Detecting quantum speedup in closed and open systems
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu
2016-07-01
We construct a general measure for detecting the quantum speedup in both closed and open systems. The speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of dynamical speedup. To clarify the mechanisms for quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup: the former stems from the time evolution process itself with fixed initial conditions, while the latter is a result of adjusting initial conditions. We then apply the proposed measure to several typical closed and open quantum systems, illustrating that quantum coherence (or entanglement) and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under specific conditions and assumptions.
Detection Systems and Algorithms for Multiplexed Quantum Dots
NASA Astrophysics Data System (ADS)
Goss, Kelly Christine
Quantum Dots (QDs) are semiconductor nanocrystals that absorb light and re-emit at a wavelength dependent on its size and shape. A group of quantum dots can be designed to have a unique spectral emission by varying the size of the quantum dots (wavelength) and number of quantum dots (optical power) [1]. This technology is refered to as Multiplexed Quantum Dots (MxQD) and when it was first proposed, MxQD tags were created with 6 optical power levels and one QD colour or 3 QD colours and 2 optical power levels. It was hypothesized that a realistic limit to the number of tags would be a system of 6 optical power levels and 6 QD colours resulting in 46655 unique tags. In recent work, the fabrication and detection of 9 unique tags [2] was demonstrated which is still far from the predicted capability of the technology. The limitations affecting the large number of unique tags are both the fabrication methods and the data detection algorithms used to read the spectral emissions. This thesis makes contributions toward improving the data detection algorithms for MxQD tags. To accomplish this, a communications system model is developed that includes the inteference between QD colours, Inter-Symbol Interference (ISI), and additive noise. The model is developed for the two optical detectors, namely a Charge-Coupled Device (CCD) spectrometer and photodiode detectors. The model also includes an analytical expression for the Signal-to-Noise Ratio (SNR) of the detectors. For the CCD spectrometer, this model is verified with an experimental prototype. With the models in place, communications systems tools are applied that overcome both ISI and noise. This is an improvement over previous work in the field that only considered algorithms to overcome the ISI or noise separately. Specifically, this thesis outlines the proposal of a matched filter to improve SNR, a Minimum Mean Square Error (MMSE) equalizer that mitigates ISI in the presence of noise and a Maximum Likelihood Sequence
Acquisition of a Recondensing Cryostat for Ultra-Sensitive Charge Detection of Quantum Systems
2014-10-21
Acquisition of a Recondensing Cryostat for Ultra - Sensitive Charge Detection of Quantum Systems The funding provided by this grant was used to...accelerate our efforts to develop cavity-embedded Cooper pair transistors for ultra sensitive charge detection of quantum systems such as quantum dots and...reviewed journals: Final Report: Acquisition of a Recondensing Cryostat for Ultra -Sensitive Charge Detection of Quantum Systems Report Title The funding
Detecting relay attacks on RFID communication systems using quantum bits
NASA Astrophysics Data System (ADS)
Jannati, Hoda; Ardeshir-Larijani, Ebrahim
2016-11-01
RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.
Tampering detection system using quantum-mechanical systems
Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Gao, Qing Dong, Daoyi Petersen, Ian R.; Rabitz, Herschel
2016-06-15
The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.
A novel sensitive pathogen detection system based on Microbead Quantum Dot System.
Wu, Tzong-Yuan; Su, Yi-Yu; Shu, Wei-Hsien; Mercado, Augustus T; Wang, Shi-Kwun; Hsu, Ling-Yi; Tsai, Yow-Fu; Chen, Chung-Yung
2016-04-15
A fast and accurate detection system for pathogens can provide immediate measurements for the identification of infectious agents. Therefore, the Microbead Quantum-dots Detection System (MQDS) was developed to identify and measure target DNAs of pathogenic microorganisms and eliminated the need of PCR amplifications. This nanomaterial-based technique can detect different microorganisms by flow cytometry measurements. In MQDS, pathogen specific DNA probes were designed to form a hairpin structure and conjugated on microbeads. In the presence of the complementary target DNA sequence, the probes will compete for binding with the reporter probes but will not interfere with the binding between the probe and internal control DNA. To monitor the binding process by flow cytometry, both the reporter probes and internal control probes were conjugated with Quantum dots that fluoresce at different emission wavelengths using the click reaction. When MQDS was used to detect the pathogens in environmental samples, a high correlation coefficient (R=0.994) for Legionella spp., with a detection limit of 0.1 ng of the extracted DNAs and 10 CFU/test, can be achieved. Thus, this newly developed technique can also be applied to detect other pathogens, particularly viruses and other genetic diseases.
Entanglement detection in a coupled atom-field system via quantum Fisher information
NASA Astrophysics Data System (ADS)
Mirkhalaf, Safoura Sadat; Smerzi, Augusto
2017-02-01
We consider a system of finite number of particles collectively interacting with a single-mode coherent field inside a cavity. Depending on the strength of the initial field compared to the number of atoms, we consider three regimes of weak-, intermediate-, and strong-field interaction. The dynamics of multiparticle entanglement detected by quantum Fisher information and spin squeezing are studied in each regime. It is seen that in the weak-field regime, spin squeezing and quantum Fisher information coincide. However, by increasing the initial field population toward the strong-field regime, quantum Fisher information is more effective in detecting entanglement compared to spin squeezing. In addition, in the two-atom system, we also study concurrence. In this case, the quantum Fisher information as a function of time is in good agreement with concurrence in predicting entanglement peaks.
Experimental Quantum Error Detection
Jin, Xian-Min; Yi, Zhen-Huan; Yang, Bin; Zhou, Fei; Yang, Tao; Peng, Cheng-Zhi
2012-01-01
Faithful transmission of quantum information is a crucial ingredient in quantum communication networks. To overcome the unavoidable decoherence in a noisy channel, to date, many efforts have been made to transmit one state by consuming large numbers of time-synchronized ancilla states. However, such huge demands of quantum resources are hard to meet with current technology and this restricts practical applications. Here we experimentally demonstrate quantum error detection, an economical approach to reliably protecting a qubit against bit-flip errors. Arbitrary unknown polarization states of single photons and entangled photons are converted into time bins deterministically via a modified Franson interferometer. Noise arising in both 10 m and 0.8 km fiber, which induces associated errors on the reference frame of time bins, is filtered when photons are detected. The demonstrated resource efficiency and state independence make this protocol a promising candidate for implementing a real-world quantum communication network. PMID:22953047
Quantum electromechanical systems
NASA Astrophysics Data System (ADS)
Milburn, Gerard J.; Polkinghorne, Rodney
2001-11-01
We discuss the conditions under which electromechanical systems, fabricated on a sub micron scale, require a quantum description. We illustrate the discussion with the example of a mechanical electroscope for which the resonant frequency of a cantilever changes in response to a local charge. We show how such devices may be used as a quantum noise limited apparatus for detection of a single charge or spin with applications to quantum computing.
Nonlocality in many-body quantum systems detected with two-body correlators
Tura, J.; Augusiak, R.; Sainz, A.B.; Lücke, B.; Klempt, C.; Lewenstein, M.; Acín, A.
2015-11-15
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.
Quantum State Detection through Repetitive Mapping
NASA Astrophysics Data System (ADS)
Hume, D. B.; Rosenband, T.; Bergquist, J. C.; Wineland, D. J.
2007-03-01
State detection plays an important role in quantum information processing and quantum-limited metrology. In some cases the quantum system of interest can only be detected with poor efficiency. One approach to overcoming this limitation is to couple the primary quantum system to an ancillary quantum system used for measurement [1]. The measurement process consists of mapping the primary state to the ancilla followed by ancilla detection. If this can be done without affecting the projected populations of the primary system, the measurement may be repeated. In this case, detection fidelity can be significantly higher than both the fidelity of state transfer and the intrinsic measurement fidelity of the ancillary system. Using two ions as the primary and ancillary systems (^27Al^+ and ^9Be^+ respectively) held in a harmonic trap, we demonstrate near unit fidelity measurement despite imperfect information transfer and ancilla detection. [1] P.O. Schmidt, et. al. Science 309 749 (2005)
NASA Astrophysics Data System (ADS)
Qi, Xianfei; Gao, Ting; Yan, Fengli
2017-01-01
Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.
Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection
NASA Astrophysics Data System (ADS)
Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.
2015-01-01
Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.
Quantum cascade laser-based sensor system for nitric oxide detection
NASA Astrophysics Data System (ADS)
Tittel, Frank K.; Allred, James J.; Cao, Yingchun; Sanchez, Nancy P.; Ren, Wei; Jiang, Wenzhe; Jiang, Dongfang; Griffin, Robert J.
2015-01-01
Sensitive detection of nitric oxide (NO) at ppbv concentration levels has an important impact in diverse fields of applications including environmental monitoring, industrial process control and medical diagnostics. For example, NO can be used as a biomarker of asthma and inflammatory lung diseases such as chronic obstructive pulmonary disease. Trace gas sensor systems capable of high sensitivity require the targeting of strong rotational-vibrational bands in the mid-IR spectral range. These bands are accessible using state-of-the-art high heat load (HHL) packaged, continuous wave (CW), distributed feedback (DFB) quantum cascade lasers (QCLs). Quartz-enhanced photoacoustic spectroscopy (QEPAS) permits the design of fast, sensitive, selective, and compact sensor systems. A QEPAS sensor was developed employing a room-temperature CW DFB-QCL emitting at 5.26 μm with an optical excitation power of 60 mW. High sensitivity is achieved by targeting a NO absorption line at 1900.08 cm-1 free of interference by H2O and CO2. The minimum detection limit of the sensor is 7.5 and 1 ppbv of NO with 1and 100 second averaging time respectively . The sensitivity of the sensor system is sufficient for detecting NO in exhaled human breath, with typical concentration levels ranging from 24.0 ppbv to 54.0 ppbv.
A spatio-temporal detective quantum efficiency and its application to fluoroscopic systems.
Friedman, S N; Cunningham, I A
2010-11-01
Fluoroscopic x-ray imaging systems are used extensively in spatio-temporal detection tasks and require a spatio-temporal description of system performance. No accepted metric exists that describes spatio-temporal fluoroscopic performance. The detective quantum efficiency (DQE) is a metric widely used in radiography to quantify system performance and as a surrogate measure of patient "dose efficiency". It has been applied previously to fluoroscopic systems with the introduction of a temporal correction factor. However, the use of a temporally-corrected DQE does not provide system temporal information and it is only valid under specific conditions, many of which are not likely to be satisfied by suboptimal systems. The authors propose a spatio-temporal DQE that describes performance in both space and time and is applicable to all spatio-temporal quantum-based imaging systems. The authors define a spatio-temporal DQE (two spatial-frequency axes and one temporal-frequency axis) in terms of a small-signal spatio-temporal modulation transfer function (MTF) and spatio-temporal noise power spectrum (NPS). Measurements were made on an x-ray image intensifier-based bench-top system using continuous fluoroscopy with an RQA-5 beam at 3.9 microR/frame and hardened 50 kVp beam (0.8 mm Cu filtration added) at 1.9 microR/frame. A zero-frequency DQE value of 0.64 was measured under both conditions. Nonideal performance was noted at both larger spatial and temporal frequencies; DQE values decreased by approximately 50% at the cutoff temporal frequency of 15 Hz. The spatio-temporal DQE enables measurements of decreased temporal system performance at larger temporal frequencies analogous to previous measurements of decreased (spatial) performance. This marks the first time that system performance and dose efficiency in both space and time have been measured on a fluoroscopic system using DQE and is the first step toward the generalized use of DQE on clinical fluoroscopic systems.
A spatio-temporal detective quantum efficiency and its application to fluoroscopic systems
Friedman, S. N.; Cunningham, I. A.
2010-11-15
Purpose: Fluoroscopic x-ray imaging systems are used extensively in spatio-temporal detection tasks and require a spatio-temporal description of system performance. No accepted metric exists that describes spatio-temporal fluoroscopic performance. The detective quantum efficiency (DQE) is a metric widely used in radiography to quantify system performance and as a surrogate measure of patient ''dose efficiency.'' It has been applied previously to fluoroscopic systems with the introduction of a temporal correction factor. However, the use of a temporally-corrected DQE does not provide system temporal information and it is only valid under specific conditions, many of which are not likely to be satisfied by suboptimal systems. The authors propose a spatio-temporal DQE that describes performance in both space and time and is applicable to all spatio-temporal quantum-based imaging systems. Methods: The authors define a spatio-temporal DQE (two spatial-frequency axes and one temporal-frequency axis) in terms of a small-signal spatio-temporal modulation transfer function (MTF) and spatio-temporal noise power spectrum (NPS). Measurements were made on an x-ray image intensifier-based bench-top system using continuous fluoroscopy with an RQA-5 beam at 3.9 {mu}R/frame and hardened 50 kVp beam (0.8 mm Cu filtration added) at 1.9 {mu}R/frame. Results: A zero-frequency DQE value of 0.64 was measured under both conditions. Nonideal performance was noted at both larger spatial and temporal frequencies; DQE values decreased by {approx}50% at the cutoff temporal frequency of 15 Hz. Conclusions: The spatio-temporal DQE enables measurements of decreased temporal system performance at larger temporal frequencies analogous to previous measurements of decreased (spatial) performance. This marks the first time that system performance and dose efficiency in both space and time have been measured on a fluoroscopic system using DQE and is the first step toward the generalized use of DQE on
Eriksson, Ida; Starck, Sven-Åke; Båth, Magnus
2014-04-01
The aim of the present study was to perform an extensive evaluation of available gamma camera systems in terms of their detective quantum efficiency (DQE) and determine their dependency on relevant parameters such as collimator type, imaging depth, and energy window using the Monte Carlo technique. The modulation transfer function was determined from a simulated (99m)Tc point source and was combined with the system sensitivity and photon yield to obtain the DQE of the system. The simulations were performed for different imaging depths in a water phantom for 13 gamma camera systems from four manufacturers. Except at very low spatial frequencies, the highest DQE values were found with a lower energy window threshold of around 130 keV for all systems. The height and shape of the DQE curves were affected by the collimator design and the intrinsic properties of the gamma camera systems. High-sensitivity collimators gave the highest DQE at low spatial frequencies, whereas the high-resolution and ultrahigh-resolution collimators showed higher DQE values at higher frequencies. The intrinsic resolution of the system mainly affected the DQE curve at superficial depths. The results indicate that the manufacturers have succeeded differently in their attempts to design a system constituting an optimal compromise between sensitivity and spatial resolution.
Adaptive Quantum State Detection through Repetitive Mapping
NASA Astrophysics Data System (ADS)
Hume, David; Rosenband, Till; Wineland, David; Bergquist, Jim
2007-06-01
State detection plays an important role in quantum information processing and quantum-limited metrology. In some quantum systems direct detection is impossible or inefficient. This can be overcome by coupling the primary quantum system to an ancillary system used for measurement [1]. The measurement process consists of mapping the primary state to the ancilla followed by ancilla detection. If the measurement does not affect the projected populations of the primary system, it may be repeated yielding higher fidelity. Using two trapped ion species (^27Al^+ and ^9Be^+) as the primary and ancillary systems, we demonstrate high-fidelity measurement despite imperfect information transfer and ancilla detection. An adaptive measurement strategy allows for multiple qubit state discrimination with one ancilla. This opens the way for several applications in quantum information processing and advances our optical clock effort. [1] P.O. Schmidt, et. al. Science 309 749 (2005)
Advantages of an indirect semiconductor quantum well system for infrared detection
NASA Technical Reports Server (NTRS)
Yang, Chan-Lon; Somoano, Robert; Pan, Dee-Son
1989-01-01
The infrared intersubband absorption process in quantum well systems with anisotropic bulk effective masses, which usually occurs in indirect semiconductors was analyzed. It is found that the anisotropic effective mass can be utilized to provide allowed intersubband transitions at normal incidence to the quantum well growth direction. This transition is known to be forbidden for cases of isotropic effective mass. This property can be exploited for infrared sensor application of quantum well structures by allowing direct illumination of large surface areas without using special waveguide structures. The 10-micron intersubband absorption in quantum wells made of the silicon-based system Si/Si(1-x)Ge(x) was calculated. It is found that it is readily possible to achieve an absorption constant of the order of 10,000/cm in these Si quantum wells with current doping technology.
Quantum detection of wormholes.
Sabín, Carlos
2017-04-06
We show how to use quantum metrology to detect a wormhole. A coherent state of the electromagnetic field experiences a phase shift with a slight dependence on the throat radius of a possible distant wormhole. We show that this tiny correction is, in principle, detectable by homodyne measurements after long propagation lengths for a wide range of throat radii and distances to the wormhole, even if the detection takes place very far away from the throat, where the spacetime is very close to a flat geometry. We use realistic parameters from state-of-the-art long-baseline laser interferometry, both Earth-based and space-borne. The scheme is, in principle, robust to optical losses and initial mixedness.
A comparison of digital radiography systems in terms of effective detective quantum efficiency
Bertolini, Marco; Nitrosi, Andrea; Rivetti, Stefano; Lanconelli, Nico; Pattacini, Pierpaolo; Ginocchi, Vladimiro; Iori, Mauro
2012-05-15
Purpose: The purpose of this study is to compare digital radiography systems using the metric effective detective quantum efficiency (eDQE), which better reflects digital radiography imaging system performance under clinical operating conditions, in comparison with conventional metrics such as modulation transfer function (MTF), normalized noise power spectra (NNPS), and detective quantum efficiency (DQE). Methods: The eDQE was computed by the calculation of the MTF, the NNPS, the phantom attenuation and scatter, and estimation of x-ray flux. The physical characterization of the systems was obtained with the standard beam conditions RQA5 and RQA9, using the PA Chest phantom proposed by AAPM Report no. 31 simulating the attenuation and scatter characteristics of the adult human thorax. The MTF (eMTF) was measured by using an edge test placed at the frontal surface of the phantom, the NNPS (eNNPS) was calculated from images of the phantom acquired at three different exposure levels covering the operating range of the system (E{sub 0}, which is the exposure at which a system is normally operated, 1/3 E{sub 0}, and 3 E0), and scatter measurements were assessed by using a beam-stop technique. The integral of DQE (IDQE) and eDQE (IeDQE) was calculated over the whole spatial frequency range. Results: The eMTF results demonstrate degradation due to magnification and the presence of scattered radiation. The eNNPS was influenced by the grid presence, and in some systems, it contained structured noise. At typical clinical exposure levels, the magnitude of eDQE(0) with respect to DQE(0) at RQA9 beam conditions was 13%, 17%, 16%, 36%, and 24%, respectively, for Carestream DRX-1, Carestream DRX-1C, Carestream Direct View CR975, Philips Digital Diagnost VM, and GE Revolution XR/d. These results were confirmed by the ratio of IeDQE and IDQE in the same conditions. Conclusions: The authors confirm the robustness and reproducibility of the eDQE method. As expected, the DR systems
A comparison of digital radiography systems in terms of effective detective quantum efficiency.
Bertolini, Marco; Nitrosi, Andrea; Rivetti, Stefano; Lanconelli, Nico; Pattacini, Pierpaolo; Ginocchi, Vladimiro; Iori, Mauro
2012-05-01
The purpose of this study is to compare digital radiography systems using the metric effective detective quantum efficiency (eDQE), which better reflects digital radiography imaging system performance under clinical operating conditions, in comparison with conventional metrics such as modulation transfer function (MTF), normalized noise power spectra (NNPS), and detective quantum efficiency (DQE). The eDQE was computed by the calculation of the MTF, the NNPS, the phantom attenuation and scatter, and estimation of x-ray flux. The physical characterization of the systems was obtained with the standard beam conditions RQA5 and RQA9, using the PA Chest phantom proposed by AAPM Report # 31 simulating the attenuation and scatter characteristics of the adult human thorax. The MTF (eMTF) was measured by using an edge test placed at the frontal surface of the phantom, the NNPS (eNNPS) was calculated from images of the phantom acquired at three different exposure levels covering the operating range of the system (E(0), which is the exposure at which a system is normally operated, 1/3 E(0), and 3 E0), and scatter measurements were assessed by using a beam-stop technique. The integral of DQE (IDQE) and eDQE (IeDQE) was calculated over the whole spatial frequency range. The eMTF results demonstrate degradation due to magnification and the presence of scattered radiation. The eNNPS was influenced by the grid presence, and in some systems, it contained structured noise. At typical clinical exposure levels, the magnitude of eDQE(0) with respect to DQE(0) at RQA9 beam conditions was 13%, 17%, 16%, 36%, and 24%, respectively, for Carestream DRX-1, Carestream DRX-1C, Carestream Direct View CR975, Philips Digital Diagnost VM, and GE Revolution XR/d. These results were confirmed by the ratio of IeDQE and IDQE in the same conditions. The authors confirm the robustness and reproducibility of the eDQE method. As expected, the DR systems performed better than the CR systems due to their
CHARACTERISING THE EOS SLOT-SCANNING SYSTEM WITH THE EFFECTIVE DETECTIVE QUANTUM EFFICIENCY.
Clavel, A H; Monnin, P; Létang, J M; Verdun, F R; Darbon, A
2016-06-01
As opposed to the standard detective quantum efficiency (DQE), effective DQE (eDQE) is a figure of merit that allows comparing the performances of imaging systems in the presence of scatter rejection devices. The geometry of the EOS™ slot-scanning system is such that the detector is self-collimated and rejects scattered radiation. In this study, the EOS system was characterised using the eDQE in imaging conditions similar to those used in clinical practice: with phantoms of different widths placed in the X-ray beam, for various incident air kerma and tube voltages corresponding to the phantom thickness. Scatter fractions in EOS images were extremely low, around 2 % for all configurations. Maximum eDQE values spanned 9-14.8 % for a large range of air kerma at the detector plane from 0.01 to 1.34 µGy. These figures were obtained with non-optimised EOS setting but still over-performed most of the maximum eDQEs recently assessed for various computed radiology and digital radiology systems with antiscatter grids.
Quantum computing. Defining and detecting quantum speedup.
Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias
2014-07-25
The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question.
Samei, Ehsan; Ranger, Nicole T; MacKenzie, Alistair; Honey, Ian D; Dobbins, James T; Ravin, Carl E
2008-12-01
To develop an experimental method for measuring the effective detective quantum efficiency (eDQE) of digital radiographic imaging systems and evaluate its use in select imaging systems. A geometric phantom emulating the attenuation and scatter properties of the adult human thorax was employed to assess eight imaging systems in a total of nine configurations. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the system. The modulation transfer function (MTF) was measured by using an edge device positioned at the anterior surface of the phantom. Scatter measurements were made by using a beam-stop technique. All measurements, including those of phantom attenuation and estimates of x-ray flux, were used to compute the eDQE. The MTF results showed notable degradation owing to focal spot blur. Scatter fractions ranged between 11% and 56%, depending on the system. The eDQE(0) results ranged from 1%-17%, indicating a reduction of up to one order of magnitude and different rank ordering and performance among systems, compared with that implied in reported conventional detective quantum efficiency results from the same systems. The eDQE method was easy to implement, yielded reproducible results, and provided a meaningful reflection of system performance by quantifying image quality in a clinically relevant context. The difference in the magnitude of the measured eDQE and the ideal eDQE of 100% provides a great opportunity for improving the image quality of radiographic and mammographic systems while reducing patient dose. RSNA, 2008
Samei, Ehsan; Ranger, Nicole T.; MacKenzie, Alistair; Honey, Ian D.; Dobbins, James T.; Ravin, Carl E.
2008-01-01
Purpose: To develop an experimental method for measuring the effective detective quantum efficiency (eDQE) of digital radiographic imaging systems and evaluate its use in select imaging systems. Materials and Methods: A geometric phantom emulating the attenuation and scatter properties of the adult human thorax was employed to assess eight imaging systems in a total of nine configurations. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the system. The modulation transfer function (MTF) was measured by using an edge device positioned at the anterior surface of the phantom. Scatter measurements were made by using a beam-stop technique. All measurements, including those of phantom attenuation and estimates of x-ray flux, were used to compute the eDQE. Results: The MTF results showed notable degradation owing to focal spot blur. Scatter fractions ranged between 11% and 56%, depending on the system. The eDQE(0) results ranged from 1%–17%, indicating a reduction of up to one order of magnitude and different rank ordering and performance among systems, compared with that implied in reported conventional detective quantum efficiency results from the same systems. Conclusion: The eDQE method was easy to implement, yielded reproducible results, and provided a meaningful reflection of system performance by quantifying image quality in a clinically relevant context. The difference in the magnitude of the measured eDQE and the ideal eDQE of 100% provides a great opportunity for improving the image quality of radiographic and mammographic systems while reducing patient dose. © RSNA, 2008 PMID:19011189
Determination of the detective quantum efficiency of gamma camera systems: a Monte Carlo study.
Eriksson, Ida; Starck, Sven-Ake; Båth, Magnus
2010-01-01
The purpose of the present work was to investigate the validity of using the Monte Carlo technique for determining the detective quantum efficiency (DQE) of a gamma camera system and to use this technique in investigating the DQE behaviour of a gamma camera system and its dependency on a number of relevant parameters. The Monte Carlo-based software SIMIND, simulating a complete gamma camera system, was used in the present study. The modulation transfer function (MTF) of the system was determined from simulated images of a point source of (99m)Tc, positioned at different depths in a water phantom. Simulations were performed using different collimators and energy windows. The MTF of the system was combined with the photon yield and the sensitivity, obtained from the simulations, to form the frequency-dependent DQE of the system. As figure-of-merit (FOM), the integral of the 2D DQE was used. The simulated DQE curves agreed well with published data. As expected, there was a strong dependency of the shape and magnitude of the DQE curve on the collimator, energy window and imaging position. The highest FOM was obtained for a lower energy threshold of 127 keV for objects close to the detector and 131 keV for objects deeper in the phantom, supporting an asymmetric window setting to reduce scatter. The Monte Carlo software SIMIND can be used to determine the DQE of a gamma camera system from a simulated point source alone. The optimal DQE results in the present study were obtained for parameter settings close to the clinically used settings.
Salvagnini, Elena; Bosmans, Hilde; Struelens, Lara; Marshall, Nicholas W
2013-10-01
The aim of this paper was to illustrate the value of the new metric effective detective quantum efficiency (eDQE) in relation to more established measures in the optimization process of two digital mammography systems. The following metrics were included for comparison against eDQE: detective quantum efficiency (DQE) of the detector, signal difference to noise ratio (SdNR), and detectability index (d') calculated using a standard nonprewhitened observer with eye filter. The two systems investigated were the Siemens MAMMOMAT Inspiration and the Hologic Selenia Dimensions. The presampling modulation transfer function (MTF) required for the eDQE was measured using two geometries: a geometry containing scattered radiation and a low scatter geometry. The eDQE, SdNR, and d' were measured for poly(methyl methacrylate) (PMMA) thicknesses of 20, 40, 60, and 70 mm, with and without the antiscatter grid and for a selection of clinically relevant target/filter (T/F) combinations. Figures of merit (FOMs) were then formed from SdNR and d' using the mean glandular dose as the factor to express detriment. Detector DQE was measured at energies covering the range of typical clinically used spectra. The MTF measured in the presence of scattered radiation showed a large drop at low spatial frequency compared to the low scatter method and led to a corresponding reduction in eDQE. The eDQE for the Siemens system at 1 mm(-1) ranged between 0.15 and 0.27, depending on T/F and grid setting. For the Hologic system, eDQE at 1 mm(-1) varied from 0.15 to 0.32, again depending on T/F and grid setting. The eDQE results for both systems showed that the grid increased the system efficiency for PMMA thicknesses of 40 mm and above but showed only small sensitivity to T/F setting. While results of the SdNR and d' based FOMs confirmed the eDQE grid position results, they were also more specific in terms of T/F selection. For the Siemens system at 20 mm PMMA, the FOMs indicated Mo/Mo (grid out) as
Salvagnini, Elena; Bosmans, Hilde; Marshall, Nicholas W.; Struelens, Lara
2013-10-15
Purpose: The aim of this paper was to illustrate the value of the new metric effective detective quantum efficiency (eDQE) in relation to more established measures in the optimization process of two digital mammography systems. The following metrics were included for comparison against eDQE: detective quantum efficiency (DQE) of the detector, signal difference to noise ratio (SdNR), and detectability index (d′) calculated using a standard nonprewhitened observer with eye filter.Methods: The two systems investigated were the Siemens MAMMOMAT Inspiration and the Hologic Selenia Dimensions. The presampling modulation transfer function (MTF) required for the eDQE was measured using two geometries: a geometry containing scattered radiation and a low scatter geometry. The eDQE, SdNR, and d′ were measured for poly(methyl methacrylate) (PMMA) thicknesses of 20, 40, 60, and 70 mm, with and without the antiscatter grid and for a selection of clinically relevant target/filter (T/F) combinations. Figures of merit (FOMs) were then formed from SdNR and d′ using the mean glandular dose as the factor to express detriment. Detector DQE was measured at energies covering the range of typical clinically used spectra.Results: The MTF measured in the presence of scattered radiation showed a large drop at low spatial frequency compared to the low scatter method and led to a corresponding reduction in eDQE. The eDQE for the Siemens system at 1 mm{sup −1} ranged between 0.15 and 0.27, depending on T/F and grid setting. For the Hologic system, eDQE at 1 mm{sup −1} varied from 0.15 to 0.32, again depending on T/F and grid setting. The eDQE results for both systems showed that the grid increased the system efficiency for PMMA thicknesses of 40 mm and above but showed only small sensitivity to T/F setting. While results of the SdNR and d′ based FOMs confirmed the eDQE grid position results, they were also more specific in terms of T/F selection. For the Siemens system at 20 mm PMMA
Samant, Sanjiv S; Gopal, Arun
2006-09-01
Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly
Samant, Sanjiv S.; Gopal, Arun
2006-09-15
Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of kinestatis and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a
Optimum quantum receiver for detecting weak signals in PAM communication systems
NASA Astrophysics Data System (ADS)
Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar
2017-09-01
This paper deals with the modeling of an optimum quantum receiver for pulse amplitude modulator (PAM) communication systems. The information bearing sequence {I_k}_{k=0}^{N-1} is estimated using the maximum likelihood (ML) method. The ML method is based on quantum mechanical measurements of an observable X in the Hilbert space of the quantum system at discrete times, when the Hamiltonian of the system is perturbed by an operator obtained by modulating a potential V with a PAM signal derived from the information bearing sequence {I_k}_{k=0}^{N-1}. The measurement process at each time instant causes collapse of the system state to an observable eigenstate. All probabilities of getting different outcomes from an observable are calculated using the perturbed evolution operator combined with the collapse postulate. For given probability densities, calculation of the mean square error evaluates the performance of the receiver. Finally, we present an example involving estimating an information bearing sequence that modulates a quantum electromagnetic field incident on a quantum harmonic oscillator.
