystem to exploit distinctive demands for data storage, data representation, mixes of operations, and program control structures. The characteristics of each subsystem are described, with the Image Processing Subsystem (IPS) used to illustrate how the design is driven by careful analysis of current and projected computational requirements from many applications. These considerations led to a programming model for the Image Processing Subsystem in which images and their subsets are the fundamental unit of data. The processor implementation incorporates a scalable synchronous pipeline of processing elements that eliminates many of the bottlenecks found in MIMD and SIMD architectures.

  7. Ion Trap Quantum Computers: Performance Limits and Experimental Progress

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    1998-03-01

    In a quantum computer information would be represented by the quantum mechanical states of suitable atomic-scale systems. (A single bit of information represented by a two-level quantum system is known as a qubit.) This notion leads to the possibility of computing with quantum mechanical superpositions of numbers ("quantum parallelism"), which for certain problems would make Quantum/quantum.html>quantum computation very much more efficient than classical computation. The possibility of rapidly factoring the large integers used in public-key cryptography is an important example. (Public key cryptosystems derive their security from the difficuty of factoring, and similar problems, with conventional computers.) Quantum computational hardware development is in its infancy, but an experimental study of quantum computation with laser-cooled trapped calcium ions that is under way at Los Alamos will be described. One of the pricipal obstacles to practical quantum computation is the inevitable loss of quantum coherence of the complex quantum states involved. The results of a theoretical analysis showing that quantum factoring of small integers should be possible with trapped ions will be presented. The prospects for larger-scale computations will be discussed.

  8. New computer architectures as tools for ecological thought.

    PubMed

    Villa, F

    1992-06-01

    Recent achievements of computer science provide unrivaled power for the advancement of ecology. This power is not merely computational: parallel computers, having hierarchical organization as their architectural principle, also provide metaphors for understanding complex systems. In this sense they might play for a science of ecological complexity a role like equilibrium-based metaphors had in the development of dynamic systems ecology. Parallel computers provide this opportunity through an informational view of ecological reality and multilevel modelling paradigms. Spatial and individual-oriented models allow application and full understanding of the new metaphors in the ecological context.

  9. Measurement-Based and Universal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne; Fitzsimons, Joseph; Kashefi, Elham

    Measurement-based quantum computation (MBQC) is a novel approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operation. We review here the mathematical model underlying MBQC and the first quantum cryptographic protocol designed using the unique features of MBQC.

  10. Pipelined CPU Design with FPGA in Teaching Computer Architecture

    ERIC Educational Resources Information Center

    Lee, Jong Hyuk; Lee, Seung Eun; Yu, Heon Chang; Suh, Taeweon

    2012-01-01

    This paper presents a pipelined CPU design project with a field programmable gate array (FPGA) system in a computer architecture course. The class project is a five-stage pipelined 32-bit MIPS design with experiments on the Altera DE2 board. For proper scheduling, milestones were set every one or two weeks to help students complete the project on…

  11. Quantum computing gates via optimal control

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2014-10-01

    We demonstrate the use of optimal control to design two entropy-manipulating quantum gates which are more complex than the corresponding, commonly used, gates, such as CNOT and Toffoli (CCNOT): A two-qubit gate called polarization exchange (PE) and a three-qubit gate called polarization compression (COMP) were designed using GRAPE, an optimal control algorithm. Both gates were designed for a three-spin system. Our design provided efficient and robust nuclear magnetic resonance (NMR) radio frequency (RF) pulses for 13C2-trichloroethylene (TCE), our chosen three-spin system. We then experimentally applied these two quantum gates onto TCE at the NMR lab. Such design of these gates and others could be relevant for near-future applications of quantum computing devices.

  12. Quantum computation: algorithms and implementation in quantum dot devices

    NASA Astrophysics Data System (ADS)

    Gamble, John King

    In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques

  13. Dual-code quantum computation model

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Soo

    2015-08-01

    In this work, we propose the dual-code quantum computation model—a fault-tolerant quantum computation scheme which alternates between two different quantum error-correction codes. Since the chosen two codes have different sets of transversal gates, we can implement a universal set of gates transversally, thereby reducing the overall cost. We use code teleportation to convert between quantum states in different codes. The overall cost is decreased if code teleportation requires fewer resources than the fault-tolerant implementation of the non-transversal gate in a specific code. To analyze the cost reduction, we investigate two cases with different base codes, namely the Steane and Bacon-Shor codes. For the Steane code, neither the proposed dual-code model nor another variation of it achieves any cost reduction since the conventional approach is simple. For the Bacon-Shor code, the three proposed variations of the dual-code model reduce the overall cost. However, as the encoding level increases, the cost reduction decreases and becomes negative. Therefore, the proposed dual-code model is advantageous only when the encoding level is low and the cost of the non-transversal gate is relatively high.

  14. Applications of computational quantum mechanics

    NASA Astrophysics Data System (ADS)

    Temel, Burcin

    This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts

  15. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Stehlik, J.; Edge, L. F.; Petta, J. R.

    2017-01-01

    We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g c / 2 π = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon.

  16. Universal quantum gates for Single Cooper Pair Box based quantum computing

    NASA Technical Reports Server (NTRS)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  17. Non-unitary probabilistic quantum computing circuit and method

    NASA Technical Reports Server (NTRS)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  18. Universal quantum computation with metaplectic anyons

    SciTech Connect

    Cui, Shawn X.; Wang, Zhenghan E-mail: zhenghwa@microsoft.com

    2015-03-15

    We show that braidings of the metaplectic anyons X{sub ϵ} in SO(3){sub 2} = SU(2){sub 4} with their total charge equal to the metaplectic mode Y supplemented with projective measurements of the total charge of two metaplectic anyons are universal for quantum computation. We conjecture that similar universal anyonic computing models can be constructed for all metaplectic anyon systems SO(p){sub 2} for any odd prime p ≥ 5. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits.

  19. PREFACE: Quantum Information, Communication, Computation and Cryptography

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.

    2007-07-01

    The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable

  20. Hard chaos, quantum billiards, and quantum dot computers

    SciTech Connect

    Mainieri, R.; Cvitanovic, P.; Hasslacher, B.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Research was performed in analytic and computational techniques for dealing with hard chaos, especially the powerful tool of cycle expansions. This work has direct application to the understanding of electrons in nanodevices, such as junctions of quantum wires, or in arrays of dots or antidots. We developed a series of techniques for computing the properties of quantum systems with hard chaos, in particular the flow of electrons through nanodevices. These techniques are providing the insight and tools to design computers with nanoscale components. Recent efforts concentrated on understanding the effects of noise and orbit pruning in chaotic dynamical systems. We showed that most complicated chaotic systems (not just those equivalent to a finite shift) will develop branch points in their cycle expansion. Once the singularity is known to exist, it can be removed with a dramatic increase in the speed of convergence of quantities of physical interest.

  1. Symmetrically private information retrieval based on blind quantum computing

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling

    2015-05-01

    Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.

  2. OS friendly microprocessor architecture: Hardware level computer security

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; La Fratta, Patrick

    2016-05-01

    We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.

  3. Quantum computation over the butterfly network

    SciTech Connect

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2011-07-15

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglement resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.

  4. Integration of nanoscale memristor synapses in neuromorphic computing architectures.

    PubMed

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Legenstein, Robert; Deligeorgis, George; Prodromakis, Themistoklis

    2013-09-27

    Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.

  5. Integration of nanoscale memristor synapses in neuromorphic computing architectures

    NASA Astrophysics Data System (ADS)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Legenstein, Robert; Deligeorgis, George; Prodromakis, Themistoklis

    2013-09-01

    Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.

  6. FFT Computation with Systolic Arrays, A New Architecture

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin

    1994-01-01

    The use of the Cooley-Tukey algorithm for computing the l-d FFT lends itself to a particular matrix factorization which suggests direct implementation by linearly-connected systolic arrays. Here we present a new systolic architecture that embodies this algorithm. This implementation requires a smaller number of processors and a smaller number of memory cells than other recent implementations, as well as having all the advantages of systolic arrays. For the implementation of the decimation-in-frequency case, word-serial data input allows continuous real-time operation without the need of a serial-to-parallel conversion device. No control or data stream switching is necessary. Computer simulation of this architecture was done in the context of a 1024 point DFT with a fixed point processor, and CMOS processor implementation has started.

  7. A fully programmable computing architecture for medical ultrasound machines.

    PubMed

    Schneider, Fabio Kurt; Agarwal, Anup; Yoo, Yang Mo; Fukuoka, Tetsuya; Kim, Yongmin

    2010-03-01

    Application-specific ICs have been traditionally used to support the high computational and data rate requirements in medical ultrasound systems, particularly in receive beamforming. Utilizing the previously developed efficient front-end algorithms, in this paper, we present a simple programmable computing architecture, consisting of a field-programmable gate array (FPGA) and a digital signal processor (DSP), to support core ultrasound signal processing. It was found that 97.3% and 51.8% of the FPGA and DSP resources are, respectively, needed to support all the front-end and back-end processing for B-mode imaging with 64 channels and 120 scanlines per frame at 30 frames/s. These results indicate that this programmable architecture can meet the requirements of low- and medium-level ultrasound machines while providing a flexible platform for supporting the development and deployment of new algorithms and emerging clinical applications.

  8. Efficient Universal Computing Architectures for Decoding Neural Activity

    PubMed Central

    Rapoport, Benjamin I.; Turicchia, Lorenzo; Wattanapanitch, Woradorn; Davidson, Thomas J.; Sarpeshkar, Rahul

    2012-01-01

    The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain– machine interfaces (BMIs). Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain– machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than . We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA) implementation of this portion is consequently energy efficient

  9. Milestones Toward Majorana-Based Quantum Computing

    NASA Astrophysics Data System (ADS)

    Aasen, David; Hell, Michael; Mishmash, Ryan V.; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason

    2016-07-01

    We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well.

  10. Minimal computational-space implementation of multiround quantum protocols

    SciTech Connect

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Chiribella, Giulio

    2011-02-15

    A single-party strategy in a multiround quantum protocol can be implemented by sequential networks of quantum operations connected by internal memories. Here, we provide an efficient realization in terms of computational-space resources.

  11. Semiquantum key distribution with secure delegated quantum computation.

    PubMed

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-27

    Semiquantum key distribution allows a quantum party to share a random key with a "classical" party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution.

  12. Semiquantum key distribution with secure delegated quantum computation

    PubMed Central

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  13. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  14. Parallel algorithms and architecture for computation of manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Parallel computation of manipulator forward dynamics is investigated. Considering three classes of algorithms for the solution of the problem, that is, the O(n), the O(n exp 2), and the O(n exp 3) algorithms, parallelism in the problem is analyzed. It is shown that the problem belongs to the class of NC and that the time and processors bounds are of O(log2/2n) and O(n exp 4), respectively. However, the fastest stable parallel algorithms achieve the computation time of O(n) and can be derived by parallelization of the O(n exp 3) serial algorithms. Parallel computation of the O(n exp 3) algorithms requires the development of parallel algorithms for a set of fundamentally different problems, that is, the Newton-Euler formulation, the computation of the inertia matrix, decomposition of the symmetric, positive definite matrix, and the solution of triangular systems. Parallel algorithms for this set of problems are developed which can be efficiently implemented on a unique architecture, a triangular array of n(n+2)/2 processors with a simple nearest-neighbor interconnection. This architecture is particularly suitable for VLSI and WSI implementations. The developed parallel algorithm, compared to the best serial O(n) algorithm, achieves an asymptotic speedup of more than two orders-of-magnitude in the computation the forward dynamics.

  15. Architectural requirements for the Red Storm computing system.

    SciTech Connect

    Camp, William J.; Tomkins, James Lee

    2003-10-01

    This report is based on the Statement of Work (SOW) describing the various requirements for delivering 3 new supercomputer system to Sandia National Laboratories (Sandia) as part of the Department of Energy's (DOE) Accelerated Strategic Computing Initiative (ASCI) program. This system is named Red Storm and will be a distributed memory, massively parallel processor (MPP) machine built primarily out of commodity parts. The requirements presented here distill extensive architectural and design experience accumulated over a decade and a half of research, development and production operation of similar machines at Sandia. Red Storm will have an unusually high bandwidth, low latency interconnect, specially designed hardware and software reliability features, a light weight kernel compute node operating system and the ability to rapidly switch major sections of the machine between classified and unclassified computing environments. Particular attention has been paid to architectural balance in the design of Red Storm, and it is therefore expected to achieve an atypically high fraction of its peak speed of 41 TeraOPS on real scientific computing applications. In addition, Red Storm is designed to be upgradeable to many times this initial peak capability while still retaining appropriate balance in key design dimensions. Installation of the Red Storm computer system at Sandia's New Mexico site is planned for 2004, and it is expected that the system will be operated for a minimum of five years following installation.

