Sample records for quantum dot light-emitting

  1. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    PubMed

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  2. Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2018-06-19

    We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.

  3. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.

    PubMed

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Murali, Banavoth; Sarmah, Smritakshi P; Yuan, Mingjian; Sinatra, Lutfan; Alyami, Noktan M; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N; Mohammed, Omar F; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H; Bakr, Osman M

    2016-10-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX 3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2018-03-01

    The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.

  5. White light emitting diode based on InGaN chip with core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Hong, Yan; Ma, Jiandong; Ming, Jiangzhou

    2009-08-01

    Quantum dots have many applications in optoelectronic device such as LEDs for its many superior properties resulting from the three-dimensional confinement effect of its carrier. In this paper, single chip white light-emitting diodes (WLEDs) were fabricated by combining blue InGaN chip with luminescent colloidal quantum dots (QDs). Two kinds of QDs of core/shell CdSe /ZnS and core/shell/shell CdSe /ZnS /CdS nanocrystals were synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. This two kinds of QDs exhibited high photoluminescence efficiency with a quantum yield more than 41%, and size-tunable emission wavelengths from 500 to 620 nm. The QDs LED mainly consists of flip luminescent InGaN chip, glass ceramic protective coating, glisten cup, QDs using as the photoluminescence material, pyroceram, gold line, electric layer, dielectric layer, silicon gel and bottom layer for welding. The WLEDs had the CIE coordinates of (0.319, 0.32). The InGaN chip white-light-emitting diodes with quantum dots as the emitting layer are potentially useful in illumination and display applications.

  6. Colloidal quantum dot active layers for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Pagan, Jennifer G.; Stokes, Edward B.; Patel, Kinnari; Burkhart, Casey C.; Ahrens, Michael T.; Barletta, Philip T.; O'Steen, Mark

    2006-07-01

    In this paper the preliminary results of incorporating a novel active layer into a GaN light emitting diode (LED) are discussed. Integration of colloidal CdSe quantum dots into a GaN LED active layer is demonstrated. Properties of p-type Mg doped overgrowth GaN are examined via circular transmission line method (CTLM). Effects on surface roughness due to the active layer incorporation are examined using atomic force microscopy (AFM). Electroluminescence of LED test structures is reported, and an ideality factor of n = 1.6 is demonstrated.

  7. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less

  8. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    DOE PAGES

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; ...

    2017-09-11

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less

  9. Improvement in luminance of light-emitting diode using InP/ZnS quantum dot with 1-dodecanethiol ligand

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi; Sasaki, Hironao

    2018-03-01

    We present the synthesis protocol of a red emissive InP/ZnS quantum dot with a 1-dodecanthiol ligand and its application to a quantum dot light-emitting diode. The ligand change from oleylamine to 1-dodecanthiol, which were connected around the InP/ZnS quantum dot, was confirmed by Fourier-transform infrared spectroscopy and thermal analysis. The absorption peak was blue-shifted by changing 1-dodecanthiol ligands from oleylamine ligands to prevent the unexpected nucleation of the InP core. In addition, the luminance of the light-emitting device was improved by using the InP/ZnS quantum dot with 1-dodecanthiol ligands, and the maximum current efficiency of 7.2 × 10-3 cd/A was achieved. The 1-dodecanthiol ligand is often used for capping to reduce the number of surface defects and/or prevent unexpected core growth, resulting in reduced Auger recombination. This result indicates that 1-dodecanthiol ligands prevent the deactivation of excitons while injecting carriers by applying a voltage, resulting in a high luminance efficiency.

  10. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    NASA Astrophysics Data System (ADS)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  11. Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes.