The use of detective quantum efficiency (DQE) in evaluating the performance of gamma camera systems.
Starck, Sven-Ake; Båth, Magnus; Carlsson, Sten
2005-04-07
The imaging properties of an imaging system can be described by its detective quantum efficiency (DQE). Using the modulation transfer function calculated from measured line spread functions and the normalized noise power spectrum calculated from uniformity images, DQE was calculated with the number of photons emitted from a plane source as a measure for the incoming SNR2. Measurements were made with 99mTc, using three different pulse height windows at 2 cm and 12 cm depths in water with high resolution and all purpose collimators and with two different crystal thicknesses. The results indicated that at greater depths a 15% window is the best choice. The choice of collimator depends on the details in the organ being investigated. There is a break point at 0.5 cycles cm-1 and 1.2 cycles cm-1 at 12 cm and 2 cm depths, respectively. A difference was found in DQE between the two crystal thicknesses, with a slightly better result for the thick crystal for measurements at 12 cm depth. At 2 cm depth, the thinner crystal was slightly better for frequencies over 0.5 cm-1. The determination of DQE could be a method to optimize the parameters for different nuclear medicine investigations. The DQE could also be used in comparing different gamma camera systems with different collimators to obtain a figure of merit.
Engineering quantum communication systems
NASA Astrophysics Data System (ADS)
Pinto, Armando N.; Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; Martins, Luis M.
2012-06-01
Quantum communications can provide almost perfect security through the use of quantum laws to detect any possible leak of information. We discuss critical issues in the implementation of quantum communication systems over installed optical fibers. We use stimulated four-wave mixing to generate single photons inside optical fibers, and by tuning the separation between the pump and the signal we adjust the average number of photons per pulse. We report measurements of the source statistics and show that it goes from a thermal to Poisson distribution with the increase of the pump power. We generate entangled photons pairs through spontaneous four-wave mixing. We report results for different type of fibers to approach the maximum value of the Bell inequality. We model the impact of polarization rotation, attenuation and Raman scattering and present optimum configurations to increase the degree of entanglement. We encode information in the photons polarization and assess the use of wavelength and time division multiplexing based control systems to compensate for the random rotation of the polarization during transmission. We show that time division multiplexing systems provide a more robust solution considering the values of PMD of nowadays installed fibers. We evaluate the impact on the quantum channel of co-propagating classical channels, and present guidelines for adding quantum channels to installed WDM optical communication systems without strongly penalizing the performance of the quantum channel. We discuss the process of retrieving information from the photons polarization. We identify the major impairments that limit the speed and distance of the quantum channel. Finally, we model theoretically the QBER and present results of an experimental performance assessment of the system quality through QBER measurements.
Effects of scintillator on the detective quantum efficiency (DQE) of a digital imaging system.
Farman, Taeko T; Vandre, Robert H; Pajak, John C; Miller, Stuart R; Lempicki, Alex; Farman, Allan G
2006-02-01
To compare the effects of scintillator on the detective quantum efficiency (DQE) of a charge-coupled device (CCD) digital intraoral radiographic system. Three screens composed of 3 different scintillator materials, namely europium-doped lutetium oxide (Lu2(O3):Eu3+), transparent optical ceramic (TOC), thallium-doped cesium iodide (CsI:Tl; CsI), and terbium-doped gadolinium oxysulfide (Gd2(O2)S:Tb; GOS) were compared, in turn, in combination with a CCD detector having square pixels with height and width dimensions of 19.5 microm. DQE was investigated using the slanted-slit-derived MTF and surrogate signal-to-noise ratio (SNR) measurements derived from calculations of the mean and standard deviations from the mean pixel values of multiple random patches from various uniform exposures. An Irix x-ray generator operated at 70 kVp and 8 mA, with a nominal focal spot size of 0.7 mm and 2.5 mm Al equivalent filtration, was used in making all exposures. Using TOC, the peak DQE was 62% at 5 cycles/mm. For CsI, the peak DQE was 22% at 2 cycles/mm. With GOS, the peak DQE was 10% at 1 cycle/mm. Under identical experimental settings, TOC consistently resulted in higher DQE than CsI and commercially available GOS scintillators combined with the same high-resolution solid-state detector.
NASA Astrophysics Data System (ADS)
Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.
2016-09-01
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.
NASA Astrophysics Data System (ADS)
Sadeghi, S. M.
2015-08-01
Conventional plasmonic sensors are based on the intrinsic resonances of metallic nanoparticles. In such sensors wavelength shift of such resonances are used to detect biological molecules. Recently we introduced ultra-sensitive timedomain nanosensors based on the way variations in the environmental conditions influence coherent dynamics of hybrid systems consisting of metallic nanoparticles and quantum dots. Such dynamics are generated via interaction of these systems with a laser field, generating quantum coherence and coherent exciton-plasmon coupling. These sensors are based on impact of variations of the refractive index of the environment on such dynamics, generating time-dependent changes in the emission of the QDs. In this paper we study the impact of material properties of the metallic nanoparticles on this process and demonstrate the key role played by the design of the quantum dots. We show that Ag nanoparticles, even in a simple spherical shape, may allow these sensors to operate at room temperature, owing to the special properties of quantum dot-metallic nanoparticle systems that may allow coherent effects utilized in such sensors happen in the presence of the ultrafast polarization dephasing of quantum dots.
Signal detection in multiaccess quantum channels
NASA Astrophysics Data System (ADS)
Concha, Julio Ignacio
Quantum channels are communication channels in which quantum effects are important, e.g. low-power optical links. While a "classical" channel is a mapping between probability distributions, a quantum channel is a mapping between quantum states. Among quantum channels, multiple-access channels (MACS) are interesting because of some conceptual differences with their classical counterparts. In a classical MAC, the receiver can make several copies of the incoming signal, and then process each copy in a different way so as to demodulate specific users. In contrast, the celebrated no-cloning theorem of quantum mechanics implies that a quantum signal cannot be perfectly copied, so that joint demodulation of all users is necessary. This thesis studies the detection of multiple users in a quantum channel. The most important contribution is a mathematical model of a quantum MAC, analogous to the "linear superposition plus Gaussian noise" model prevalent in classical communications. The model determines the output of a photon channel given the inputs from several users, and is derived from first principles by solving a Fokker-Planck equation for the system state. It accounts for multiple access interference, signal attenuation, and random noise, and reduces to the classical superposition model when quantum effects are negligible. Information can be extracted from the quantum channel output by measuring a (generalized) observable, which yields a random variable from the quantum state. A fundamental problem is to find the observable that minimizes the probability of decision error. By exploiting the structure of the multiaccess problem, we show that the optimal observable for an interference-free channel is robust in the presence of small interference, and compute the variation in the error probability via a perturbation technique. We also extend previously known quantum detection methods, in particular the square-root measurement, and introduce a novel detector. We show by
2008-08-01
FINAL REPORT Development and Evaluation of an Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System...Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System for Detection, Characterization and Mapping of Unexploded...Demonstration of the difference between a single component total field magnetometer and intrinsic gradiometer . (From Clarke, 1994). 4 Figure 3
Detecting quantum critical points using bipartite fluctuations.
Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn
2012-03-16
We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.
Advanced quantum communication systems
NASA Astrophysics Data System (ADS)
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
NASA Astrophysics Data System (ADS)
Carlysle, Felicity; Nic Daeid, Niamh; Normand, Erwan; McCulloch, Michael
2012-10-01
Fourier Transform infrared spectroscopy (FTIR) is regularly used in forensic analysis, however the application of high resolution Fourier Transform infrared spectroscopy for the detection of explosive materials and explosive precursors has not been fully explored. This project aimed to develop systematically a protocol for the analysis of explosives and precursors using Fourier Transform infrared spectroscopy and basic data analysis to enable the further development of a quantum cascade laser (QCL) based airport detection system. This paper details the development of the protocol and results of the initial analysis of compounds of interest.
NASA Astrophysics Data System (ADS)
Cahill, Reginald T.
2002-10-01
So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.
Intrusion Detection With Quantum Mechanics: A Photonic Quantum Fence
2008-12-01
computing and quantum key distribution (QKD). Some of the most remarkable examples include quantum teleportation for the non-local transfer of...1 INTRUSION DETECTION WITH QUANTUM MECHANICS: A PHOTONIC QUANTUM FENCE T. S. Humble*, R. S. Bennink, and W. P. Grice Oak Ridge National...use of quantum -mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no
The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses.
Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A
2013-04-01
Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.
The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses
Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.
2013-04-15
Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Feng, Yueshu; Liu, Liwei; Hu, Siyi; Zou, Peng; Zhang, Jiaqi; Huang, Chen; Wang, Yue; Wang, Sihan; Zhang, Xihe
2016-03-01
We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag(+)). The results revealed a good linear trend over Ag(+) concentrations in the range 0.01-8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed.
NASA Astrophysics Data System (ADS)
Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.
2016-05-01
The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
NASA Astrophysics Data System (ADS)
Marshall, N. W.
2009-05-01
This paper presents detective quantum efficiency (DQE) data measured for a range of x-ray beam qualities for two full-field digital mammography (FFDM) systems: a caesium iodide (CsI) detector-based unit and a system designed around an amorphous selenium (a-Se) x-ray detector. Four beam qualities were studied for each system, covering mean energies from 17.8 keV to 23.4 keV for the CsI system and 17.8 keV to 24.7 keV for the a-Se unit. These were set using 2, 4, 6 and 7 cm polymethylmethacralate (PMMA) and typical tube voltage and target/filter combinations selected by the automatic exposure control (AEC) program used clinically on these systems. Normalized noise power spectra (NNPS) were calculated from flood images acquired at these beam qualities for a target detector air kerma of 100 µGy. Modulation transfer function (MTF) data were acquired at 28 kV and Mo/Mo target/filter setting. The DQE was then calculated from the MTF and NNPS results. For comparison, the quantum detective efficiency (QDE) and energy absorption efficiency (EAE) were calculated from tabulated narrow beam spectral data. With regard to detector response, some energy dependence was noted for pixel value plotted against air kerma at the detector. This amounted to a change in the gradient of the detector response of approximately 15% and 30% per keV for the CsI- and a-Se-based systems, respectively. For the DQE results, a reduction in DQE(0) of 22% was found for the CsI-based unit as beam quality changed from 25 kV Mo/Mo and 2 cm PMMA to 32 kV Rh/Rh and 7 cm PMMA. For the a-Se system, a change in beam quality from 25 kV Mo/Mo and 2 cm PMMA to 34 kV Mo/Rh and 7 cm PMMA led to a reduction in DQE(0) of 8%. Comparing measured data with simple calculations, a reduction in x-ray quantum detection efficiency of 27% was expected for the CsI-based system, while a reduction of 11% was predicted for the a-Se system.
Marshall, N W
2009-05-07
This paper presents detective quantum efficiency (DQE) data measured for a range of x-ray beam qualities for two full-field digital mammography (FFDM) systems: a caesium iodide (CsI) detector-based unit and a system designed around an amorphous selenium (a-Se) x-ray detector. Four beam qualities were studied for each system, covering mean energies from 17.8 keV to 23.4 keV for the CsI system and 17.8 keV to 24.7 keV for the a-Se unit. These were set using 2, 4, 6 and 7 cm polymethylmethacralate (PMMA) and typical tube voltage and target/filter combinations selected by the automatic exposure control (AEC) program used clinically on these systems. Normalized noise power spectra (NNPS) were calculated from flood images acquired at these beam qualities for a target detector air kerma of 100 microGy. Modulation transfer function (MTF) data were acquired at 28 kV and Mo/Mo target/filter setting. The DQE was then calculated from the MTF and NNPS results. For comparison, the quantum detective efficiency (QDE) and energy absorption efficiency (EAE) were calculated from tabulated narrow beam spectral data. With regard to detector response, some energy dependence was noted for pixel value plotted against air kerma at the detector. This amounted to a change in the gradient of the detector response of approximately 15% and 30% per keV for the CsI- and a-Se-based systems, respectively. For the DQE results, a reduction in DQE(0) of 22% was found for the CsI-based unit as beam quality changed from 25 kV Mo/Mo and 2 cm PMMA to 32 kV Rh/Rh and 7 cm PMMA. For the a-Se system, a change in beam quality from 25 kV Mo/Mo and 2 cm PMMA to 34 kV Mo/Rh and 7 cm PMMA led to a reduction in DQE(0) of 8%. Comparing measured data with simple calculations, a reduction in x-ray quantum detection efficiency of 27% was expected for the CsI-based system, while a reduction of 11% was predicted for the a-Se system.
Quantum system identification.
Burgarth, Daniel; Yuasa, Kazuya
2012-02-24
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Quantum Endpoint Detection Based on QRDA
NASA Astrophysics Data System (ADS)
Wang, Jian; Wang, Han; Song, Yan
2017-10-01
Speech recognition technology is widely used in many applications for man - machine interaction. To face more and more speech data, the computation of speech processing needs new approaches. The quantum computation is one of emerging computation technology and has been seen as useful computation model. So we focus on the basic operation of speech recognition processing, the voice activity detection, to present quantum endpoint detection algorithm. In order to achieve this algorithm, the n-bits quantum comparator circuit is given firstly. Then based on QRDA(Quantum Representation of Digital Audio), a quantum endpoint detection algorithm is presented. These quantum circuits could efficient process the audio data in quantum computer.
Quantum Endpoint Detection Based on QRDA
NASA Astrophysics Data System (ADS)
Wang, Jian; Wang, Han; Song, Yan
2017-08-01
Speech recognition technology is widely used in many applications for man - machine interaction. To face more and more speech data, the computation of speech processing needs new approaches. The quantum computation is one of emerging computation technology and has been seen as useful computation model. So we focus on the basic operation of speech recognition processing, the voice activity detection, to present quantum endpoint detection algorithm. In order to achieve this algorithm, the n-bits quantum comparator circuit is given firstly. Then based on QRDA(Quantum Representation of Digital Audio), a quantum endpoint detection algorithm is presented. These quantum circuits could efficient process the audio data in quantum computer.
Quantum cloning attacks against PUF-based quantum authentication systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke
2012-07-01
A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz(1/2) in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-μm diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.
2008-03-15
0603048 (2006) [3] Q. Zhang et al, Experimental Quantum Teleportation of a Two-Qubit Composite System, quant-ph/0609129 (2006) [4] G. Y. Xiang et...AFOSR project “ Quantum Communication Systems” University of Oxford and UMK Torun Final Report 15 March 2008 Summary This document...temporal characterization by interference with a local oscillator and the theoretical study of their propagation in lossy quantum channels. Also, their
A quantum annealing approach for fault detection and diagnosis of graph-based systems
NASA Astrophysics Data System (ADS)
Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.
2015-02-01
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Myers, Tanya L.
2010-01-23
We describe the performance of a sensor system designed for simultaneous detection of multiple chemicals with both broad and narrow absorption features. The sensor system consists of a broadly tunable external cavity quantum cascade laser (ECQCL), multi-pass Herriott cell, and custom low-noise electronics. The ECQCL features a rapid wavelength tuning rate of 2265 cm 1/s (15660 nm/s) over its tuning range of 1150-1270 cm 1 (7.87-8.70 μm), which permits detection of molecules with broad absorption features and dynamic concentrations, while the 0.2 cm-1 spectral resolution of the ECQCL system allows measurement of small molecules with atmospherically broadened absorption lines. High-speed amplitude modulation and low-noise electronics are used to improve the ECQCL performance for direct absorption measurements. We demonstrate simultaneous detection of Freon-134a (1,1,1,2-tetrafluoroethane), ammonia (NH3), and nitrous oxide (N2O) at low-ppb concentrations in field measurements of atmospheric chemical releases from a point source.
Wang, Jianbo; Cui, Lijuan; Han, Suqin; Hao, Fang
2015-06-01
It was found that cadmium telluride (CdTe) quantum dots (QDs) with different sizes can have a great sensitizing effect on chemiluminescence (CL) emission from luminol-potassium periodate (KIO4) system. Levodopa, a widely prescribed drug in the treatment of Parkinson's disease, could inhibit luminol-KIO4-CdTe QDs CL reaction in alkaline solution. The inhibited CL intensity was proportional to the concentration of levodopa in the range from 8.0 nM to 10.0 μM. The detection limit was 3.8 nM. This method has been successfully applied to determine levodopa in pharmaceutical preparation and human urine and plasma samples with recoveries of 94.1-105.4%. This was the first work for inhibition effect determination of levodopa using a QD-based CL method.
Quantum Detection and Invisibility in Coherent Nanostructures
Fransson, J.
2010-04-28
We address quantum invisibility in the context of electronics in nanoscale quantum structures. In analogy with metamaterials, we use the freedom of design that quantum corrals provide and show that quantum mechanical objects can be hidden inside the corral, with respect to inelastic electron scattering spectroscopy in combination with scanning tunneling microscopy, and we propose a design strategy. A simple illustration of the invisibility is given in terms of an elliptic quantum corral containing a molecule, with a local vibrational mode, at one of the foci. Our work has implications to quantum information technology and presents new tools for nonlocal quantum detection and distinguishing between different molecules.
Quantum hacking on quantum key distribution using homodyne detection
NASA Astrophysics Data System (ADS)
Huang, Jing-Zheng; Kunz-Jacques, Sébastien; Jouguet, Paul; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2014-03-01
Imperfect devices in commercial quantum key distribution systems open security loopholes that an eavesdropper may exploit. An example of one such imperfection is the wavelength-dependent coupling ratio of the fiber beam splitter. Utilizing this loophole, the eavesdropper can vary the transmittances of the fiber beam splitter at the receiver's side by inserting lights with wavelengths different from what is normally used. Here, we propose a wavelength attack on a practical continuous-variable quantum key distribution system using homodyne detection. By inserting light pulses at different wavelengths, this attack allows the eavesdropper to bias the shot-noise estimation even if it is done in real time. Based on experimental data, we discuss the feasibility of this attack and suggest a prevention scheme by improving the previously proposed countermeasures.
Danilov, Viatcheslav; Nagaitsev, Sergei; /Fermilab
2011-11-01
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.
Waclawek, Johannes P; Moser, Harald; Lendl, Bernhard
2016-03-21
A compact gas sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) employing a continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) operating at 4.59 µm was developed for detection of carbon disulfide (CS_{2}) in air at trace concentration. The influence of water vapor on monitored QEPAS signal was investigated to enable compensation of this dependence by independent moisture sensing. A 1 σ limit of detection of 28 parts per billion by volume (ppbv) for a 1 s lock-in amplifier time constant was obtained for the CS_{2} line centered at 2178.69 cm^{-1} when the gas sample was moisturized with 2.3 vol% H_{2}O. The work reports the suitability of the system for monitoring CS_{2} with high selectivity and sensitivity, as well as low sample gas volume requirements and fast sensor response for applications such as workplace air and process monitoring at industry.
Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
NASA Astrophysics Data System (ADS)
Wei, Min; Ye, Qing-Hao; Kan, Rui-Feng; Chen, Bing; Yang, Chen-Guang; Xu, Zhen-Yu; Chen, Xiang; Ruan, Jun; Fan, Xue-Li; Wang, Wei; Hu, Mai; Liu, Jian-Guo
2016-09-01
A quantum cascade laser (QCL) based system for simultaneous detection of CO and CO2 is developed. The QCL can scan over two neighboring CO (2055.40 cm-1) and CO2 (2055.16 cm-1) lines with a single current scan. The wavelength modulation spectroscopy (f = 20 kHz) is utilized to enhance the signal-to-noise ratio. A white cell with an effective optical path length of 74 m is used. The calibration of the sensor is performed and minimum detection limits of 1.3 ppb (1 × 10-9) for CO and 0.44 ppm (1 × 10-6) for CO2 are achieved. Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grnat No. 2014YQ060537), the National Basic Research Program of China (Grant No. 2013CB632803), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05040102), and the National Natural Science Foundation of China (Grant No. 41405134).
Micheli, Fiorenza de; Zanelli, Jorge
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
Scheme of thinking quantum systems
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
NASA Astrophysics Data System (ADS)
Choi, Seungyeon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Young-Wook; Kim, Hee-Joung
2017-03-01
Digital breast tomosynthesis (DBT) system is a novel imaging modality which is strongly depended on the performance of a detector. Recently, effective detective quantum efficiency (eDQE) has been introduced to solve the disadvantages of conventional DQE evaluations which do not consider clinical operating conditions. For eDQE evaluation, the variety of patient breast, especially the glandularity and thickness needs to be studied to consider different races of patient. For these reasons, eDQE in a prototype DBT system considering different breast thickness and glandularity was evaluated. In this study, we used the prototype DBT system with CsI(Tl) scintillator/CMOS flat panel digital detector developed by Korea Electrotechnology Research Institute (KERI). A scatter fraction, a transmission factor, an effective modulation transfer function (eMTF) and an effective normalized noise power spectrum (eNNPS) were measured in different thickness and glandularity of breast equivalent phantom. As results, scatter fraction increased and transmission fraction decreased by a factor of 2.09 and 6.25, respectively, as increasing glandularity and thickness. We also found that the breast phantom with small thickness presented high eMTF and low eNNPS. As results, eDQE from 4 cm thick breast phantom with 30% and 70% glandularity showed small changes from 0.20 to 0.19 at 0.1 mm-1, whereas eDQE from 50% glandularity of 3 cm and 5 cm presented relatively significant increase from 0.16 to 0.20 at 0.1 mm-1 spatial frequency. These indicated that eDQE was strongly affected by phantom thickness, but the effect of glandularity seemed to be trivial. According to our study, the whole system evaluation considering the races of patients from standard to abnormal cases is needed to be studied in future works.
Curtright, Thomas; Mezincescu, Luca
2007-09-15
Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+{nu}){sup 2}+{sigma}{sub k>0}{mu}{sub k} exp(ikx). In some nontrivial cases, equivalent Hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.
Quantum superintegrable Zernike system
NASA Astrophysics Data System (ADS)
Pogosyan, George S.; Salto-Alegre, Cristina; Wolf, Kurt Bernardo; Yakhno, Alexander
2017-07-01
We consider the differential equation that Zernike proposed to classify aberrations of wavefronts in a circular pupil, whose value at the boundary can be nonzero. On this account, the quantum Zernike system, where that differential equation is seen as a Schrödinger equation with a potential, is special in that it has a potential and a boundary condition that are not standard in quantum mechanics. We project the disk on a half-sphere and there we find that, in addition to polar coordinates, this system separates into two additional coordinate systems (non-orthogonal on the pupil disk), which lead to Schrödinger-type equations with Pöschl-Teller potentials, whose eigen-solutions involve Legendre, Gegenbauer, and Jacobi polynomials. This provides new expressions for separated polynomial solutions of the original Zernike system that are real. The operators which provide the separation constants are found to participate in a superintegrable cubic Higgs algebra.
Quantum critical points in quantum impurity systems
NASA Astrophysics Data System (ADS)
Lee, Hyun Jung; Bulla, Ralf
2005-04-01
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
2013-02-15
Universiti Teknikal Malaysia Melaka in Malaysia. The project was then used to partially support a new PhD student, Mr Shanon Vuglar (who is a former...method based on cascade realization of quantum systems is used and a conference and journal paper have been produced. In another approach, a method...based on singular perturbation is used and a conference and journal paper have resulted. This work was extended by the graduate student Shanon Vuglar to
Space–time-bounded quantum fields for detection processes
Aguayo, Fernando J.; Jaroszkiewicz, George
2014-01-01
We discuss a quantum field detection model comprising two types of detection procedures: maximal detection, where the initial state of the system and detectors undergoes an irreversible evolution, and minimal detection, where the system–detector interaction consists of a small, reversible coupling and posterior maximal detection performed over the detector system. Combined, these detection procedures allow for a time-dependent description of signalling experiments involving yes/no type of questions. A particular minimal detection model, stable in the presence of the vacuum, is presented and studied, successfully reproducing the localization of the state after a detection. PMID:24711717
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Spectrum analysis with quantum dynamical systems
NASA Astrophysics Data System (ADS)
Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei
2016-04-01
Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
Quantum correlations in composite systems
NASA Astrophysics Data System (ADS)
Sperling, J.; Agudelo, E.; Walmsley, I. A.; Vogel, W.
2017-07-01
We study emerging notions of quantum correlations in compound systems. Based on different definitions of quantumness in individual subsystems, we investigate how they extend to the joint description of a composite system. Especially, we study the bipartite case and the connection of two typically applied and distinctively different concepts of nonclassicality in quantum optics and quantum information. Our investigation includes the representation of correlated states in terms of quasiprobability matrices, a comparative study of joint and conditional quantum correlations, and an entanglement characterization. It is, for example, shown that our composition approach always includes entanglement as one form of quantum correlations. Yet, other forms of quantum correlations can also occur without entanglement. Finally, we give an outlook towards multimode systems and temporal correlations.
Quantum fluctuations in mesoscopic systems
NASA Astrophysics Data System (ADS)
Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.
2017-10-01
Recent experimental results point to the existence of coherent quantum phenomena in systems made of a large number of particles, despite the fact that for many-body systems the presence of decoherence is hardly negligible and emerging classicality is expected. This behaviour hinges on collective observables, named quantum fluctuations, that retain a quantum character even in the thermodynamic limit: they provide useful tools for studying properties of many-body systems at the mesoscopic level, in-between the quantum microscopic scale and the classical macroscopic one. We herein present the general theory of quantum fluctuations in mesoscopic systems, and study their dynamics in a quantum open system setting, taking into account the unavoidable effects of dissipation and noise induced by the external environment. As in the case of microscopic systems, decoherence is not always the only dominating effect at the mesoscopic scale: certain types of environment can provide means for entangling collective fluctuations through a purely noisy mechanism.
Detecting Lower Bounds to Quantum Channel Capacities.
Macchiavello, Chiara; Sacchi, Massimiliano F
2016-04-08
We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension.
NASA Astrophysics Data System (ADS)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Physical Meaning of the Optimum Measurement Process in Quantum Detection Theory
NASA Technical Reports Server (NTRS)
Osaki, Masao; Kozuka, Haruhisa; Hirota, Osamu
1996-01-01
The optimum measurement processes are represented as the optimum detection operators in the quantum detection theory. The error probability by the optimum detection operators goes beyond the standard quantum limit automatically. However the optimum detection operators are given by pure mathematical descriptions. In order to realize a communication system overcoming the standard quantum limit, we try to give the physical meaning of the optimum detection operators.
Chapter 2 A Single Quantum System
NASA Astrophysics Data System (ADS)
Toschek, Peter E.
The evolution of quantum mechanics has followed the critical analysis of "gedanken" experiments. Many of these concrete speculations can become implemented today in the laboratory--thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: (1) The microphysical measurement by a macroscopic device, (2) the system's temporal evolution, and (3) the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed. An experiment designed to demonstrate this "quantum Zeno effect" and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individual electrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretation.
Quantum walks: The first detected passage time problem
NASA Astrophysics Data System (ADS)
Friedman, H.; Kessler, D. A.; Barkai, E.
2017-03-01
Even after decades of research, the problem of first passage time statistics for quantum dynamics remains a challenging topic of fundamental and practical importance. Using a projective measurement approach, with a sampling time τ , we obtain the statistics of first detection events for quantum dynamics on a lattice, with the detector located at the origin. A quantum renewal equation for a first detection wave function, in terms of which the first detection probability can be calculated, is derived. This formula gives the relation between first detection statistics and the solution of the corresponding Schrödinger equation in the absence of measurement. We illustrate our results with tight-binding quantum walk models. We examine a closed system, i.e., a ring, and reveal the intricate influence of the sampling time τ on the statistics of detection, discussing the quantum Zeno effect, half dark states, revivals, and optimal detection. The initial condition modifies the statistics of a quantum walk on a finite ring in surprising ways. In some cases, the average detection time is independent of the sampling time while in others the average exhibits multiple divergences as the sampling time is modified. For an unbounded one-dimensional quantum walk, the probability of first detection decays like (time)(-3 ) with superimposed oscillations, with exceptional behavior when the sampling period τ times the tunneling rate γ is a multiple of π /2 . The amplitude of the power-law decay is suppressed as τ →0 due to the Zeno effect. Our work, an extended version of our previously published paper, predicts rich physical behaviors compared with classical Brownian motion, for which the first passage probability density decays monotonically like (time)-3 /2, as elucidated by Schrödinger in 1915.
Quantum walks: The first detected passage time problem.
Friedman, H; Kessler, D A; Barkai, E
2017-03-01
Even after decades of research, the problem of first passage time statistics for quantum dynamics remains a challenging topic of fundamental and practical importance. Using a projective measurement approach, with a sampling time τ, we obtain the statistics of first detection events for quantum dynamics on a lattice, with the detector located at the origin. A quantum renewal equation for a first detection wave function, in terms of which the first detection probability can be calculated, is derived. This formula gives the relation between first detection statistics and the solution of the corresponding Schrödinger equation in the absence of measurement. We illustrate our results with tight-binding quantum walk models. We examine a closed system, i.e., a ring, and reveal the intricate influence of the sampling time τ on the statistics of detection, discussing the quantum Zeno effect, half dark states, revivals, and optimal detection. The initial condition modifies the statistics of a quantum walk on a finite ring in surprising ways. In some cases, the average detection time is independent of the sampling time while in others the average exhibits multiple divergences as the sampling time is modified. For an unbounded one-dimensional quantum walk, the probability of first detection decays like (time)^{(-3)} with superimposed oscillations, with exceptional behavior when the sampling period τ times the tunneling rate γ is a multiple of π/2. The amplitude of the power-law decay is suppressed as τ→0 due to the Zeno effect. Our work, an extended version of our previously published paper, predicts rich physical behaviors compared with classical Brownian motion, for which the first passage probability density decays monotonically like (time)^{-3/2}, as elucidated by Schrödinger in 1915.
Quantum Effects in Biological Systems
NASA Astrophysics Data System (ADS)
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
A novel detection method of human serum albumin based on CuInZnS quantum dots-Co(2+) sensing system.