  16. Performance evaluation of the SX-6 vector architecture forscientific computations

    SciTech Connect

    Oliker, Leonid; Canning, Andrew; Carter, Jonathan Carter; Shalf,John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri,Jahed; Van der Wijngaart, Rob

    2005-01-01

    The growing gap between sustained and peak performance for scientific applications is a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to reduce this gap for many computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX-6 vector processor, and compares it against the cache-based IBMPower3 and Power4 superscalar architectures, across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines many low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks. Finally, we evaluate the performance of several scientific computing codes. Overall results demonstrate that the SX-6 achieves high performance on a large fraction of our application suite and often significantly outperforms the cache-based architectures. However, certain classes of applications are not easily amenable to vectorization and would require extensive algorithm and implementation reengineering to utilize the SX-6 effectively.

  17. One-way quantum computing in the optical frequency comb.

    PubMed

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  18. Measurement-only verifiable blind quantum computing with quantum input verification

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2016-10-01

    Verifiable blind quantum computing is a secure delegated quantum computing where a client with a limited quantum technology delegates her quantum computing to a server who has a universal quantum computer. The client's privacy is protected (blindness), and the correctness of the computation is verifiable by the client despite her limited quantum technology (verifiability). There are mainly two types of protocols for verifiable blind quantum computing: the protocol where the client has only to generate single-qubit states and the protocol where the client needs only the ability of single-qubit measurements. The latter is called the measurement-only verifiable blind quantum computing. If the input of the client's quantum computing is a quantum state, whose classical efficient description is not known to the client, there was no way for the measurement-only client to verify the correctness of the input. Here we introduce a protocol of measurement-only verifiable blind quantum computing where the correctness of the quantum input is also verifiable.

  19. A Component Architecture for High-Performance Scientific Computing

    SciTech Connect

    Bernholdt, D E; Allan, B A; Armstrong, R; Bertrand, F; Chiu, K; Dahlgren, T L; Damevski, K; Elwasif, W R; Epperly, T W; Govindaraju, M; Katz, D S; Kohl, J A; Krishnan, M; Kumfert, G; Larson, J W; Lefantzi, S; Lewis, M J; Malony, A D; McInnes, L C; Nieplocha, J; Norris, B; Parker, S G; Ray, J; Shende, S; Windus, T L; Zhou, S

    2004-12-14

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  20. A Component Architecture for High-Performance Scientific Computing

    SciTech Connect

    Bernholdt, David E; Allan, Benjamin A; Armstrong, Robert C; Bertrand, Felipe; Chiu, Kenneth; Dahlgren, Tamara L; Damevski, Kostadin; Elwasif, Wael R; Epperly, Thomas G; Govindaraju, Madhusudhan; Katz, Daniel S; Kohl, James A; Krishnan, Manoj Kumar; Kumfert, Gary K; Larson, J Walter; Lefantzi, Sophia; Lewis, Michael J; Malony, Allen D; McInnes, Lois C; Nieplocha, Jarek; Norris, Boyana; Parker, Steven G; Ray, Jaideep; Shende, Sameer; Windus, Theresa L; Zhou, Shujia

    2006-07-03

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  1. Methodology of modeling and measuring computer architectures for plasma simulations

    NASA Technical Reports Server (NTRS)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  2. Decoherence in a scalable adiabatic quantum computer

    SciTech Connect

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-11-15

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.

  3. Verification for measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2014-06-01

    Blind quantum computing is a new secure quantum computing protocol where a client who does not have any sophisticated quantum technology can delegate her quantum computing to a server without leaking any privacy. It is known that a client who has only a measurement device can perform blind quantum computing [T. Morimae and K. Fujii, Phys. Rev. A 87, 050301(R) (2013), 10.1103/PhysRevA.87.050301]. It has been an open problem whether the protocol can enjoy the verification, i.e., the ability of the client to check the correctness of the computing. In this paper, we propose a protocol of verification for the measurement-only blind quantum computing.

  4. Distributed sequence alignment applications for the public computing architecture.

    PubMed

    Pellicer, S; Chen, G; Chan, K C C; Pan, Y

    2008-03-01

    The public computer architecture shows promise as a platform for solving fundamental problems in bioinformatics such as global gene sequence alignment and data mining with tools such as the basic local alignment search tool (BLAST). Our implementation of these two problems on the Berkeley open infrastructure for network computing (BOINC) platform demonstrates a runtime reduction factor of 1.15 for sequence alignment and 16.76 for BLAST. While the runtime reduction factor of the global gene sequence alignment application is modest, this value is based on a theoretical sequential runtime extrapolated from the calculation of a smaller problem. Because this runtime is extrapolated from running the calculation in memory, the theoretical sequential runtime would require 37.3 GB of memory on a single system. With this in mind, the BOINC implementation not only offers the reduced runtime, but also the aggregation of the available memory of all participant nodes. If an actual sequential run of the problem were compared, a more drastic reduction in the runtime would be seen due to an additional secondary storage I/O overhead for a practical system. Despite the limitations of the public computer architecture, most notably in communication overhead, it represents a practical platform for grid- and cluster-scale bioinformatics computations today and shows great potential for future implementations.

  5. Experimental Implementation of Efficient Linear Optics Quantum Computation

    DTIC Science & Technology

    2007-11-02

    Experimental Implementation of Efficient Linear Optics Quantum Computation Final Report G. J. Milburn, T. C. Ralph, and A. G. White University of...Queensland, Australia 1. Statement of Problem. One of the earliest proposals [1] for implementing quantum computation was based on encoding...containing few photons. In 2001 Knill, Laflamme and Milburn (KLM) found a way to circumvent this restriction and implement efficient quantum computation

  6. Control aspects of quantum computing using pure and mixed states.

    PubMed

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J

    2012-10-13

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

  7. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    PubMed

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  8. Modeling fluid dynamics on type II quantum computers

    NASA Astrophysics Data System (ADS)

    Scoville, James; Weeks, David; Yepez, Jeffrey

    2006-03-01

    A quantum algorithm is presented for modeling the time evolution of density and flow fields governed by classical equations, such as the diffusion equation, the nonlinear Burgers equation, and the damped wave equation. The algorithm is intended to run on a type-II quantum computer, a parallel quantum computer consisting of a lattice of small type I quantum computers undergoing unitary evolution and interacting via information interchanges represented by an orthogonal matrices. Information is effectively transferred between adjacent quantum computers over classical communications channels because of controlled state demolition following local quantum mechanical qubit-qubit interactions within each quantum computer. The type-II quantum algorithm presented in this paper describes a methodology for generating quantum logic operations as a generalization of classical operations associated with finite-point group symmetries. The quantum mechanical evolution of multiple qubits within each node is described. Presented is a proof that the parallel quantum system obeys a finite-difference quantum Boltzman equation at the mesoscopic scale, leading in turn to various classical linear and nonlinear effective field theories at the macroscopic scale depending on the details of the local qubit-qubit interactions.

  9. The computational structural mechanics testbed architecture. Volume 2: The interface

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    This is the third set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 3 describes the CLIP-Processor interface and related topics. It is intended only for processor developers.

  10. The computational structural mechanics testbed architecture. Volume 2: Directives

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the second of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 2 describes the CLIP directives in detail. It is intended for intermediate and advanced users.

  11. Thrifty: An Exascale Architecture for Energy Proportional Computing

    SciTech Connect

    Torrellas, Josep

    2014-12-23

    The objective of this project is to design different aspects of a novel exascale architecture called Thrifty. Our goal is to focus on the challenges of power/energy efficiency, performance, and resiliency in exascale systems. The project includes work on computer architecture (Josep Torrellas from University of Illinois), compilation (Daniel Quinlan from Lawrence Livermore National Laboratory), runtime and applications (Laura Carrington from University of California San Diego), and circuits (Wilfred Pinfold from Intel Corporation). In this report, we focus on the progress at the University of Illinois during the last year of the grant (September 1, 2013 to August 31, 2014). We also point to the progress in the other collaborating institutions when needed.

  12. The computational structural mechanics testbed architecture. Volume 1: The language

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    This is the first set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP, and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 1 presents the basic elements of the CLAMP language and is intended for all users.

  13. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  14. NMR quantum computation with optically polarized molecules

    NASA Astrophysics Data System (ADS)

    Verhulst, Anne; Yannoni, Constantino; Sherwood, Mark; Pomerantz, Drew; Vandersypen, Lieven; Chuang, Isaac

    2000-03-01

    Current methods for bulk NMR quantum computation rely on nuclear spin polarization present at high temperature equilibrium. This presents a challenging obstacle as the probability to find a spin in a specific state decreases exponentially in the number of spins used as qubits, causing a corresponding decrease in the signal to noise ratio of the desired NMR signal. One way to address this problem is to provide an artificial source of high polarization, such as optically pumped ^129Xe. For comparison, thermal equilibrium polarizations are only about 10-3% for ^1H in a typical NMR experiment at room temperature and in a 10 Tesla magnetic field, but with ^129Xe polarizations as high as 18% have been achieved [Happer et. al., Chem.Phys.Lett., 284, p.87-92, Feb 1998]. Using this technique, we prepare hyperpolarized liquid Xe and use it as a solvent for chloroform molecules (CHCl_3). Cross polarization (SPINOE) between ^129Xe and ^1H results in measured enhancements of the proton signal of over 300%, and evidence of transfer to ^13C. These results provide hope for the scalability of quantum computation.

  15. Measurement-only topological quantum computation via anyonic interferometry

    SciTech Connect

    Bonderson, Parsa Freedman, Michael Nayak, Chetan

    2009-04-15

    We describe measurement-only topological quantum computation using both projective and interferometrical measurement of topological charge. We demonstrate how anyonic teleportation can be achieved using 'forced measurement' protocols for both types of measurement. Using this, it is shown how topological charge measurements can be used to generate the braiding transformations used in topological quantum computation, and hence that the physical transportation of computational anyons is unnecessary. We give a detailed discussion of the anyonics for implementation of topological quantum computation (particularly, using the measurement-only approach) in fractional quantum Hall systems.

  16. Evaluation of leading scalar and vector architectures for scientific computations

    SciTech Connect

    Simon, Horst D.; Oliker, Leonid; Canning, Andrew; Carter, Jonathan; Ethier, Stephane; Shalf, John

    2004-04-20

    The growing gap between sustained and peak performance for scientific applications is a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to reduce this gap for many computational science codes and deliver a substantial increase in computing capabilities. This project examines the performance of the cacheless vector Earth Simulator (ES) and compares it to superscalar cache-based IBM Power3 system. Results demonstrate that the ES is significantly faster than the Power3 architecture, highlighting the tremendous potential advantage of the ES for numerical simulation. However, vectorization of a particle-in-cell application (GTC) greatly increased the memory footprint preventing loop-level parallelism and limiting scalability potential.

  17. Job Superscheduler Architecture and Performance in Computational Grid Environments

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak

    2003-01-01

    Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.

  18. A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory

    NASA Astrophysics Data System (ADS)

    Moiseev, S. A.; Andrianov, S. N.

    2016-12-01

    A quantum transistor based quantum computer where the multiqubit quantum memory is a component of the quantum transistor and, correspondingly, takes part in the performance of quantum logical operations is considered. Proceeding from the generalized Jaynes-Cummings model, equations for coefficients of the wave function of the quantum system under consideration have been obtained for different stages of its evolution in processes of performing logical operations. The solution of the system of equations allows one to establish requirements that are imposed on the parameters of the initial Hamiltonian and must be satisfied for the effective operation of the computer; it also demonstrates the possibility of a universal set of quantum operations. Thus, based on the proposed approach, the possibility of constructing a compact multiatomic ensemble based on quantum computer using a quantum transistor for the implementation of two-qubit gates has been demonstrated.

  19. Biomorphic Multi-Agent Architecture for Persistent Computing

    NASA Technical Reports Server (NTRS)

    Lodding, Kenneth N.; Brewster, Paul

    2009-01-01

    A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.

  20. Considerations for the extension of coherent optical processors into the quantum computing regime

    NASA Astrophysics Data System (ADS)

    Young, Rupert C. D.; Birch, Philip M.; Chatwin, Chris R.