    PubMed

    Liang, Feng; Liu, Yuan; Hu, Yun; Shi, Ying-Li; Liu, Yu-Qiang; Wang, Zhao-Kui; Wang, Xue-Dong; Sun, Bao-Quan; Liao, Liang-Sheng

    2017-06-14

    A facile but effective method is proposed to improve the performance of quantum dot light-emitting diodes (QLEDs) by incorporating a polymer, poly(9-vinlycarbazole) (PVK), as an additive into the CdSe/CdS/ZnS quantum dot (QD) emitting layer (EML). It is found that the charge balance of the device with the PVK-added EML was greatly improved. In addition, the film morphology of the hole-transporting layer (HTL) which is adjacent to the EML, is substantially improved. The surface roughness of the HTL is reduced from 5.87 to 1.38 nm, which promises a good contact between the HTL and the EML, resulting in low leakage current. With the improved charge balance and morphology, a maximum external quantum efficiency (EQE) of 16.8% corresponding to the current efficiency of 19.0 cd/A is achievable in the red QLEDs. The EQE is 1.6 times as high as that (10.5%) of the reference QLED, comprising a pure QD EML. This work demonstrates that incorporating some polymer molecules into the QD EML as additives could be a facile route toward high-performance QLEDs.

  12. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes

    PubMed Central

    Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692

  13. Light-emitting diodes based on colloidal silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren

    2018-06-01

    Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.

  14. Simple process of hybrid white quantum dot/organic light-emitting diodes by using quantum dot plate and fluorescence

    NASA Astrophysics Data System (ADS)

    Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan

    2015-02-01

    In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.

  15. Modeling and studying of white light emitting diodes based on CdS/ZnS spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Hasanirokh, K.; Asgari, A.

    2018-07-01

    In this paper, we propose a quantum dot (QD) based white light emitting diode (WLED) structure to study theoretically the material gain and quantum efficiency of the system. We consider the spherical QDs with a II-VI semiconductor core (CdS) that covered with a wider band gap semiconductor acting as a shell (ZnS). In order to generate white light spectrum, we use layers with different dot size that can emit blue, green and red colors. The blue emission originating from CdS core combines to green/orange components originating from ZnS shell and creates an efficiency white light emission. To model this device, at first, we solve Schrödinger and Poisson equations self consistently and obtain eigen energies and wave functions. Then, we calculate the optical gain and internal quantum efficiency (IQE) of a CdS/ZnS LED sample. We investigate the structural parameter effects on the optical properties of the WLED. The numerical results show that the gain profile and IQE curves depend strongly on the structural parameters such as dot size, carrier density and volume scaling parameter. The gain profile becomes higher and wider with increasing the core radius while it becomes less and narrower with increasing the shell thickness. Furthermore, it is found that the volume scaling parameter can manage the system quantum efficiency.

  16. Broadband infrared light emitting waveguides based on UV curable PbS quantum dot composites

    NASA Astrophysics Data System (ADS)

    Shen, Kai; Baig, Sarfaraz; Jiang, Guomin; Paik, Young-hun; Kim, Sung Jin; Wang, Michael R.

    2018-02-01

    We present herein the active PbS-photopolymer waveguide fabricated by vacuum assisted microfluidic (VAM) soft lithography technique. The PbS Quantum Dots (QDs) were synthesized using colloidal chemistry methods with tunable sizes and emission wavelengths, resulting in efficient light emission around 1000 nm center wavelength. The PbS QDs have demonstrated much better solubility in our newly synthesized UV curable polymer than SU-8 photoresist, verified by Photoluminescence (PL) testing. Through refractive index control, the PbS QDs-polymer core material and polymer cladding material can efficiently confine the infrared emitting light with a broad spectral bandwidth of 180 nm. Both single-mode and multi-mode light emitting waveguides have been realized.

  17. Quantum dot light emitting devices for photomedical applications.

    PubMed

    Chen, Hao; He, Juan; Lanzafame, Raymond; Stadler, Istvan; Hamidi, Hamid El; Liu, Hui; Celli, Jonathan; Hamblin, Michael R; Huang, Yingying; Oakley, Emily; Shafirstein, Gal; Chung, Ho-Kyoon; Wu, Shin-Tson; Dong, Yajie

    2017-03-01

    While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM.