Gui, Wenying; Chen, Xueqian; Ma, Qiang
2017-06-01
We developed a novel "turn off-on" sensor for human serum albumin (HSA) detection based on CuInZnS quantum dots (CIZS QDs). The photoluminescence (PL) of QDs can be "turned off" by Co(II) first. Because of the strong binding ability of HSA with Co(2+), Co(2+) can be removed from CIZS QDs with the addition of HSA. As a result, the PL of CIZS QDs probe can be "turned on" with an increased concentration of HSA over a wide range. The analyte HSA concentration had a proportional linear relationship with the recovered PL intensity of CIZS QDs. The detection limit for HSA was 4.5 × 10(-8) mol L(-1). The results indicated that the CIZS QDs- Co(2+)-BSA sensing system possessed higher sensitivity and better practicability for HSA detection.
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Multimode optomechanical system in the quantum regime.
Nielsen, William Hvidtfelt Padkær; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S; Schliesser, Albert
2017-01-03
We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 10(7)) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry-Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.
Multimode optomechanical system in the quantum regime
NASA Astrophysics Data System (ADS)
Hvidtfelt Padkær Nielsen, William; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S.; Schliesser, Albert
2017-01-01
We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 107) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry–Perot resonator detects these modes’ motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to ‑2.4 dB (‑3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry–Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.
Quantum error correction for continuously detected errors
NASA Astrophysics Data System (ADS)
Ahn, Charlene; Wiseman, H. M.; Milburn, G. J.
2003-05-01
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber et al., Phys. Rev. Lett. 86, 4402 (2001)].
Decoherence in infinite quantum systems
Blanchard, Philippe; Hellmich, Mario
2012-09-01
We review and discuss a notion of decoherence formulated in the algebraic framework of quantum physics. Besides presenting some sufficient conditions for the appearance of decoherence in the case of Markovian time evolutions we provide an overview over possible decoherence scenarios. The framework for decoherence we establish is sufficiently general to accommodate quantum systems with infinitely many degrees of freedom.
Efficient simulation of open quantum system in duality quantum computing
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Long, Gui-Lu
2016-11-01
Practical quantum systems are open systems due to interactions with their environment. Understanding the evolution of open systems dynamics is important for quantum noise processes , designing quantum error correcting codes, and performing simulations of open quantum systems. Here we proposed an efficient quantum algorithm for simulating the evolution of an open quantum system on a duality quantum computer. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality algorithm, the time evolution of open quantum system is realized by using Kraus operators which is naturally realized in duality quantum computing. Compared to the Lloyd's quantum algorithm [Science.273, 1073(1996)] , the dependence on the dimension of the open quantum system in our algorithm is decreased. Moreover, our algorithm uses a truncated Taylor series of the evolution operators, exponentially improving the performance on the precision compared with existing quantum simulation algorithms with unitary evolution operations.
Simplified quantum mechanics of light detection for quantum cryptography
NASA Astrophysics Data System (ADS)
Myers, John M.; Madjid, F. Hadi
2004-08-01
Strong light signals are detected reliably on a time scale of a nanosecond; however, known detectors of weak light signals used in quantum key distribution (QKD) are much slower; they involve pulse-shaping arbiters based on flip-flops that take many nanoseconds to produce a stable output. Based on a recently shown logical independence of quantum particles from the devices that they are employed to explain, we make use of quantum mechanics fine-tuned so that particles serve not as rigid foundations but as improvised hypotheses useful in models that describe the recorded behavior of devices. On the experimental side, we augment the arbitrating flip-flop of a detector so that it fans out to a matched pair of auxiliary flip-flops, and show how this imparts to a detector a "self-awareness" of its own teetering, as announced by disagreements between the auxiliary flip-flops. We introduce a quantum model of this arrangement, invoking a pair of probe particles, and show this model corresponds well to an experiment. The matched pair of auxiliary flip-flops not only confirms the model of hesitation in a detector, but serves as an instrument, both conceptual and practical, that gives an added dimension to the characterization of signal sources.
Data detection algorithms for multiplexed quantum dot encoding.
Goss, Kelly C; Messier, Geoff G; Potter, Mike E
2012-02-27
A group of quantum dots can be designed to have a unique spectral emission by varying the size of the quantum dots (wavelength) and number of quantum dots (intensity). This technique has been previously proposed for biological tags and object identification. The potential of this system lies in the ability to have a large number of distinguishable wavelengths and intensity levels. This paper presents a communications system model for MxQDs including the interference between neighbouring QD colours and detector noise. An analytical model of the signal-to-noise ratio of a Charge-Coupled Device (CCD) spectrometer is presented and confirmed with experimental results. We then apply a communications system perspective and propose data detection algorithms that increase the readability of the quantum dots tags. It is demonstrated that multiplexed quantum dot barcodes can be read with 99.7% accuracy using the proposed data detection algorithms in a system with 6 colours and 6 intensity values resulting in 46,655 unique spectral codes.
Remote Detection via Quantum Coherence
NASA Astrophysics Data System (ADS)
Scully, Marlan
2015-03-01
There is nothing so practical as basic science. As a case in point, the compelling need for standoff detection of hazardous gases and vapor indicators of explosives has motivated the development of remotely pumped, scheme(s) which produce radiation in the backward direction [Science, 331(6016), 442-445 (2011); PRX, 3, 041001 (2013)]. Moving from conceptualization to theoretical analysis and experimental verification, we demonstrate that high gain can be achieved in air. Backward air lasing provides new possibilities for remote detection [Laser Phys. Lett., 8(10), 736-741 (2011)]. We gratefully acknowledge support of the National Science Foundation Grants PHY-1241032 and EEC-0540832 and the Robert A. Welch Foundation (Award A-1261).
Quantum non-Markovianity: characterization, quantification and detection.
Rivas, Ángel; Huelga, Susana F; Plenio, Martin B
2014-09-01
We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.
Screening in quantum charged systems
NASA Astrophysics Data System (ADS)
Martin, Ph. A.; Gruber, Ch.
1984-07-01
For stationary states of quantum charged systems in ν dimensions, ν>=2, it is proven that the reduced-density matrices satisfy a set of sum rules whenever the clustering is faster than |x|-(ν+l). These sum rules, describing the screening properties, are analogous to those previously derived for classical systems. For neutral quantum fluids, it is shown that the clustering cannot be faster than the decay of the force.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
NASA Astrophysics Data System (ADS)
Cheng, Zhi; Wu, Taihu; Chen, Feng; Du, Yaohua; Gu, Biao; Li, Chao; Yang, Zijian
2012-03-01
This study investigated a method that simultaneously detects three bacteria, Salmonella typhimurium, Escherichia coli, and Staphylococcus aureus via an approach that combines un-immunized magnetic nanoparticles for the enrichment and antibody-conjugated quantum dots (QDs) as fluorescence markers, by using a laboratory-made system. In the enrichment procedure, the un-immunized superparamagnetic polymer nanoparticles and the three bacteria formed "beadcell" complex. Magnetic nanoparticles with different size were used and some interferents were added into the bacteria suspension respectively to check the influence on concentration efficiency. In the immuno-fluorescence labeling procedure, QDs with different emission wavelenghs were immobilized with antibody. Antibody conjugated QDs capture the bacteria selectively and specifically so that "sandwich" complex were formed. The suspension of the labeled bacteria was trickled onto a microporous membrane. A 450nm semiconductor laser was used as a part of the laboratory-made system to excite the QDs. Three PMT detectors were utilized to detect the fluorescence intensity. These un-immunized magnetic nanoparticles can be applied in nonspecific separation and enrichment of bacteria from environmental samples, and this method, of which the detection procedures are completed within 2 h, can be applied to the cost-effective and rapid detecting of bacterial contamination.
Universal blind quantum computation for hybrid system
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Thermal contrast detected with a quantum detector
NASA Astrophysics Data System (ADS)
Páez, Gonzalo; Scholl, Marija Strojnik
1999-08-01
We evaluate the thermal contrast detected by a quantum detector in a focal plane of an infrared instrument. The detected thermal contrast is shown to consist of two terms. The term corresponding to the temperature dependence of emissivity, previously neglected, is evaluated and shown to be a significant contributing factor. For the case of a metal mirror as a source of stray light, ghost images, and narcissus, the error is estimated to be about 20%. The term in the detected contrast associated with the radiative emission is shown to be proportional to temperature to the power of 2, rather than 3, published previously.
Improving Broadband Displacement Detection with Quantum Correlations
NASA Astrophysics Data System (ADS)
Kampel, N. S.; Peterson, R. W.; Fischer, R.; Yu, P.-L.; Cicak, K.; Simmonds, R. W.; Lehnert, K. W.; Regal, C. A.
2017-04-01
Interferometers enable ultrasensitive measurement in a wide array of applications from gravitational wave searches to force microscopes. The role of quantum mechanics in the metrological limits of interferometers has a rich history, and a large number of techniques to surpass conventional limits have been proposed. In a typical measurement configuration, the trade-off between the probe's shot noise (imprecision) and its quantum backaction results in what is known as the standard quantum limit (SQL). In this work, we investigate how quantum correlations accessed by modifying the readout of the interferometer can access physics beyond the SQL and improve displacement sensitivity. Specifically, we use an optical cavity to probe the motion of a silicon nitride membrane off mechanical resonance, as one would do in a broadband displacement or force measurement, and observe sensitivity better than the SQL dictates for our quantum efficiency. Our measurement illustrates the core idea behind a technique known as variational readout, in which the optical readout quadrature is changed as a function of frequency to improve broadband displacement detection. And, more generally, our result is a salient example of how correlations can aid sensing in the presence of backaction.
Stochastic quantum Zeno-based detection of noise correlations
NASA Astrophysics Data System (ADS)
Müller, Matthias M.; Gherardini, Stefano; Caruso, Filippo
2016-12-01
A system under constant observation is practically freezed to the measurement subspace. If the system driving is a random classical field, the survival probability of the system in the subspace becomes a random variable described by the Stochastic Quantum Zeno Dynamics (SQZD) formalism. Here, we study the time and ensemble average of this random survival probability and demonstrate how time correlations in the noisy environment determine whether the two averages do coincide or not. These environment time correlations can potentially generate non-Markovian dynamics of the quantum system depending on the structure and energy scale of the system Hamiltonian. We thus propose a way to detect time correlations of the environment by coupling a quantum probe system to it and observing the survival probability of the quantum probe in a measurement subspace. This will further contribute to the development of new schemes for quantum sensing technologies, where nanodevices may be exploited to image external structures or biological molecules via the surface field they generate.
Stochastic quantum Zeno-based detection of noise correlations
Müller, Matthias M.; Gherardini, Stefano; Caruso, Filippo
2016-01-01
A system under constant observation is practically freezed to the measurement subspace. If the system driving is a random classical field, the survival probability of the system in the subspace becomes a random variable described by the Stochastic Quantum Zeno Dynamics (SQZD) formalism. Here, we study the time and ensemble average of this random survival probability and demonstrate how time correlations in the noisy environment determine whether the two averages do coincide or not. These environment time correlations can potentially generate non-Markovian dynamics of the quantum system depending on the structure and energy scale of the system Hamiltonian. We thus propose a way to detect time correlations of the environment by coupling a quantum probe system to it and observing the survival probability of the quantum probe in a measurement subspace. This will further contribute to the development of new schemes for quantum sensing technologies, where nanodevices may be exploited to image external structures or biological molecules via the surface field they generate. PMID:27941889
Quantum structures for multiband photon detection
NASA Astrophysics Data System (ADS)
Perera, A. G. U.
2006-06-01
The work describes multiband photon detectors based on semiconductor micro-and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ˜6 and ˜17 μm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.
Quantum structures for multiband photon detection
NASA Astrophysics Data System (ADS)
Perera, A. G. U.
2005-09-01
The work describes multiband photon detectors based on semiconductor micro- and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum Dots-in-a-Well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunneling Quantum Dot Infrared Photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color infrared detector with photoresponse peaks at ~6 and ~17 μm at room temperature will be discussed. A Homojunction or HEterojunction Interfacial Workfunction Internal Photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Quantum Communications Systems
2012-09-21
X.- M . Jin, B.J. Smith, M.B. Plenio , and I.A. Walmsley, Mapping coherence in measurement via full quantum tomog- raphy of a hybrid optical detector...K. C. Lee, B . J. Sussman, M . R. Sprague, P. Michelberger,K. F. Reim,J. Nunn, N. K. Lang- ford,P. J. Bustard, D. Jaksch, and I. A. Walmsley...Macroscopic non-classical states and tera- hertz quantum processing in room-temperature diamond, Nature Photonics 6, 41 (2011) [15] K. C. Lee, M . R. Sprague, B
Liu, Yuqian; Ye, Mingfu; Ge, Qinyu; Qu, Xiaojun; Guo, Qingsheng; Hu, Xianyun; Sun, Qingjiang
2016-02-02
We have developed a proof-of-concept quantum dot-ligand (QD-L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido[3,2-a:2',3'-c]phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD-L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD-L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD-L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.
Quantum walk public-key cryptographic system
NASA Astrophysics Data System (ADS)
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Duality quantum algorithm efficiently simulates open quantum systems
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-28
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Experimental Detection of Quantum Channel Capacities.
Cuevas, Álvaro; Proietti, Massimiliano; Ciampini, Mario Arnolfo; Duranti, Stefano; Mataloni, Paolo; Sacchi, Massimiliano F; Macchiavello, Chiara
2017-09-08
We present an efficient experimental procedure that certifies nonvanishing quantum capacities for qubit noisy channels. Our method is based on the use of a fixed bipartite entangled state, where the system qubit is sent to the channel input. A particular set of local measurements is performed at the channel output and the ancilla qubit mode, obtaining lower bounds to the quantum capacities for any unknown channel with no need of quantum process tomography. The entangled qubits have a Bell state configuration and are encoded in photon polarization. The lower bounds are found by estimating the Shannon and von Neumann entropies at the output using an optimized basis, whose statistics is obtained by measuring only the three observables σ_{x}⊗σ_{x}, σ_{y}⊗σ_{y}, and σ_{z}⊗σ_{z}.
Single atom detection in ultracold quantum gases: a review of current progress.
Ott, Herwig
2016-05-01
The recent advances in single atom detection and manipulation in experiments with ultracold quantum gases are reviewed. The discussion starts with the basic principles of trapping, cooling and detecting single ions and atoms. The realization of single atom detection in ultracold quantum gases is presented in detail and the employed methods, which are based on light scattering, electron scattering, field ionization and direct neutral particle detection are discussed. The microscopic coherent manipulation of single atoms in a quantum gas is also covered. Various examples are given in order to highlight the power of these approaches to study many-body quantum systems.
Preparation and detection of magnetic quantum phases in optical superlattices.
Rey, A M; Gritsev, V; Bloch, I; Demler, E; Lukin, M D
2007-10-05
We describe a novel approach to prepare, detect, and characterize magnetic quantum phases in ultracold spinor atoms loaded in optical superlattices. Our technique makes use of singlet-triplet spin manipulations in an array of isolated double-well potentials in analogy to recently demonstrated control in quantum dots. We also discuss the many-body singlet-triplet spin dynamics arising from coherent coupling between nearest neighbor double wells and derive an effective description for such systems. We use it to study the generation of complex magnetic states by adiabatic and nonequilibrium dynamics.
Detecting the Kondo screening cloud around a quantum dot.
Affleck, I; Simon, P
2001-03-26
A fundamental prediction of scaling theories of the Kondo effect is the screening of an impurity spin by a cloud of electrons spread out over a mesoscopic distance. This cloud has never been observed experimentally. Recently, aspects of the Kondo effect have been observed in experiments on quantum dots embedded in quantum wires. Since the length of the wire may be of order the size of the screening cloud, such systems provide an ideal opportunity to observe it. We point out that persistent current measurements in a closed ring provide a conceptually simple way of detecting this fundamental length scale.
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Quantum energy teleportation in a quantum Hall system
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-06-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.
Protein microarrays and quantum dot probes for early cancer detection.
Zajac, Aleksandra; Song, Dansheng; Qian, Wei; Zhukov, Tatyana
2007-08-01
We describe here a novel approach for detection of cancer markers using quantum dot protein microarrays. Both relatively new technologies; quantum dots and protein microarrays, offer very unique features that together allow detection of cancer markers in biological specimens (serum, plasma, body fluids) at pg/ml concentration. Quantum dots offer remarkable photostability and brightness. They do not exhibit photobleaching common to organic fluorophores. Moreover, the high emission amplitude for QDs results in a marked improvement in the signal to noise ratio of the final image. Protein microarrays allow highly parallel quantitation of specific proteins in a rapid, low-cost and low sample volume format. Furthermore the multiplexed assay enables detection of many proteins at once in one sample, making it a powerful tool for biomarker analysis and early cancer diagnostics. In a series of multiplexing experiments we investigated ability of the platform to detect six different cytokines in protein solution. We were able to detect TNF-alpha, IL-8, IL-6, MIP-1beta, IL-13 and IL-1beta down to picomolar concentration, demonstrating high sensitivity of the investigated detection system. We have also constructed and investigated two different models of quantum dot probes. One by conjugation of nanocrystals to antibody specific to the selected marker--IL-10, and the second by use of streptavidin coated quantum dots and biotinylated detector antibody. Comparison of those two models showed better performance of streptavidin QD-biotinylated detector antibody model. Data quantitated using custom designed computer program (CDAS) show that proposed methodology allows monitoring of changes in biomarker concentration in physiological range.
Quantum coherence of biophotons and living systems.
Bajpai, R P
2003-05-01
Coherence is a property of the description of the system in the classical framework in which the subunits of a system act in a cooperative manner. Coherence becomes classical if the agent causing cooperation is discernible otherwise it is quantum coherence. Both stimulated and spontaneous biophoton signals show properties that can be attributed to the cooperative actions of many photon-emitting units. But the agents responsible for the cooperative actions of units have not been discovered so far. The stimulated signal decays with non-exponential character. It is system and situation specific and sensitive to many physiological and environmental factors. Its measurable holistic parameters are strength, shape, relative strengths of spectral components, and excitation curve. The spontaneous signal is non-decaying with the probabilities of detecting various number of photons to be neither normal nor Poisson. The detected probabilities in a signal of Parmelia tinctorum match with probabilities expected in a squeezed state of photons. It is speculated that an in vivo nucleic acid molecule is an assembly of intermittent quantum patches that emit biophoton in quantum transitions. The distributions of quantum patches and their lifetimes determine the holistic features of biophoton signals, so that the coherence of biophotons is merely a manifestation of the coherence of living systems.
Quantum state readout of individual quantum dots by electrostatic force detection
NASA Astrophysics Data System (ADS)
Miyahara, Yoichi; Roy-Gobeil, Antoine; Grutter, Peter
2017-02-01
Electric charge detection by atomic force microscopy (AFM) with single-electron resolution (e-EFM) is a promising way to investigate the electronic level structure of individual quantum dots (QDs). The oscillating AFM tip modulates the energy of the QDs, causing single electrons to tunnel between QDs and an electrode. The resulting oscillating electrostatic force changes the resonant frequency and damping of the AFM cantilever, enabling electrometry with a single-electron sensitivity. Quantitative electronic level spectroscopy is possible by sweeping the bias voltage. Charge stability diagram can be obtained by scanning the AFM tip around the QD. e-EFM technique enables to investigate individual colloidal nanoparticles and self-assembled QDs without nanoscale electrodes. e-EFM is a quantum electromechanical system where the back-action of a tunneling electron is detected by AFM; it can also be considered as a mechanical analog of admittance spectroscopy with a radio frequency resonator, which is emerging as a promising tool for quantum state readout for quantum computing. In combination with the topography imaging capability of the AFM, e-EFM is a powerful tool for investigating new nanoscale material systems which can be used as quantum bits.
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Quantum temporal probabilities in tunneling systems
Anastopoulos, Charis Savvidou, Ntina
2013-09-15
We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling.
Faraday rotation echo spectroscopy and detection of quantum fluctuations.
Chen, Shao-Wen; Liu, Ren-Bao
2014-04-15
Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.
Hypothesis testing with open quantum systems.
Mølmer, Klaus
2015-01-30
Using a quantum circuit model we derive the maximal ability to distinguish which of several candidate Hamiltonians describe an open quantum system. This theory, in particular, provides the maximum information retrievable from continuous quantum measurement records, available when a quantum system is perturbatively coupled to a broadband quantized environment.
A quantum accounting and detective quantum efficiency analysis for video-based portal imaging.
Bissonnette, J P; Cunningham, I A; Jaffray, D A; Fenster, A; Munro, P
1997-06-01
The quality of images generated with radiographic imaging systems can be degraded if an inadequate number of secondary quanta are used at any stage before production of the final image. A theoretical technique known as a "quantum accounting diagram" (QAD) analysis has been developed recently to predict the detective quantum efficiency (DQE) of an imaging system as a function of spatial frequency based on an analysis of the propagation of quanta. It is used to determine the "quantum sink" stage(s) (stages which degrade the DQE of an imaging system due to quantum noise caused by a finite number of quanta), and to suggest design improvements to maximize image quality. We have used this QAD analysis to evaluate a video-based portal imaging system to determine where changes in design will have the most benefit. The system consists of a thick phosphor layer bonded to a 1 mm thick copper plate which is viewed by a T.V. camera. The imaging system has been modeled as ten cascaded stages, including: (i) conversion of x-ray quanta to light quanta; (ii) collection of light by a lens; (iii) detection of light quanta by a T.V. camera; (iv) the various blurring processes involved with each component of the imaging system; and, (v) addition of noise from the T.V. camera. The theoretical DQE obtained with the QAD analysis is in excellent agreement with the experimental DQE determined from previously published data. It is shown that the DQE is degraded at low spatial frequencies (< 0.25 cycles/mm) by quantum sinks both in the number of detected x rays and the number of detected optical quanta. At higher spatial frequencies, the optical quantum sink becomes the limiting factor in image quality. The secondary quantum sinks can be prevented, up to a spatial frequency of 0.5 cycles/mm, by increasing the overall system gain by a factor of 9 or more, or by improving the modulation transfer function (MTF) of components in the optical chain.
Quantum systems under frequency modulation
NASA Astrophysics Data System (ADS)
Silveri, M. P.; Tuorila, J. A.; Thuneberg, E. V.; Paraoanu, G. S.
2017-05-01
We review the physical phenomena that arise when quantum mechanical energy levels are modulated in time. The dynamics resulting from changes in the transition frequency is a problem studied since the early days of quantum mechanics. It has been of constant interest both experimentally and theoretically since, with the simple two-state model providing an inexhaustible source of novel concepts. When the transition frequency of a quantum system is modulated, several phenomena can be observed, such as Landau-Zener-Stückelberg-Majorana interference, motional averaging and narrowing, and the formation of dressed states with the appearance of sidebands in the spectrum. Adiabatic changes result in the accumulation of geometric phases, which can be used to create topological states. In recent years, an exquisite experimental control in the time domain was gained through the parameters entering the Hamiltonian, and high-fidelity readout schemes allowed the state of the system to be monitored non-destructively. These developments were made in the field of quantum devices, especially in superconducting qubits, as a well as in atomic physics, in particular in ultracold gases. As a result of these advances, it became possible to demonstrate many of the fundamental effects that arise in a quantum system when its transition frequencies are modulated. The purpose of this review is to present some of these developments, from two-state atoms and harmonic oscillators to multilevel and many-particle systems.
Quantum systems under frequency modulation.
Silveri, M P; Tuorila, J A; Thuneberg, E V; Paraoanu, G S
2017-05-01
We review the physical phenomena that arise when quantum mechanical energy levels are modulated in time. The dynamics resulting from changes in the transition frequency is a problem studied since the early days of quantum mechanics. It has been of constant interest both experimentally and theoretically since, with the simple two-state model providing an inexhaustible source of novel concepts. When the transition frequency of a quantum system is modulated, several phenomena can be observed, such as Landau-Zener-Stückelberg-Majorana interference, motional averaging and narrowing, and the formation of dressed states with the appearance of sidebands in the spectrum. Adiabatic changes result in the accumulation of geometric phases, which can be used to create topological states. In recent years, an exquisite experimental control in the time domain was gained through the parameters entering the Hamiltonian, and high-fidelity readout schemes allowed the state of the system to be monitored non-destructively. These developments were made in the field of quantum devices, especially in superconducting qubits, as a well as in atomic physics, in particular in ultracold gases. As a result of these advances, it became possible to demonstrate many of the fundamental effects that arise in a quantum system when its transition frequencies are modulated. The purpose of this review is to present some of these developments, from two-state atoms and harmonic oscillators to multilevel and many-particle systems.
Yun, Seungman; Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A
2013-04-01
Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an "energy-labeled reabsorption" process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20-40 keV.
Yun, Seungman; Tanguay, Jesse; Cunningham, Ian A.; Kim, Ho Kyung
2013-04-15
Purpose: Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. Methods: A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an 'energy-labeled reabsorption' process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. Results: The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. Conclusions: A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20
Quantum Entanglement and Quantum Discord in Gaussian Open Systems
Isar, Aurelian
2011-10-03
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.
Noninvasive detection of charge rearrangement in a quantum dot
NASA Astrophysics Data System (ADS)
Fricke, C.; Rogge, M. C.; Harke, B.; Reinwald, M.; Wegscheider, W.; Hohls, F.; Haug, R. J.
2007-04-01
We demonstrate new results on electron redistribution on a single quantum dot caused by magnetic field. A quantum point contact is used to detect changes in the quantum dot charge. We are able to measure both the change of the quantum dot charge and also changes of the electron configuration at constant number of electrons on the quantum dot. These features are used to exploit the quantum dot in a high magnetic field where transport through the quantum dot displays the effects of Landau shells and spin blockade.
Quantum Entanglement in Open Systems
Isar, Aurelian
2008-01-24
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, the master equation for two independent harmonic oscillators interacting with an environment is solved in the asymptotic long-time regime. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems become asymptotically entangled for certain environments, so that in the long-time regime they manifest non-local quantum correlations. We calculate also the logarithmic negativity characterizing the degree of entanglement of the asymptotic state.
Quantum limited heterodyne detection of spin noise
NASA Astrophysics Data System (ADS)
Cronenberger, S.; Scalbert, D.
2016-09-01
Spin noise spectroscopy is a powerful technique for studying spin relaxation in semiconductors. In this article, we propose an extension of this technique based on optical heterodyne detection of spin noise, which provides several key advantages compared to conventional spin noise spectroscopy: detection of high frequency spin noise not limited by detector bandwidth or sampling rates of digitizers, quantum limited sensitivity even in case of very weak probe power, and possible amplification of the spin noise signal. Heterodyne detection of spin noise is demonstrated on insulating n-doped GaAs. From measurements of spin noise spectra up to 0.4 Tesla, we determined the distribution of g-factors, Δg/g = 0.49%.
NASA Astrophysics Data System (ADS)
Chen, Hua-Jun; Zhu, Ka-Di
2015-08-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions.
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
Chen, Hua-Jun; Zhu, Ka-Di
2015-08-27
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions.
Terahertz detection using double quantum well devices
NASA Astrophysics Data System (ADS)
Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.
2001-12-01
This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.
NASA Astrophysics Data System (ADS)
Alhaidari, A. D.; Taiwo, T. J.
2017-02-01
Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.
Qiu, Zhenli; Shu, Jian; Tang, Dianping
2017-05-02
An all-in-one paper-based analytical device (PAD) was successfully developed for visual fluorescence detection of carcinoembryonic antigen (CEA) on CdTe/CdSe quantum dot (QD)-enzyme-impregnated paper by coupling with a bioresponsive controlled-release system from DNA-gated mesoporous silica nanocontainers (MSNs). The assay was carried out in a centrifuge tube by using glucose-loaded MSNs with a CEA aptamer and a QD-enzyme-paper attached on the lid. Initially, single-strand complementary DNA to a CEA aptamer was covalently conjugated to the aminated MSN, and then glucose (enzyme substrate) molecules were gated into the pore with the help of the aptamer. Glucose oxidase (GOD) and CdTe/CdSe QDs were coimmobilized on paper for the visual fluorescence signal output. Upon target CEA introduction in the detection cell, the analyte specifically reacted with the immobilized aptamer on the MSN to open the pore, thereby resulting in the glucose release. The released glucose was oxidized by the immobilized GOD on paper to produce gluconic acid and hydrogen peroxide, and the latter quenched the fluorescence of CdTe/CdSe QDs, which could be determined by the naked eye on a portable smartphone and a commercial fluorospectrometer. Under optimal conditions, the PAD-based sensing system enabled sensitive discrimination of target CEA against other biomarkers or proteins in a linear range of 0.05-20 ng mL(-1) with a limit of detection of 6.7 pg mL(-1) (ppt). In addition, our strategy displayed high specificity, good reproducibility, and acceptable accuracy for analyzing human serum specimens with a commercial human CEA ELISA kit. Importantly, this methodology offers promise for simple analysis of biological samples and is suitable for use in the mass production of miniaturized devices, thus opening new opportunities for protein diagnostics and biosecurity.
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Optical Detection Properties of Silicon-Germanium Quantum Well Structures
1996-10-18
AFIT/DS/ENP/96-07 OPTICAL DETECTION PROPERTIES OF SILICON-GERMANIUM QUANTUM WELL STRUCTURES DISSERTATION Michael R. Gregg, Captain, USAF AFIT/DS/ENP...96 Approved for public release; distribution unlimited DTC Qr. ~r AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well ...release; distribution unlimited AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well Structures Michael R. Gregg, BA, MS
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Understanding quantum work in a quantum many-body system
NASA Astrophysics Data System (ADS)
Wang, Qian; Quan, H. T.
2017-03-01
Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015), 10.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016), 10.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.
Understanding quantum work in a quantum many-body system.
Wang, Qian; Quan, H T
2017-03-01
Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.
Localization in Open Quantum Systems
NASA Astrophysics Data System (ADS)
Yusipov, I.; Laptyeva, T.; Denisov, S.; Ivanchenko, M.