    2016-04-01

    Previously we have examined the similarities of the quantum Fourier transform to the classical coherent optical implementation of the Fourier transform (R. Young et al, Proc SPIE Vol 87480, 874806-1, -11). In this paper, we further consider how superposition states can be generated on coherent optical wave fronts, potentially allowing coherent optical processing hardware architectures to be extended into the quantum computing regime. In particular, we propose placing the pixels of a Spatial Light Modulator (SLM) individually in a binary superposition state and illuminating them with a coherent wave front from a conventional (but low intensity) laser source in order to make a so-called `interaction free' measurement. In this way, the quantum object, i.e. the individual pixels of the SLM in their superposition states, and the illuminating wavefront would become entangled. We show that if this were possible, it would allow the extension of coherent processing architectures into the quantum computing regime and we give an example of such a processor configured to recover one of a known set of images encrypted using the well-known coherent optical processing technique of employing a random Fourier plane phase encryption mask which classically requires knowledge of the corresponding phase conjugate key to decrypt the image. A quantum optical computer would allow interrogation of all possible phase masks in parallel and so immediate decryption.

  1. Scalable architecture for a room temperature solid-state quantum information processor.

    PubMed

    Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D

    2012-04-24

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.

  2. Requirements for fault-tolerant factoring on an atom-optics quantum computer.

    PubMed

    Devitt, Simon J; Stephens, Ashley M; Munro, William J; Nemoto, Kae

    2013-01-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor's factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  3. Quantum computing with Josephson junction circuits

    NASA Astrophysics Data System (ADS)

    Xu, Huizhong

    This work concerns the study of Josephson junction circuits in the context of their usability for quantum computing. The zero-voltage state of a current-biased Josephson junction has a set of metastable quantum energy levels. If a junction is well isolated from its environment, it will be possible to use the two lowest states as a qubit in a quantum computer. I first examine the meaning of isolation theoretically. Using a master equation, I analyzed the effect of dissipation on escape rates and suggested a simple method, population depletion technique, to measure the relaxation time (T1). Using a stochastic Bloch equation to analyze the dependence of microwave resonance peak width on current noise, I found decoherence due to current noise depends on the noise spectrum. For high frequency noise with a cutoff frequency fc much larger than 1/T1, I found decoherence due to noise can be described by a dephasing rate that is proportional to the noise spectral density. However, for low frequency noise such that its cutoff frequency fc is much smaller than 1/T 1, decoherence due to noise depends on the total rms current noise. I then analyze and test a few qubit isolation schemes, including resistive isolation, inductor-capacitor (LC) isolation, half-wavelength resonant isolation and inductor-junction (LJ) isolation. I found the resistive isolation scheme has a severe heating problem. Macroscopic quantum tunneling and energy level quantization were observed in the LC isolated Nb/AlOx/Nb and AL/ALOx/Al junction qubits at 25 mK. Relaxation times of 4--12 ns and spectroscopic coherence times of 1--3 ns were obtained for these LC isolated qubits. I found the half-wavelength isolated junction qubit has a relaxation time of about 20 ns measured by the population-depletion techniques, but no energy levels were observed in this qubit. Experimental results suggest the LJ isolated qubit has a longer relaxation and coherence times than all my previously examined samples. Using a

  4. Fast quantum computation at arbitrarily low energy

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen P.

    2017-03-01

    One version of the energy-time uncertainty principle states that the minimum time T⊥ for a quantum system to evolve from a given state to any orthogonal state is h /(4 Δ E ) , where Δ E is the energy uncertainty. A related bound called the Margolus-Levitin theorem states that T⊥≥h /(2 ) , where is the expectation value of energy and the ground energy is taken to be zero. Many subsequent works have interpreted T⊥ as defining a minimal time for an elementary computational operation and correspondingly a fundamental limit on clock speed determined by a system's energy. Here we present local time-independent Hamiltonians in which computational clock speed becomes arbitrarily large relative to and Δ E as the number of computational steps goes to infinity. We argue that energy considerations alone are not sufficient to obtain an upper bound on computational speed, and that additional physical assumptions such as limits to information density and information transmission speed are necessary to obtain such a bound.

  5. Preparing projected entangled pair states on a quantum computer.

    PubMed

    Schwarz, Martin; Temme, Kristan; Verstraete, Frank

    2012-03-16

    We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.

  6. Computer Visualization of Many-Particle Quantum Dynamics

    SciTech Connect

    Ozhigov, A. Y.

    2009-03-10

    In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.

  7. A Component Architecture for High-Performance Computing

    SciTech Connect

    Bernholdt, D E; Elwasif, W R; Kohl, J A; Epperly, T G W

    2003-01-21

    The Common Component Architecture (CCA) provides a means for developers to manage the complexity of large-scale scientific software systems and to move toward a ''plug and play'' environment for high-performance computing. The CCA model allows for a direct connection between components within the same process to maintain performance on inter-component calls. It is neutral with respect to parallelism, allowing components to use whatever means they desire to communicate within their parallel ''cohort.'' We will discuss in detail the importance of performance in the design of the CCA and will analyze the performance costs associated with features of the CCA.

  8. Supporting Undergraduate Computer Architecture Students Using a Visual MIPS64 CPU Simulator

    ERIC Educational Resources Information Center

    Patti, D.; Spadaccini, A.; Palesi, M.; Fazzino, F.; Catania, V.

    2012-01-01

    The topics of computer architecture are always taught using an Assembly dialect as an example. The most commonly used textbooks in this field use the MIPS64 Instruction Set Architecture (ISA) to help students in learning the fundamentals of computer architecture because of its orthogonality and its suitability for real-world applications. This…

  9. Heterotic quantum and classical computing on convergence spaces

    NASA Astrophysics Data System (ADS)

    Patten, D. R.; Jakel, D. W.; Irwin, R. J.; Blair, H. A.

    2015-05-01

    Category-theoretic characterizations of heterotic models of computation, introduced by Stepney et al., combine computational models such as classical/quantum, digital/analog, synchronous/asynchronous, etc. to obtain increased computational power. A highly informative classical/quantum heterotic model of computation is represented by Abramsky's simple sequential imperative quantum programming language which extends the classical simple imperative programming language to encompass quantum computation. The mathematical (denotational) semantics of this classical language serves as a basic foundation upon which formal verification methods can be developed. We present a more comprehensive heterotic classical/quantum model of computation based on heterotic dynamical systems on convergence spaces. Convergence spaces subsume topological spaces but admit finer structure from which, in prior work, we obtained differential calculi in the cartesian closed category of convergence spaces allowing us to define heterotic dynamical systems, given by coupled systems of first order differential equations whose variables are functions from the reals to convergence spaces.

  10. Topological quantum computation--from basic concepts to first experiments.

    PubMed

    Stern, Ady; Lindner, Netanel H

    2013-03-08

    Quantum computation requires controlled engineering of quantum states to perform tasks that go beyond those possible with classical computers. Topological quantum computation aims to achieve this goal by using non-Abelian quantum phases of matter. Such phases allow for quantum information to be stored and manipulated in a nonlocal manner, which protects it from imperfections in the implemented protocols and from interactions with the environment. Recently, substantial progress in this field has been made on both theoretical and experimental fronts. We review the basic concepts of non-Abelian phases and their topologically protected use in quantum information processing tasks. We discuss different possible realizations of these concepts in experimentally available solid-state systems, including systems hosting Majorana fermions, their recently proposed fractional counterparts, and non-Abelian quantum Hall states.

  11. QCMPI: A parallel environment for quantum computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank; Juliá-Díaz, Bruno

    2009-06-01

    QCMPI is a quantum computer (QC) simulation package written in Fortran 90 with parallel processing capabilities. It is an accessible research tool that permits rapid evaluation of quantum algorithms for a large number of qubits and for various "noise" scenarios. The prime motivation for developing QCMPI is to facilitate numerical examination of not only how QC algorithms work, but also to include noise, decoherence, and attenuation effects and to evaluate the efficacy of error correction schemes. The present work builds on an earlier Mathematica code QDENSITY, which is mainly a pedagogic tool. In that earlier work, although the density matrix formulation was featured, the description using state vectors was also provided. In QCMPI, the stress is on state vectors, in order to employ a large number of qubits. The parallel processing feature is implemented by using the Message-Passing Interface (MPI) protocol. A description of how to spread the wave function components over many processors is provided, along with how to efficiently describe the action of general one- and two-qubit operators on these state vectors. These operators include the standard Pauli, Hadamard, CNOT and CPHASE gates and also Quantum Fourier transformation. These operators make up the actions needed in QC. Codes for Grover's search and Shor's factoring algorithms are provided as examples. A major feature of this work is that concurrent versions of the algorithms can be evaluated with each version subject to alternate noise effects, which corresponds to the idea of solving a stochastic Schrödinger equation. The density matrix for the ensemble of such noise cases is constructed using parallel distribution methods to evaluate its eigenvalues and associated entropy. Potential applications of this powerful tool include studies of the stability and correction of QC processes using Hamiltonian based dynamics. Program summaryProgram title: QCMPI Catalogue identifier: AECS_v1_0 Program summary URL

  12. From transistor to trapped-ion computers for quantum chemistry.

    PubMed

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  13. From transistor to trapped-ion computers for quantum chemistry

    NASA Astrophysics Data System (ADS)

    Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.

    2014-01-01

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  14. Computational quantum magnetism: Role of noncollinear magnetism

    NASA Astrophysics Data System (ADS)

    Freeman, Arthur J.; Nakamura, Kohji

    2009-04-01

    We are witnessing today a golden age of innovation with novel magnetic materials and with discoveries important for both basic science and device applications. Computation and simulation have played a key role in the dramatic advances of the past and those we are witnessing today. A goal-driving computational science—simulations of every-increasing complexity of more and more realistic models has been brought into greater focus with greater computing power to run sophisticated and powerful software codes like our highly precise full-potential linearized augmented plane wave (FLAPW) method. Indeed, significant progress has been achieved from advanced first-principles FLAPW calculations for the predictions of surface/interface magnetism. One recently resolved challenging issue is the role of noncollinear magnetism (NCM) that arises not only through the SOC, but also from the breaking of symmetry at surfaces and interfaces. For this, we will further review some specific advances we are witnessing today, including complex magnetic phenomena from noncollinear magnetism with no shape approximation for the magnetization (perpendicular MCA in transition-metal overlayers and superlattices; unidirectional anisotropy and exchange bias in FM and AFM bilayers; constricted domain walls important in quantum spin interfaces; and curling magnetic nano-scale dots as new candidates for non-volatile memory applications) and most recently providing new predictions and understanding of magnetism in novel materials such as magnetic semiconductors and multi-ferroic systems.

  15. Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities

    PubMed Central

    Luo, Ming-Xing; Wang, Xiaojun

    2014-01-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm. PMID:25030424

  16. Demonstration of measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Morimae, Tomoyuki; Walther, Philip

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

  17. Quantum Computing in Fock Space Systems

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    1997-04-01

    Fock space system (FSS) has unfixed number (N) of particles and/or degrees of freedom. In quantum computing (QC) main requirement is sustainability of coherent Q-superpositions. This normally favoured by low noise environment. High excitation/high temperature (T) limit is hence discarded as unfeasible for QC. Conversely, if N is itself a quantized variable, the dimensionality of Hilbert basis for qubits may increase faster (say, N-exponentially) than thermal noise (likely, in powers of N and T). Hence coherency may win over T-randomization. For this type of QC speed (S) of factorization of long integers (with D digits) may increase with D (for 'ordinary' QC speed polynomially decreases with D). This (apparent) paradox rests on non-monotonic bijectivity (cf. Georg Cantor's diagonal counting of rational numbers). This brings entire aleph-null structurality ("Babylonian Library" of infinite informational content of integer field) to superposition determining state of quantum analogue of Turing machine head. Structure of integer infinititude (e.g. distribution of primes) results in direct "Platonic pressure" resembling semi-virtual Casimir efect (presure of cut-off vibrational modes). This "effect", the embodiment of Pythagorean "Number is everything", renders Godelian barrier arbitrary thin and hence FSS-based QC can in principle be unlimitedly efficient (e.g. D/S may tend to zero when D tends to infinity).