  18. Quantum dot light emitting devices for photomedical applications

    PubMed Central

    Chen, Hao; He, Juan; Lanzafame, Raymond; Stadler, Istvan; Hamidi, Hamid El; Liu, Hui; Celli, Jonathan; Hamblin, Michael R.; Huang, Yingying; Oakley, Emily; Shafirstein, Gal; Chung, Ho-Kyoon; Wu, Shin-Tson; Dong, Yajie

    2017-01-01

    While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM. PMID:28867926

  19. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes.

    PubMed

    Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang

    2018-03-01

    The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.

  20. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    PubMed

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  1. Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels

    DOE PAGES

    Zaiats, Gary; Ikeda, Shingo; Kinge, Sachin; ...

    2017-08-25

    Multinary semiconductor nanoparticles such as CuInS 2, AgInS 2, and the corresponding alloys with ZnS hold promise for designing future quantum dot light-emitting devices (QLED). The QLED architectures require matching of energy levels between the different electron and hole transport layers. In addition to energy level alignment, conductivity and charge transfer interactions within these layers determine the overall efficiency of QLED. By employing CuInS 2-ZnS QDs we succeeded in fabricating red-emitting QLED using two different hole-transporting materials, polyvinylcarbazole and poly(4- butylphenyldiphenylamine). Despite the similarity of the HOMO-LUMO energy levels of these two hole transport materials, the QLED devices exhibit distinctlymore » different voltage dependence. The difference in onset voltage and excited state interactions shows the complexity involved in selecting the hole transport materials for display devices.« less

  2. Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaiats, Gary; Ikeda, Shingo; Kinge, Sachin

    Multinary semiconductor nanoparticles such as CuInS 2, AgInS 2, and the corresponding alloys with ZnS hold promise for designing future quantum dot light-emitting devices (QLED). The QLED architectures require matching of energy levels between the different electron and hole transport layers. In addition to energy level alignment, conductivity and charge transfer interactions within these layers determine the overall efficiency of QLED. By employing CuInS 2-ZnS QDs we succeeded in fabricating red-emitting QLED using two different hole-transporting materials, polyvinylcarbazole and poly(4- butylphenyldiphenylamine). Despite the similarity of the HOMO-LUMO energy levels of these two hole transport materials, the QLED devices exhibit distinctlymore » different voltage dependence. The difference in onset voltage and excited state interactions shows the complexity involved in selecting the hole transport materials for display devices.« less

  3. Highly efficient organic light-emitting diodes with a quantum dot interfacial layer.

    PubMed

    Ryu, Seung Yoon; Hwang, Byoung Har; Park, Ki Wan; Hwang, Hyeon Seok; Sung, Jin Woo; Baik, Hong Koo; Lee, Chang Ho; Song, Seung Yong; Lee, Jun Yeob

    2009-02-11

    Advanced organic light-emitting diodes (OLEDs), based on a multiple structure, were achieved in combination with a quantum dot (QD) interfacial layer. The authors used core/shell CdSe/ZnS QDs passivated with trioctylphosphine oxide (TOPO) and TOPO-free QDs as interlayers. Multiple-structure OLEDs (MOLEDs) with TOPO-free QDs showed higher device efficiency because of a well-defined interfacial monolayer formation. Additionally, the three-unit MOLED showed high performance for device efficiency with double-structured QD interfacial layers due to the enhanced charge balance and recombination probability.

  4. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, S. V.; Tikhodeev, S. G.; Gippius, N. A.; Maksimov, A. A.; Filatov, E. V.; Tartakovskii, I. I.; Kulakovskii, V. D.; Weiss, T.; Schneider, C.; Geßler, J.; Kamp, M.; Höfling, S.

    2015-11-01

    We study the polarization properties of light emitted by quantum dots that are embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the waveguide layer has been shown to result in a high circular polarization degree ρc of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of | ρc| is predicted to exceed 98%. The experimentally achieved value of | ρc|=81 % is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretical prediction.