2017-02-01
In an isolated single-particle quantum system, a spatial disorder can induce Anderson localization. Being a result of interference, this phenomenon is expected to be fragile in the face of dissipation. Here we show that a proper dissipation can drive a disordered system into a steady state with tunable localization properties. This can be achieved with a set of identical dissipative operators, each one acting nontrivially on a pair of sites. Operators are parametrized by a uniform phase, which controls the selection of Anderson modes contributing to the state. On the microscopic level, quantum trajectories of a system in the asymptotic regime exhibit intermittent dynamics consisting of long-time sticking events near selected modes interrupted by intermode jumps.
Perturbative approach to Markovian open quantum systems
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2014-01-01
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Gaussian ensembles distributions from mixing quantum systems
NASA Astrophysics Data System (ADS)
Gomez, Ignacio S.; Portesi, M.
2017-08-01
In the context of dynamical systems we present a derivation of the Gaussian ensembles distributions from quantum systems having a classical analogue that is mixing. We find that factorization property is satisfied for the mixing quantum systems expressed as a factorization of quantum mean values. For the case of the kicked rotator and in its fully chaotic regime, the factorization property links decoherence by dephasing with Gaussian ensembles in terms of the weak limit, interpreted as a decohered state. Moreover, a discussion about the connection between random matrix theory and quantum chaotic systems, based on some attempts made in previous works and from the viewpoint of the mixing quantum systems, is presented.
Quantum renewal equation for the first detection time of a quantum walk
NASA Astrophysics Data System (ADS)
Friedman, H.; Kessler, D. A.; Barkai, E.
2017-01-01
We investigate the statistics of the first detected passage time of a quantum walk. The postulates of quantum theory, in particular the collapse of the wave function upon measurement, reveal an intimate connection between the wave function of a process free of measurements, i.e. the solution of the Schrödinger equation, and the statistics of first detection events on a site. For stroboscopic measurements a quantum renewal equation yields basic properties of quantum walks. For example, for a tight binding model on a ring we discover critical sampling times, diverging quantities such as the mean time for first detection, and an optimal detection rate. For a quantum walk on an infinite line the probability of first detection decays like {{≤ft(\\text{time}\\right)}-3} with a superimposed oscillation, critical behavior for a specific choice of sampling time, and vanishing amplitude when the sampling time approaches zero due to the quantum Zeno effect.
Resonances in open quantum systems
NASA Astrophysics Data System (ADS)
Eleuch, Hichem; Rotter, Ingrid
2017-02-01
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are generally complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wave functions into which the system is embedded. This causes an external mixing (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points. The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wave functions. At and near an exceptional point (EP), the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator that are embedded in one common continuum and are influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.
Supersymmetric biorthogonal quantum systems
Curtright, Thomas; Mezincescu, Luca; Schuster, David
2007-09-15
We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V{sub {+-}}(z)=-U(z){sup 2}{+-}z(d/dz)U(z) where U(z){identical_to}{sigma}{sub k>0}{upsilon}{sub k}z{sup k}. In particular, we consider the cases generated by U(z)=z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.
Noncommuting observables in quantum detection and estimation theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1971-01-01
In quantum detection theory, the optimum detection operators must commute; admitting simultaneous approximate measurement of noncommuting observables cannot yield a lower Bayes cost. In addition, the lower bounds on mean square errors of parameter estimates, predicted by the quantum mechanical Cramer-Rao inequality, cannot be reduced by such means.
Noncommunting observables in quantum detection and estimation theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1971-01-01
In quantum detection theory the optimum detection operators must commute; admitting simultaneous approximate measurement of noncommuting observables cannot yield a lower Bayes cost. The lower bounds on mean square errors of parameter estimates predicted by the quantum-mechanical Cramer-Rao inequality can also not be reduced by such means.
Optimal protocols for slowly driven quantum systems
NASA Astrophysics Data System (ADS)
Zulkowski, Patrick R.; DeWeese, Michael R.
2015-09-01
The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Quantum correlation of an optically controlled open quantum system
NASA Astrophysics Data System (ADS)
Chan, Ching-Kit; Sham, L. J.
2012-02-01
A precise time-dependent optical control of an open quantum system relies on an accurate account of the quantum interference among the system, the photon control and the dissipative environment. In the spirit of the Keldysh non-equilibrium Green's function approach, we develop a diagrammatic technique to precisely calculate this quantum correlation for a fast multimode coherent photon control against slow relaxation, valid for both Markovian and non-Markovian systems. We demonstrate how this novel formalism can lead to a better accuracy than existing approximations of the master equation. We also describe extensions to cases with controls by photon state other than the coherent Glauber state.
Vibrational modes in the quantum Hall system
NASA Astrophysics Data System (ADS)
Wooten, Rachel; Yan, Bin; Daily, Kevin; Greene, Chris H.
The hyperspherical adiabatic technique is more familiar to atomic and nuclear few-body systems, but can also be applied with high accuracy to the many-body quantum Hall problem. This technique reformulates the Schrödinger equation for N electrons into hyperspherical coordinates, which, after extracting the trivial center of mass, describes the system in terms of a single global size coordinate known as the hyperradius R, and 2 N - 3 remaining internal angular coordinates. The solutions are approximately separable in the hyperradial coordinate, and solutions in the system are found by treating the hyperradius as an adiabatic coordinate. The approximate separability of the wave functions in this coordinate suggests the presence of hyperradial vibrational modes which are not described in conventional theories. The vibrationally excited states share the internal geometry of their quantum Hall ground states, and their excitation frequencies may vary with the number of participating particles or the strength of the confinement. We plan to discuss the features of these vibrational modes and their possible detection in quantum Hall systems. NSF.
Simulation of n-qubit quantum systems. III. Quantum operations
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Global quantum discord in multipartite systems
Rulli, C. C.; Sarandy, M. S.
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
Quantum detection and ranging using exciton-plasmon coupling in coherent nanoantennas
NASA Astrophysics Data System (ADS)
Sadeghi, S. M.; Hatef, A.; Meunier, Michel
2013-05-01
We utilize interaction of a laser field with a quantum dot-metallic nanoshell system to investigate nanoscale detection and ranging using quantum coherence. We demonstrate that the nanoshell in this system can act as a coherent nanoantenna capable of designating each position in its range with unique space-time field coordinates. This shows that coherent exciton-plasmon coupling in such a system allows the electric field of this antenna generates position-dependent dynamics in molecules and nanostructures in its vicinity, allowing their remote detection. The results are obtained considering the ultrafast polarization dephasing of the quantum dot at elevated temperatures.
Quantum control for initiation and detection of explosives
Greenfield, Margo T; Mc Grane, Shawn D; Scharff, R. Jason; Moore, David S
2010-01-01
We employ quantum control methods towards detection and quantum controlled initiation (QCI) of energetic materials. Ultrafast pulse shaping of broadband Infrared ({approx}750 nm to 850 run) and ultraviolet (266 nm, 400 nm) light is utilized for control. The underlying principals behind optimal control can be utilized to both detect and initiate explosives. In each case, time dependent phase shaped electric fields drive the chemical systems towards a desired state. For optimal dynamic detection of explosives (ODD-Ex) a phase specific broadband infrared pulse is created which increases not only the sensitivity of detection but also the selectivity of an explosive's spectral signatures in a background of interferents. QCI on the other hand, seeks to initiate explosives by employing shaped ultraviolet light. QCI is ideal for use with explosive detonators as it removes the possibility of unintentional initiation from an electrical source while adding an additional safety feature, initiation only with the proper pulse shape. Quantum control experiments require: (1) the ability to phase and amplitude shape the laser pulse and (2) the ability to effectively search for the pulse shape which controls the reaction. In these adaptive experiments we utilize both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex. Pulse shaping the broadband IR light, produced by focusing 800 nm light through a pressurized tube of Argon, is straightforward as commercial pulse shapers are available at and around 800 nm. Pulse shaping in the UV requires a home built shaper. Our system is an acoustic optical modulator (AOM) pulse shaper in which consists of a fused silica AOM crystal placed in the Fourier plane of a 4-f zero dispersion compressor.
Portable modular detection system
Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.
2009-10-13
Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.
A quantum radar detection protocol for fringe visibility enhancement
NASA Astrophysics Data System (ADS)
Koltenbah, Benjamin; Parazzoli, Claudio; Capron, Barbara
2016-05-01
We present analysis of a radar detection technique using a Photon Addition Homodyne Receiver (PAHR) that improves SNR of the interferometer fringes and reduces uncertainty of the phase measurement. This system uses the concept of Photon Addition (PA) in which the coherent photon distribution is altered. We discuss this process first as a purely mathematical concept to introduce PA and illustrate its effect on coherent photon distribution. We then present a notional proof-of-concept experiment involving a parametric down converter (PDC) and probabilistic post-selection of the results. We end with presentation of a more deterministic PAHR concept that is more suitable for development into a working system. Coherent light illuminates a target and the return signal interferes with the local oscillator reference photons to create the desired fringes. The PAHR alters the photon probability distribution of the returned light via interaction between the return photons and atoms. We refer to this technique as "Atom Interaction" or AI. The returning photons are focused at the properly prepared atomic system. The injected atoms into this region are prepared in the desired quantum state. During the interaction time, the initial quantum state evolves in such a way that the photon distribution function changes resulting in higher photon count, lower phase noise and an increase in fringe SNR. The result is a 3-5X increase of fringe SNR. This method is best suited for low light intensity (low photon count, 0.1-5) applications. The detection protocol could extend the range of existing systems without loss of accuracy, or conversely enhance a system's accuracy for given range. We present quantum mathematical analysis of the method to illustrate how both range and angular resolution improve in comparison with standard measurement techniques. We also suggest an experimental path to validate the method which also will lead toward deployment in the field.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Thermodynamics of Weakly Measured Quantum Systems
NASA Astrophysics Data System (ADS)
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-01
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Experimental test of robust quantum detection and restoration of a qubit
NASA Astrophysics Data System (ADS)
Mičuda, M.; Straka, I.; Miková, M.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.
2015-07-01
Macroscopic devices that probe and control elementary quantum systems are subjected to environment-induced decoherence and typically consist of a large number of particles that cannot be precisely controlled and individually accessed. These two factors limit the control of quantum systems by an open macroscopic device. Here, we investigate a faithful and robust implementation of specific elementary quantum operations under such conditions. We propose a procedure for quantum restoration of a single qubit that is resilient to particle loss and decoherence of the macroscopic device and compare it with a similarly robust procedure for indirect quantum detection of the qubit state by measurement on the macroscopic device. Complementary to detection, the restoration recovers the original state of the system qubit by quantum erasing which decouples the system from the device. Perfect restoration is possible even if the particles of the device are only classically correlated. We experimentally witness the robustness of quantum detection and restoration for a two-qubit device represented by the quantum state of photons.
Quantum Detection Theory for the Free-Space Channel
NASA Astrophysics Data System (ADS)
Vilnrotter, V.; Lau, C.-W.
2001-04-01
The fundamental performance limits of optical communications over the free-space channel are developed using quantum theory, and presented in terms of concepts familiar to communications engineers. The compact Dirac notation generally employed in quantum mechanics is defined, and key concepts necessary for understanding quantum projection measurements are reviewed. A derivation that provides significant insights into the quantum measurement performed by the optimum receiver is developed by interpreting the familiar technique of photon counting in terms of quantum projection operators. The performance of the optimum quantum receiver for on-off keying and optical binary phase-shift-keying (BPSK) modulation is treated first as a noise-free (or pure-state) problem, then extended to include the effects of background radiation. The performance of the optimum quantum receiver is compared to that of classical optical receivers employing photon-counting and coherent detection techniques, and it is shown to be exponentially better in most cases.
Quantum Illumination-Based Target Detection and Discrimination
2014-06-30
demonstrated high signal-to-noise ratio (SNR) quantum-illumination target detection in a lossy, noisy environment using an optical parametric amplifier...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement, parametric downconversion, optical parametric amplifiers...illumination target detection in a lossy, noisy environment using an optical parametric amplifier (OPA) receiver, and explored the SNR’s dependence on
Wave Detection Beyond the Standard Quantum Limit via EPR Entanglement
NASA Astrophysics Data System (ADS)
Ma, Yiqiu; Miao, Haixing; Pang, Belinda; Evans, Matthew; Zhao, Chunnong; Harms, Jan; Schnabel, Roman; Chen, Yanbei
2017-01-01
The Standard Quantum Limit in continuous monitoring of a system is given by the trade-off of shot noise and back-action noise. In gravitational-wave detectors, such as Advanced LIGO, both contributions can simultaneously be squeezed in a broad frequency band by injecting a spectrum of squeezed vacuum states with a frequency-dependent squeeze angle. This approach requires setting up an additional long base-line, low-loss filter cavity in a vacuum system at the detector's site. Here, we show that the need for such a filter cavity can be eliminated, by exploiting EPR-entangled signal and idler beams. By harnessing their mutual quantum correlations and the difference in the way each beam propagates in the interferometer, we can engineer the input signal beam to have the appropriate frequency dependent conditional squeezing once the out-going idler beam is detected. Our proposal is appropriate for all future gravitational-wave detectors for achieving sensitivities beyond the Standard Quantum Limit.
Quasiequilibria in open quantum systems
Walls, Jamie D.
2010-03-15
In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian of an open quantum system, L-circumflex-circumflex(t), is investigated. It is shown that differences between the quasiequilibrium and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the instantaneous eigenstates of L-circumflex-circumflex(t) to a fixed basis. These nonadiabatic contributions are shown to result in an additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.
Zeno dynamics in quantum open systems.
Zhang, Yu-Ran; Fan, Heng
2015-06-23
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states.
Zeno dynamics in quantum open systems
Zhang, Yu-Ran; Fan, Heng
2015-01-01
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum criticality in a double-quantum-dot system.
Zaránd, Gergely; Chung, Chung-Hou; Simon, Pascal; Vojta, Matthias
2006-10-20
We discuss the realization of the quantum-critical non-Fermi-liquid state, originally discovered within the two-impurity Kondo model, in double-quantum-dot systems. Contrary to common belief, the corresponding fixed point is robust against particle-hole and various other asymmetries and is unstable only to charge transfer between the two dots. We propose an experimental setup where such charge transfer processes are suppressed, allowing a controlled approach to the quantum-critical state. We also discuss transport and scaling properties in the vicinity of the critical point.
Contextuality without nonlocality in a superconducting quantum system.
Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K; Fedorov, Arkady
2016-10-04
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
Contextuality without nonlocality in a superconducting quantum system
NASA Astrophysics Data System (ADS)
Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady
2016-10-01
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
Detecting the Drift of Quantum Sources: Not the de Finetti Theorem
NASA Astrophysics Data System (ADS)
Schwarz, Lucia; van Enk, S. J.
2011-05-01
We propose and analyze a method to detect and characterize the drift of a nonstationary quantum source. It generalizes a standard measurement for detecting phase diffusion of laser fields to quantum systems of arbitrary Hilbert space dimension, qubits in particular. We distinguish diffusive and systematic drifts, and examine how quickly one can determine that a source is drifting. We show that for single-photon wave packets our measurement is implemented by the Hong-Ou-Mandel effect.
Detecting the drift of quantum sources: not the de Finetti theorem.
Schwarz, Lucia; van Enk, S J
2011-05-06
We propose and analyze a method to detect and characterize the drift of a nonstationary quantum source. It generalizes a standard measurement for detecting phase diffusion of laser fields to quantum systems of arbitrary Hilbert space dimension, qubits in particular. We distinguish diffusive and systematic drifts, and examine how quickly one can determine that a source is drifting. We show that for single-photon wave packets our measurement is implemented by the Hong-Ou-Mandel effect.
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Quantum interference between independent reservoirs in open quantum systems
NASA Astrophysics Data System (ADS)
Chan, Ching-Kit; Lin, Guin-Dar; Yelin, Susanne F.; Lukin, Mikhail D.
2014-04-01
When a quantum system interacts with multiple reservoirs, the environmental effects are usually treated in an additive manner. We show that this assumption breaks down for non-Markovian environments that have finite memory times. Specifically, we demonstrate that quantum interferences between independent environments can qualitatively modify the dynamics of the physical system. We illustrate this effect with a two-level system coupled to two structured photonic reservoirs, discuss its origin using a nonequilibrium diagrammatic technique, and show an example when the application of this interference can result in an improved dark state preparation in a Λ system.
A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
Bakr, Waseem S; Gillen, Jonathon I; Peng, Amy; Fölling, Simon; Greiner, Markus
2009-11-05
Recent years have seen tremendous progress in creating complex atomic many-body quantum systems. One approach is to use macroscopic, effectively thermodynamic ensembles of ultracold atoms to create quantum gases and strongly correlated states of matter, and to analyse the bulk properties of the ensemble. For example, bosonic and fermionic atoms in a Hubbard-regime optical lattice can be used for quantum simulations of solid-state models. The opposite approach is to build up microscopic quantum systems atom-by-atom, with complete control over all degrees of freedom. The atoms or ions act as qubits and allow the realization of quantum gates, with the goal of creating highly controllable quantum information systems. Until now, the macroscopic and microscopic strategies have been fairly disconnected. Here we present a quantum gas 'microscope' that bridges the two approaches, realizing a system in which atoms of a macroscopic ensemble are detected individually and a complete set of degrees of freedom for each of them is determined through preparation and measurement. By implementing a high-resolution optical imaging system, single atoms are detected with near-unity fidelity on individual sites of a Hubbard-regime optical lattice. The lattice itself is generated by projecting a holographic mask through the imaging system. It has an arbitrary geometry, chosen to support both strong tunnel coupling between lattice sites and strong on-site confinement. Our approach can be used to directly detect strongly correlated states of matter; in the context of condensed matter simulation, this corresponds to the detection of individual electrons in the simulated crystal. Also, the quantum gas microscope may enable addressing and read-out of large-scale quantum information systems based on ultracold atoms.
Quantum Q systems: from cluster algebras to quantum current algebras
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat
2017-02-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Quasi-Periodically Driven Quantum Systems
NASA Astrophysics Data System (ADS)
Verdeny, Albert; Puig, Joaquim; Mintert, Florian
2016-10-01
Floquet theory provides rigorous foundations for the theory of periodically driven quantum systems. In the case of non-periodic driving, however, the situation is not so well understood. Here, we provide a critical review of the theoretical framework developed for quasi-periodically driven quantum systems. Although the theoretical footing is still under development, we argue that quasi-periodically driven quantum systems can be treated with generalisations of Floquet theory in suitable parameter regimes. Moreover, we provide a generalisation of the Floquet-Magnus expansion and argue that quasi-periodic driving offers a promising route for quantum simulations.
Detecting the relative localisation of quantum particles
NASA Astrophysics Data System (ADS)
Knott, P. A.; Sindt, J.; Dunningham, J. A.
2013-06-01
One interpretation of how the classical world emerges from quantum physics involves the build-up of certain robust entangled states between particles due to scattering events [1]. This is intriguing because it links classical behaviour with the uniquely quantum effect of entanglement and differs from other interpretations that say classicality arises when quantum correlations are lost or neglected in measurements. However, the problem with this new interpretation has been finding an experimental way of verifying it. Here we outline a straightforward scheme that enables just that and should, in principle, allow experiments to confirm the theory to any desired degree of accuracy.
Tailoring superradiance to design artificial quantum systems
NASA Astrophysics Data System (ADS)
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-03-24
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Adiabatic Quantum Search in Open Systems
NASA Astrophysics Data System (ADS)
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Nano-Patterned Quantum Structures for Infrared Detection
2005-09-30
Laboratory (Kirtland), which was a three-year research project with two focused objectives: (1) To develop voltage tunable two-color superlattice QWIPs and...broadband QWIPs , and (2) to fabricate quantum-dot QWIPs using nano-patterning and to investigate their infrared detection characteristics arising...quantum-dot QWIPs were fabricated, but their infrared detection characteristics were not investigated. 15. SUBJECT TERMS SPACE VEHICLES, INFRARED
Quantum Interference between independent environments in open quantum systems
NASA Astrophysics Data System (ADS)
Chan, Ching-Kit; Lin, Guin-Dar; Yelin, Susanne; Lukin, Mikhail
2014-03-01
When a general quantum system interacts with multiple environments, the environmental effects are usually treated in an additive manner in the master equation. This assumption becomes questionable for non-Markovian environments that have finite memory times. Here, we show that quantum interferences between independent environments exist and can qualitatively modify the dynamics of the reduced physical system. We illustrate this effect with examples of atomic systems coupled to structured reservoirs, and discuss its origin in general using a non-equilibrium diagrammatic technique. The consequential decoherence dynamics cannot be captured by an additive master equation.
A Quantum Algorithm Detecting Concentrated Maps.
Beichl, Isabel; Bullock, Stephen S; Song, Daegene
2007-01-01
We consider an arbitrary mapping f: {0, …, N - 1} → {0, …, N - 1} for N = 2 (n) , n some number of quantum bits. Using N calls to a classical oracle evaluating f(x) and an N-bit memory, it is possible to determine whether f(x) is one-to-one. For some radian angle 0 ≤ θ ≤ π/2, we say f(x) is θ - concentrated if and only if [Formula: see text] for some given ψ 0 and any 0 ≤ x ≤ N - 1. We present a quantum algorithm that distinguishes a θ-concentrated f(x) from a one-to-one f(x) in O(1) calls to a quantum oracle function Uf with high probability. For 0 < θ < 0.3301 rad, the quantum algorithm outperforms random (classical) evaluation of the function testing for dispersed values (on average). Maximal outperformance occurs at [Formula: see text] rad.
Interior intrusion detection systems
Rodriguez, J.R.; Matter, J.C. ); Dry, B. )
1991-10-01
The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Measurement theory for closed quantum systems
NASA Astrophysics Data System (ADS)
Wouters, Michiel
2015-07-01
We introduce the concept of a “classical observable” as an operator with vanishingly small quantum fluctuations on a set of density matrices. Their study provides a natural starting point to analyse the quantum measurement problem. In particular, it allows to identify Schrödinger cats and the associated projection operators intrinsically, without the need to invoke an environment. We discuss how our new approach relates to the open system analysis of quantum measurements and to thermalization studies in closed quantum systems.
Controlling the shannon entropy of quantum systems.
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Optimum testing of multiple hypotheses in quantum detection theory
NASA Technical Reports Server (NTRS)
Yuen, H. P.; Kennedy, R. S.; Lax, M.
1975-01-01
The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
NASA Astrophysics Data System (ADS)
Bilan, Regina; Ametzazurra, Amagoia; Brazhnik, Kristina; Escorza, Sergio; Fernández, David; Uríbarri, María; Nabiev, Igor; Sukhanova, Alyona
2017-03-01
A novel suspension multiplex immunoassay for the simultaneous specific detection of lung cancer markers in bronchoalveolar lavage fluid (BALF) clinical samples based on fluorescent microspheres having different size and spectrally encoded with quantum dots (QDEM) was developed. The designed suspension immunoassay was validated for the quantitative detection of three lung cancer markers in BALF samples from 42 lung cancer patients and 10 control subjects. Tumor markers were detected through simultaneous formation of specific immune complexes consisting of a capture molecule, the target antigen, and biotinylated recognition molecule on the surface of the different QDEM in a mixture. The immune complexes were visualized by fluorescently labeled streptavidin and simultaneously analyzed using a flow cytometer. Preclinical validation of the immunoassay was performed and results were compared with those obtained using an alternative 3-plex immunoassay based on Luminex xMAP® technology, developed on classical organic fluorophores. The comparison showed that the QDEM and xMAP® assays yielded almost identical results, with clear discrimination between control and clinical samples. Thus, developed QDEM technology can become a good alternative to xMAP® assays permitting analysis of multiple protein biomarkers using conventional flow cytometers.
Bilan, Regina; Ametzazurra, Amagoia; Brazhnik, Kristina; Escorza, Sergio; Fernández, David; Uríbarri, María; Nabiev, Igor; Sukhanova, Alyona
2017-01-01
A novel suspension multiplex immunoassay for the simultaneous specific detection of lung cancer markers in bronchoalveolar lavage fluid (BALF) clinical samples based on fluorescent microspheres having different size and spectrally encoded with quantum dots (QDEM) was developed. The designed suspension immunoassay was validated for the quantitative detection of three lung cancer markers in BALF samples from 42 lung cancer patients and 10 control subjects. Tumor markers were detected through simultaneous formation of specific immune complexes consisting of a capture molecule, the target antigen, and biotinylated recognition molecule on the surface of the different QDEM in a mixture. The immune complexes were visualized by fluorescently labeled streptavidin and simultaneously analyzed using a flow cytometer. Preclinical validation of the immunoassay was performed and results were compared with those obtained using an alternative 3-plex immunoassay based on Luminex xMAP® technology, developed on classical organic fluorophores. The comparison showed that the QDEM and xMAP® assays yielded almost identical results, with clear discrimination between control and clinical samples. Thus, developed QDEM technology can become a good alternative to xMAP® assays permitting analysis of multiple protein biomarkers using conventional flow cytometers. PMID:28300171
Simulation of n-qubit quantum systems. V. Quantum measurements
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun
Quantum bio-nanosensors based on quantum dot-metallic nanoparticle systems
NASA Astrophysics Data System (ADS)
Sadeghi, S. M.
2013-03-01
When metallic nanoparticles are put in the vicinity of semiconductor quantum dots and driven by a coherent light source, their intrinsic plasmonic fields can be replaced with a new type of fields (coherent-plasmonic fields). These fields are generated via coherent coupling of excitons in quantum dots and localized surface plasmon resonances (LSPRs). We show the coherent-plasmonic field of a metallic nanoparticle can lead to a significantly larger field enhancement than that caused by its LSPR. Utilizing this, we investigate how such a coherent field enhancement can improve the sensitivities plasmonic nanosensors for detection single biological molecules. The results demonstrate application of quantum coherence in quantum dot-metallic nanoparticle systems for chemical and biological sensing applications.
Accidental degeneracies in nonlinear quantum deformed systems
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2011-09-01
We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.
Quantum Simulation of Tunneling in Small Systems
Sornborger, Andrew T.
2012-01-01
A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333
Quantum Dots in Diagnostics and Detection: Principles and Paradigms
Pisanic, T. R.; Zhang, Y.; Wang, T. H.
2014-01-01
Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716
Quantum dots in diagnostics and detection: principles and paradigms.
Pisanic, T R; Zhang, Y; Wang, T H
2014-06-21
Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection.
Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C
2014-06-13
Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.
Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect
Helmer, Ferdinand; Marquardt, Florian; Mariantoni, Matteo; Solano, Enrique
2009-05-15
We analyze the detection of itinerant photons using a quantum nondemolition measurement. An important example is the dispersive detection of microwave photons in circuit quantum electrodynamics, which can be realized via the nonlinear interaction between photons inside a superconducting transmission line resonator. We show that the back action due to the continuous measurement imposes a limit on the detector efficiency in such a scheme. We illustrate this using a setup where signal photons have to enter a cavity in order to be detected dispersively. In this approach, the measurement signal is the phase shift imparted to an intense beam passing through a second cavity mode. The restrictions on the fidelity are a consequence of the quantum Zeno effect, and we discuss both analytical results and quantum trajectory simulations of the measurement process.
A Quantum Algorithm Detecting Concentrated Maps
Beichl, Isabel; Bullock, Stephen S.; Song, Daegene
2007-01-01
We consider an arbitrary mapping f: {0, …, N − 1} → {0, …, N − 1} for N = 2n, n some number of quantum bits. Using N calls to a classical oracle evaluating f(x) and an N-bit memory, it is possible to determine whether f(x) is one-to-one. For some radian angle 0 ≤ θ ≤ π/2, we say f(x) is θ − concentrated if and only if e2πif(x)/N⊂ei[ψ0−θ,ψ0+θ] for some given ψ0 and any 0 ≤ x ≤ N − 1. We present a quantum algorithm that distinguishes a θ-concentrated f(x) from a one-to-one f(x) in O(1) calls to a quantum oracle function Uf with high probability. For 0 < θ < 0.3301 rad, the quantum algorithm outperforms random (classical) evaluation of the function testing for dispersed values (on average). Maximal outperformance occurs at θ=12sin−11π≈0.1620 rad. PMID:27110475
Measure of the Quantum Speedup in Closed and Open systems
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu
We construct a general measure for detecting the quantum speedup in both closed and open systems. This speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of real dynamical speedup. To clarify the mechanisms of quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup, and then apply the proposed measure to several typical closed and open quantum systems, illustrating that entanglement and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under certain conditions. Remarkably, a direct measurement of such speedup is feasible without the need for a tomographic reconstruction of the density matrix, which greatly enhances the feasibility of practical experimental tests. This work was supported by the National Natural Science Foundation of China (Grant No. 11204196).
Quantum key distribution for composite dimensional finite systems
NASA Astrophysics Data System (ADS)
Shalaby, Mohamed; Kamal, Yasser
2017-06-01
The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.
Quantum quenches in extended systems
NASA Astrophysics Data System (ADS)
Calabrese, Pasquale; Cardy, John
2007-06-01
We study in general the time evolution of correlation functions in a extended quantum system after the quench of a parameter in the Hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical phenomena in d+1 dimensions. For d = 1 this allows us to use the powerful tools of conformal field theory in the case of critical evolution. Several results are obtained in generic dimension in the Gaussian (mean field) approximation. These predictions are checked against the real time evolution of some solvable models that allow us also to understand which features are valid beyond the critical evolution. All our findings may be explained in terms of a picture generally valid, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate with a finite speed through the system. Furthermore we show that the long time results can be interpreted in terms of a generalized Gibbs ensemble. We discuss some open questions and possible future developments.
Measurements-based Moving Target Detection in Quantum Video
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Khan, Asif R.; Yang, Huamin
2016-04-01
A method to detect a moving target in multi-channel quantum video is proposed based on multiple measurements on the video strip. The proposed method is capable of detecting the location of the moving target in each frame of the quantum video thereby ensuring that the motion trail of the object is easily and efficiently retrieved. Three experiments, i.e. moving target detection (MTD) of a pixel, MTD of an object in complex shape, and MTD of a pixel whose color is conterminous with that of its background, are implemented to demonstrate the feasibility of the proposal. This study presents a modest attempt to focus on the moving target detection and its applications in quantum video.
Quantum Dots Microstructured Optical Fiber for X-Ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, S. L.; Williams, P. A.; Burke, E. R.
2015-01-01
A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.
Quantum dots microstructured optical fiber for x-ray detection
NASA Astrophysics Data System (ADS)
DeHaven, S. L.; Williams, P. A.; Burke, E. R.
2016-02-01
A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.