  18. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  19. Modern hardware architectures accelerate porous media flow computations

    NASA Astrophysics Data System (ADS)

    Kulczewski, Michal; Kurowski, Krzysztof; Kierzynka, Michal; Dohnalik, Marek; Kaczmarczyk, Jan; Borujeni, Ali Takbiri

    2012-05-01

    Investigation of rock properties, porosity and permeability particularly, which determines transport media characteristic, is crucial to reservoir engineering. Nowadays, micro-tomography (micro-CT) methods allow to obtain vast of petro-physical properties. The micro-CT method facilitates visualization of pores structures and acquisition of total porosity factor, determined by sticking together 2D slices of scanned rock and applying proper absorption cut-off point. Proper segmentation of pores representation in 3D is important to solve the permeability of porous media. This factor is recently determined by the means of Computational Fluid Dynamics (CFD), a popular method to analyze problems related to fluid flows, taking advantage of numerical methods and constantly growing computing powers. The recent advent of novel multi-, many-core and graphics processing unit (GPU) hardware architectures allows scientists to benefit even more from parallel processing and built-in new features. The high level of parallel scalability offers both, the time-to-solution decrease and greater accuracy - top factors in reservoir engineering. This paper aims to present research results related to fluid flow simulations, particularly solving the total porosity and permeability of porous media, taking advantage of modern hardware architectures. In our approach total porosity is calculated by the means of general-purpose computing on multiple GPUs. This application sticks together 2D slices of scanned rock and by the means of a marching tetrahedra algorithm, creates a 3D representation of pores and calculates the total porosity. Experimental results are compared with data obtained via other popular methods, including Nuclear Magnetic Resonance (NMR), helium porosity and nitrogen permeability tests. Then CFD simulations are performed on a large-scale high performance hardware architecture to solve the flow and permeability of porous media. In our experiments we used Lattice Boltzmann

  20. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  1. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  2. Quantum Optical Implementations of Current Quantum Computing Paradigms

    DTIC Science & Technology

    2005-05-01

    Bacterial Spores,” at DARPA, Jan. 29, 2002. 10. M. O. Scully, “Quantum Maxwell demons ,” at Texas A&M University, March 19 (2002). 11. M. O...detectors,” at NEC, Princeton, April 5 (2002). 13. M. O. Scully, “Quantum thermodynamics: From quantum heat engines to Maxwell’s demons and beyond,” at...quantum heat engines to Maxwell’s demons and beyond,” International Conference on Quantum Information (ICQI), Oviedo, Spain, July 14-18, 2002. 18. M. O

  3. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments.

  4. The Brain Is both Neurocomputer and Quantum Computer

    ERIC Educational Resources Information Center

    Hameroff, Stuart R.

    2007-01-01

    In their article, "Is the Brain a Quantum Computer,?" Litt, Eliasmith, Kroon, Weinstein, and Thagard (2006) criticize the Penrose-Hameroff "Orch OR" quantum computational model of consciousness, arguing instead for neurocomputation as an explanation for mental phenomena. Here I clarify and defend Orch OR, show how Orch OR and neurocomputation are…

  5. Quantum computing using electron-nuclear double resonances

    NASA Astrophysics Data System (ADS)

    Bowden, Charles M.; Dowling, Jonathan P.; Hotaling, Steven P.

    1997-07-01

    We consider the use of Electron-Nuclear Double Resonance (ENDOR) techniques in quantum computing. ENDOR resolution as a possible limiting factor is discussed. It is found that ENDOR and double-ENDOR techniques have sufficient resolution for quantum computing applications.

  6. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  7. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  8. Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne

    2016-08-01

    In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.

  9. A reconfigurable gate architecture for Si/SiGe quantum dots

    SciTech Connect

    Zajac, D. M.; Hazard, T. M.; Mi, X.; Wang, K.; Petta, J. R.

    2015-06-01

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  10. Physical implementation of a Majorana fermion surface code for fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Vijay, Sagar; Fu, Liang

    2016-12-01

    We propose a physical realization of a commuting Hamiltonian of interacting Majorana fermions realizing Z 2 topological order, using an array of Josephson-coupled topological superconductor islands. The required multi-body interaction Hamiltonian is naturally generated by a combination of charging energy induced quantum phase-slips on the superconducting islands and electron tunneling between islands. Our setup improves on a recent proposal for implementing a Majorana fermion surface code (Vijay et al 2015 Phys. Rev. X 5 041038), a ‘hybrid’ approach to fault-tolerant quantum computation that combines (1) the engineering of a stabilizer Hamiltonian with a topologically ordered ground state with (2) projective stabilizer measurements to implement error correction and a universal set of logical gates. Our hybrid strategy has advantages over the traditional surface code architecture in error suppression and single-step stabilizer measurements, and is widely applicable to implementing stabilizer codes for quantum computation.

  11. Experimental magic state distillation for fault-tolerant quantum computing.

    PubMed

    Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond

    2011-01-25

    Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  12. Secure Multiparty Quantum Computation for Summation and Multiplication

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197

  13. Secure Multiparty Quantum Computation for Summation and Multiplication

    NASA Astrophysics Data System (ADS)

    Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

  14. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN

    SciTech Connect

    Potok, Thomas; Schuman, Catherine; Patton, Robert; Hylton, Todd; Li, Hai; Pino, Robinson

    2016-12-31

    The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshop we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.

  15. Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer

    NASA Astrophysics Data System (ADS)

    Moll, Nikolaj; Fuhrer, Andreas; Staar, Peter; Tavernelli, Ivano

    2016-07-01

    Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the Fermionic problem in a system of qubits. By exploiting the block diagonality of a Fermionic Hamiltonian, we show that the number of required qubits can be reduced while the number of terms in the Hamiltonian will increase. All operations for this reduction can be performed in operator space. The scheme is conceived as a pre-computational step that would be performed prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi-Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer. Despite the increase in the number of Hamiltonian terms, the scheme still remains a useful tool to reduce the dimensionality of specific quantum systems for quantum simulators with a limited number of resources.

  16. Examining the architecture of cellular computing through a comparative study with a computer.

    PubMed

    Wang, Degeng; Gribskov, Michael

    2005-06-22

    The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software-hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's "hardware" equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the "bandwidth" of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed.

  17. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    NASA Technical Reports Server (NTRS)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  18. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  19. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  20. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  1. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  2. Non-quantum implementation of quantum computation algorithm using a spatial coding technique

    NASA Astrophysics Data System (ADS)

    Tate, N.; Ogura, Y.; Tanida, J.

    2005-07-01

    Non-quantum implementation of quantum information processing is studied. A spatial coding technique, which is one effective digital optical computing technique, is utilized to implement quantum teleportation efficiently. In the coding, quantum information is represented by the intensity and the phase of elemental cells. Correct operation is confirmed within the proposed scheme, which indicates the effectiveness of the proposed approach and a motive for further investigation.

  3. Universal quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-05-01

    We theoretically show that a nonlinear oscillator network with controllable parameters can be used for universal quantum computation. The initialization is achieved by a quantum-mechanical bifurcation based on quantum adiabatic evolution, which yields a Schrödinger cat state. All the elementary quantum gates are also achieved by quantum adiabatic evolution, in which dynamical phases accompanying the adiabatic evolutions are controlled by the system parameters. Numerical simulation results indicate that high gate fidelities can be achieved, where no dissipation is assumed.

  4. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  5. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.

    PubMed

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-23

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  6. HTMT-class Latency Tolerant Parallel Architecture for Petaflops Scale Computation

    NASA Technical Reports Server (NTRS)

    Sterling, Thomas; Bergman, Larry

    2000-01-01

    Computational Aero Sciences and other numeric intensive computation disciplines demand computing throughputs substantially greater than the Teraflops scale systems only now becoming available. The related fields of fluids, structures, thermal, combustion, and dynamic controls are among the interdisciplinary areas that in combination with sufficient resolution and advanced adaptive techniques may force performance requirements towards Petaflops. This will be especially true for compute intensive models such as Navier-Stokes are or when such system models are only part of a larger design optimization computation involving many design points. Yet recent experience with conventional MPP configurations comprising commodity processing and memory components has shown that larger scale frequently results in higher programming difficulty and lower system efficiency. While important advances in system software and algorithms techniques have had some impact on efficiency and programmability for certain classes of problems, in general it is unlikely that software alone will resolve the challenges to higher scalability. As in the past, future generations of high-end computers may require a combination of hardware architecture and system software advances to enable efficient operation at a Petaflops level. The NASA led HTMT project has engaged the talents of a broad interdisciplinary team to develop a new strategy in high-end system architecture to deliver petaflops scale computing in the 2004/5 timeframe. The Hybrid-Technology, MultiThreaded parallel computer architecture incorporates several advanced technologies in combination with an innovative dynamic adaptive scheduling mechanism to provide unprecedented performance and efficiency within practical constraints of cost, complexity, and power consumption. The emerging superconductor Rapid Single Flux Quantum electronics can operate at 100 GHz (the record is 770 GHz) and one percent of the power required by convention

  7. A quantum annealing architecture with all-to-all connectivity from local interactions

    PubMed Central

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  8. A quantum annealing architecture with all-to-all connectivity from local interactions.

    PubMed

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  9. Processes models, environmental analyses, and cognitive architectures: quo vadis quantum probability theory?

    PubMed

    Marewski, Julian N; Hoffrage, Ulrich

    2013-06-01

    A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.

  10. Symbolic Quantum Computation Simulation in SymPy

    NASA Astrophysics Data System (ADS)

    Cugini, Addison; Curry, Matt; Granger, Brian

    2010-10-01

    Quantum computing is an emerging field which aims to use quantum mechanics to solve difficult computational problems with greater efficiency than on a classical computer. There is a need to create software that i) helps newcomers to learn the field, ii) enables practitioners to design and simulate quantum circuits and iii) provides an open foundation for further research in the field. Towards these ends we have created a package, in the open-source symbolic computation library SymPy, that simulates the quantum circuit model of quantum computation using Dirac notation. This framework builds on the extant powerful symbolic capabilities of SymPy to preform its simulations in a fully symbolic manner. We use object oriented design to abstract circuits as ordered collections of quantum gate and qbit objects. The gate objects can either be applied directly to the qbit objects or be represented as matrices in different bases. The package is also capable of performing the quantum Fourier transform and Shor's algorithm. A notion of measurement is made possible through the use of a non-commutative gate object. In this talk, we describe the software and show examples of quantum circuits on single and multi qbit states that involve common algorithms, gates and measurements.

  11. Charge-transfer dynamics in multilayered PbS and PbSe quantum dot architectures

    SciTech Connect

    Xu, F.; Ma, X.; Haughn, C. R.; Doty, M. F.; Cloutier, S. G.

    2014-02-03

    We demonstrate control of the charge transfer process in PbS and PbSe quantum dot assemblies. We first demonstrate efficient charge transfer from donor quantum dots to acceptor quantum dots in a multi-layer PbSe cascade structure. Then, we assemble type-I and type-II heterostructures using both PbS and PbSe quantum dots via careful control of the band alignment. In type-I structures, photo-generated carriers are transferred and localized in the smaller bandgap (acceptor) quantum dots, resulting in a significant luminescence enhancement. In contrast, a significant luminescence quenching and shorter emission lifetime confirms an efficient separation of photo-generated carriers in the type-II architecture.

  12. Cryogenic setup for trapped ion quantum computing.

    PubMed

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with (40)Ca(+) and (88)Sr(+) ions. The instability of the laser manipulating the optical qubits in (40)Ca(+) is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10(-15) at 0.33 s. To evaluate the performance of the apparatus, we trapped (40)Ca(+) ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  13. Cryogenic setup for trapped ion quantum computing

    NASA Astrophysics Data System (ADS)

    Brandl, M. F.; van Mourik, M. W.; Postler, L.; Nolf, A.; Lakhmanskiy, K.; Paiva, R. R.; Möller, S.; Daniilidis, N.; Häffner, H.; Kaushal, V.; Ruster, T.; Warschburger, C.; Kaufmann, H.; Poschinger, U. G.; Schmidt-Kaler, F.; Schindler, P.; Monz, T.; Blatt, R.

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40Ca+ and 88Sr+ ions. The instability of the laser manipulating the optical qubits in 40Ca+ is characterized by yielding a minimum of its Allan deviation of 2.4 ṡ 10-15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40Ca+ ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  14. Consciousness and Logic in a Quantum-Computing Universe

    NASA Astrophysics Data System (ADS)

    Zizzi, Paola

    The early inflationary universe can be described in terms of quantum information. More specifically, the inflationary universe can be viewed as a superposed state of quantum registers. Actually, during inflation, one can speak of a quantum superposition of universes. At the end of inflation, only one universe is selected, by a mechanism called self-reduction, which is consistent with Penrose's objective reduction (OR) model. The quantum gravity threshold of (OR) is reached at the end of inflation, and corresponds to a superposed state of 109 quantum registers. This is also the number of superposed tubulins — qubits in our brain, which undergo the Penrose-Hameroff orchestrated objective reduction, (Orch OR), leading to a conscious event. Then, an analogy naturally arises between the very early quantum-computing universe, and our mind. In fact, we argue that at the end of in- flation, the universe underwent a cosmic conscious event, the so-called "Big Wow", which acted as an imprinting for the future minds to come, with future modes of computation, consciousness and logic. The postinflationary universe organized itself as a cellular automaton (CA) with two computational modes: quantum and classical, like the two conformations assumed by the cellular automaton of tubulins in our brain, as in Hameroff's model. In the quantum configuration, the universe quantum-evaluates recursive functions, which are the laws of physics in their most abstract form. To do so in a very efficient way, the universe uses, as subroutines, black holes - quantum computers and quantum minds, which operate in parallel. The outcomes of the overall quantum computation are the universals, the attributes of things in themselves. These universals are partially obtained also by the quantum minds, and are endowed with subjective meaning. The units of the subjective universals are qualia, which are strictly related to the (virtual) existence of Planckian black holes. Further, we consider two aspects

  15. Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2012-02-03

    surface of the protective layer shown in figure 8 is likely due to this sputtering effect. We are going to address this issue by using a photosensitive ...Dirk Englund, Optics Express 19 (21), 20586-96 (2011) 6. Dense Wavelength Division Multiplexed Quantum Key Distribution Using Entangled Photons, J

  16. Novel Architecture for High Speed and High Fidelity Readout of a Quantum Annealing Processor

    NASA Astrophysics Data System (ADS)

    Altomare, Fabio; Berkley, Andrew J.; Harris, Richard; Hoskinson, Emile M.; Johnson, Mark W.; Lanting, Trevor M.; Uchaikin, Sergey; Whittaker, Jed D.; Bunyk, Paul; Tolkacheva, Elena; Perminov, Ilya

    2014-03-01

    Hysteretic dc SQUIDs provide an easy method to read the state of hundreds of qubits[1]. However, this approach becomes impractical for circuits with an even larger number of qubits due to heating when dc SQUIDs switch, the relatively slow retrapping dynamics of high quality devices, and suboptimal scaling of the number of control lines with increasing numbers of qubits. The D-Wave Two processor uses an architecture that addresses all three of these issues. This new architecture makes use of Quantum Flux Parametron based shift registers that transfer the classical information produced as the output of the quantum annealing algorithm to a small number of fast non-dissipative and high fidelity microwave readout devices. We will provide an introduction to our implementation, and present data pertaining to readout performance from a 512-qubit quantum annealing processor.

  17. Modulating retroreflector architecture using multiple quantum wells for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine; Rabinovich, William S.; Mahon, Rita; Corson, Michael R.; Kline, John F.; Resnick, Joshua H.; Merk, H. C.; Vilcheck, Michael J.

    1998-12-01

    In this paper, we describe a demonstration using a Multiple Quantum Well modulator combined with an optical retroreflector which supported a high speed free space optical data link. Video images were transmitted over an 859 nanometer link at a rate of 460 kilo bits per second, where rate of modulation was limited by demonstration hardware, not the modulator. Reflection architectures for the modulator were used although transmission architectures have also been investigated but are not discussed in this paper. The modulator was a GaAs/Al0.3Ga0.7As quantum well which was designed and fabricated for use as a shutter at the Naval Research Laboratory. We believe these are the first results reported demonstrating a high speed free space optical data link using multiple quantum well shutters combined with retroreflectors for viable free space optical communications.

  18. Universal continuous-variable quantum computation without cooling

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Plenio, Martin B.

    2017-02-01

    One limitation of the quantum computing capability of a continuous-variable system is determined by our ability to cool it to the ground state, because pure logical states, in which we accurately encode quantum information, are conventionally pure physical states that are constructed from the ground state. In this work, we present an alternative quantum computing formalism that encodes logical quantum information in mixed physical states. We introduce a class of mixed-state protocols that are based on a parity encoding, and propose an implementation of the universal logic gates by using realistic hybrid interactions. When compared with the conventional pure-state protocols, our formalism could relax the necessity, and hence the systemic requirements, of cooling. Additionally, the mixed-state protocols are inherently resilient to a wider class of noise processes and reduce the fundamental energy consumption in initialization. Our work broadens the range of candidates for continuous-variable quantum computers.

  19. Novel Approaches to Quantum Computation Using Solid State Qubits

    DTIC Science & Technology

    2007-12-31

    Han, A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network, submitted to Phys. Lett. A, 343...approach, Phys. Rev. B 70, 094513 (2004). 22. C.-P. Yang, S.-I. Chu, and S. Han, Efficient many party controlled teleportation of multiqubit quantum ...June 1, 2001- September 30, 2007 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER "Novel Approaches to Quantum Computation Using Solid State Qubits" F49620

  20. Combining Dynamical Decoupling with Fault-Tolerant Quantum Computation

    DTIC Science & Technology

    2009-11-17

    ar X iv :0 91 1. 32 02 v1 [ qu an t- ph ] 1 7 N ov 2 00 9 Combining dynamical decoupling with fault-tolerant quantum computation Hui Khoon Ng,1...Daniel A. Lidar,2 and John Preskill1 1Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA 2Departments...of Chemistry, Electrical Engineering, and Physics, and Center for Quantum Information Science & Technology, University of Southern California, Los

  1. Scalable Quantum Networks for Distributed Computing and Sensing

    DTIC Science & Technology

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0007 Scalable Quantum Networks for Distributed Computing and Sensing Ian Walmsley THE UNIVERSITY OF OXFORD Final Report 04/01...MM-YYYY) 12/07/2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01-Sep-2012 to 31-Aug-2015 4. TITLE AND SUBTITLE Scalable Quantum Networks...SUPPLEMENTARY NOTES 14. ABSTRACT We identified two barriers to the implementation of large-scale photonic quantum networks. First, as scalability requires

  2. Single Photon Holographic Qudit Elements for Linear Optical Quantum Computing

    DTIC Science & Technology

    2011-05-01

    in optical volume holography and designed and simulated practical single-photon, single-optical elements for qudit MUB-state quantum in- formation...Independent of the representation we use, the MUB states will ordinarily be modulated in both amplitude and phase. Recently a practical method has been...quantum computing with qudits (d ≥ 3) has been an efficient and practical quantum state sorter for photons whose complex fields are modulated in both

  3. The RISC (Reduced Instruction Set Computer) Architecture and Computer Performance Evaluation.

    DTIC Science & Technology

    1986-03-01

    ISPONSORING O b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER *ORGANIZATION (it applicable) Sc aDDRE SS (City, State, and ZIP Code) 10 SOURCE...began by making an identification and char- acterization of a new and controversial type of computer architecture called RISC for Reduced Instruction...1000 Lisboa Portugal 6. Manuel Pedrosa de Barros 4 Celula 5 Bloco 5 Lote D, 3 Direito 2795 Linda-a-Velha Portugal t~m " 96" ..... ...... |f

  4. E-Governance and Service Oriented Computing Architecture Model

    NASA Astrophysics Data System (ADS)

    Tejasvee, Sanjay; Sarangdevot, S. S.

    2010-11-01

    E-Governance is the effective application of information communication and technology (ICT) in the government processes to accomplish safe and reliable information lifecycle management. Lifecycle of the information involves various processes as capturing, preserving, manipulating and delivering information. E-Governance is meant to transform of governance in better manner to the citizens which is transparent, reliable, participatory, and accountable in point of view. The purpose of this paper is to attempt e-governance model, focus on the Service Oriented Computing Architecture (SOCA) that includes combination of information and services provided by the government, innovation, find out the way of optimal service delivery to citizens and implementation in transparent and liable practice. This paper also try to enhance focus on the E-government Service Manager as a essential or key factors service oriented and computing model that provides a dynamically extensible structural design in which all area or branch can bring in innovative services. The heart of this paper examine is an intangible model that enables E-government communication for trade and business, citizen and government and autonomous bodies.

  5. Resilience to Time-Correlated Noise in Quantum Computation

    NASA Astrophysics Data System (ADS)

    Bombín, Héctor

    2016-10-01

    Fault-tolerant quantum computation techniques rely on weakly correlated noise. Here, I show that it is enough to assume weak spatial correlations: Time correlations can take any form. In particular, single-shot error-correction techniques exhibit a noise threshold for quantum memories under spatially local stochastic noise.

  6. Preparing ground States of quantum many-body systems on a quantum computer.

    PubMed

    Poulin, David; Wocjan, Pawel

    2009-04-03

    Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.

  7. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  8. Blind quantum computation protocol in which Alice only makes measurements

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Fujii, Keisuke

    2013-05-01

    Blind quantum computation is a new secure quantum computing protocol which enables Alice (who does not have sufficient quantum technology) to delegate her quantum computation to Bob (who has a full-fledged quantum computer) in such a way that Bob cannot learn anything about Alice's input, output, and algorithm. In previous protocols, Alice needs to have a device which generates quantum states, such as single-photon states. Here we propose another type of blind computing protocol where Alice does only measurements, such as the polarization measurements with a threshold detector. In several experimental setups, such as optical systems, the measurement of a state is much easier than the generation of a single-qubit state. Therefore our protocols ease Alice's burden. Furthermore, the security of our protocol is based on the no-signaling principle, which is more fundamental than quantum physics. Finally, our protocols are device independent in the sense that Alice does not need to trust her measurement device in order to guarantee the security.

  9. Secure entanglement distillation for double-server blind quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2013-07-12

    Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.

  10. Computing protein infrared spectroscopy with quantum chemistry.

    PubMed

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  11. Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit

  12. A Client-Server Architecture for an Instructional Environment Based on Computer Networks and the Internet.

    ERIC Educational Resources Information Center

    Guidon, Jacques; Pierre, Samuel

    1996-01-01

    Discusses the use of computers in education and training and proposes a client-server architecture for an experimental computer environment as an approach to a virtual classroom. Highlights include the World Wide Web and client software, document delivery, hardware architecture, and Internet resources and services. (Author/LRW)

  13. Experimental demonstration of a programmable quantum computer by NMR.

    PubMed

    Kim, Jaehyun; Lee, Jae-Seung; Hwang, Taesoon; Lee, Soonchil

    2004-01-01

    A programmable quantum computer is experimentally demonstrated by nuclear magnetic resonance using one qubit for the program and two qubits for data. A non-separable two-qubit operation is performed in a programmable way to show the successful demonstration. Projective measurements required in the programmable quantum computer are simulated by averaging the results of experiments just like when producing an effective pure state.

  14. Thermalization in nature and on a quantum computer.

    PubMed

    Riera, Arnau; Gogolin, Christian; Eisert, Jens

    2012-02-24

    In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.

  15. Universal linear Bogoliubov transformations through one-way quantum computation

    SciTech Connect

    Ukai, Ryuji; Yoshikawa, Jun-ichi; Iwata, Noriaki; Furusawa, Akira; Loock, Peter van

    2010-03-15

    We show explicitly how to realize an arbitrary linear unitary Bogoliubov (LUBO) transformation on a multimode quantum state through homodyne-based one-way quantum computation. Any LUBO transformation can be approximated by means of a fixed, finite-sized, sufficiently squeezed Gaussian cluster state that allows for the implementation of beam splitters (in form of three-mode connection gates) and general one-mode LUBO transformations. In particular, we demonstrate that a linear four-mode cluster state is a sufficient resource for an arbitrary one-mode LUBO transformation. Arbitrary-input quantum states including non-Gaussian states could be efficiently attached to the cluster through quantum teleportation.

  16. Quantum computation for large-scale image classification

    NASA Astrophysics Data System (ADS)

    Ruan, Yue; Chen, Hanwu; Tan, Jianing; Li, Xi

    2016-10-01

    Due to the lack of an effective quantum feature extraction method, there is currently no effective way to perform quantum image classification or recognition. In this paper, for the first time, a global quantum feature extraction method based on Schmidt decomposition is proposed. A revised quantum learning algorithm is also proposed that will classify images by computing the Hamming distance of these features. From the experimental results derived from the benchmark database Caltech 101, and an analysis of the algorithm, an effective approach to large-scale image classification is derived and proposed against the background of big data.

  17. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called

  18. Exponential rise of dynamical complexity in quantum computing through projections.

    PubMed

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-10-10

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

  19. Exponential rise of dynamical complexity in quantum computing through projections

    PubMed Central

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-01-01

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692

  20. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    Colvin, M; Krishnan, V V

    2003-02-07

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  1. Quantum Computing: Selected Internet Resources for Librarians, Researchers, and the Casually Curious

    ERIC Educational Resources Information Center

    Cirasella, Jill

    2009-01-01

    This article presents an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news. All of the quantum computing resources described in this article are freely available, English-language web sites that fall into one…

  2. Quantum Computation Based on Photons with Three Degrees of Freedom

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2016-01-01

    Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems. PMID:27174302

  3. Computational Role of Tunneling in a Programmable Quantum Annealer

    NASA Technical Reports Server (NTRS)

    Boixo, Sergio; Smelyanskiy, Vadim; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Amin, Mohammad; Mohseni, Masoud; Denchev, Vasil S.; Neven, Hartmut

    2016-01-01

    Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We developed a theoretical model based on a NIBA Quantum Master Equation to describe the multi-qubit dissipative cotunneling effects under the complex noise characteristics of such quantum devices.We start by considering a computational primitive, the simplest non-convex optimization problem consisting of just one global and one local minimum. The quantum evolutions enable tunneling to the global minimum while the corresponding classical paths are trapped in a false minimum. In our study the non-convex potentials are realized by frustrated networks of qubit clusters with strong intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed in the critical phase during the evolution where quantum tunneling decides the right path to solution. In a later stage dissipation facilitates the multiqubit cotunneling leading to the solution state. The predictions of the model accurately describe the experimental data from the D-WaveII quantum annealer at NASA Ames. In our computational primitive the temperature dependence of the probability of success in the quantum model is opposite to that of the classical paths with thermal hopping. Specially, we provide an analysis of an optimization problem with sixteen qubits,demonstrating eight qubit cotunneling that increases success probabilities. Furthermore, we report results for larger problems with up to 200 qubits that contain the primitive as subproblems.