Noninvasive Cardiac Quantum Spectrum Technology Effectively Detects Myocardial Ischemia
Li, Ke; Xue, Qiao; Liu, Mohan; Zheng, Xiaoqin; Chen, Rui; Li, Yufeng; Dan, Qing; Fang, Danqun
2016-01-01
Background A standard resting electrocardiogram (ECG) shows limited sensitivity and specificity for the detection of coronary artery disease (CAD). Several analytic methods exist to enhance the sensitivity and specificity of resting ECG for diagnosis of CAD. We compared a new computer-enhanced, resting ECG analysis device, the cardiac quantum spectrum (CQS) technique, with coronary angiography in the detection of CAD. Material/Methods A consecutive sample of 93 patients with a history of suspected CAD scheduled for coronary angiography was evaluated with CQS before coronary angiography. The sensitivity and specificity of CQS and standard 12-lead ECG for detecting hemodynamically relevant coronary stenosis were compared, using coronary angiography as the reference standard. Kappa analysis was performed to assess the agreement between CQS severity scores and the level of stenosis determined by coronary angiography. Results The CQS system identified 78 of 82 patients with hemodynamically relevant stenosis (sensitivity, 95.1%; specificity, 63.6%; accuracy, 91.4%; positive predictive value, 95.1%; negative predictive value, 63.6%). Sensitivity and accuracy were much higher for CQS analysis than for the standard ECG. The Kappa value, assessing the level of agreement between CQS and coronary angiography, was 0.376 (P<0.001). Conclusions CQS analysis of resting ECG data detects hemodynamically relevant CAD with high sensitivity and specificity. PMID:27351755
Quantum Control of Open Systems and Dense Atomic Ensembles
NASA Astrophysics Data System (ADS)
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated
Quantum cascade detectors for very long wave infrared detection
NASA Astrophysics Data System (ADS)
Buffaz, A.; Carras, M.; Doyennette, L.; Nedelcu, A.; Marcadet, X.; Berger, V.
2010-04-01
A high responsivity GaAs/AlGaAs quantum cascade detector is demonstrated at a wavelength of 15 μm. The quantum design is optimized for negative bias operation, so that the capture of photoexcited electrons back to the fundamental level is minimized. The detectivity of the detector presented here reaches 1.1×1012 Jones at 25 K for an applied bias of -0.6 V.
Dynamical typicality of embedded quantum systems
NASA Astrophysics Data System (ADS)
Ithier, Grégoire; Benaych-Georges, Florent
2017-07-01
We consider the dynamics of an arbitrary quantum system coupled to a large arbitrary and fully quantum-mechanical environment through a random interaction. We establish analytically and check numerically the typicality of this dynamics, in other words, the fact that the reduced density matrix of the system has a self-averaging property. This phenomenon, which lies in a generalized central limit theorem, justifies rigorously averaging procedures over certain classes of random interactions and can explain the absence of sensitivity to microscopic details of irreversible processes, such as thermalization. It provides more generally an ergodic principle for embedded quantum systems.
Galilei invariant technique for quantum system description
Kamuntavičius, Gintautas P.
2014-04-15
Problems with quantum systems models, violating Galilei invariance are examined. The method for arbitrary non-relativistic quantum system Galilei invariant wave function construction, applying a modified basis where center-of-mass excitations have been removed before Hamiltonian matrix diagonalization, is developed. For identical fermion system, the Galilei invariant wave function can be obtained while applying conventional antisymmetrization methods of wave functions, dependent on single particle spatial variables.
Thermalization in closed quantum systems: Semiclassical approach
NASA Astrophysics Data System (ADS)
Cosme, J. G.; Fialko, O.
2014-11-01
Thermalization in closed quantum systems can be understood either by means of the eigenstate thermalization hypothesis or the concept of canonical typicality. Both concepts are based on quantum-mechanical formalism, such as spectral properties of the eigenstates or entanglement between subsystems, respectively. Here we study instead the onset of thermalization of Bose particles in a two-band double-well potential using the truncated Wigner approximation. This allows us to use the familiar classical formalism to understand quantum thermalization in this system. In particular, we demonstrate that sampling of an initial quantum state mimics a statistical mechanical ensemble, while subsequent chaotic classical evolution turns the initial quantum state into the thermal state.
Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.
Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P
2015-08-03
The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.
Detection of entanglement in asymmetric quantum networks and multipartite quantum steering
Cavalcanti, D.; Skrzypczyk, P.; Aguilar, G. H.; Nery, R. V.; Ribeiro, P.H. Souto; Walborn, S. P.
2015-01-01
The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks. PMID:26235944
Quantum Simulation for Open-System Dynamics
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
Quantum correlations in a clusterlike system
Chen Yixin; Li Shengwen; Yin Zhi
2010-11-15
We discuss a clusterlike one-dimensional system with triplet interaction. We study the topological properties of this system. We find that the degeneracy depends on the topology of the system and is well protected against external local perturbations. All these facts show that the system is topologically ordered. We also find a string order parameter to characterize the quantum phase transition. Besides, we investigate two-site correlations including entanglement, quantum discord, and mutual information. We study the different divergence behaviors of the correlations. The quantum correlation decays exponentially in both topological and magnetic phases, and diverges in reversed power law at the critical point. And we find that in topological order systems, the global difference of topology induced by dimension can be reflected in local quantum correlations.
Optimal dynamic discrimination of similar quantum systems
NASA Astrophysics Data System (ADS)
Li, Baiqing
2005-07-01
The techniques for identifying and separating similar molecules have always been very important to chemistry and other branches of science and engineering. Similar quantum systems share comparable Hamiltonians, so their eigenenergy levels, transition dipole moments, and therefore their ordinary observable properties are alike. Traditional analytical methods have mostly been restricted by working with the subtle differences in the physical and chemical properties of the similar species. Optimal Dynamic Discrimination (ODD) aims at magnifying the dissimilarity of the agents by actively controlling their quantum evolution, drawing on the extremely rich information embedded in their dynamics. ODD is developed based on the tremendous flexibility of Optimal Control Theory (OCT) and on the practical implementation of closed-loop learning control, which has become a more and more indispensable tool for controlling quantum processes. The ODD experimental paradigm is designed to combat a number of factors that are detrimental to the discrimination of similar molecules: laser pulse noise, signal detection errors, finite time resolution in the signals, and environmental decoherence effects. It utilizes either static signals or time series signal, the latter capable of providing more information. Simulations are performed in this dissertation progressing from the wave function to the density matrix formulation, in order to study the decoherence effects. Analysis of the results reveals the roles of the adverse factors, unravels the underlying mechanisms of ODD, and provides insights on laboratory implementation. ODD emphasizes the incorporation of algorithmic development and laboratory design, and seeks to bridge the gap between theoretical/computational chemistry and experimental chemistry, with the help from applied mathematics and computer science.
NASA Technical Reports Server (NTRS)
Mitz, M. A.
1972-01-01
Some promising newer approaches for detecting microorganisms are discussed, giving particular attention to the integration of different methods into a single instrument. Life detection methods may be divided into biological, chemical, and cytological methods. Biological methods are based on the biological properties of assimilation, metabolism, and growth. Devices for the detection of organic materials are considered, taking into account an instrument which volatilizes, separates, and analyzes a sample sequentially. Other instrumental systems described make use of a microscope and the cytochemical staining principle.
Quantum entanglement in condensed matter systems
NASA Astrophysics Data System (ADS)
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
NASA Astrophysics Data System (ADS)
Zhao, Yi; Fung, Chi-Hang Fred; Qi, Bing; Chen, Christine; Lo, Hoi-Kwong
2008-10-01
Quantum-key-distribution (QKD) systems can send quantum signals over more than 100km standard optical fiber and are widely believed to be secure. Here, we show experimentally a technologically feasible attack—namely, the time-shift attack—against a commercial QKD system. Our result shows that, contrary to popular belief, an eavesdropper, Eve, has a non-negligible probability (˜4%) to break the security of the system. Eve’s success is due to the well-known detection efficiency loophole in the experimental testing of Bell’s inequalities. Therefore, the detection efficiency loophole plays a key role not only in fundamental physics, but also in technological applications such as QKD systems.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.
Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes.
Ho, Yi-Ping; Kung, Matthew C; Yang, Samuel; Wang, Tza-Huei
2005-09-01
We demonstrate a hybridization detection method using multicolor oligonucleotide-functionalized quantum dots as nanoprobes. In the presence of various target sequences, combinatorial self-assembly of the nanoprobes via independent hybridization reactions leads to the generation of discernible sequence-specific spectral codings. Detection of single-molecule hybridization is achieved by measuring colocalization of individual nanoprobes. Genetic analysis for anthrax pathogenicity through simultaneous detection of multiple relevant sequences is demonstrated using this novel biosensing method as proof-of-concept.
Detectability of Dissipative Motion in Quantum Vacuum via Superradiance
Kim, Woo-Joong; Brownell, James Hayden; Onofrio, Roberto
2006-05-26
We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate mechanical energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio-frequency signal temporally distinguishable from the expected background.
Characteristic Energy Scales of Quantum Systems.
ERIC Educational Resources Information Center
Morgan, Michael J.; Jakovidis, Greg
1994-01-01
Provides a particle-in-a-box model to help students understand and estimate the magnitude of the characteristic energy scales of a number of quantum systems. Also discusses the mathematics involved with general computations. (MVL)
Sánchez, C. M.; Levstein, P. R.; Buljubasich, L.; Pastawski, H. M.
2016-01-01
In this work, we overview time-reversal nuclear magnetic resonance (NMR) experiments in many-spin systems evolving under the dipolar Hamiltonian. The Loschmidt echo (LE) in NMR is the signal of excitations which, after evolving with a forward Hamiltonian, is recovered by means of a backward evolution. The presence of non-diagonal terms in the non-equilibrium density matrix of the many-body state is directly monitored experimentally by encoding the multiple quantum coherences. This enables a spin counting procedure, giving information on the spreading of an excitation through the Hilbert space and the formation of clusters of correlated spins. Two samples representing different spin systems with coupled networks were used in the experiments. Protons in polycrystalline ferrocene correspond to an ‘infinite’ network. By contrast, the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline in the nematic mesophase represents a finite proton system with a hierarchical set of couplings. A close connection was established between the LE decay and the spin counting measurements, confirming the hypothesis that the complexity of the system is driven by the coherent dynamics. PMID:27140972
Sánchez, C M; Levstein, P R; Buljubasich, L; Pastawski, H M; Chattah, A K
2016-06-13
In this work, we overview time-reversal nuclear magnetic resonance (NMR) experiments in many-spin systems evolving under the dipolar Hamiltonian. The Loschmidt echo (LE) in NMR is the signal of excitations which, after evolving with a forward Hamiltonian, is recovered by means of a backward evolution. The presence of non-diagonal terms in the non-equilibrium density matrix of the many-body state is directly monitored experimentally by encoding the multiple quantum coherences. This enables a spin counting procedure, giving information on the spreading of an excitation through the Hilbert space and the formation of clusters of correlated spins. Two samples representing different spin systems with coupled networks were used in the experiments. Protons in polycrystalline ferrocene correspond to an 'infinite' network. By contrast, the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline in the nematic mesophase represents a finite proton system with a hierarchical set of couplings. A close connection was established between the LE decay and the spin counting measurements, confirming the hypothesis that the complexity of the system is driven by the coherent dynamics.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2013-01-01
We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.
Emergent "Quantum" Theory in Complex Adaptive Systems.
Minic, Djordje; Pajevic, Sinisa
2016-04-30
Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.
Simulating and detecting the quantum spin Hall effect in the kagome optical lattice
Liu Guocai; Jiang Shaojian; Sun Fadi; Liu, W. M.; Zhu Shiliang
2010-11-15
We propose a model which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian in the kagome lattice and promises to host the transition from the quantum spin Hall insulator to the normal insulator. In addition, we design an experimental scheme to simulate and detect this transition in the ultracold atom system. The lattice intrinsic spin-orbit coupling is generated via the laser-induced-gauge-field method. Furthermore, we establish the connection between the spin Chern number and the spin-atomic density which enables us to detect the quantum spin Hall insulator directly by the standard density-profile technique used in atomic systems.
Communication theory of quantum systems. Ph.D. Thesis, 1970
NASA Technical Reports Server (NTRS)
Yuen, H. P. H.
1971-01-01
Communication theory problems incorporating quantum effects for optical-frequency applications are discussed. Under suitable conditions, a unique quantum channel model corresponding to a given classical space-time varying linear random channel is established. A procedure is described by which a proper density-operator representation applicable to any receiver configuration can be constructed directly from the channel output field. Some examples illustrating the application of our methods to the development of optical quantum channel representations are given. Optimizations of communication system performance under different criteria are considered. In particular, certain necessary and sufficient conditions on the optimal detector in M-ary quantum signal detection are derived. Some examples are presented. Parameter estimation and channel capacity are discussed briefly.
Idaho Explosive Detection System
Klinger, Jeff
2016-07-12
Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory
Idaho Explosive Detection System
Klinger, Jeff
2011-01-01
Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory
Detection and compensation of basis deviation in satellite-to-ground quantum communications.
Zhang, Ming; Zhang, Liang; Wu, Jincai; Yang, Shiji; Wan, Xiong; He, Zhiping; Jia, Jianjun; Citrin, D S; Wang, Jianyu
2014-04-21
Basis deviation is the reference-frame deviation between a sender and receiver caused by satellite motion in satellite-to-ground quantum communications. It increases the quantum-bit error ratio of the system and must be compensated for to guarantee reliable quantum communications. We present a new scheme for compensating for basis deviation that employs a BB84 decoding module to detect basis deviation and half-wave plate to provide compensation. Based on this detection scheme, we design a basis-deviation compensation approach and test its feasibility in a voyage experiment. Unlike other polarization-correction schemes, this compensation scheme is simple, convenient, and can be easily implemented in satellite-to-ground quantum communications without increased burden to the satellite.
Hybrid Impulsive Control for Closed Quantum Systems
Sun, Jitao; Lin, Hai
2013-01-01
The state transfer problem of a class of nonideal quantum systems is investigated. It is known that traditional Lyapunov methods may fail to guarantee convergence for the nonideal case. Hence, a hybrid impulsive control is proposed to accomplish a more accurate convergence. In particular, the largest invariant sets are explicitly characterized, and the convergence of quantum impulsive control systems is analyzed accordingly. Numerical simulation is also presented to demonstrate the improvement of the control performance. PMID:23781158
Automatic infection detection system.
Granberg, Ove; Bellika, Johan Gustav; Arsand, Eirik; Hartvigsen, Gunnar
2007-01-01
An infected person may be contagious already before the first symptoms appear. This person can, in the period of disease evolution, infect several associated citizens before consulting a general practitioner (GP). Early detection of contagion is therefore important to prevent spreading of diseases. The Automatic Infection Detection (AID) System faces this problem through investigating the hypothesis that the blood glucose (BG) level increases when a person is infected. The first objective of the prototyped version of the AID system was to identify possible BG elevations in the incubation time that could be related to the spread of infectious diseases. To do this, we monitored two groups of people, with and without diabetes mellitus. The AID system analyzed the results and we were able to detect two cases of infection during the study period. The time of detection occurred simultaneous or near the time of onset of symptoms. The detection did not occur earlier for a number of reasons. The most likely one is that the evolution process of an infectious disease is both complicated and involves the immune system and several organs in the body. The investigation with regard to isolating the key relations is therefore considered as a very complex study. Nevertheless, the AID system managed to detect the infection much earlier than what is possible with today's early warning systems for infectious diseases.
Wang, Peng; Lei, Jianping; Su, Mengqi; Liu, Yueting; Hao, Qing; Ju, Huangxian
2013-09-17
This work presented a photocurrent response mechanism of quantum dots (QDs) under illumination with the concept of a quantum photoelectric effect. Upon irradiation, the photoelectron could directly escape from QDs. By using nitro blue tetrazolium (NBT) to capture the photoelectron, a new visual system was proposed due to the formation of an insoluble reduction product, purple formazan, which could be used to visualize the quantum photoelectric effect. The interaction of copper(II) with QDs could form trapping sites to interfere with the quantum confinement and thus blocked the escape of photoelectron, leading to a "signal off" visual method for sensitive copper(II) detection. Meanwhile, by using QDs as a signal tag to label antibody, a "signal on" visual method was also proposed for immunoassay of corresponding protein. With meso-2,3-dimercaptosuccinic-capped CdTe QDs and carcino-embryonic antigen as models, the proposed visual detection methods showed high sensitivity, low detection limit, and wide detectable concentration ranges. The visualization of quantum photoelectric effect could be simply extended for the detection of other targets. This work opens a new visual detection way and provides a highly efficient tool for bioanalysis.
Detecting quantum non-Gaussianity via the Wigner function
NASA Astrophysics Data System (ADS)
Genoni, Marco G.; Palma, Mattia L.; Tufarelli, Tommaso; Olivares, Stefano; Kim, M. S.; Paris, Matteo G. A.
2013-06-01
We introduce a family of criteria to detect quantum non-Gaussian states of a harmonic oscillator, that is, quantum states that cannot be expressed as a convex mixture of Gaussian states. In particular, we prove that for convex mixtures of Gaussian states, the value of the Wigner function at the origin of phase space is bounded from below by a nonzero positive quantity, which is a function only of the average number of excitations (photons) of the state. As a consequence, if this bound is violated, then the quantum state must be quantum non-Gaussian. We show that this criterion can be further generalized by considering additional Gaussian operations on the state under examination. We then apply these criteria to various non-Gaussian states evolving in a noisy Gaussian channel, proving that the bounds are violated for high values of losses, and thus also for states characterized by a positive Wigner function.
Underwater laser detection system
NASA Astrophysics Data System (ADS)
Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.
2015-02-01
The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.
NASA Astrophysics Data System (ADS)
Alimohammadi, Mohammad; Xu, Yang; Wang, Daoyuan; Biris, Alexandru S.; Khodakovskaya, Mariya V.
2011-07-01
Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml - 1) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.
Alimohammadi, Mohammad; Xu, Yang; Wang, Daoyuan; Biris, Alexandru S; Khodakovskaya, Mariya V
2011-07-22
Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml(-1)) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.
Using quantum dot photoluminescence for load detection
Moebius, M. Hartwig, M.; Martin, J.; Baumann, R. R.; Otto, T.; Gessner, T.
2016-08-15
We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N′,N′-Tetrakis(3-methylphenyl)-3,3′-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.
Using quantum dot photoluminescence for load detection
NASA Astrophysics Data System (ADS)
Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.
2016-08-01
We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2014-01-01
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.
Isoperiodic classical systems and their quantum counterparts
NASA Astrophysics Data System (ADS)
Asorey, M.; Cariñena, J. F.; Marmo, G.; Perelomov, A.
2007-06-01
One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O( ℏ2) because semiclassical corrections of energy levels of order O( ℏ) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems.
Robust observer for uncertain linear quantum systems
Yamamoto, Naoki
2006-09-15
In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analog due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1973-01-01
An intruder detection system is described. The system contains a transmitter which sends a frequency modulated and amplitude modulated signal to a remote receiver in response to a geophone detector which responds to seismic impulses created by the intruder. The signal makes it possible for an operator to determine the number of intruders and the manner of movement.
Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.
1981-01-01
A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.
Portable pathogen detection system
Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.
2005-06-14
A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.
Farrington, R.B.; Pruett, J.C. Jr.
1984-05-14
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
Farrington, Robert B.; Pruett, Jr., James C.
1986-01-01
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
Second-order superintegrable quantum systems
Miller, W.; Kalnins, E. G.; Kress, J. M.
2007-03-15
A classical (or quantum) superintegrable system on an n-dimensional Riemannian manifold is an integrable Hamiltonian system with potential that admits 2n - 1 functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the motion are all quadratic, then the system is second-order superintegrable, the most tractable case and the one we study here. Such systems have remarkable properties: multi-integrability and separability, a quadratic algebra of symmetries whose representation theory yields spectral information about the Schroedinger operator, and deep connections with expansion formulas relating classes of special functions. For n = 2 and for conformally flat spaces when n = 3, we have worked out the structure of the classical systems and shown that the quadratic algebra always closes at order 6. Here, we describe the quantum analogs of these results. We show that, for nondegenerate potentials, each classical system has a unique quantum extension.
Noise management to achieve superiority in quantum information systems
NASA Astrophysics Data System (ADS)
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Hybrid quantum systems with trapped charged particles
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.
2017-02-01
Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such
Quantum optical properties in plasmonic systems
NASA Astrophysics Data System (ADS)
Ooi, C. H. Raymond
2015-04-01
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Idaho Explosives Detection System
Edward L. Reber; J. Keith Jewell; Larry G. Blackwood; Andrew J. Edwards; Kenneth W. Rohde; Edward H. Seabury
2004-10-01
The Idaho Explosives Detection System (IEDS) was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-minute measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.
Idaho Explosives Detection System
Edward L. Reber; Larry G. Blackwood; Andrew J. Edwards; J. Keith Jewell; Kenneth W. Rohde; Edward H. Seabury; Jeffery B. Klinger
2005-12-01
The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.
Driving quantum systems with superoscillations
NASA Astrophysics Data System (ADS)
Kempf, Achim; Prain, Angus
2017-08-01
Superoscillations, i.e., the phenomenon that a bandlimited function can temporary oscillate faster than its highest Fourier component, are being much discussed for their potential for "superresolution" beyond the diffraction limit. Here, we consider systems that are driven with a time dependence that is off-resonance for the system, in the Fourier sense. We show that superoscillating sources can temporarily induce resonance during the period when the source is behaving superoscillatory. This observation poses the question as to how the system "undoes" the "false resonance" after the full source has acted and its band limitation is apparent. We discuss several examples of systems that might be capable of distilling the temporary excitation through some non-harmonic effects, such as dissipation or dispersion at high frequencies, opening up the possibility of low frequency detection of "fast" microphysics through superoscillations. We conclude that either superoscillations really can beat the bandlimit and achieve superresolution ("kinematic superresolution") or the superoscillating high frequency is absorbed and we gain dynamical access to the physics of high frequency processes with low frequency signals ("dynamical superresolution").
Strong local passivity in finite quantum systems.
Frey, Michael; Funo, Ken; Hotta, Masahiro
2014-07-01
Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.
Note on quantum groups and integrable systems
NASA Astrophysics Data System (ADS)
Popolitov, A.
2016-01-01
The free-field formalism for quantum groups [preprint ITEP-M3/94, CRM-2202 hep-th/9409093] provides a special choice of coordinates on a quantum group. In these coordinates the construction of associated integrable system [arXiv:1207.1869] is especially simple. This choice also fits into general framework of cluster varieties [math.AG/0311245]—natural changes in coordinates are cluster mutations.
Toward simulating complex systems with quantum effects
NASA Astrophysics Data System (ADS)
Kenion-Hanrath, Rachel Lynn
Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation
High-Fidelity Adaptive Qubit Detection through Repetitive Quantum Nondemolition Measurements
Hume, D. B.; Rosenband, T.; Wineland, D. J.
2007-09-21
Using two trapped ion species ({sup 27}Al{sup +} and {sup 9}Be{sup +}) as primary and ancillary quantum systems, we implement qubit measurements based on the repetitive transfer of information and quantum nondemolition detection. The repetition provides a natural mechanism for an adaptive measurement strategy, which leads to exponentially lower error rates compared to using a fixed number of detection cycles. For a single qubit we demonstrate 99.94% measurement fidelity. We also demonstrate a technique for adaptively measuring multiple qubit states using a single ancilla, and apply the technique to spectroscopy of an optical clock transition.
High-Fidelity Adaptive Qubit Detection through Repetitive Quantum Nondemolition Measurements
NASA Astrophysics Data System (ADS)
Hume, D. B.; Rosenband, T.; Wineland, D. J.
2007-09-01
Using two trapped ion species (Al+27 and Be+9) as primary and ancillary quantum systems, we implement qubit measurements based on the repetitive transfer of information and quantum nondemolition detection. The repetition provides a natural mechanism for an adaptive measurement strategy, which leads to exponentially lower error rates compared to using a fixed number of detection cycles. For a single qubit we demonstrate 99.94% measurement fidelity. We also demonstrate a technique for adaptively measuring multiple qubit states using a single ancilla, and apply the technique to spectroscopy of an optical clock transition.
Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection.
May, Andrzej; Bhaumik, Srabani; Gambhir, Sanjiv S; Zhan, Chun; Yazdanfar, Siavash
2009-01-01
We describe a wide-field preclinical imaging system optimized for time-gated detection of quantum dot fluorescence emission. As compared to continuous wave measurements, image contrast was substantially improved by suppression of short-lifetime background autofluorescence. Real-time (8 frames/s) biological imaging of subcutaneous quantum dot injections is demonstrated simultaneously in multiple living mice.
Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection
NASA Astrophysics Data System (ADS)
May, Andrzej; Bhaumik, Srabani; Gambhir, Sanjiv S.; Zhan, Chun; Yazdanfar, Siavash
2009-11-01
We describe a wide-field preclinical imaging system optimized for time-gated detection of quantum dot fluorescence emission. As compared to continuous wave measurements, image contrast was substantially improved by suppression of short-lifetime background autofluorescence. Real-time (8 frames/s) biological imaging of subcutaneous quantum dot injections is demonstrated simultaneously in multiple living mice.
Revealing Open Quantum Systems with Subsystem DFT
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Pavanello, Michele
The traditional quantum chemical methods, wave function or density based, are designed to solve for a closed system, where the Hamiltonian contains all relevant interactions. The closed system is, however, not realistic, as in real life the system is embedded in an environment with which it interacts to some degree. Including the description of the environment at the full quantum mechanical level leads to the Open Quantum Systems (OQS) theory: the only theory which can describe non-Markovian dynamics between the system and the environment. By allowing the flow of information in both directions phenomena such as quantum entanglement, relevant for the design of quantum computers, become available. While most OQS theories rely on the density matrix to describe the system-bath interaction, time-dependent subsystem DFT allows to approach the problem using the electron density. Through Dyson-like equations connecting the density-density response kernels of the OQS and its environment, the extent to which non-Markovian dynamics is present can be revealed. We illustrate this for the process of excitation energy transfer in coupled chromophores embedded in explicit solvent.
Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack
NASA Astrophysics Data System (ADS)
Huang, Jing-Zheng; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Li, Hong-Wei; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2013-06-01
The security proofs of continuous-variable quantum key distribution are based on the assumptions that the eavesdropper can neither act on the local oscillator nor control Bob's beam splitter. These assumptions may be invalid in practice due to potential imperfections in the implementations of such protocols. In this paper, we consider the problem of transmitting the local oscillator in a public channel and propose a wavelength attack which allows the eavesdropper to control the intensity transmission of Bob's beam splitter by switching the wavelength of the input light. Specifically we target continuous-variable quantum key distribution systems that use the heterodyne detection protocol using either direct or reverse reconciliation. Our attack is proved to be feasible and renders all of the final keys shared between the legitimate parties insecure, even if they have monitored the intensity of the local oscillator. To prevent our attack on commercial systems, a simple wavelength filter should be randomly added before performing monitoring detection.
Quantum hacking: attacking practical quantum key distribution systems
NASA Astrophysics Data System (ADS)
Qi, Bing; Fung, Chi-Hang Fred; Zhao, Yi; Ma, Xiongfeng; Tamaki, Kiyoshi; Chen, Christine; Lo, Hoi-Kwong
2007-09-01
Quantum key distribution (QKD) can, in principle, provide unconditional security based on the fundamental laws of physics. Unfortunately, a practical QKD system may contain overlooked imperfections and violate some of the assumptions in a security proof. Here, we report two types of eavesdropping attacks against a practical QKD system. The first one is "time-shift" attack, which is applicable to QKD systems with gated single photon detectors (SPDs). In this attack, the eavesdropper, Eve, exploits the time mismatch between the open windows of the two SPDs. She can acquire a significant amount of information on the final key by simply shifting the quantum signals forwards or backwards in time domain. Our experimental results in [9] with a commercial QKD system demonstrate that, under this attack, the original QKD system is breakable. This is the first experimental demonstration of a feasible attack against a commercial QKD system. This is a surprising result. The second one is "phase-remapping" attack [10]. Here, Eve exploits the fact that a practical phase modulator has a finite response time. In principle, Eve could change the encoded phase value by time-shifting the signal pulse relative to the reference pulse.
Quantum teleportation of dynamics and effective interactions between remote systems.
Muschik, Christine A; Hammerer, Klemens; Polzik, Eugene S; Cirac, Ignacio J
2013-07-12
Most protocols for quantum information processing consist of a series of quantum gates, which are applied sequentially. In contrast, interactions between matter and fields, for example, as well as measurements such as homodyne detection of light are typically continuous in time. We show how the ability to perform quantum operations continuously and deterministically can be leveraged for inducing nonlocal dynamics between two separate parties. We introduce a scheme for the engineering of an interaction between two remote systems and present a protocol that induces a dynamics in one of the parties that is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time, and are based on real-time feedback.
Hacking commercial quantum cryptography systems by tailored bright illumination
NASA Astrophysics Data System (ADS)
Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
2010-10-01
The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.
Gambarota, Giulio
2016-09-03
Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system.
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J.
1975-01-01
A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.
The path integral picture of quantum systems
NASA Astrophysics Data System (ADS)
Ceperley, David
2011-03-01
The imaginary time path integral ``formalism'' was introduced in 1953 by Feynman to understand the superfluid transition in liquid helium. The equilibrium properties of quantum many body systems is isomorphic to the classical statistical mechanics of cross-linking polymer-like objects. With the Markov Chain Monte Carlo method, invented by Metropolis et al., also in 1953, a potential way of calculating properties of correlated quantum systems was in place. But calculations for many-body quantum systems did not become routine until computers and algorithms had become sufficiently powerful three decades later. Once such simulations could happen, it was realized that simulations provided a deeper insight into boson superfluids, in particular the relation of bose condensation to the polymer end-to-end distance, and the superfluid density to the polymer ``winding number.'' Some recent developments and applications to supersolids, and helium droplets will be given. Finally, limitations of the methodology e.g. to fermion systems are discussed.
Detection of electromagnetic radiation using micromechanical multiple quantum wells structures
Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN
2007-07-17
An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
NASA Astrophysics Data System (ADS)
Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji
2005-11-01
Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.