  4. Limits on the Power of Some Models of Quantum Computation

    NASA Astrophysics Data System (ADS)

    Ortiz, Gerardo; Somma, Rolando; Barnum, Howard; Knill, Emanuel

    2006-09-01

    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently (exactly) solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.

  5. Limits on the Power of Some Models of Quantum Computation

    NASA Astrophysics Data System (ADS)

    Ortiz, Gerardo; Somma, Rolando; Barnum, Howard; Knill, Emanuel

    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently (exactly) solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.

  6. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.

    PubMed

    Douce, T; Markham, D; Kashefi, E; Diamanti, E; Coudreau, T; Milman, P; van Loock, P; Ferrini, G

    2017-02-17

    Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.

  7. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample

    NASA Astrophysics Data System (ADS)

    Douce, T.; Markham, D.; Kashefi, E.; Diamanti, E.; Coudreau, T.; Milman, P.; van Loock, P.; Ferrini, G.

    2017-02-01

    Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.

  8. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    DTIC Science & Technology

    2016-08-25

    Masoud Mohseni1 & Hartmut Neven1 Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the...the initial temperature must be high to overcome tall energy barriers. As the algorithm progresses, the temperature is gradually lowered to distinguish...between local minima with small energy differences. This causes the stochastic process to freeze once the thermal energy is lower than the height of

  9. Entropic Lattice Boltzmann Models and Quantum Computation

    DTIC Science & Technology

    2008-04-01

    cellular automata, quantum cellular automata, action principles, periodic orbits, turbulence U U U UL 8 Bruce M. Boghosian (617) 627–3054 Contents 1...thereof . . 6 2.5 Lattice Boltzmann algorithm for periodic unstable orbits . . . . . . . . . . . . . . . . . . . . . 7 3 Personnel Supported 7 3.1 2005...continue to work on it in the remaining period of this grant. There are reasons for optimism in the search for quantum circuits described above. First, if

  10. Computational Issues in the Control of Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    2003-03-01

    Computational Issues in the Control of Quantum Dynamics Phenomena Herschel Rabitz Department of Chemistry Princeton University The control of quantum phenomena embraces a variety of applications, with the most common implementation involving tailored laser pulses to steer the dynamics of a quantum system towards some specified observable outcome. The theoretical and computational aspects of this subject are intimately tied to the growing experimental capabilities, especially the ability to perform massive numbers of high throughput experiments. Computational studies in this context have special roles. Especially important is the use of computational techniques to develop new control algorithms, which ultimately would be implemented in the laboratory to guide the control of complex quantum systems. Beyond control alone, many of the same concepts can be exploited for the performance of experiments optimally tuned for inversion, to extract Hamiltonian information. The latter scenario poses very high demands on the efficiency of solving the quantum dynamics equations to extract the information content from the experimental data. The concept of exploiting a computational quantum control tool kit will be introduced as a means for addressing many of these challenges.

  11. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    David Ceperley

    2011-03-02

    CUDA GPU platform. We restructured the CPU algorithms to express additional parallelism, minimize GPU-CPU communication, and efficiently utilize the GPU memory hierarchy. Using mixed precision on GT200 GPUs and MPI for intercommunication and load balancing, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core Xeon CPUs alone, while reproducing the double-precision CPU results within statistical error. We developed an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and used it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We computed the static contribution to the free energy with the QMC method and obtained the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We computed the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy. We compared experimental and theoretical results on the momentum distribution and the quasiparticle renormalization factor in sodium. From an x-ray Compton-profile measurement of the valence-electron momentum density, we derived its discontinuity at the Fermi wavevector finding an accurate measure of the renormalization factor that we compared with quantum-Monte-Carlo and G0W0 calculations performed both on crystalline sodium and on the homogeneous electron gas. Our calculated results are in good agreement with the experiment. We have been studying the heat of formation for various Kubas complexes of molecular

  12. LDRD final report on quantum computing using interacting semiconductor quantum wires.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Dunn, Roberto G.; Lilly, Michael Patrick; Tibbetts, Denise R. ); Stephenson, Larry L.; Seamons, John Andrew; Reno, John Louis; Bielejec, Edward Salvador; Simmons, Jerry Alvon

    2006-01-01

    For several years now quantum computing has been viewed as a new paradigm for certain computing applications. Of particular importance to this burgeoning field is the development of an algorithm for factoring large numbers which obviously has deep implications for cryptography and national security. Implementation of these theoretical ideas faces extraordinary challenges in preparing and manipulating quantum states. The quantum transport group at Sandia has demonstrated world-leading, unique double quantum wires devices where we have unprecedented control over the coupling strength, number of 1 D channels, overlap and interaction strength in this nanoelectronic system. In this project, we study 1D-1D tunneling with the ultimate aim of preparing and detecting quantum states of the coupled wires. In a region of strong tunneling, electrons can coherently oscillate from one wire to the other. By controlling the velocity of the electrons, length of the coupling region and tunneling strength we will attempt to observe tunneling oscillations. This first step is critical for further development double quantum wires into the basic building block for a quantum computer, and indeed for other coupled nanoelectronic devices that will rely on coherent transport. If successful, this project will have important implications for nanoelectronics, quantum computing and information technology.

  13. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition.

    PubMed

    Jiang, Yuning; Kang, Jinfeng; Wang, Xinan

    2017-03-24

    Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today's electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.

  14. Architecture-Based Refinements for Secure Computer Systems Design

    DTIC Science & Technology

    2006-01-01

    Government. REFERENCES [1] N. S. Rosa, G. R. R. Justo , and P. R. F. Cunha, “A framework for building non-functional software architectures,” in Proc. 2001 ACM...IWSSD’98), 1998, p. 60. [7] N. S. Rosa, G. R. R. Justo , and P. R. F. Cunha, “Incorporating non- functional requirements into software architectures,” in

  15. Blind quantum computation over a collective-noise channel

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2016-05-01

    Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.

  16. Geometric algebra and information geometry for quantum computational software

    NASA Astrophysics Data System (ADS)

    Cafaro, Carlo

    2017-03-01

    The art of quantum algorithm design is highly nontrivial. Grover's search algorithm constitutes a masterpiece of quantum computational software. In this article, we use methods of geometric algebra (GA) and information geometry (IG) to enhance the algebraic efficiency and the geometrical significance of the digital and analog representations of Grover's algorithm, respectively. Specifically, GA is used to describe the Grover iterate and the discretized iterative procedure that exploits quantum interference to amplify the probability amplitude of the target-state before measuring the query register. The transition from digital to analog descriptions occurs via Stone's theorem which relates the (unitary) Grover iterate to a suitable (Hermitian) Hamiltonian that controls Schrodinger's quantum mechanical evolution of a quantum state towards the target state. Once the discrete-to-continuos transition is completed, IG is used to interpret Grover's iterative procedure as a geodesic path on the manifold of the parametric density operators of pure quantum states constructed from the continuous approximation of the parametric quantum output state in Grover's algorithm. Finally, we discuss the dissipationless nature of quantum computing, recover the quadratic speedup relation, and identify the superfluity of the Walsh-Hadamard operation from an IG perspective with emphasis on statistical mechanical considerations.

  17. Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    NASA Technical Reports Server (NTRS)

    Hsia, T. C.; Lu, G. Z.; Han, W. H.

    1987-01-01

    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.

  18. Quantum computing on lattices using global two-qubit gates

    SciTech Connect

    Ivanyos, G.; Massar, S.; Nagy, A. B.

    2005-08-15

    We study the computation power of lattices composed of two-dimensional systems (qubits) on which translationally invariant global two-qubit gates can be performed. We show that if a specific set of six global two qubit gates can be performed and if the initial state of the lattice can be suitably chosen, then a quantum computer can be efficiently simulated.

  19. Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2010-10-01

    Drugs are adaptive molecules. They realize this peculiarity by generating different ensembles of prototropic forms and conformers that depend on the environment. Among the impressive amount of available computational drug discovery technologies, quantitative structure-activity relationship approaches that rely on computational quantum chemistry descriptors are the most appropriate to model adaptive drugs. Indeed, computational quantum chemistry descriptors are able to account for the variation of the intramolecular interactions of the training compounds, which reflect their adaptive intermolecular interaction propensities. This enables the development of causative, interpretive and reasonably predictive quantitative structure-activity relationship models, and, hence, sound chemical information finalized to drug design and discovery.

  20. Qudit quantum computation on matrix product states with global symmetry

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Stephen, David T.; Raussendorf, Robert

    2017-03-01

    Resource states that contain nontrivial symmetry-protected topological order are identified for universal single-qudit measurement-based quantum computation. Our resource states fall into two classes: one as the qudit generalizations of the one-dimensional qubit cluster state, and the other as the higher-symmetry generalizations of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state, namely, with unitary, orthogonal, or symplectic symmetry. The symmetry in cluster states protects information propagation (identity gate), while the higher symmetry in AKLT-type states enables nontrivial gate computation. This work demonstrates a close connection between measurement-based quantum computation and symmetry-protected topological order.

  1. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  2. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  3. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  4. A Scalable Qubit Architecture Based on Holes in Quantum Dot Molecules

    DTIC Science & Technology

    2012-09-26

    2b. The formation of molecular orbitals results in pertur- bations to the hole spin g factor and creates the elec- tric field dependent Zeeman ...however, breaks the QDM symmetry and creates an effective spin- flip-tunneling mechanism that mixes hole states with op- posite spin projections located in...minimize the potential negative impact of these effects on the storage of quantum infor- mation, we design the device architecture to operate only in

  5. Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2013-01-01

    P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum key distrubution, integrated photonic circuits Karl Berggren, Jeffrey ...Architecture Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory Wornell Abstract We report on the theoretical and...5 3 Experimental QKD Developments 6 3.1 Implementation of the Franson interferometer-based security check in the PIC 6 3.2 Waveguide -SNSPD

  6. Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture

    DTIC Science & Technology

    2012-05-09

    quantum information, integrated optics, photonic integrated chip Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory...Integrated Photonic Architecture Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory Wornell (Dated: May 9, 2012) The...Ultrahigh Flux Entangled Photon Source & Time-Energy entanglement d-dimensional QKD 6 VI. Waveguide -integrated SNSPD 6 A. Next three months 7 References

  7. PERSPECTIVE: From computational quantum chemistry to computational biology: experiments and computations are (full) partners

    NASA Astrophysics Data System (ADS)

    Ma, Buyong; Nussinov, Ruth

    2004-12-01

    Computations are being integrated into biological research at an increasingly fast pace. This has not only changed the way in which biological information is managed; it has also changed the way in which experiments are planned in order to obtain information from nature. Can experiments and computations be full partners? Computational chemistry has expanded over the years, proceeding from computations of a hydrogen molecule toward the challenging goal of systems biology, which attempts to handle the entire living cell. Applying theories from ab initio quantum mechanics to simplified models, the virtual worlds explored by computations provide replicas of real-world phenomena. At the same time, the virtual worlds can affect our perception of the real world. Computational biology targets a world of complex organization, for which a unified theory is unlikely to exist. A computational biology model, even if it has a clear physical or chemical basis, may not reduce to physics and chemistry. At the molecular level, computational biology and experimental biology have already been partners, mutually benefiting from each other. For the perception to become reality, computation and experiment should be united as full partners in biological research.

  8. Entanglement-based machine learning on a quantum computer.

    PubMed

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  9. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  10. Continuous-variable quantum computing on encrypted data.

    PubMed

    Marshall, Kevin; Jacobsen, Christian S; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L

    2016-12-14

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  11. Continuous-variable quantum computing on encrypted data

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-12-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  12. Continuous-variable quantum computing on encrypted data

    PubMed Central

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks. PMID:27966528

  13. Kochen-Specker Theorem as a Precondition for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Nakamura, Tadao

    2016-12-01

    We study the relation between the Kochen-Specker theorem (the KS theorem) and quantum computing. The KS theorem rules out a realistic theory of the KS type. We consider the realistic theory of the KS type that the results of measurements are either +1 or -1. We discuss an inconsistency between the realistic theory of the KS type and the controllability of quantum computing. We have to give up the controllability if we accept the realistic theory of the KS type. We discuss an inconsistency between the realistic theory of the KS type and the observability of quantum computing. We discuss the inconsistency by using the double-slit experiment as the most basic experiment in quantum mechanics. This experiment can be for an easy detector to a Pauli observable. We cannot accept the realistic theory of the KS type to simulate the double-slit experiment in a significant specific case. The realistic theory of the KS type can not depicture quantum detector. In short, we have to give up both the observability and the controllability if we accept the realistic theory of the KS type. Therefore, the KS theorem is a precondition for quantum computing, i.e., the realistic theory of the KS type should be ruled out.