NASA Astrophysics Data System (ADS)
Wang, Shengtao
The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation
Jiang, Kebei; Lee, Hwang; Gerry, Christopher C.; Dowling, Jonathan P.
2013-11-21
There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.
Tillman, J E
1953-10-20
This patent application describes a sensitive detection or protective system capable of giving an alarm or warning upon the entrance or intrusion of any body into a defined area or zone protected by a radiation field of suitable direction or extent.
NASA Technical Reports Server (NTRS)
Lee, R. D.
1970-01-01
Moving coil geophones are utilized to develop a small, rugged, battery operated system capable of detecting seismic disturbances caused by intruders. Seismic disturbances sensed by each geophone are converted into electrical signals, amplified, and transmitted to remote receiver which provides listener with aural signal.
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2015-02-01
We propose a quantitative criterion to determine whether the coupled quantum systems can achieve complete synchronization or phase synchronization in the process of analyzing quantum synchronization. Adopting the criterion, we discuss the quantum synchronization effects between optomechanical systems and find that the error between the systems and the fluctuation of error is sensitive to coupling intensity by calculating the largest Lyapunov exponent of the model and quantum fluctuation, respectively. By taking the appropriate coupling intensity, we can control quantum synchronization even under different logical relationships between switches. Finally, we simulate the dynamical evolution of the system to verify the quantum synchronization criterion and to show the ability of synchronization control.
High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation
NASA Astrophysics Data System (ADS)
House, M. G.; Bartlett, I.; Pakkiam, P.; Koch, M.; Peretz, E.; van der Heijden, J.; Kobayashi, T.; Rogge, S.; Simmons, M. Y.
2016-10-01
We report the development of a high-sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead designed to minimize the geometric requirements of a charge sensor for scalable quantum-computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography, and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single-electron transistor (rf SET) with which to make a comparison of the charge-detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1 compared with an integration time of 55 ns for the rf SET. This level of sensitivity is suitable for fast (<15 μ s ) single-spin readout in quantum-information applications, with a significantly reduced geometric footprint compared to the rf SET.
Spatially resolved single photon detection with a quantum sensor array
Zagoskin, A. M.; Wilson, R. D.; Everitt, M.; Savel'ev, S.; Gulevich, D. R.; Allen, J.; Dubrovich, V. K.; Il'ichev, E.
2013-01-01
We propose a method of resolving a spatially coherent signal, which contains on average just a single photon, against the background of local noise at the same frequency. The method is based on detecting the signal simultaneously in several points more than a wavelength apart through the entangling interaction of the incoming photon with the quantum metamaterial sensor array. The interaction produces the spatially correlated quantum state of the sensor array, characterised by a collective observable (e.g., total magnetic moment), which is read out using a quantum nondemolition measurement. We show that the effects of local noise (e.g., fluctuations affecting the elements of the array) are suppressed relative to the signal from the spatially coherent field of the incoming photon as , where N is the number of array elements. The realisation of this approach in the microwave range would be especially useful and is within the reach of current experimental techniques. PMID:24322568
Authenticated Quantum Key Distribution with Collective Detection using Single Photons
NASA Astrophysics Data System (ADS)
Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue
2016-10-01
We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.
Multiparameter deformation theory for quantum confined systems
Aleixo, A. N. F.; Balantekin, A. B.
2009-11-15
We introduce a generalized multiparameter deformation theory applicable to all supersymmetric and shape-invariant systems. Taking particular choices for the deformation factors used in the construction of the deformed ladder operators, we show that we can generalize the one-parameter quantum-deformed harmonic oscillator models and build alternative multiparameter deformed models that are also shape invariant like the primary undeformed system.
The quantum human central neural system.
Alexiou, Athanasios; Rekkas, John
2015-01-01
In this chapter we present Excess Entropy Production for human aging system as the sum of their respective subsystems and electrophysiological status. Additionally, we support the hypothesis of human brain and central neural system quantumness and we strongly suggest the theoretical and philosophical status of human brain as one of the unknown natural Dirac magnetic monopoles placed in the center of a Riemann sphere.
Nonequilibrium Quantum Systems: Fluctuations and Interactions
NASA Astrophysics Data System (ADS)
Subasi, Yigit
We explore some aspects of nonequilibrium statistical mechanics of classical and quantum systems. Two chapters are devoted to fluctuation theorems which were originally derived for classical systems. The main challenge in formulating them in quantum mechanics is the fact that fundamental quantities of interest, like work, are defined via the classical concept of a phase space trajectory. We utilize the decoherent histories conceptual framework, in which classical trajectories emerge in quantum mechanics as a result of coarse graining, and provide a first-principles analysis of the nonequilibrium work relation of Jarzynski and Crooks's fluctuation theorem for a quantum system interacting with a general environment based on the quantum Brownian motion (QBM) model. We indicate a parameter range at low temperatures where the theorems might fail in their original form. Fluctuation theorems of Jarzynski and Crooks for systems obeying classical Hamiltonian dynamics are derived under the assumption that the initial conditions are sampled from a canonical ensemble, even though the equilibrium state of an isolated system is typically associated with the microcanonical ensemble. We address this issue through an exact analysis of the classical Brownian motion model. We argue that a stronger form of ensemble equivalence than usually discussed in equilibrium statistical mechanics is required for these theorems to hold in the infinite environment limit irrespective of the ensemble used, and proceed to prove it for this model. An exact expression for the probability distribution of work is obtained for finite environments. Intuitively one expects a system to relax to an equilibrium state when brought into contact with a thermal environment. Yet it is important to have rigorous results that provide conditions for equilibration and characterize the equilibrium state. We consider the dynamics of open quantum systems using the Langevin and master equations and rigorously show that
NASA Astrophysics Data System (ADS)
Ma, Shao-Qiang; Zhu, Han-Jie; Zhang, Guo-Feng
2017-04-01
The effects of different quantum feedback types on the estimation precision of the detection efficiency are studied. It is found that the precision can be more effective enhanced by a certain feedback type through comparing these feedbacks and the precision has a positive relation with detection efficiency for the optimal feedback when the system reach the state of dynamic balance. In addition, the bigger the proportion of |1> is the higher the precision is and we will not obtain any information about the parameter to be estimated if |0> is chosen as initial state for the feedback type λσz.
Adiabatic Theorem for Quantum Spin Systems
NASA Astrophysics Data System (ADS)
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Adiabatic Theorem for Quantum Spin Systems.
Bachmann, S; De Roeck, W; Fraas, M
2017-08-11
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ϵ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Quantum kinetic equation for nonequilibrium dense systems
NASA Astrophysics Data System (ADS)
Morozov, V. G.; Röpke, G.
1995-02-01
Using the density matrix method in the form developed by Zubarev, equations of motion for nonequilibrium quantum systems with continuous short range interactions are derived which describe kinetic and hydrodynamic processes in a consistent way. The T-matrix as well as the two-particle density matrix determining the nonequilibrium collision integral are obtained in the ladder approximation including the Hartree-Fock corrections and the Pauli blocking for intermediate states. It is shown that in this approximation the total energy is conserved. The developed approach to the kinetic theory of dense quantum systems is able to reproduce the virial corrections consistent with the generalized Beth-Uhlenbeck approximation in equilibrium. The contribution of many-particle correlations to the drift term in the quantum kinetic equation for dense systems is discussed.
Heisenberg picture approach to the stability of quantum Markov systems
NASA Astrophysics Data System (ADS)
Pan, Yu; Amini, Hadis; Miao, Zibo; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-06-01
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Heisenberg picture approach to the stability of quantum Markov systems
Pan, Yu E-mail: zibo.miao@anu.edu.au; Miao, Zibo E-mail: zibo.miao@anu.edu.au; Amini, Hadis; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-06-15
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Quantum illumination for enhanced detection of Rayleigh-fading targets
NASA Astrophysics Data System (ADS)
Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.
2017-08-01
Quantum illumination (QI) is an entanglement-enhanced sensing system whose performance advantage over a comparable classical system survives its usage in an entanglement-breaking scenario plagued by loss and noise. In particular, QI's error-probability exponent for discriminating between equally likely hypotheses of target absence or presence is 6 dB higher than that of the optimum classical system using the same transmitted power. This performance advantage, however, presumes that the target return, when present, has known amplitude and phase, a situation that seldom occurs in light detection and ranging (lidar) applications. At lidar wavelengths, most target surfaces are sufficiently rough that their returns are speckled, i.e., they have Rayleigh-distributed amplitudes and uniformly distributed phases. QI's optical parametric amplifier receiver—which affords a 3 dB better-than-classical error-probability exponent for a return with known amplitude and phase—fails to offer any performance gain for Rayleigh-fading targets. We show that the sum-frequency generation receiver [Zhuang et al., Phys. Rev. Lett. 118, 040801 (2017), 10.1103/PhysRevLett.118.040801]—whose error-probability exponent for a nonfading target achieves QI's full 6 dB advantage over optimum classical operation—outperforms the classical system for Rayleigh-fading targets. In this case, QI's advantage is subexponential: its error probability is lower than the classical system's by a factor of 1 /ln(M κ ¯NS/NB) , when M κ ¯NS/NB≫1 , with M ≫1 being the QI transmitter's time-bandwidth product, NS≪1 its brightness, κ ¯ the target return's average intensity, and NB the background light's brightness.
Relativistic quantum metrology in open system dynamics.
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-22
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself.
Relativistic Quantum Metrology in Open System Dynamics
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-01
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself. PMID:25609187
Time dilation in quantum systems and decoherence
NASA Astrophysics Data System (ADS)
Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2017-02-01
Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered.
Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2005-12-01
During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible
Quantum Hall effect in semiconductor systems with quantum dots and antidots
Beltukov, Ya. M.; Greshnov, A. A.
2015-04-15
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
Quantum states of hierarchical systems
NASA Astrophysics Data System (ADS)
Ceccatto, H. A.; Keirstead, W. P.; Huberman, B. A.
1987-12-01
The quantum states of an electron in a hierarchical potential are investigated in the tight-binding approximation. The hierarchy is taken to be in the transition matrix elements, in natural analogy to the classical problem of diffusion in ultrametric structures. The energy spectrum is found to be a Cantor set, and analytical results are presented for its scaling properties. The envelope of the wave function is found to decay algebraically for certain energies and to be constant for others. The results are in excellent agreement with high-precision numerical work.
Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.
1976-01-01
A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.
Quantum Control in an Atomic Spin System
NASA Astrophysics Data System (ADS)
Phillips, C. S.; Woods, W.; Potts, J. R.; Ponsor, S.; Gardner, J. R.
1998-11-01
The experimental work described here investigates the physics of coherent quantum control in an atomic spin system. This type of system is very attractive for precision studies of coherent control for a number of reasons, including the ease with which it may be manipulated experimentally and the relative simplicity of its theoretical description. To this end, we are studying quantum control of the spin wavefunction of ground state (F=3) ^85Rb atoms confined in a vapor-cell MOT. Application of uniform magnetic and optical fields to this system results in an anharmonic ladder of seven levels whose state can be manipulated arbitrarily using radio-frequency rotating magnetic fields. Using the optimal control formalism of Shi and Rabitz, we have developed a numerical model of this system which predicts the appropriate control pulse shape given the initial and desired final state of the system. As predicted, we find that the control pulse which causes a given system evolution is not unique, allowing the construction of control pulses with multiple goals, such as evolution through specified intermediate states. This freedom should allow for the construction of control pulses that both produce the desired final state and are robust to decoherence effects. This type of precise control may find application in the development of quantum computation devices as well as in other types of nano-technology. An experimental implementation of quantum control in this system, already underway in our lab, will be presented.
Network realization of triplet-type quantum stochastic systems
NASA Astrophysics Data System (ADS)
Zhou, Shaosheng; Fu, Shizhou; Chen, Yuping
2017-01-01
This paper focuses on a problem of network synthesis for a class of quantum stochastic systems. The systems under consideration are of triplet-type form and stem from linear quantum optics and linear quantum circuits. A new quantum network realization approach is proposed by generalizing the scattering operator from the scalar form to a unitary matrix in network components. It shows that the triplet-type quantum stochastic system can be approximated by a quantum network which consists of some one-degree-of-freedom generalized open-quantum harmonic oscillators (1DGQHOs) via series, concatenation and feedback connections.
Constraint algebra for interacting quantum systems
NASA Astrophysics Data System (ADS)
Fubini, S.; Roncadelli, M.
1988-04-01
We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.
Quons in a quantum dissipative system
NASA Astrophysics Data System (ADS)
Lee, Taejin
2016-03-01
String theory proves to be an imperative tool to explore the critical behavior of the quantum dissipative system. We discuss the quantum particles moving in two dimensions, in the presence of a uniform magnetic field, subject to a periodic potential and a dissipative force, which are described by the dissipative Wannier-Azbel-Hofstadter (DWAH) model. Using string theory formulation of the model, we find that the elementary excitations of the system at the generic points of the off-critical regions, in the zero temperature limit are quons, which satisfy q-deformed statistics.
Quantum Response of Weakly Chaotic Systems
2010-10-01
Quantum chaos; semiclassical methods Abstract – Chaotic systems, that have a small Lyapunov exponent , do not obey the common random matrix theory...BSF). 14. ABSTRACT Chaotic systems, that have a small Lyapunov exponent , do not obey the common random matrix theory predictions within a wide...also to system with zero Lyapunov exponent (tR =∞), e.g. the triangular billiard [20], and pseudointegrable billiards [21], and to systems with a
Nonequilibrium quantum dynamics in optomechanical systems
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Contextuality without nonlocality in a superconducting quantum system
Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady
2016-01-01
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell–Kochen–Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing. PMID:27698351
Quantum jump model for a system with a finite-size environment.
Suomela, S; Kutvonen, A; Ala-Nissila, T
2016-06-01
Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied.
Quantum Discord for d⊗2 Systems
Ma, Zhihao; Chen, Zhihua; Fanchini, Felipe Fernandes; Fei, Shao-Ming
2015-01-01
We present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 106 two-qubit random density matrices, we obtain an average deviation of order 10−4. Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel. PMID:26036771
Contact matrix in dilute quantum systems
NASA Astrophysics Data System (ADS)
Zhang, Shao-Liang; He, Mingyuan; Zhou, Qi
2017-06-01
Contact has been well established as an important quantity to govern dilute quantum systems, in which the pairwise correlation at short distance traces a broad range of thermodynamic properties. So far, most studies have focused on contact in individual angular momentum channels. Here we point out that, to have a complete description of the pairwise correlation in a general dilute quantum systems, contact should be defined as a matrix. Whereas the diagonal terms of such a matrix include contact of all partial wave scatterings, the off-diagonal terms characterize the coherence of the asymptotic pairwise wave function in the angular momentum space and determine important thermodynamic quantities including the momentum distribution. The contact matrix allows physicists to access unexplored connections between short-range correlations and macroscopic quantum phenomena. As an example, we show the direct connection between the contact matrix and order parameters of a superfluid with mixed partial waves.
Quantum dot-based microfluidic biosensor for cancer detection
Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar
2015-05-11
We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.
Detection of chemical clouds using widely tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Goyal, Anish K.; Kotidis, Petros; Deutsch, Erik R.; Zhu, Ninghui; Norman, Mark; Ye, Jim; Zafiriou, Kostas; Mazurenko, Alexander
2015-05-01
Widely tunable quantum cascade lasers (QCLs) spanning the long-wave infrared (LWIR) atmospheric transmission window and an HgCdTe detector were incorporated into a transceiver having a 50-mm-diameter transmit/receive aperture. The transceiver was used in combination with a 50-mm-diameter hollow retro-reflector for the open-path detection of chemical clouds. Two rapidly tunable external-cavity QCLs spanned the wavelength range of 7.5 to 12.8 m. Open-path transmission measurements were made over round-trip path-lengths of up to 562 meters. Freon-132a and other gases were sprayed into the beam path and the concentration-length (CL) product was measured as a function of time. The system exhibited a noise-equivalent concentration (NEC) of 3 ppb for Freon-132a given a round-trip path of 310 meters. Algorithms based on correlation methods were used to both identify the gases and determine their CLproducts as a function of time.
Effects of image processing on the detective quantum efficiency
NASA Astrophysics Data System (ADS)
Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na
2010-04-01
Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.
Quantum dot-based microfluidic biosensor for cancer detection
NASA Astrophysics Data System (ADS)
Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar
2015-05-01
We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.
Quantum statistical ensemble for emissive correlated systems.
Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.
Quantum emulation of quasiperiodic systems
NASA Astrophysics Data System (ADS)
Senaratne, Ruwan; Geiger, Zachary; Fujiwara, Kurt; Singh, Kevin; Rajagopal, Shankari; Weld, David
2016-05-01
Tunable quasiperiodic optical traps can enable quantum emulation of electronic phenomena in quasicrystals. A 1D bichromatic lattice or a Gaussian beam intersecting a 2D square lattice in a direct analogy of the ``cut-and-project'' construction can be used to create tunable 1D quasiperiodic potentials for cold neutral atoms. We report on progress towards the observation of singular continuous diffraction patterns, fractal energy spectra, and Bloch oscillations in these synthetic quasicrystals. We will also discuss the existence of edge states which can be topologically pumped across the lattice by varying a phasonic parameter. We acknowledge support from the ONR, the ARO and the PECASE and DURIP programs, the AFOSR, the Alfred P. Sloan foundation and the President's Research Catalyst Award from the University of California Office of the President.
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2016-12-01
In the framework of superconducting hybrid systems, we construct a star quantum network in which a superconducting transmission line resonator as a quantum bus and multiple units constituted by transmission line resonator and superconducting qubits as the carriers of quantum information. We further propose and analyze a theoretical scheme to realize quantum information processing in the quantum network. The coupling between the bus and any two superconducting qubits can be selectively implemented based on the dark state resonances of the highly dissipative transmission line resonators, and it can be found that quantum information processing between any two units can be completed in one step. As examples, the transmission of unknown quantum states and the preparation of quantum entanglement in this quantum network are investigated. At last, we exhibit our simulation results and complete the relevant discussions in order to show the advantages of this kind of quantum network.
Lyapunov control of quantum systems with impulsive control fields.
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method.
Lyapunov Control of Quantum Systems with Impulsive Control Fields
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method. PMID:23766712
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
NASA Astrophysics Data System (ADS)
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
NASA Technical Reports Server (NTRS)
Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)
1978-01-01
The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.
Ultrasonic Leak Detection System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)
1998-01-01
A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.
Classical system boundaries cannot be determined within quantum Darwinism
NASA Astrophysics Data System (ADS)
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
NASA Astrophysics Data System (ADS)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
NASA Technical Reports Server (NTRS)
Moss, Thomas; Ihlefeld, Curtis; Slack, Barry
2010-01-01
This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Optimal control of complex atomic quantum systems
NASA Astrophysics Data System (ADS)
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Eigenstate tracking in open quantum systems
NASA Astrophysics Data System (ADS)
Jing, Jun; Sarandy, Marcelo S.; Lidar, Daniel A.; Luo, Da-Wei; Wu, Lian-Ao
2016-10-01
Keeping a quantum system in a given instantaneous eigenstate is a control problem with numerous applications, e.g., in quantum information processing. The problem is even more challenging in the setting of open quantum systems, where environment-mediated transitions introduce additional decoherence channels. Adiabatic passage is a well-established solution but requires a sufficiently slow evolution time that is dictated by the adiabatic theorem. Here we develop a systematic projection theory formulation for the transitionless evolution of general open quantum systems described by time-local master equations. We derive a time-convolutionless dynamical equation for the target instantaneous eigenstate of a given time-dependent Hamiltonian. A transitionless dynamics then arises in terms of a competition between the average Hamiltonian gap and the decoherence rate, which implies optimal adiabaticity timescales. We show how eigenstate tracking can be accomplished via control pulses, without explicitly incorporating counter-diabatic driving, thus offering an alternative route to accelerate adiabaticity. We examine rectangular pulses, chaotic signals, and white noise, and find that, remarkably, the effectiveness of eigenstate tracking hardly depends on the details of the control functions. In all cases the control protocol keeps the system in the desired instantaneous eigenstate throughout the entire evolution, along an accelerated adiabatic path.
Hidden supersymmetry in quantum bosonic systems
Correa, Francisco Plyushchay, Mikhail S.
2007-10-15
We show that some simple well-studied quantum mechanical systems without fermion (spin) degrees of freedom display, surprisingly, a hidden supersymmetry. The list includes the bound state Aharonov-Bohm, the Dirac delta and the Poeschl-Teller potential problems, in which the unbroken and broken N = 2 supersymmetry of linear and nonlinear (polynomial) forms is revealed.
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Coherent control in simple quantum systems
NASA Technical Reports Server (NTRS)
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Open quantum systems approach to atomtronics
Pepino, R. A.; Cooper, J.; Meiser, D.; Anderson, D. Z.; Holland, M. J.
2010-07-15
We derive a quantum master equation to treat quantum systems interacting with multiple reservoirs. The formalism is used to investigate the atomic transport of bosons across a variety of lattice configurations. We demonstrate how the behavior of an electronic diode, a field-effect transistor, and a bipolar junction transistor can be realized with neutral, ultracold atoms trapped in optical lattices. An analysis of the current fluctuations is provided for the case of the atomtronic diode. Finally, we show that it is possible to demonstrate and logic gate behavior in an optical lattice.
Duality in the quantum Hall system
NASA Astrophysics Data System (ADS)
Lütken, C. A.; Ross, G. G.
1992-05-01
We suggest that a unified description of the integer and fractional phases of the quantum Hall system may be possible if the scaling diagram of transport coefficients is invariant under linear fractional (modular) transformations. In this model the hierarchy of states, as well as the observed universality of critical exponents, are consequences of a discrete SL(2,openZ) symmetry acting on the parameter space of an effective quantum-field theory. Available scaling data on the position of delocalization fixed points in the integer case and the position of mobility fixed points in the fractional case agree with the model within experimental accuracy.
Robotic perimeter detection system
NASA Astrophysics Data System (ADS)
Lewis, Christopher L.; Feddema, John T.; Klarer, Paul
1999-01-01
Sandia National Labs is developing and testing a robotic perimeter detection system for small unit operations (small groups of warfighters). The objective is to demonstrate the feasibility of using a cooperative team of robotic sentry vehicles to assist the warfighter in guarding military assets. Eight 'Roving All Terrain Lunar Explorer Rovers' (RATLERs) have been built at Sandia and are being used as the test platform. A radio frequency receiver on each of the RATLERs alerts the sentry vehicles of alarms from hidden miniature intrusion detection sensors (MIDS). The MIDS currently deployed include seismic, magnetometer, passive and beam-break infrared sensor. Each RATTLER keeps an internal state representation of each of the MIDS and of the other vehicles' locations. This representation is updated several times per second as the vehicles broadcast their current state and any alarms received. When an alarm is received, each vehicle looks at this state information and decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. This cooperative team concept can significantly reduce the workload and increase the effectiveness of a single warfighter in the battlefield. Using robot vehicles makes the perimeter detection system easily mobilized for redeployment.
An impurity-induced gap system as a quantum data bus for quantum state transfer
NASA Astrophysics Data System (ADS)
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-09-01
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
An impurity-induced gap system as a quantum data bus for quantum state transfer
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
Quantum cryptographic system with reduced data loss
Lo, Hoi-Kwong; Chau, Hoi Fung
1998-01-01
A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.
Quantum cryptographic system with reduced data loss
Lo, H.K.; Chau, H.F.
1998-03-24
A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.
Heat exchange mediated by a quantum system
NASA Astrophysics Data System (ADS)
Panasyuk, George Y.; Levin, George A.; Yerkes, Kirk L.
2012-08-01
We consider heat transfer between two thermal reservoirs mediated by a quantum system using the generalized quantum Langevin equation. The thermal reservoirs are treated as ensembles of oscillators within the framework of the Drude-Ullersma model. General expressions for the heat current and thermal conductance are obtained for arbitrary coupling strength between the reservoirs and the mediator and for different temperature regimes. As an application of these results we discuss the origin of Fourier's law in a chain of large but finite subsystems coupled to each other by the quantum mediators. We also address a question of anomalously large heat current between the scanning tunneling microscope (STM) tip and substrate found in a recent experiment. The question of minimum thermal conductivity is revisited in the framework of scaling theory as a potential application of the developed approach.
Heat exchange mediated by a quantum system.
Panasyuk, George Y; Levin, George A; Yerkes, Kirk L
2012-08-01
We consider heat transfer between two thermal reservoirs mediated by a quantum system using the generalized quantum Langevin equation. The thermal reservoirs are treated as ensembles of oscillators within the framework of the Drude-Ullersma model. General expressions for the heat current and thermal conductance are obtained for arbitrary coupling strength between the reservoirs and the mediator and for different temperature regimes. As an application of these results we discuss the origin of Fourier's law in a chain of large but finite subsystems coupled to each other by the quantum mediators. We also address a question of anomalously large heat current between the scanning tunneling microscope (STM) tip and substrate found in a recent experiment. The question of minimum thermal conductivity is revisited in the framework of scaling theory as a potential application of the developed approach.
Quantum Cascade Lasers (QCLs) for standoff explosives detection : LDRD 138733 final report.
Theisen, Lisa Anne; Linker, Kevin Lane
2009-09-01
Continued acts of terrorism using explosive materials throughout the world have led to great interest in explosives detection technology, especially technologies that have a potential for remote or standoff detection. This LDRD was undertaken to investigate the benefit of the possible use of quantum cascade lasers (QCLs) in standoff explosives detection equipment. Standoff detection of explosives is currently one of the most difficult problems facing the explosives detection community. Increased domestic and troop security could be achieved through the remote detection of explosives. An effective remote or standoff explosives detection capability would save lives and prevent losses of mission-critical resources by increasing the distance between the explosives and the intended targets and/or security forces. Many sectors of the US government are urgently attempting to obtain useful equipment to deploy to our troops currently serving in hostile environments. This LDRD was undertaken to investigate the potential benefits of utilizing quantum cascade lasers (QCLs) in standoff detection systems. This report documents the potential opportunities that Sandia National Laboratories can contribute to the field of QCL development. The following is a list of areas where SNL can contribute: (1) Determine optimal wavelengths for standoff explosives detection utilizing QCLs; (2) Optimize the photon collection and detection efficiency of a detection system for optical spectroscopy; (3) Develop QCLs with broader wavelength tunability (current technology is a 10% change in wavelength) while maintaining high efficiency; (4) Perform system engineering in the design of a complete detection system and not just the laser head; and (5) Perform real-world testing with explosive materials with commercial prototype detection systems.
Suppressing Chaos of Warship Power System Based on the Quantum Mechanics Theory
NASA Astrophysics Data System (ADS)
Cong, Xinrong; Li, Longsuo
2014-08-01
Chaos control of marine power system is investigated by adding the Gaussian white noise to the system. The top Lyapunov exponent is computed to detect whether the classical system chaos or not, also the phase portraits are plotted to further verify the obtained results. The classical control of chaos and its quantum counterpart of the marine power system are investigated. The Hamiltonian of the controlled system is given to analyze the quantum counterpart of the classical system, which is based on the quantum mechanics theory.
Jha, K.N.
1999-05-18
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.
Jha, Kamal N.
1999-01-01
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.
THz quantum cascade lasers for standoff molecule detection.
Chow, Weng Wah; Wanke, Michael Clement; Lerttamrab, Maytee; Waldmueller, Ines
2007-10-01
Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection
Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano
2006-01-01
Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.
Quantum dots as optical labels for ultrasensitive detection of polyphenols.
Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh
2014-07-15
Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Edge reconstructions in fractional quantum Hall systems.
NASA Astrophysics Data System (ADS)
Joglekar, Yogesh; Nguyen, Hoang; Murthy, Ganpathy
2003-03-01
Two dimensional electron systems exhibiting fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are possible [1]. We present a microscopic calculation of these egde-states at filling factors ν=1/3 and ν=2/5 using the Hamiltonian theory of the fractional quantum Hall effect [2]. We find that the quantum Hall egde undergoes a reconstruction as the confining potential, produced by the background charge density, softens [3,4]. Our results have implications to the tunneling experiments into the edge of a fractional quantum Hall system [5]. 1: X. G.Wen, Phys. Rev. Lett. 64, 2206 (1990). 2: R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 3: C. de C. Chamon and X. G. Wen, Phys. Rev. B 49, 8227 (1994). 4: X. Wan, K. Yang, and E. H. Razayi, Phys. Rev. Lett. 88, 056802 (2002). 5: A.M.Chang et al., Phys. Rev. Lett. 86, 143 (2000).
Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac
2017-04-28
Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.
NASA Astrophysics Data System (ADS)
Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoǧlu, Atac
2017-04-01
Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.
Ergodicity in randomly perturbed quantum systems
NASA Astrophysics Data System (ADS)
Gherardini, Stefano; Lovecchio, Cosimo; Müller, Matthias M.; Lombardi, Pietro; Caruso, Filippo; Saverio Cataliotti, Francesco
2017-03-01
The theoretical cornerstone of statistical mechanics is the ergodic assumption, i.e. the assumption that the time average of an observable equals its ensemble average. Here, we show how such a property is present when an open quantum system is continuously perturbed by an external environment effectively observing the system at random times while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically show how the most probable value of the probability for the system to be in a given state eventually deviates from the non-stochastic case when the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.
Statistical entropy of open quantum systems
NASA Astrophysics Data System (ADS)
Durão, L. M. M.; Caldeira, A. O.
2016-12-01
Dissipative quantum systems are frequently described within the framework of the so-called "system-plus-reservoir" approach. In this work we assign their description to the Maximum Entropy Formalism and compare the resulting thermodynamic properties with those of the well-established approaches. Due to the non-negligible coupling to the heat reservoir, these systems are nonextensive by nature, and the former task may require the use of nonextensive parameter dependent informational entropies. In doing so, we address the problem of choosing appropriate forms of those entropies in order to describe a consistent thermodynamics for dissipative quantum systems. Nevertheless, even having chosen the most successful and popular forms of those entropies, we have proven our model to be a counterexample where this sort of approach leads us to wrong results.
Contributed Review: Quantum cascade laser based photoacoustic detection of explosives
Li, J. S. Yu, B.; Fischer, H.; Chen, W.; Yalin, A. P.
2015-03-15
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.
Contributed review: quantum cascade laser based photoacoustic detection of explosives.
Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P
2015-03-01
Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.
Some Theoretical Studies of Disordered Quantum Systems.