  14. From transistor to trapped-ion computers for quantum chemistry

    PubMed Central

    Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.

    2014-01-01

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054

  15. Quantum computing with spin cluster qubits.

    PubMed

    Meier, Florian; Levy, Jeremy; Loss, Daniel

    2003-01-31

    We study the low energy states of finite spin chains with isotropic (Heisenberg) and anisotropic (XY and Ising-like) antiferromagnetic exchange interaction with uniform and nonuniform coupling constants. We show that for an odd number of sites a spin cluster qubit can be defined in terms of the ground state doublet. This qubit is remarkably insensitive to the placement and coupling anisotropy of spins within the cluster. One- and two-qubit quantum gates can be generated by magnetic fields and intercluster exchange, and leakage during quantum gate operation is small. Spin cluster qubits inherit the long decoherence times and short gate operation times of single spins. Control of single spins is hence not necessary for the realization of universal quantum gates.

  16. On the 'principle of the quantumness', the quantumness of Relativity, and the computational grand-unification

    SciTech Connect

    D'Ariano, Giacomo Mauro

    2010-05-04

    I will argue that the proposal of establishing operational foundations of Quantum Theory should have top-priority, and that the Lucien Hardy's program on Quantum Gravity should be paralleled by an analogous program on Quantum Field Theory (QFT), which needs to be reformulated, notwithstanding its experimental success. In this paper, after reviewing recently suggested operational 'principles of the quantumness', I address the problem on whether Quantum Theory and Special Relativity are unrelated theories, or instead, if the one implies the other. I show how Special Relativity can be indeed derived from causality of Quantum Theory, within the computational paradigm 'the universe is a huge quantum computer', reformulating QFT as a Quantum-Computational Field Theory (QCFT). In QCFT Special Relativity emerges from the fabric of the computational network, which also naturally embeds gauge invariance. In this scheme even the quantization rule and the Planck constant can in principle be derived as emergent from the underlying causal tapestry of space-time. In this way Quantum Theory remains the only theory operating the huge computer of the universe.Is the computational paradigm only a speculative tautology (theory as simulation of reality), or does it have a scientific value? The answer will come from Occam's razor, depending on the mathematical simplicity of QCFT. Here I will just start scratching the surface of QCFT, analyzing simple field theories, including Dirac's. The number of problems and unmotivated recipes that plague QFT strongly motivates us to undertake the QCFT project, since QCFT makes all such problems manifest, and forces a re-foundation of QFT.

  17. General purpose architecture for intelligent computer-aided training

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen (Inventor); Wang, Lui (Inventor); Baffes, Paul T. (Inventor); Hua, Grace C. (Inventor)

    1994-01-01

    An intelligent computer-aided training system having a general modular architecture is provided for use in a wide variety of training tasks and environments. It is comprised of a user interface which permits the trainee to access the same information available in the task environment and serves as a means for the trainee to assert actions to the system; a domain expert which is sufficiently intelligent to use the same information available to the trainee and carry out the task assigned to the trainee; a training session manager for examining the assertions made by the domain expert and by the trainee for evaluating such trainee assertions and providing guidance to the trainee which are appropriate to his acquired skill level; a trainee model which contains a history of the trainee interactions with the system together with summary evaluative data; an intelligent training scenario generator for designing increasingly complex training exercises based on the current skill level contained in the trainee model and on any weaknesses or deficiencies that the trainee has exhibited in previous interactions; and a blackboard that provides a common fact base for communication between the other components of the system. Preferably, the domain expert contains a list of 'mal-rules' which typifies errors that are usually made by novice trainees. Also preferably, the training session manager comprises an intelligent error detection means and an intelligent error handling means. The present invention utilizes a rule-based language having a control structure whereby a specific message passing protocol is utilized with respect to tasks which are procedural or step-by-step in structure. The rules can be activated by the trainee in any order to reach the solution by any valid or correct path.

  18. Noise tailoring for scalable quantum computation via randomized compiling

    NASA Astrophysics Data System (ADS)

    Wallman, Joel J.; Emerson, Joseph

    2016-11-01

    Quantum computers are poised to radically outperform their classical counterparts by manipulating coherent quantum systems. A realistic quantum computer will experience errors due to the environment and imperfect control. When these errors are even partially coherent, they present a major obstacle to performing robust computations. Here, we propose a method for introducing independent random single-qubit gates into the logical circuit in such a way that the effective logical circuit remains unchanged. We prove that this randomization tailors the noise into stochastic Pauli errors, which can dramatically reduce error rates while introducing little or no experimental overhead. Moreover, we prove that our technique is robust to the inevitable variation in errors over the randomizing gates and numerically illustrate the dramatic reductions in worst-case error that are achievable. Given such tailored noise, gates with significantly lower fidelity—comparable to fidelities realized in current experiments—are sufficient to achieve fault-tolerant quantum computation. Furthermore, the worst-case error rate of the tailored noise can be directly and efficiently measured through randomized benchmarking protocols, enabling a rigorous certification of the performance of a quantum computer.

  19. Linear optical quantum computing in a single spatial mode.

    PubMed

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  20. How to simulate a universal quantum computer using negative probabilities

    NASA Astrophysics Data System (ADS)

    Hofmann, Holger F.

    2009-07-01

    The concept of negative probabilities can be used to decompose the interaction of two qubits mediated by a quantum controlled-NOT into three operations that require only classical interactions (that is, local operations and classical communication) between the qubits. For a single gate, the probabilities of the three operations are 1, 1 and -1. This decomposition can be applied in a probabilistic simulation of quantum computation by randomly choosing one of the three operations for each gate and assigning a negative statistical weight to the outcomes of sequences with an odd number of negative probability operations. The maximal exponential speed-up of a quantum computer can then be evaluated in terms of the increase in the number of sequences needed to simulate a single operation of the quantum circuit.

  1. Scheme for Entering Binary Data Into a Quantum Computer

    NASA Technical Reports Server (NTRS)

    Williams, Colin

    2005-01-01

    A quantum algorithm provides for the encoding of an exponentially large number of classical data bits by use of a smaller (polynomially large) number of quantum bits (qubits). The development of this algorithm was prompted by the need, heretofore not satisfied, for a means of entering real-world binary data into a quantum computer. The data format provided by this algorithm is suitable for subsequent ultrafast quantum processing of the entered data. Potential applications lie in disciplines (e.g., genomics) in which one needs to search for matches between parts of very long sequences of data. For example, the algorithm could be used to encode the N-bit-long human genome in only log2N qubits. The resulting log2N-qubit state could then be used for subsequent quantum data processing - for example, to perform rapid comparisons of sequences.

  2. Universal quantum computation with hybrid spin-Majorana qubits

    NASA Astrophysics Data System (ADS)

    Hoffman, Silas; Schrade, Constantin; Klinovaja, Jelena; Loss, Daniel

    2016-07-01

    We theoretically propose a set of universal quantum gates acting on a hybrid qubit formed by coupling a quantum-dot spin qubit and Majorana fermion qubit. First, we consider a quantum dot that is tunnel coupled to two topological superconductors. The effective spin-Majorana exchange facilitates a hybrid cnot gate for which either qubit can be the control or target. The second setup is a modular scalable network of topological superconductors and quantum dots. As a result of the exchange interaction between adjacent spin qubits, a cnot gate is implemented that acts on neighboring Majorana qubits and eliminates the necessity of interqubit braiding. In both setups, the spin-Majorana exchange interaction allows for a phase gate, acting on either the spin or the Majorana qubit, and for a swap or hybrid swap gate which is sufficient for universal quantum computation without projective measurements.

  3. Quantum Computational Complexity of Spin Glasses

    DTIC Science & Technology

    2011-03-19

    the absence of an external magnetic field, and the Robertson - Seymour theorem from graph theory. We gave as an example a set of quantum circuits with a...classical algorithm for the Ising partition function of any planar graph in the absence of an external magnetic field, and the Robertson - Seymour theorem

  4. Prime factorization using quantum annealing and computational algebraic geometry

    PubMed Central

    Dridi, Raouf; Alghassi, Hedayat

    2017-01-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854

  5. Prime factorization using quantum annealing and computational algebraic geometry

    NASA Astrophysics Data System (ADS)

    Dridi, Raouf; Alghassi, Hedayat

    2017-02-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.

  6. Architecture-Adaptive Computing Environment: A Tool for Teaching Parallel Programming

    NASA Technical Reports Server (NTRS)

    Dorband, John E.; Aburdene, Maurice F.

    2002-01-01

    Recently, networked and cluster computation have become very popular. This paper is an introduction to a new C based parallel language for architecture-adaptive programming, aCe C. The primary purpose of aCe (Architecture-adaptive Computing Environment) is to encourage programmers to implement applications on parallel architectures by providing them the assurance that future architectures will be able to run their applications with a minimum of modification. A secondary purpose is to encourage computer architects to develop new types of architectures by providing an easily implemented software development environment and a library of test applications. This new language should be an ideal tool to teach parallel programming. In this paper, we will focus on some fundamental features of aCe C.

  7. Holographic image processing, coherent optical computing, and neural computer architecture for pattern recognition

    NASA Astrophysics Data System (ADS)

    Schempp, Walter

    Metaplectic harmonic analysis is well matched with high resolution image processing. The metaplectic representation of the symplectic group and its twofold cover arises when the symplectic group is considered as a group of outer automorphisms of the irreducible linear representations of the Heisenberg two-step nilpotent Lie group. Starting with the Paley-Wiener theorem which forms the classical result for information-preserving sequential bandwidth compression, and its Stone-von Neumann-Segal analogue for the Heisenberg group which is at the basis of holographic reciprocity and coupling, the paper points out a unified metaplectic approach to signal geometry such as holographic image processing, coherent optical computing, and neural computer architecture for pattern recognition. Brief descriptions of hardware implementations are also included.

  8. Topological quantum computing with Read-Rezayi states.

    PubMed

    Hormozi, L; Bonesteel, N E; Simon, S H

    2009-10-16

    Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which, in principle, can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with k>2, k not equal 4. This work extends previous results which only applied to the case k=3 (Fibonacci) and clarifies why, in that case, gate constructions are simpler than for a generic Read-Rezayi state.

  9. Computer studies of multiple-quantum spin dynamics

    SciTech Connect

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  10. Exploiting geometric degrees of freedom in topological quantum computing

    SciTech Connect

    Xu Haitan; Wan Xin

    2009-07-15

    In a topological quantum computer, braids of non-Abelian anyons in a (2+1)-dimensional space time form quantum gates, whose fault tolerance relies on the topological, rather than geometric, properties of the braids. Here we propose to create and exploit redundant geometric degrees of freedom to improve the theoretical accuracy of topological single- and two-qubit quantum gates. We demonstrate the power of the idea using explicit constructions in the Fibonacci model. We compare its efficiency with that of the Solovay-Kitaev algorithm and explain its connection to the leakage errors reduction in an earlier construction [H. Xu and X. Wan, Phys. Rev. A 78, 042325 (2008)].

  11. Quantum memristors

    SciTech Connect

    Pfeiffer, P.; Sanz, M.

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  12. Quantum memristors

    PubMed Central

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  13. Integrating Computing Resources: A Shared Distributed Architecture for Academics and Administrators.

    ERIC Educational Resources Information Center

    Beltrametti, Monica; English, Will

    1994-01-01

    Development and implementation of a shared distributed computing architecture at the University of Alberta (Canada) are described. Aspects discussed include design of the architecture, users' views of the electronic environment, technical and managerial challenges, and the campuswide human infrastructures needed to manage such an integrated…

  14. Toward a Fault Tolerant Architecture for Vital Medical-Based Wearable Computing.

    PubMed

    Abdali-Mohammadi, Fardin; Bajalan, Vahid; Fathi, Abdolhossein

    2015-12-01

    Advancements in computers and electronic technologies have led to the emergence of a new generation of efficient small intelligent systems. The products of such technologies might include Smartphones and wearable devices, which have attracted the attention of medical applications. These products are used less in critical medical applications because of their resource constraint and failure sensitivity. This is due to the fact that without safety considerations, small-integrated hardware will endanger patients' lives. Therefore, proposing some principals is required to construct wearable systems in healthcare so that the existing concerns are dealt with. Accordingly, this paper proposes an architecture for constructing wearable systems in critical medical applications. The proposed architecture is a three-tier one, supporting data flow from body sensors to cloud. The tiers of this architecture include wearable computers, mobile computing, and mobile cloud computing. One of the features of this architecture is its high possible fault tolerance due to the nature of its components. Moreover, the required protocols are presented to coordinate the components of this architecture. Finally, the reliability of this architecture is assessed by simulating the architecture and its components, and other aspects of the proposed architecture are discussed.