NASA Astrophysics Data System (ADS)
Dobrosavljevic, Vladimir
1988-12-01
In the first part of the thesis, two examples of disordered electronic systems are considered. I first investigate the role of conformational disorder relevant to the electronic structure of conjugated polymers such as polydiacetylene. Both in a solid and in solution the polymer undergoes a conformational transition accompanied by color changes as the temperature is increased. A simple statistical mechanical model for the transition is presented and solved, with the result defining the effective distribution of disorder for the electronic system. Renormalization group methods are then used to calculate the density of states and localization length for the model. Next, I study the fate of a hydrogenic atom in a hard sphere fluid. In this case, the disorder comes from the distribution of open spaces in the fluid accommodating the electron on its way around the nucleus. Simplified models for the electronic propagation in limits of small and large orbitals are presented. Simple variational methods can then be used to calculate the shift and broadening of spectral lines as a function of solvent density. In the second part, I examine the effects of quantum fluctuations on phase transitions in disordered systems. An example where such effects are manifestly important is the proton glass--a random mixture of a ferroelectric and an antiferroelectric component. The system can be described using a quantum mechanical Ising spin glass model, and the mean-field theory is solved using a novel combination of discretized path integral methods and replica techniques. The results show that the glassy phase is more susceptible to destruction by tunneling than are the ordered phases. Finally, I also consider the role of randomness in the size of quantum fluctuations, on the example of an Ising model with randomly mixed classical and quantum spins. For this model, the existence of a critical concentration of quantum spins is demonstrated, below which tunneling cannot destroy the ordered
Uncertainty relation for non-Hamiltonian quantum systems
Tarasov, Vasily E.
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
Quantum chaos and thermalization in gapped systems
Rigol, Marcos; Santos, Lea F.
2010-07-15
We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.
Passive intrusion detection system
NASA Technical Reports Server (NTRS)
Laue, E. G. (Inventor)
1980-01-01
An intrusion detection system is described in which crystal oscillators are used to provide a frequency which varies as a function of fluctuations of a particular environmental property of the atmosphere, e.g., humidity, in the protected volume. The system is based on the discovery that the frequency of an oscillator whose crystal is humidity sensitive, varies at a frequency or rate which is within a known frequency band, due to the entry of an intruder into the protected volume. The variable frequency is converted into a voltage which is then filtered by a filtering arrangement which permits only voltage variations at frequencies within the known frequency band to activate an alarm, while inhibiting the alarm activation when the voltage frequency is below or above the known frequency band.
NASA Astrophysics Data System (ADS)
Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.
2016-07-01
MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.
Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun
2014-12-04
Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.
Thermalization of field driven quantum systems
Fotso, H.; Mikelsons, K.; Freericks, J. K.
2014-01-01
There is much interest in how quantum systems thermalize after a sudden change, because unitary evolution should preclude thermalization. The eigenstate thermalization hypothesis resolves this because all observables for quantum states in a small energy window have essentially the same value; it is violated for integrable systems due to the infinite number of conserved quantities. Here, we show that when a system is driven by a DC electric field there are five generic behaviors: (i) monotonic or (ii) oscillatory approach to an infinite-temperature steady state; (iii) monotonic or (iv) oscillatory approach to a nonthermal steady state; or (v) evolution to an oscillatory state. Examining the Hubbard model (which thermalizes under a quench) and the Falicov-Kimball model (which does not), we find both exhibit scenarios (i–iv), while only Hubbard shows scenario (v). This shows richer behavior than in interaction quenches and integrability in the absence of a field plays no role. PMID:24736404
Thermalization of field driven quantum systems
NASA Astrophysics Data System (ADS)
Fotso, H.; Mikelsons, K.; Freericks, J. K.
2014-04-01
There is much interest in how quantum systems thermalize after a sudden change, because unitary evolution should preclude thermalization. The eigenstate thermalization hypothesis resolves this because all observables for quantum states in a small energy window have essentially the same value; it is violated for integrable systems due to the infinite number of conserved quantities. Here, we show that when a system is driven by a DC electric field there are five generic behaviors: (i) monotonic or (ii) oscillatory approach to an infinite-temperature steady state; (iii) monotonic or (iv) oscillatory approach to a nonthermal steady state; or (v) evolution to an oscillatory state. Examining the Hubbard model (which thermalizes under a quench) and the Falicov-Kimball model (which does not), we find both exhibit scenarios (i-iv), while only Hubbard shows scenario (v). This shows richer behavior than in interaction quenches and integrability in the absence of a field plays no role.
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Multiple-state quantum Otto engine, 1D box system
NASA Astrophysics Data System (ADS)
Latifah, E.; Purwanto, A.
2014-03-01
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Mesoscopic systems: classical irreversibility and quantum coherence.
Barbara, Bernard
2012-09-28
Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like
NASA Astrophysics Data System (ADS)
Binz, Ernst; Schempp, Walter
2001-06-01
Quantum holography is a well established theory of mathematical physics based on harmonic analysis on the Heisenberg Lie group G. The geometric quantization is performed by projectivization of the complexified coadjoint orbit picture of the unitary dual Ĝ of G in order to achieve a geometric adjustment of the quantum scenario to special relativity theory. It admits applications to various imaging modalities such as synthetic aperture radar (SAR) in the microwave range, and, most importantly for the field of non-invasive medical diagnosis, to the clinical imaging modality of magnetic resonance tomography (MRI) in the radio frequency range. Quantum holography explains the quantum teleportation phenomemon through Einstein-Podolsky-Rosen (EPR) channels which is a consequence of the non-locality of phase coherent quantum field theory, the concept of absolute simultaneity of special relativity theory which provides the Einstein equivalence of energy and Fitzgerald-Lorentz dilated mass, and the perfect quantum holographic replication process of molecular genetic information processing. It specifically reveals what was before unobservable in quantum optics, namely the interference phenomena of matter wavelets of Bose-Einstein condensates, and what was before unobservable in special relativity, namely the light in flight (LIF) recording processing by ultrafast laser pulse trains. Finally, it provides a Lie group theoretical approach to the Kruskal coordinatized Schwarzschild manifold of relativistic cosmology with large scale applications to general relativity theory such as gravitational instanton symmetries and the theory of black holes. The direct spinorial detection of gravitational wavelets emitted by the binary radio pulsar PSR 1913+16 and known only by anticipatory system computation so far will also be based on the principles of quantum holography applied to very large array (VLA) radio interferometers. .
Entanglement detection on an NMR quantum-information processor using random local measurements
NASA Astrophysics Data System (ADS)
Singh, Amandeep; Arvind, Dorai, Kavita
2016-12-01
Random local measurements have recently been proposed to construct entanglement witnesses and thereby detect the presence of bipartite entanglement. We experimentally demonstrate the efficacy of one such scheme on a two-qubit NMR quantum-information processor. We show that a set of three random local measurements suffices to detect the entanglement of a general two-qubit state. We experimentally generate states with different amounts of entanglement and show that the scheme is able to clearly witness entanglement. We perform complete quantum state tomography for each state and compute state fidelity to validate our results. Further, we extend previous results and perform a simulation using random local measurements to optimally detect bipartite entanglement in a hybrid system of 2 ⊗3 dimensionality.
Detection of single quantum dots in model organisms with sheet illumination microscopy
Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir; Wagner, Toni U.; Harms, Gregory S.
2009-12-18
Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 {mu}m. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.
Classical synchronization indicates persistent entanglement in isolated quantum systems.
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-12
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Classical synchronization indicates persistent entanglement in isolated quantum systems
NASA Astrophysics Data System (ADS)
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-01
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the
Quantum dot optical encoded polystyrene beads for DNA detection.
Cao, Yuan-Cheng; Liu, Tian-Cai; Hua, Xiao-Feng; Zhu, Xiao-Xia; Wang, Hai-Qiao; Huang, Zhen-Li; Zhao, Yuan-Di; Liu, Man-Xi; Luo, Qing-Ming
2006-01-01
A novel multiplex analysis technology based on quantum dot (QD) optical encoded beads was studied. Carboxyl functionalized polystyrene beads, about 100 microm in size, were precisely encoded by the various ratios of two types of QDs whose emission wavelengths are 576 and 628 nm, respectively. Then the different encoded beads were covalently immobilized with different probes in the existing of sulfo-NHS and 1-[3-(Dimethylamino) propyl]-3-ethylcarbodiimide methiodide, and the probe density could reach to 3.1 mmol/g. These probe-linked encoded beads were used to detect the target DNA sequences in complex DNA solution by hybridization. Hybridization was visualized using fluorescein isothiocynate-labeled DNA sequences. The results show that the QDs and target signals can be obviously identified from a single-bead-level spectrum. This technology can detect DNA targets effectively with a detection limit of 0.2 microg/mL in complex solution.
NASA Astrophysics Data System (ADS)
Zhao, Yi; Fung, Chi-Hang F.; Qi, Bing; Chen, Christine; Lo, Hoi-Kwong
2009-03-01
Quantum key distribution (QKD) systems can send signals over more than 100 km standard optical fiber and are widely believed to be secure. Here, we show experimentally for the first time a technologically feasible attack, namely the time-shift attack, against a commercial QKD system. Our result shows that, contrary to popular belief, an eavesdropper, Eve, has a non-negligible probability (˜4%) to break the security of the system. Eve's success is due to the well-known detection efficiency loophole in the experimental testing of Bell inequalities. Therefore, the detection efficiency loophole plays a key role not only in fundamental physics, but also in technological applications such as QKD. Our work is published in [1]. [4pt] [1] Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, Phys. Rev. A, 78:042333 (2008).
On Mathematical Modeling Of Quantum Systems
Achuthan, P.; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
On Mathematical Modeling Of Quantum Systems
NASA Astrophysics Data System (ADS)
Achuthan, P.; Narayanankutty, Karuppath
2009-07-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Neonatal Jaundice Detection System.
Aydın, Mustafa; Hardalaç, Fırat; Ural, Berkan; Karap, Serhat
2016-07-01
Neonatal jaundice is a common condition that occurs in newborn infants in the first week of life. Today, techniques used for detection are required blood samples and other clinical testing with special equipment. The aim of this study is creating a non-invasive system to control and to detect the jaundice periodically and helping doctors for early diagnosis. In this work, first, a patient group which is consisted from jaundiced babies and a control group which is consisted from healthy babies are prepared, then between 24 and 48 h after birth, 40 jaundiced and 40 healthy newborns are chosen. Second, advanced image processing techniques are used on the images which are taken with a standard smartphone and the color calibration card. Segmentation, pixel similarity and white balancing methods are used as image processing techniques and RGB values and pixels' important information are obtained exactly. Third, during feature extraction stage, with using colormap transformations and feature calculation, comparisons are done in RGB plane between color change values and the 8-color calibration card which is specially designed. Finally, in the bilirubin level estimation stage, kNN and SVR machine learning regressions are used on the dataset which are obtained from feature extraction. At the end of the process, when the control group is based on for comparisons, jaundice is succesfully detected for 40 jaundiced infants and the success rate is 85 %. Obtained bilirubin estimation results are consisted with bilirubin results which are obtained from the standard blood test and the compliance rate is 85 %.
Isochronous classical systems and quantum systems with equally spaced spectra
NASA Astrophysics Data System (ADS)
Cariñena, J. F.; Perelomov, A. M.; Rañada, M. F.
2007-11-01
We study isoperiodic classical systems, what allows us to find the classical isochronous systems, i.e. having a period independent of the energy. The corresponding quantum analog, systems with an equally spaced spectrum are analysed by looking for possible creation-like differential operators. The harmonic oscillator and the isotonic oscillator are the two main essentially unique examples of such situation.
Artificial quantum thermal bath: Engineering temperature for a many-body quantum system
NASA Astrophysics Data System (ADS)
Shabani, Alireza; Neven, Hartmut
2016-11-01
Temperature determines the relative probability of observing a physical system in an energy state when that system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the temperature of a quantum system different from its ambient temperature. We define criteria for an engineered quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium state e/-H/TTr (e-H /T) with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.
NASA Astrophysics Data System (ADS)
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Photoelectric detection system
NASA Astrophysics Data System (ADS)
Currie, J. R.; Schansman, R. R.
1982-03-01
A photoelectric beam system for the detection of the arrival of an object at a discrete station wherein artificial light, natural light, or no light may be present is described. A signal generator turns on and off a signal light at a selected frequency. When the object in question arrives on station, ambient light is blocked by the object, and the light from the signal light is reflected onto a photoelectric sensor which has a delayed electrical output but is of the frequency of the signal light. Outputs from both the signal source and the photoelectric sensor are fed to inputs of an exclusively OR detector which provides as an output the difference between them. The difference signal is a small width pulse occurring at the frequency of the signal source. By filter means, this signal is distinguished from those responsive to sunlight, darkness, or 120 Hz artificial light. In this fashion, the presence of an object is positively established.
Direct detection of classically undetectable dark matter through quantum decoherence
NASA Astrophysics Data System (ADS)
Riedel, C. Jess
2014-03-01
Although various pieces of indirect evidence about the nature of dark matter have been collected, its direct detection has eluded experimental searches despite extensive effort. If the mass of dark matter is below 1 MeV, it is essentially imperceptible to conventional detection methods because negligible energy is transferred to nuclei during collisions. Here I propose directly detecting dark matter through the quantum decoherence it causes rather than its classical effects such as recoil or ionization. I show that quantum spatial superpositions are sensitive to low-mass dark matter which is inaccessible to classical techniques. This provides new independent motivation for matter interferometry with large masses, especially on spaceborne platforms. The apparent dark matter wind we experience as the Sun travels through the Milky Way ensures interferometers and related devices are directional detectors, and so are able to provide unmistakable evidence that decoherence has galactic origins. This research was partially supported by the U.S. Department of Energy through the LANL/LDRD program, and by the John Templeton Foundation through grant number 21484.
Enhanced fault-tolerant quantum computing in d-level systems.
Campbell, Earl T
2014-12-05
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.
Dynamical systems and quantum bicrossproduct algebras
NASA Astrophysics Data System (ADS)
Arratia, Oscar; del Olmo, Mariano A.
2002-06-01
We present a unified study of some aspects of quantum bicrossproduct algebras of inhomogeneous Lie algebras, such as Poincaré, Galilei and Euclidean in N dimensions. The action associated with the bicrossproduct structure allows us to obtain a nonlinear action over a new group linked to the translations. This new nonlinear action associates a dynamical system with each generator which is the object of our study.
Detection of Majorana Kramers Pairs Using a Quantum Point Contact
NASA Astrophysics Data System (ADS)
Li, Jian; Pan, Wei; Bernevig, B. Andrei; Lutchyn, Roman M.
2016-07-01
We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy bound states when the superconducting phases in the two arms differ by an odd multiple of π across the Josephson junction. We investigate the detection of these Majorana pairs with the integrated QPC, and find a robust switching from normal to Andreev scattering across the edges due to the presence of Majorana Kramers pairs. Such a switching of the current represents a qualitative signature where multiterminal differential conductances oscillate with alternating signs when the external magnetic field is tuned. We show that this qualitative signature is also present in current cross-correlations. Thus, the change of the backscattering current nature affects both conductance and shot noise, the measurement of which offers a significant advantage over quantitative signatures such as conductance quantization in realistic measurements.
Open quantum systems and random matrix theory
NASA Astrophysics Data System (ADS)
Mulhall, Declan
2014-10-01
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ3(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ3(L) statistic exhibit the signatures of missed levels.
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
Quasienergy spectra of quantum dynamical systems
NASA Astrophysics Data System (ADS)
Cerdeira, Hilda A.; da Silva, E. Z.; Huberman, B. A.
1984-10-01
We present a technique that yields in analytic fashion the quasienergy spectrum of bounded quantum systems in the presence of time-periodic perturbations. It also allows for the calculation of statistical averages using simple algebraic manipulations and provides tractable solutions even for systems with a large number of levels. We also report on numerical calculations for systems with few number of levels in and out of resonance, and which show the recurrences predicted by the Hogg-Huberman theorem
Open quantum systems and random matrix theory
NASA Astrophysics Data System (ADS)
Mulhall, Declan
2015-01-01
A simple model for open quantum systems is analyzed with random matrix theory. The system is coupled to the continuum in a minimal way. In this paper the effect on the level statistics of opening the system is seen. In particular the Δ3(L ) statistic, the width distribution and the level spacing are examined as a function of the strength of this coupling. The emergence of a super-radiant transition is observed. The level spacing and Δ3(L ) statistics exhibit the signatures of missed levels or intruder levels as the super-radiant state is formed.
Quantum entanglement in multiparticle systems of two-level atoms
Deb, Ram Narayan
2011-09-15
We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.
A Modular Quantum System of Trapped Atomic Ions
NASA Astrophysics Data System (ADS)
Hucul, David Alexander
Scaling up controlled quantum systems to involve large numbers of qubits remains one of the outstanding challenges of quantum information science. One path toward scalability is the use of a modular architecture where adjacent qubits may be entangled with applied electromagnetic fields, and remote qubits may be entangled using photon interference. Trapped atomic ion qubits are one of the most promising platforms for scaling up quantum systems by combining long coherence times with high fidelity entangling operations between proximate and remote qubits. In this thesis, I present experimental progress on combining entanglement between remote atomic ions separated by 1 meter with near-field entanglement between atomic ions in the same ion trap. I describe the experimental improvements to increase the remote entanglement rate by orders of magnitude to nearly 5 per second. This is the first experimental demonstration where the remote entanglement rate exceeds the decoherence rate of the entangled qubits. The flexibility of creating remote entanglement through photon interference is demonstrated by using the interference of distinguishable photons without sacrificing remote entanglement rate or fidelity. Next I describe the use of master clock in combination with a frequency comb to lock the phases of all laser-induced interactions between remote ion traps while removing optical phase stability requirements. The combination of both types of entanglement gates to create a small quantum network are described. Finally, I present ways to mitigate cross talk between photonic and memory qubits by using different trapped ion species. I show preliminary work on performing state detection of nuclear spin 0 ions by using entanglement between atomic ion spin and photon polarization. These control techniques may be important for building a large-scale modular quantum system.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
DCE Bio Detection System Final Report
Lind, Michael A.; Batishko, Charles R.; Morgen, Gerald P.; Owsley, Stanley L.; Dunham, Glen C.; Warner, Marvin G.; Willett, Jesse A.
2007-12-01
The DCE (DNA Capture Element) Bio-Detection System (Biohound) was conceived, designed, built and tested by PNNL under a MIPR for the US Air Force under the technical direction of Dr. Johnathan Kiel and his team at Brooks City Base in San Antonio Texas. The project was directed toward building a measurement device to take advantage of a unique aptamer based assay developed by the Air Force for detecting biological agents. The assay uses narrow band quantum dots fluorophores, high efficiency fluorescence quenchers, magnetic micro-beads beads and selected aptamers to perform high specificity, high sensitivity detection of targeted biological materials in minutes. This final report summarizes and documents the final configuration of the system delivered to the Air Force in December 2008
Extracting signatures of quantum criticality in the finite-temperature behavior of many-body systems
NASA Astrophysics Data System (ADS)
Cuccoli, Alessandro; Taiti, Alessio; Vaia, Ruggero; Verrucchi, Paola
2007-08-01
We face the problem of detecting and featuring footprints of quantum criticality in the finite-temperature behavior of quantum many-body systems. Our strategy is that of comparing the phase diagram of a system displaying a T=0 quantum phase transition with that of its classical limit, in order to single out the genuinely quantum effects. To this aim, we consider the one-dimensional Ising model in a transverse field: while the quantum S=1/2 Ising chain is exactly solvable and extensively studied, results for the classical limit (S→∞) of such model are lacking, and we supply them here. They are obtained numerically, via the transfer-matrix method, and their asymptotic low-temperature behavior is also derived analytically by self-consistent spin-wave theory. We draw the classical phase diagram according to the same procedure followed in the quantum analysis, and the two phase diagrams are found unexpectedly similar: Three regimes are detected also in the classical case, each characterized by a functional dependence of the correlation length on temperature and field analogous to that of the quantum model. What discriminates the classical from the quantum case are the different values of the exponents entering such dependencies, a consequence of the different nature of zero-temperature quantum fluctuations with respect to the thermal ones.
Experimental simulation of quantum tunneling in small systems.
Feng, Guan-Ru; Lu, Yao; Hao, Liang; Zhang, Fei-Hao; Long, Gui-Lu
2013-01-01
It is well known that quantum computers are superior to classical computers in efficiently simulating quantum systems. Here we report the first experimental simulation of quantum tunneling through potential barriers, a widespread phenomenon of a unique quantum nature, via NMR techniques. Our experiment is based on a digital particle simulation algorithm and requires very few spin-1/2 nuclei without the need of ancillary qubits. The occurrence of quantum tunneling through a barrier, together with the oscillation of the state in potential wells, are clearly observed through the experimental results. This experiment has clearly demonstrated the possibility to observe and study profound physical phenomena within even the reach of small quantum computers.
Quantum Random Access Codes Using Single d -Level Systems
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Hameedi, Alley; Marques, Breno; Bourennane, Mohamed
2015-05-01
Random access codes (RACs) are used by a party to, with limited communication, access an arbitrary subset of information held by another party. Quantum resources are known to enable RACs that break classical limitations. Here, we study quantum and classical RACs with high-level communication. We derive average performances of classical RACs and present families of high-level quantum RACs. Our results show that high-level quantum systems can significantly increase the advantage of quantum RACs over their classical counterparts. We demonstrate our findings in an experimental realization of a quantum RAC with four-level communication.
Statistical Mechanics of Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Wadati, Miki; Kato, Go; Iida, Toshiaki
Recent developments in statistical mechanics of quantum integrable systems are reviewed. Those studies are fundamental and have a renewed interest related to newly developing fields such as atomic Bose-Einstein condensations, photonic crystals and quantum computations. After a brief summary of the basic concepts and methods, the following three topics are discussed. First, by the thermal Bethe ansatz (TBA), a hard-core Bose gas is exactly solved. The model includes fully the effect of excluded volume and is identified to be a c=1 conformal field theory. Second, the cluster expansion method based on the periodic boundary condition for the Bethe wave function, which we call the Bethe ansatz cluster expansion (BACE) method, is developed for a δ-function gas and the XXX Heisenberg chain. This directly proves the TBA and reveals intrinsic properties of quantum integrable systems. Third, for a δ-function gas, the integral equations for the distribution functions of the quasi-momentum and the quasi-particle energy are solved in the form of power series. In the weak coupling case, the results reproduce those of Bogoliubov theory.
Ramsey interference in a multilevel quantum system
NASA Astrophysics Data System (ADS)
Lee, J. P.; Bennett, A. J.; Skiba-Szymanska, J.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2016-02-01
We report Ramsey interference in the excitonic population of a negatively charged quantum dot measured in resonant fluorescence. Our experiments show that the decay time of the Ramsey interference is limited by the spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be addressed by changing the laser detuning to reveal two-, three-, and four-level system behavior. We show that under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both population and spin states simultaneously. We also demonstrate the coherent optical manipulation of a trapped spin in a quantum dot in a Faraday geometry magnetic field.
Energy concentration in composite quantum systems
Kurcz, Andreas; Beige, Almut; Capolupo, Antonio; Vitiello, Giuseppe; Del Giudice, Emilio
2010-06-15
The spontaneous emission of photons from optical cavities and from trapped atoms has been studied extensively in the framework of quantum optics. Theoretical predictions based on the rotating wave approximation (RWA) are, in general, in very good agreement with experimental findings. However, current experiments aim at combining better and better cavities with large numbers of tightly confined atoms. Here we predict an energy concentrating mechanism in the behavior of such a composite quantum system which cannot be described by the RWA. Its result is the continuous leakage of photons through the cavity mirrors, even in the absence of external driving. We conclude with a discussion of the predicted phenomenon in the context of thermodynamics.
Intelligent Leak Detection System
Mohaghegh, Shahab D.
2014-10-27
apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or Smart Wells along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise
Coherent manipulation of single quantum systems in the solid state
NASA Astrophysics Data System (ADS)
Childress, Lilian Isabel
2007-12-01
The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.
Preparing ground States of quantum many-body systems on a quantum computer.
Poulin, David; Wocjan, Pawel
2009-04-03
Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.
Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer
Poulin, David; Wocjan, Pawel
2009-04-03
Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time {radical}(N). Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.
Introduction to Quantum Sensors in Cryogenic Particle Detection
NASA Astrophysics Data System (ADS)
Kim, Yong-Hamb; Kim, Sun Kee
Cryogenic detectors have been important tools in many aspects of science because their sensitivities can provide more than extreme limits of conventional semiconductor based detectors. The sensor developments in cryogenic particle detection are based on the precise measurement of noble properties of condensed matter in low temperatures. The major measurement technologies originate from quantum measurements, phase transitions and superconducting electronics. Although the early developments of cryogenic detectors were initiated by applications to elementary particle physics, they have been adopted in biology, forensics, and security as well as astronomy and nuclear science. Various types of cryogenic detectors cover a wide energy range from THz radiations to hundreds MeV particles. We review the recent development of sensor technologies in cryogenic particle detection. The measurement principles are covered together with applications to elementary particle physics and THz measurement.
Spectroscopic detection of biological NO with a quantum cascade laser
NASA Technical Reports Server (NTRS)
Menzel, L.; Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.;
2001-01-01
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employed to enhance the NO absorption. In the second configuration, a technique based on cavity-enhanced spectroscopy (CES) was utilized, with an effective path length of 670 m. Both sensors enabled simultaneous analysis of NO and CO2 concentrations in exhaled air. The minimum detectable NO concentration was found to be 3 ppb with a multi-pass cell and 16 ppb when using CES. The two techniques are compared, and potential future developments are discussed.
Nature computes: information processing in quantum dynamical systems.
Wiesner, Karoline
2010-09-01
Nature intrinsically computes. It has been suggested that the entire universe is a computer, in particular, a quantum computer. To corroborate this idea we require tools to quantify the information processing. Here we review a theoretical framework for quantifying information processing in a quantum dynamical system. So-called intrinsic quantum computation combines tools from dynamical systems theory, information theory, quantum mechanics, and computation theory. We will review how far the framework has been developed and what some of the main open questions are. On the basis of this framework we discuss upper and lower bounds for intrinsic information storage in a quantum dynamical system.
Practical expressions describing detective quantum efficiency in flat-panel detectors
NASA Astrophysics Data System (ADS)
Kim, H. K.
2011-11-01
In radiology, image quality excellence is a balance between system performance and patient dose, hence x-ray systems must be designed to ensure the maximum image quality is obtained for the lowest consistent dose. The concept of detective quantum efficiency (DQE) is widely used to quantify, understand, measure, and predict the performance of x-ray detectors and imaging systems. Cascaded linear-systems theory can be used to estimate DQE based on the system design parameters and this theoretical DQE can be utilized for determining the impact of various physical processes, such as secondary quantum sinks, noise aliasing, reabsorption noise, and others. However, the prediction of DQE usually requires tremendous efforts to determine each parameter consisting of the cascaded linear-systems model. In this paper, practical DQE formalisms assessing both the photoconductor- and scintillator-based flat-panel detectors under quantum-noise-limited operation are described. The developed formalisms are experimentally validated and discussed for their limits. The formalisms described in this paper would be helpful for the rapid prediction of the DQE performances of developing systems as well as the optimal design of systems.
Quantum entanglement for systems of identical bosons: I. General features
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with two mode entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. Entanglement is a key quantum feature of composite systems in which the probabilities for joint measurements on the composite sub-systems are no longer determined from measurement probabilities on the separate sub-systems. There are many aspects of entanglement that can be studied. This two-part review focuses on the meaning of entanglement, the quantum paradoxes associated with entangled states, and the important tests that allow an experimentalist to determine whether a quantum state—in particular, one for massive bosons is entangled. An overall outcome of the review is to distinguish criteria (and hence experiments) for entanglement that fully utilize the symmetrization principle and the super-selection rules that can be applied to bosonic massive particles. In the first paper (I), the background is given for the meaning of entanglement in the context of systems of identical particles. For such systems, the requirement is that the relevant quantum density operators must satisfy the symmetrization principle and that global and local super-selection rules prohibit states in which there are coherences between differing particle numbers. The justification for these requirements is fully discussed. In the second quantization approach that is used, both the system and the sub-systems are modes (or sets of modes) rather than particles, particles being associated with different occupancies of the modes. The definition of entangled states is based on first defining the non-entangled states—after specifying which modes constitute the sub-systems. This work mainly focuses on the two mode entanglement for massive bosons, but is put in the context of tests of local hidden variable theories, where one may not be able to make the above restrictions. The review provides the detailed
Quantum integrable systems related to lie algebras
NASA Astrophysics Data System (ADS)
Olshanetsky, M. A.; Perelomov, A. M.
1983-03-01
Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors [83] devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g2v( q) of the following 5 types: vI( q) = q-2, vII( q) = sinh-2q, vIII( q) = sin-2q, v IV(q) = P(q) , vV( q) = q-2 + ω2q2. Here P(q) is the Weierstrass function, so that the first three cases are merely subcases of the fourth. The system characterized by the Toda nearest-neighbour potential exp( qjqj+ 1 ) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest.
Evolution of Quantum Entanglement in Open Systems
Isar, A.
2010-08-04
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.
Lyapunov exponent for quantum dissipative systems
NASA Astrophysics Data System (ADS)
Cerdeira, Hilda A.; Furuya, K.; Huberman, B. A.
1988-11-01
We define a Lyapunov exponent for a class of quantum dissipative systems which in the classical limit can undergo a cascade of period-doubling bifurcations into chaos. We do so by computing the average of a functional over a semiclassical trajectory for a dynamical system whose Poincaré section corresponds to the Hénon map. In the strongly dissipative limit we establish a scaling law which determines the way in which chaos can set in for finite values of Planck's constant.
Incipient fire detection system
Brooks, Jr., William K.
1999-01-01
A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.
NASA Astrophysics Data System (ADS)
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Analysis of the scatter effect on detective quantum efficiency of digital mammography
NASA Astrophysics Data System (ADS)
Park, Jiwoong; Yun, Seungman; Kim, Dong Woon; Baek, Cheol-Ha; Youn, Hanbean; Jeon, Hosang; Kim, Ho Kyung
2016-03-01
The scatter effect on detective quantum efficiency (DQE) of digital mammography is investigated using the cascaded-systems model. The cascaded-systems model includes a scatter-reduction device as a binomial selection stage. Quantum-noise-limited operation approximates the system DQE into the multiplication form of the scatter-reduction device DQE and the conventional detector DQE. The developed DQE model is validated in comparisons with the measured results using a CMOS flat-panel detector under scatter environments. For various scatter-reduction devices, the slot-scan method shows the best scatter-cleanup performance in terms of DQE, and the scatter-cleanup performance of the conventional one-dimensional grid is rather worse than the air gap. The developed model can also be applied to general radiography and will be very useful for a better design of imaging chain.
Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.; ...
2015-10-21
Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less
Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers
NASA Astrophysics Data System (ADS)
Choa, Fow-Sen
2013-12-01
Photoacoustic (PA) effect is a sensitive spectroscopic technique for chemical sensing. In recent years, with the development of quantum cascade lasers (QCLs), significant progress has been achieved for PA sensing applications. Using high-power, tunable mid-IR QCLs as laser sources, PA chemical sensor systems have demonstrated parts-pertrillion- level detection sensitivity. Many of these high sensitivity measurements were demonstrated locally in PA cells. Recently, we have demonstrated standoff PA detection of isopropanol vapor for more than 41 feet distance using a quantum cascade laser and a microphone with acoustic reflectors. We also further demonstrated solid phase TNT detections at a standoff distance of 8 feet. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. Standoff detection of gas samples with calibrated concentration of 2.3 ppm was achieved at a detection distance of more than 2 feet. An extended detection distance up to 14 feet was observed for a higher gas concentration of 13.9 ppm. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated that the signal and noise spectra of the 4 microphone/4 reflector system with a combined SNR of 12.48 dB. For the 16-microphone and one reflector case, an SNR of 17.82 was achieved. These successful chemical sensing demonstrations will likely create new demands for widely tunable QCLs with ultralow threshold (for local fire-alarm size detection systems) and high-power (for standoff detection systems) performances.
Quantum Rotational Effects in Nanomagnetic Systems
NASA Astrophysics Data System (ADS)
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions
Thermalization and Pseudolocality in Extended Quantum Systems
NASA Astrophysics Data System (ADS)
Doyon, Benjamin
2017-04-01
Recently, it was understood that modified concepts of locality played an important role in the study of extended quantum systems out of equilibrium, in particular in so-called generalized Gibbs ensembles. In this paper, we rigorously study pseudolocal charges and their involvement in time evolutions and in the thermalization process of arbitrary states with strong enough clustering properties. We show that the densities of pseudolocal charges form a Hilbert space, with inner product determined by thermodynamic susceptibilities. Using this, we define the family of pseudolocal states, which are determined by pseudolocal charges. This family includes thermal Gibbs states at high enough temperatures, as well as (a precise definition of) generalized Gibbs ensembles. We prove that the family of pseudolocal states is preserved by finite time evolution, and that, under certain conditions, the stationary state emerging at infinite time is a generalized Gibbs ensemble with respect to the evolution dynamics. If the evolution dynamics does not admit any conserved pseudolocal charges other than the evolution Hamiltonian, we show that any stationary pseudolocal state with respect to these dynamics is a thermal Gibbs state, and that Gibbs thermalization occurs. The framework is that of translation-invariant states on hypercubic quantum lattices of any dimensionality (including quantum chains) and finite-range Hamiltonians, and does not involve integrability.
Quantum error correction of a qubit loss in an addressable atomic system
NASA Astrophysics Data System (ADS)
Vala, J.; Whaley, K. B.; Weiss, D. S.
2005-11-01
We present a scheme for correcting qubit loss error while quantum computing with neutral atoms in an addressable optical lattice. The qubit loss is first detected using a quantum nondemolition measurement and then transformed into a standard qubit error by inserting a new atom in the vacated lattice site. The logical qubit, encoded here into four physical qubits with the Grassl-Beth-Pellizzari code, is reconstructed via a sequence of one projective measurement, two single-qubit gates, and three controlled-NOT operations. No ancillary qubits are required. Both quantum nondemolition and projective measurements are implemented using a cavity quantum electrodynamics system which can also detect a general leakage error and thus allow qubit loss to be corrected within the same framework. The scheme can also be applied in quantum computation with trapped ions or with photons.
Inverse engineering control in open quantum systems
NASA Astrophysics Data System (ADS)
Jing, Jun; Wu, Lian-Ao; Sarandy, Marcelo S.; Muga, J. Gonzalo
2013-11-01
We propose a scheme for inverse engineering control in open quantum systems. Starting from an undetermined time evolution operator, a time-dependent Hamiltonian is derived in order to guide the system to attain an arbitrary target state at a predefined time. We calculate the fidelity of our inverse engineering control protocol in the presence of the noise with respect to the stochastic fluctuation of the linear parameters of the Hamiltonian during the time evolution. For a special family of Hamiltonians for two-level systems, we show that the control evolution of the system under noise can be categorized into two standard decohering processes: dephasing and depolarization, for both Markovian and non-Markovian conditions. In particular, we illustrate our formalism by analyzing the robustness of the engineered target state against errors. Moreover, we discuss the generalization of the inverse protocol for higher-dimensional systems.
Intrusion detection: systems and models
NASA Technical Reports Server (NTRS)
Sherif, J. S.; Dearmond, T. G.
2002-01-01
This paper puts forward a review of state of the art and state of the applicability of intrusion detection systems, and models. The paper also presents a classfication of literature pertaining to intrusion detection.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
He, Yong; Zhu, Ka-Di
2017-01-01
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165
Workshop on quantum stochastic differential equations for the quantum simulation of physical systems
2016-09-22
of Post Doctorates Names of Faculty Supported Names of Under Graduate students supported Received Book Chapter TOTAL: PERCENT_SUPPORTEDNAME FTE...forming a Banach space under the operator norm topology. Thus, probability theory and statistics, along with standard tools of functional analysis...quantum systems under noise is a challenging frontier in quantum science and technology. In developing reliable controls for open quantum systems, one
Chida, K.; Yamauchi, Y.; Arakawa, T.; Kobayashi, K.; Ono, T.; Hashisaka, M.; Nakamura, S.; Machida, T.
2013-12-04
We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.
Quantum simulation. Coherent imaging spectroscopy of a quantum many-body spin system.
Senko, C; Smith, J; Richerme, P; Lee, A; Campbell, W C; Monroe, C
2014-07-25
Quantum simulators, in which well-controlled quantum systems are used to reproduce the dynamics of less understood ones, have the potential to explore physics inaccessible to modeling with classical computers. However, checking the results of such simulations also becomes classically intractable as system sizes increase. Here, we introduce and implement a coherent imaging spectroscopic technique, akin to magnetic resonance imaging, to validate a quantum simulation. We use this method to determine the energy levels and interaction strengths of a fully connected quantum many-body system. Additionally, we directly measure the critical energy gap near a quantum phase transition. We expect this general technique to become a verification tool for quantum simulators once experiments advance beyond proof-of-principle demonstrations and exceed the resources of conventional computers. Copyright © 2014, American Association for the Advancement of Science.
Observing quantum vacuum lensing in a neutron star binary system.
Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F
2005-04-29
In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-03
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Noncommutative Skyrmions in Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Ezawa, Z. F.; Tsitsishvili, G.
Charged excitations in quantum Hall (QH) systems are noncommutative skyrmions. QH systems represent an ideal system equipped with noncommutative geometry. When an electron is confined within the lowest Landau level, its position is described solely by the guiding center, whose X and Y coordinates do not commute with one another. Topological excitations in such a noncommutative plane are noncommutative skyrmions flipping several spins coherently. We construct a microscopic skyrmion state by applying a certain unitary transformation to an electron or hole state. A remarkable property is that a noncommutative skyrmion carries necessarily the electron number proportional to the topological charge. More remarkable is the bilayer QH system with the layer degree of freedom acting as the pseudospin, where the quasiparticle is a topological soliton to be identified with the pseudospin skyrmion. Such a skyrmion is deformed into a bimeron (a pair of merons) by the parallel magnetic field penetrated between the two layers. Each meron carries the electric charge ±e/2.
Partitioning technique for discrete quantum systems
Jin, L.; Song, Z.
2011-06-15
We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.
Entanglement in fermion systems and quantum metrology
NASA Astrophysics Data System (ADS)
Benatti, F.; Floreanini, R.; Marzolino, U.
2014-03-01
Entanglement in fermion many-body systems is studied using a generalized definition of separability based on partitions of the set of observables, rather than on particle tensor products. In this way, the characterizing properties of nonseparable fermion states can be explicitly analyzed, allowing a precise description of the geometric structure of the corresponding state space. These results have direct applications in fermion quantum metrology: Sub-shot-noise accuracy in parameter estimation can be obtained without the need of a preliminary state entangling operation.
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-07-13
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
NASA Astrophysics Data System (ADS)
Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; de Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro
2017-06-01
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.
Energy transport in closed quantum systems.
Levin, G A; Jones, W A; Walczak, K; Yerkes, K L
2012-03-01
We examine energy transport in an ensemble of closed quantum systems driven by stochastic perturbations. One can show that the probability and energy fluxes can be described in terms of quantum advection modes (QAMs) associated with the off-diagonal elements of the density matrix. These QAMs play the role of Landauer channels in a system with discrete energy spectrum and the eigenfunctions that cannot be described as plane waves. In order to determine the type of correlations that exist between the direction and magnitudes of each QAM and the average direction of energy and probability fluxes we have numerically solved the time-dependent Schrödinger equation describing a single particle trapped in a parabolic potential well which is perturbed by stochastic ripples. The ripples serve as a localized energy source and are offset to one side of the potential well. As the result a nonzero net energy flux flows from one part of the potential well to another across the symmetry center of the potential. We find that some modes exhibit positive correlation with the direction of the energy flow. Other modes, that carry a smaller energy per unit of the probability flux, anticorrelate with the energy flow and thus provide a backflow of the probability. The overall picture of energy transport that emerges from our results is very different from the conventional one based on a system with continuous energy spectrum.
Energy transport in closed quantum systems
NASA Astrophysics Data System (ADS)
Levin, G. A.; Jones, W. A.; Walczak, K.; Yerkes, K. L.
2012-03-01
We examine energy transport in an ensemble of closed quantum systems driven by stochastic perturbations. One can show that the probability and energy fluxes can be described in terms of quantum advection modes (QAMs) associated with the off-diagonal elements of the density matrix. These QAMs play the role of Landauer channels in a system with discrete energy spectrum and the eigenfunctions that cannot be described as plane waves. In order to determine the type of correlations that exist between the direction and magnitudes of each QAM and the average direction of energy and probability fluxes we have numerically solved the time-dependent Schrödinger equation describing a single particle trapped in a parabolic potential well which is perturbed by stochastic ripples. The ripples serve as a localized energy source and are offset to one side of the potential well. As the result a nonzero net energy flux flows from one part of the potential well to another across the symmetry center of the potential. We find that some modes exhibit positive correlation with the direction of the energy flow. Other modes, that carry a smaller energy per unit of the probability flux, anticorrelate with the energy flow and thus provide a backflow of the probability. The overall picture of energy transport that emerges from our results is very different from the conventional one based on a system with continuous energy spectrum.
Reithmaier, G.; Lichtmannecker, S.; Reichert, T.; Hasch, P.; Müller, K.; Bichler, M.; Gross, R.; Finley, J. J.
2013-01-01
We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems. PMID:23712624
Reithmaier, G; Lichtmannecker, S; Reichert, T; Hasch, P; Müller, K; Bichler, M; Gross, R; Finley, J J
2013-01-01
We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems.
Quantum phase transition in strongly correlated systems
NASA Astrophysics Data System (ADS)
Jiang, Longhua
In this thesis, we investigated the strongly correlated phenomena in bilayer quantum Hall effect, inhomogeneous superconductivity and Boson Hubbard model. Bilayer quantum Hall system is studied in chapter 2. By using the Composite Boson (CB) theory developed by J. Ye, we derive the ground state, quasihole and a quasihole-pair wave functions from the CB theory and its dual action. We find that the ground state wave function is the product of two parts, one in the charge sector which is the well known Halperin's (111) wave function and the other in the spin sector which is non-trivial at any finite d due to the gapless mode. So the total groundstate wave function differs from the well known (111) wave function at any finite d. In addition to commonly known multiplicative factors, the quasihole and quasihole-pair wave functions also contain non-trivial normalization factors multiplying the correct ground state wave function. Then we continue to study the quantum phase transition from the excitonic superfluid (ESF) to a possible pseudo-spin density wave (PSDW) at some intermediate distances driven by the magneto-roton minimum collapsing at a finite wavevector. We analyze the properties of the PSDW and explicitly show that a square lattice is the favored lattice. We suggest that correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature-dependent drag, consistent with the experimental data. Comparisons with previous microscopic numerical calculations are made. Further experimental implications are given. In chapter 3, we investigate inhomogeneous superconductivity. Starting from the Ginzburg-Landau free energy describing the normal state to Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state transition, we evaluate the free energy of seven most common lattice structures: stripe, square, triangular, Simple Cubic (SC), Face centered Cubic (FCC), Body centered Cubic (BCC) and Quasicrystal (QC). We find that the stripe
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes
NASA Technical Reports Server (NTRS)
Siegmund, Oswald H. W.; Gaines, Geoffrey A.
1990-01-01
Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.
Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes
NASA Astrophysics Data System (ADS)
Siegmund, Oswald H. W.; Gaines, Geoffrey A.
1990-11-01
Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.
Detection of magnetic flux with superconducting quantum interference gratings
NASA Astrophysics Data System (ADS)
Miller, J. H., Jr.; Gunaratne, G. H.; Zou, Z.
1993-03-01
The authors have carried out finite-inductance calculations of the critical vs. flux (Ic-Phi) and voltage vs. flux (V-Phi) characteristics of superconducting interferometers with many Josephson junctions in parallel. At least two features of the calculations suggest that many junction interferometers, called superconducting quantum interference gratings, might be advantageous for the detection of magnetic flux. First, the voltage noise can be reduced significantly for a given flux-to-voltage transfer coefficient, a feature which is likely to improve the magnetic flux sensitivity of both low- and high-Tc superconducting devices. In addition, nonuniformity of the junction critical currents appears to have little adverse effect on the predicted diffraction grating such as enhancement and narrowing of the peaks in the Ic-Phi characteristic. Specific schemes for efficiently coupling flux into the device are proposed.
Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes
NASA Technical Reports Server (NTRS)
Siegmund, Oswald H. W.; Gaines, Geoffrey A.
1990-01-01
Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.
Statistical mechanics of quantum-classical systems with holonomic constraints.
Sergi, Alessandro
2006-01-14
The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained systems arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear-response function of constrained quantum-classical systems contains nontrivial additional terms which are absent in the response of unconstrained systems.
Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong
2010-07-19
We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.
Software-defined quantum communication systems
NASA Astrophysics Data System (ADS)
Humble, Travis S.; Sadlier, Ronald J.
2014-08-01
Quantum communication (QC) systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for QC engineering is designing and prototyping these systems to evaluate the proposed capabilities. We apply the paradigm of software-defined communication for engineering QC systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose QC terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the superdense coding protocol as an example, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We conclude that the software-defined QC provides a robust framework in which to explore the large design space offered by this new regime of communication.
Variational functions in driven open quantum systems
NASA Astrophysics Data System (ADS)
Jakob, Matthias; Stenholm, Stig
2003-03-01
We consider the Lindblad-type master equation of an open system. We address the question how to construct a functional of the quantum state which displays a monotonic behavior in time. This thus defines uniquely the direction of time in the system. As the generator of time evolution is not a Hermitian operator, the theory requires the considerations of right and left eigenstates. In this paper we assume them to form two complete bases, which allows us to construct the desired quantity. This can be interpreted as a generalized entropy functional. We show how the construction is carried out in the general case, and we illustrate the theory by solving the case of an externally driven and damped two-level system. The treatment is related to earlier work in the field, and its possible relation to time inversion is discussed.
Intrinsic decoherence in isolated quantum systems
NASA Astrophysics Data System (ADS)
Wu, Yang-Le; Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-01-01
We study the intrinsic, disorder-induced decoherence of an isolated quantum system under its own dynamics. Specifically, we investigate the characteristic time scale (i.e., the decoherence time) associated with an interacting many-body system losing the memory of its initial state. To characterize the erasure of the initial state memory, we define a time scale, the intrinsic decoherence time, by thresholding the gradual decay of the disorder-averaged return probability. We demonstrate the system-size independence of the intrinsic decoherence time in different models, and we study its dependence on the disorder strength. We find that the intrinsic decoherence time increases monotonically as the disorder strength increases in accordance with the relaxation of locally measurable quantities. We investigate several interacting spin (e.g., Ising and Heisenberg) and fermion (e.g., Anderson and Aubry-André) models to obtain the intrinsic decoherence time as a function of disorder and interaction strength.
Hand held explosives detection system
Conrad, Frank J.
1992-01-01
The present invention is directed to a sensitive hand-held explosives detection device capable of detecting the presence of extremely low quantities of high explosives molecules, and which is applicable to sampling vapors from personnel, baggage, cargo, etc., as part of an explosives detection system.
Ferret Workflow Anomaly Detection System
2005-02-28
The Ferret workflow anomaly detection system project 2003-2004 has provided validation and anomaly detection in accredited workflows in secure...completed to accomplish a goal. Anomaly detection is the determination that a condition departs from the expected. The baseline behavior from which the
Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection.
Mahmoud, Wael; Sukhanova, Alyona; Oleinikov, Vladimir; Rakovich, Yury P; Donegan, John F; Pluot, Michel; Cohen, Jacques H M; Volkov, Yuri; Nabiev, Igor
2010-02-01
The occurrence of metastases is one of the main causes of death in many cancers and the main cause of death for breast cancer patients. Micrometastases of disseminated tumour cells and circulating tumour cells are present in more than 30% of breast cancer patients without any clinical or even histopathological signs of metastasis. Low abundance of these cell types in clinical diagnostic material dictates the necessity of their enrichment prior to reliable detection. Current micrometastases detection techniques are based on immunocytochemical and molecular methods suffering from low efficiency of tumour cells enrichment and observer-dependent interpretation. The use of highly fluorescent semiconductor nanocrystals, also known as "quantum dots" and nanocrystal-encoded microbeads tagged with a wide panel of antibodies against specific tumour markers offers unique possibilities for ultra-sensitive micrometastases detection in patients' serum and tissues. The nanoparticle-based diagnostics provides an opportunity for highly sensitive parallel quantification of specific proteins in a rapid and low-cost method, thereby providing a link between the primary tumour and the micrometastases for early diagnosis.
Solving Systems of Linear Equations with a Superconducting Quantum Processor
NASA Astrophysics Data System (ADS)
Zheng, Yarui; Song, Chao; Chen, Ming-Cheng; Xia, Benxiang; Liu, Wuxin; Guo, Qiujiang; Zhang, Libo; Xu, Da; Deng, Hui; Huang, Keqiang; Wu, Yulin; Yan, Zhiguang; Zheng, Dongning; Lu, Li; Pan, Jian-Wei; Wang, H.; Lu, Chao-Yang; Zhu, Xiaobo
2017-05-01
Superconducting quantum circuits are a promising candidate for building scalable quantum computers. Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional system of linear equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev. Lett. 103, 150502 (2009), 10.1103/PhysRevLett.103.150502], which promises an exponential speedup over classical algorithms under certain circumstances. We benchmark the solver with quantum inputs and outputs, and characterize it by nontrace-preserving quantum process tomography, which yields a process fidelity of 0.837 ±0.006 . Our results highlight the potential of superconducting quantum circuits for applications in solving large-scale linear systems, a ubiquitous task in science and engineering.
Solving Systems of Linear Equations with a Superconducting Quantum Processor.
Zheng, Yarui; Song, Chao; Chen, Ming-Cheng; Xia, Benxiang; Liu, Wuxin; Guo, Qiujiang; Zhang, Libo; Xu, Da; Deng, Hui; Huang, Keqiang; Wu, Yulin; Yan, Zhiguang; Zheng, Dongning; Lu, Li; Pan, Jian-Wei; Wang, H; Lu, Chao-Yang; Zhu, Xiaobo
2017-05-26
Superconducting quantum circuits are a promising candidate for building scalable quantum computers. Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional system of linear equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev. Lett. 103, 150502 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.150502], which promises an exponential speedup over classical algorithms under certain circumstances. We benchmark the solver with quantum inputs and outputs, and characterize it by nontrace-preserving quantum process tomography, which yields a process fidelity of 0.837±0.006. Our results highlight the potential of superconducting quantum circuits for applications in solving large-scale linear systems, a ubiquitous task in science and engineering.
High Speed Quantum Key Distribution Over Optical Fiber Network System1
Ma, Lijun; Mink, Alan; Tang, Xiao
2009-01-01
The National Institute of Standards and Technology (NIST) has developed a number of complete fiber-based high-speed quantum key distribution (QKD) systems that includes an 850 nm QKD system for a local area network (LAN), a 1310 nm QKD system for a metropolitan area network (MAN), and a 3-node quantum network controlled by a network manager. This paper discusses the key techniques used to implement these systems, which include polarization recovery, noise reduction, frequency up-conversion detection based on a periodically polled lithium nitrate (PPLN) waveguide, custom high-speed data handling boards and quantum network management. Using our quantum network, a QKD secured video surveillance application has been demonstrated. Our intention is to show the feasibility and sophistication of QKD systems based on current technology. PMID:27504218
Quantum Computing in Solid State, and Coherent Behavior of Open Quantum Systems
2003-01-01
2 � Final Report for the ARO Grant DAAD-19-99-1-0342 Quantum Computing in Solid State, and Coherent Behavior of Open Quantum Systems...Our work to apply this method to qubits in quantum- computing architectures, is ongoing, continuing under the new ARO grant. In various collaborations...at http://arxiv.org/ftp/quant-ph/papers/0103/0103116.pdf). Technical reports submitted to ARO Annual Report for 1999 (covering September
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Kinetic equations for a nonideal quantum system
NASA Astrophysics Data System (ADS)
Bornath, Th.; Kremp, D.; Kraeft, W. D.; Schlanges, M.
1996-10-01
In the framework of real-time Green's functions, the general kinetic equations are investigated in a first-order gradient expansion. Within this approximation, the problem of the reconstruction of the two-time correlation functions from the one-time Wigner function was solved. For the Wigner function, a cluster expansion is found in terms of a quasiparticle distribution function. In equilibrium, this expansion leads to the well-known generalized Beth-Uhlenbeck expression of the second virial coefficient. As a special case, the T-matrix approximation for the self-energy is investigated. The quantum kinetic equation derived thus has, besides the (Markovian) Boltzmann collision integral, additional terms due to the retardation expansion which reflect memory effects. Special interest is paid to the case that bound states exist in the system. It is shown that the bound state contribution, which can be introduced via a bilinear expansion of the two-particle T matrix, follows from the first-order retardation term in the general kinetic equation. The full Wigner function is now a sum of one function describing the unbound particles and another one for the bound state contribution. The latter two functions have to be determined from a coupled set of kinetic equations. In contrast to the quantum Boltzmann equation, energy and density of a nonideal system are conserved.
Linear response theory for open systems: Quantum master equation approach
NASA Astrophysics Data System (ADS)
Ban, Masashi; Kitajima, Sachiko; Arimitsu, Toshihico; Shibata, Fumiaki
2017-02-01
A linear response theory for open quantum systems is formulated by means of the time-local and time-nonlocal quantum master equations, where a relevant quantum system interacts with a thermal reservoir as well as with an external classical field. A linear response function that characterizes how a relaxation process deviates from its intrinsic process by a weak external field is obtained by extracting the linear terms with respect to the external field from the quantum master equation. It consists of four parts. One represents the linear response of a quantum system when system-reservoir correlation at an initial time and correlation between reservoir states at different times are neglected. The others are correction terms due to these effects. The linear response function is compared with the Kubo formula in the usual linear response theory. To investigate the properties of the linear response of an open quantum system, an exactly solvable model for a stochastic dephasing of a two-level system is examined. Furthermore, the method for deriving the linear response function is applied for calculating two-time correlation functions of open quantum systems. It is shown that the quantum regression theorem is not valid for open quantum systems unless their reduced time evolution is Markovian.
Quantum simulation of disordered systems with cold atoms
NASA Astrophysics Data System (ADS)
Garreau, Jean-Claude
2017-01-01
This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to "kicks" of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics. xml:lang="fr"
USDA-ARS?s Scientific Manuscript database
Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...
USDA-ARS?s Scientific Manuscript database
Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissue using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular methodology is chosen ...
Quantum and statistical mechanics in open systems: theory and examples
NASA Astrophysics Data System (ADS)
Zueco, David
2009-08-01
Using the system-bath model Hamiltonian this thesis covers the equilibrium and out of equilibrium properties of quantum open systems. Topics included are the calculation of thermodynamical quantities of open systems, derivation of quantum master equations, phase space and numerical methods and Linear and non Linear Response Theory. Applications are the transport in periodic potentials and the dynamics of spins.
Fast detection of Listeria monocytogenes through a nanohybrid quantum dot complex.
Donoso, Wendy; Castro, Ricardo I; Guzmán, Luis; López-Cabaña, Zoraya; Nachtigall, Fabiane M; Santos, Leonardo S
2017-07-08
Listeria monocytogenes is a recognized foodborne pathogen that causes listeriosis in susceptible consumers. Currently, the detection systems for Listeria in food detect live and dead bacteria, being the viable microorganisms most relevant for their ability to cause sickness in the population at risk. For this reason, a new nanohybrid compound was developed for the optical detection of Listeria that was based on polyamidoamine dendrimers functionalized with an auxotrophic cofactor (lipoic acid), together with the coupling of fluorescent semiconductor crystals (quantum dots). The nanohybrid sensor has a detection limit for viable L. monocytogenes of 5.19 × 10(3) colony-forming units per milliliter under epifluorescence microscopy. It was specific when used among other pathogens commonly found in food.
Work exchange between quantum systems: the spin-oscillator model.
Schröder, Heiko; Mahler, Günter
2010-02-01
With the development of quantum thermodynamics it has been shown that relaxation to thermal equilibrium and with it the concept of heat flux may emerge directly from quantum mechanics. This happens for a large class of quantum systems if embedded into another quantum environment. In this paper, we discuss the complementary question of the emergence of work flux from quantum mechanics. We introduce and discuss two different methods to assess the work source quality of a system, one based on the generalized factorization approximation, the other based on generalized definitions of work and heat. By means of those methods, we show that small quantum systems can, indeed, act as work reservoirs. We illustrate this behavior for a simple system consisting of a spin coupled to an oscillator and investigate the effects of two different interactions on the work source quality. One case will be shown to allow for a work source functionality of arbitrarily high quality.
Coulomb crystallization in classical and quantum systems
NASA Astrophysics Data System (ADS)
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
Quantum-capacity-approaching codes for the detected-jump channel
Grassl, Markus; Wei Zhaohui; Ji Zhengfeng; Zeng Bei
2010-12-15
The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.
Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA
2009-05-05
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Magnetic-field sensing with quantum error detection under the effect of energy relaxation
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuichiro; Benjamin, Simon
2017-03-01
A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.
On microstates counting in many body polymer quantum systems
Chacon-Acosta, Guillermo; Morales-Tecotl, Hugo A.; Dagdug, Leonardo
2011-10-14
Polymer quantum systems are mechanical models quantized in a similar way as loop quantum gravity but in which loops/graphs resembling polymers are replaced by discrete sets of points. Such systems have allowed to study in a simpler context some novel aspects of loop quantum gravity. Although thermal aspects play a crucial role in cosmology and black hole physics little attention has been given to the thermostatistics of many body polymer quantum systems. In this work we explore how the features of a one-dimensional effective polymer gas, affect its microstate counting and hence the corresponding thermodynamical quantities.
Device-independent certification of high-dimensional quantum systems.
D'Ambrosio, Vincenzo; Bisesto, Fabrizio; Sciarrino, Fabio; Barra, Johanna F; Lima, Gustavo; Cabello, Adán
2014-04-11
An important problem in quantum information processing is the certification of the dimension of quantum systems without making assumptions about the devices used to prepare and measure them, that is, in a device-independent manner. A crucial question is whether such certification is experimentally feasible for high-dimensional quantum systems. Here we experimentally witness in a device-independent manner the generation of six-dimensional quantum systems encoded in the orbital angular momentum of single photons and show that the same method can be scaled, at least, up to dimension 13.
Particle detection and non-detection in a quantum time of arrival measurement
Sombillo, Denny Lane B. Galapon, Eric A.
2016-01-15
The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one of the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.
Detection of CdSe quantum dot photoluminescence for security label on paper
Isnaeni, Sugiarto, Iyon Titok; Bilqis, Ratu; Suseno, Jatmiko Endro
2016-02-08
CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.
Detection of CdSe quantum dot photoluminescence for security label on paper
NASA Astrophysics Data System (ADS)
Isnaeni, Sugiarto, Iyon Titok; Bilqis, Ratu; Suseno, Jatmiko Endro
2016-02-01
CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word 'RAHASIA'. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.
Information propagation in isolated quantum systems
NASA Astrophysics Data System (ADS)
Luitz, David J.; Bar Lev, Yevgeny
2017-07-01
Entanglement growth and out-of-time-order correlators (OTOC) are used to assess the propagation of information in isolated quantum systems. In this work, using large scale exact time evolution we show that for weakly disordered nonintegrable systems information propagates behind a ballistically moving front, and the entanglement entropy growths linearly in time. For stronger disorder the motion of the information front is algebraic and subballistic and is characterized by an exponent, which depends on the strength of the disorder, similarly to the sublinear growth of the entanglement entropy. We show that the dynamical exponent associated with the information front coincides with the exponent of the growth of the entanglement entropy for both weak and strong disorder. We also demonstrate that the temporal dependence of the OTOC is characterized by a fast nonexponential growth, followed by a slow saturation after the passage of the information front. Finally, we discuss the implications of this behavioral change on the growth of the entanglement entropy.
Holonomic Quantum Control with Continuous Variable Systems.
Albert, Victor V; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J; Mirrahimi, Mazyar; Devoret, Michel H; Jiang, Liang
2016-04-08
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.
Holonomic Quantum Control with Continuous Variable Systems
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.; Jiang, Liang
2016-04-01
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.