  15. Positive Wigner functions render classical simulation of quantum computation efficient.

    PubMed

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  16. Investigation of Quantum Computing With Laughlin Quasiparticles

    DTIC Science & Technology

    2007-12-31

    Review B 72, 075342, 1-8 (2005) F.E.Camino, W.Zhou, and V.J.Goldman Aharonov - Bohm electron interferometer in the integer quantum Hall regime Physical...Review B 72, 155313, 1-6 (2005) F.E.Camino, W.Zhou, and V.J.Goldman Aharonov - Bohm Superperiod in a Laughlin Quasiparticle Interferometer Physical...is the number of particles being encircled. This quantization condition explicitly adds the Aharonov - Bohm and the statistical contributions to the

  17. Dynamical localization simulated on a few-qubit quantum computer

    SciTech Connect

    Benenti, Giuliano; Montangero, Simone; Casati, Giulio; Shepelyansky, Dima L.

    2003-05-01

    We show that a quantum computer operating with a small number of qubits can simulate the dynamical localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the system is computed efficiently up to a time t{>=}l, and then the localization length l can be obtained with accuracy {nu} by means of order 1/{nu}{sup 2} computer runs, followed by coarse-grained projective measurements on the computational basis. We also show that in the presence of static imperfections, a reliable computation of the localization length is possible without error correction up to an imperfection threshold which drops polynomially with the number of qubits.

  18. Towards robust dynamical decoupling and high fidelity adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Quantum computation (QC) relies on the ability to implement high-fidelity quantum gate operations and successfully preserve quantum state coherence. One of the most challenging obstacles for reliable QC is overcoming the inevitable interaction between a quantum system and its environment. Unwanted interactions result in decoherence processes that cause quantum states to deviate from a desired evolution, consequently leading to computational errors and loss of coherence. Dynamical decoupling (DD) is one such method, which seeks to attenuate the effects of decoherence by applying strong and expeditious control pulses solely to the system. Provided the pulses are applied over a time duration sufficiently shorter than the correlation time associated with the environment dynamics, DD effectively averages out undesirable interactions and preserves quantum states with a low probability of error, or fidelity loss. In this study various aspects of this approach are studied from sequence construction to applications of DD to protecting QC. First, a comprehensive examination of the error suppression properties of a near-optimal DD approach is given to understand the relationship between error suppression capabilities and the number of required DD control pulses in the case of ideal, instantaneous pulses. While such considerations are instructive for examining DD efficiency, i.e., performance vs the number of control pulses, high-fidelity DD in realizable systems is difficult to achieve due to intrinsic pulse imperfections which further contribute to decoherence. As a second consideration, it is shown how one can overcome this hurdle and achieve robustness and recover high-fidelity DD in the presence of faulty control pulses using Genetic Algorithm optimization and sequence symmetrization. Thirdly, to illustrate the implementation of DD in conjunction with QC, the utilization of DD and quantum error correction codes (QECCs) as a protection method for adiabatic quantum

  19. Closed timelike curves in measurement-based quantum computation

    SciTech Connect

    Dias da Silva, Raphael; Galvao, Ernesto F.; Kashefi, Elham

    2011-01-15

    Many results have been recently obtained regarding the power of hypothetical closed timelike curves (CTCs) in quantum computation. Here we show that the one-way model of measurement-based quantum computation encompasses in a natural way the CTC model proposed by Bennett, Schumacher, and Svetlichny. We identify a class of CTCs in this model that can be simulated deterministically and point to a fundamental limitation of Deutsch's CTC model which leads to predictions conflicting with those of the one-way model.

  20. Efficient computations of quantum canonical Gibbs state in phase space

    NASA Astrophysics Data System (ADS)

    Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.

    2016-06-01

    The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.

  1. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  2. An Implementation of MIL-STD-1750 Airborne Computer Instruction Set Architecture.

    DTIC Science & Technology

    1981-05-01

    printing I May 1981 AN IMPLEMENTATION OF MIL- STD - 1750 AIRBORNE COMPUTER INSTRUCTION SET ARCHITECTURE by S. J. Shrimpton r SUMMARY is Memorandum...describes the design of a processor implementing the Mil- Std -1750 Airborne Computer Instruction Set Architecture, using Advanced Micro Devices 2901 bit-slice...microprocessor devices. The aspects of the hard- ware design and microcode specific to Mil- Std -1750 are discussed and reviewed in the light of the

  3. Utilizing photon number parity measurements to demonstrate quantum computation with cat-states in a cavity

    NASA Astrophysics Data System (ADS)

    Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-03-01

    Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.

  4. Phonon-based scalable platform for chip-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-01

    We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  5. Phonon-based scalable platform for chip-scale quantum computing

    SciTech Connect

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-19

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  6. Phonon-based scalable platform for chip-scale quantum computing

    DOE PAGES

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-19

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less

  7. Lattice surgery translation for quantum computation

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Nori, Franco; Devitt, Simon J.

    2017-01-01

    In this paper we outline a method for a compiler to translate any non fault tolerant quantum circuit to the geometric representation of the lattice surgery error-correcting code using inherent merge and split operations. Since the efficiency of state distillation procedures has not yet been investigated in the lattice surgery model, their translation is given as an example using the proposed method. The resource requirements seem comparable or better to the defect-based state distillation process, but modularity and eventual implementability allow the lattice surgery model to be an interesting alternative to braiding.

  8. The hypercluster: A parallel processing test-bed architecture for computational mechanics applications

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    1987-01-01

    The development of numerical methods and software tools for parallel processors can be aided through the use of a hardware test-bed. The test-bed architecture must be flexible enough to support investigations into architecture-algorithm interactions. One way to implement a test-bed is to use a commercial parallel processor. Unfortunately, most commercial parallel processors are fixed in their interconnection and/or processor architecture. In this paper, we describe a modified n cube architecture, called the hypercluster, which is a superset of many other processor and interconnection architectures. The hypercluster is intended to support research into parallel processing of computational fluid and structural mechanics problems which may require a number of different architectural configurations. An example of how a typical partial differential equation solution algorithm maps on to the hypercluster is given.

  9. Computational nuclear quantum many-body problem: The UNEDF project

    SciTech Connect

    Fann, George I

    2013-01-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  10. Playable Serious Games for Studying and Programming Computational STEM and Informatics Applications of Distributed and Parallel Computer Architectures

    ERIC Educational Resources Information Center

    Amenyo, John-Thones

    2012-01-01

    Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…

  11. Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing.

    PubMed

    Hayashi, Masahito; Morimae, Tomoyuki

    2015-11-27

    We introduce a simple protocol for verifiable measurement-only blind quantum computing. Alice, a client, can perform only single-qubit measurements, whereas Bob, a server, can generate and store entangled many-qubit states. Bob generates copies of a graph state, which is a universal resource state for measurement-based quantum computing, and sends Alice each qubit of them one by one. Alice adaptively measures each qubit according to her program. If Bob is honest, he generates the correct graph state, and, therefore, Alice can obtain the correct computation result. Regarding the security, whatever Bob does, Bob cannot get any information about Alice's computation because of the no-signaling principle. Furthermore, malicious Bob does not necessarily send the copies of the correct graph state, but Alice can check the correctness of Bob's state by directly verifying the stabilizers of some copies.

  12. Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Morimae, Tomoyuki

    2015-11-01

    We introduce a simple protocol for verifiable measurement-only blind quantum computing. Alice, a client, can perform only single-qubit measurements, whereas Bob, a server, can generate and store entangled many-qubit states. Bob generates copies of a graph state, which is a universal resource state for measurement-based quantum computing, and sends Alice each qubit of them one by one. Alice adaptively measures each qubit according to her program. If Bob is honest, he generates the correct graph state, and, therefore, Alice can obtain the correct computation result. Regarding the security, whatever Bob does, Bob cannot get any information about Alice's computation because of the no-signaling principle. Furthermore, malicious Bob does not necessarily send the copies of the correct graph state, but Alice can check the correctness of Bob's state by directly verifying the stabilizers of some copies.

  13. Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation

    SciTech Connect

    Wang, B.; Duan, L.-M.

    2007-05-15

    We propose a scheme to implement quantum controlled SWAP gates by directing single-photon pulses to a two-sided cavity with a single trapped atom. The resultant gates can be used to realize quantum fingerprinting and universal photonic quantum computation. We present a theoretical model for our scheme and analyze its performance under practical noise, including spontaneous emission and randomness of atom-cavity coupling strength. It is shown that our scheme should be robust against practical imperfections in current cavity QED experiment setup.

  14. Reducing the overhead for quantum computation when noise is biased

    NASA Astrophysics Data System (ADS)

    Webster, Paul; Bartlett, Stephen D.; Poulin, David

    2015-12-01

    We analyze a model for fault-tolerant quantum computation with low overhead suitable for situations where the noise is biased. The basis for this scheme is a gadget for the fault-tolerant preparation of magic states that enable universal fault-tolerant quantum computation using only Clifford gates that preserve the noise bias. We analyze the distillation of |T > -type magic states using this gadget at the physical level, followed by concatenation with the 15-qubit quantum Reed-Muller code, and comparing our results with standard constructions. In the regime where the noise bias (rate of Pauli Z errors relative to other single-qubit errors) is greater than a factor of 10, our scheme has lower overhead across a broad range of relevant noise rates.

  15. Indications for quantum computation requirements from comparative brain analysis

    NASA Astrophysics Data System (ADS)

    Bernroider, Gustav; Baer, Wolfgang

    2010-04-01

    Whether or not neuronal signal properties can engage 'non-trivial', i.e. functionally significant, quantum properties, is the subject of an ongoing debate. Here we provide evidence that quantum coherence dynamics can play a functional role in ion conduction mechanism with consequences on the shape and associative character of classical membrane signals. In particular, these new perspectives predict that a specific neuronal topology (e.g. the connectivity pattern of cortical columns in the primate brain) is less important and not really required to explain abilities in perception and sensory-motor integration. Instead, this evidence is suggestive for a decisive role of the number and functional segregation of ion channel proteins that can be engaged in a particular neuronal constellation. We provide evidence from comparative brain studies and estimates of computational capacity behind visual flight functions suggestive for a possible role of quantum computation in biological systems.

  16. Towards accurate quantum simulations of large systems with small computers

    NASA Astrophysics Data System (ADS)

    Yang, Yonggang

    2017-01-01

    Numerical simulations are important for many systems. In particular, various standard computer programs have been developed for solving the quantum Schrödinger equations. However, the accuracy of these calculations is limited by computer capabilities. In this work, an iterative method is introduced to enhance the accuracy of these numerical calculations, which is otherwise prohibitive by conventional methods. The method is easily implementable and general for many systems.

  17. Towards accurate quantum simulations of large systems with small computers.

    PubMed

    Yang, Yonggang

    2017-01-24

    Numerical simulations are important for many systems. In particular, various standard computer programs have been developed for solving the quantum Schrödinger equations. However, the accuracy of these calculations is limited by computer capabilities. In this work, an iterative method is introduced to enhance the accuracy of these numerical calculations, which is otherwise prohibitive by conventional methods. The method is easily implementable and general for many systems.

  18. NMR System for a Type II Quantum Computer

    DTIC Science & Technology

    2007-06-01

    26:1484-1509, 1997. [3] R. Feynman . Simulating physics with computers. International Journal of Theoretical Physics , 21(6-7):467-488, 1982. [4] S...and J. Ford. Stochastic behavior in classical and quantum hamiltonian systems. Lecture Notes in Physics , 93:334, 1979. [17] Z. Chen, J. Yepez, and D...1987. [36] R. P. Feynman . Simulating physics with computers. International Journal of Theo- retical Physics , 21(6-7):467-488, 1981/82. [37] E. M

  19. Towards accurate quantum simulations of large systems with small computers

    PubMed Central

    Yang, Yonggang

    2017-01-01

    Numerical simulations are important for many systems. In particular, various standard computer programs have been developed for solving the quantum Schrödinger equations. However, the accuracy of these calculations is limited by computer capabilities. In this work, an iterative method is introduced to enhance the accuracy of these numerical calculations, which is otherwise prohibitive by conventional methods. The method is easily implementable and general for many systems. PMID:28117366

  20. Quantum neural network-based EEG filtering for a brain-computer interface.

    PubMed

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.