  5. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less

  6. Cesium lead halide perovskite quantum dot-based warm white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Wang, Dan; Wang, Peng; Duan, Bin; Zhang, Tieqiang; Wang, Yinghui; Zhang, Hanzhuang; Zhang, Yu

    2017-05-01

    White light-emitting diodes (WLEDs) were fabricated by employing a combination of a commercial yellow emission Ce3+-doped Y3Al5O12 (YAG:Ce)-based phosphor and all-inorganic perovskite quantum dots pumped with blue LED chip. Perovskite quantum dot solution was used as the color conversion layer with liquid-type structure. Red-emitting materials based on cesium lead halide (CsPb(X)3) perovskite quantum dots were introduced to generate WLEDs with high efficacy and high color rendering index through compensating the red emission of the YAG:Ce phosphor-based commercialized WLEDs. The experimental results suggested that the luminous efficiency and color rendering index of the as-prepared WLED device could reach up to 84.7 lm/W and 89, respectively. The characteristics of those devices including correlated color temperature (CCT), color rendering index (CRI), and color coordinates were observed under different forward currents. The as-fabricated warm WLEDs showed excellent color stability against the increasing current, while the color coordinates shifted slightly from (0.3837, 0.3635) at 20 mA to (0.3772, 0.3592) at 120 mA and color temperature tuned from 3803 to 3953 K.

  7. Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Light-Emitting Diodes.

    PubMed

    Choi, Moon Kee; Yang, Jiwoong; Kim, Dong Chan; Dai, Zhaohe; Kim, Junhee; Seung, Hyojin; Kale, Vinayak S; Sung, Sae Jin; Park, Chong Rae; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2018-01-01

    Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m -2 , top: ≈30 000 cd m -2 , total: ≈73 000 cd m -2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in. -1 ) shows the potential of the full-color transparent display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode.

    PubMed

    Yao, Li; Fang, Xin; Gu, Wei; Zhai, Wenhao; Wan, Yi; Xie, Xixi; Xu, Wanjin; Pi, Xiaodong; Ran, Guangzhao; Qin, Guogang

    2017-07-19

    A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO 3 /graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO 3 /TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO 3 . The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.

  9. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes.

    PubMed

    Le, Quyet Van; Kim, Jong Beom; Kim, Soo Young; Lee, Byeongdu; Lee, Dong Ryeol

    2017-09-07

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX 3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting in stronger quantum confinement. The cubic-phase perovskite NCs formed despite the fact that the reaction temperatures increased from 140 to 180 °C; however, monodispersive NC cubes that are required for densely packing self-assembly film were formed only at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  10. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    PubMed

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.

  11. White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

    PubMed Central

    Ruan, Cheng; Zhang, Yu; Lu, Min; Ji, Changyin; Sun, Chun; Chen, Xiongbin; Chen, Hongda; Colvin, Vicki L.; Yu, William W.

    2016-01-01

    Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS2/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS2/ZnS core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light communication (VLC). PMID:28344270

  12. Review – Quantum Dots and Their Application in Lighting, Displays, and Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frecker, Talitha; Bailey, Danielle; Arzeta-Ferrer, Xochitl

    2015-08-18

    In this review, we focus on the advancement of white light emitting nanocrystals, their usage as the emissive layer in LEDs and display backlights, and examine the increased efficiency and longevity of quantum dots based colored LEDs. In addition, we also explore recent discoveries on quantum dots as biological labels, dynamic trackers, and applications in drug delivery.

  13. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, Nosoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  14. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes.

    PubMed

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-11

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  15. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting.

    PubMed

    Kong, Lingqing; Zhang, Lin; Meng, Zhaohui; Xu, Chuan; Lin, Naibo; Liu, Xiang-Yang

    2018-08-03

    Although quantum dots (QDs) have remarkable potential application in flexible light emitting diodes (LED), the loss of solvent-protected QDs leads to low quantum yield (QY) and poor stability, severely restricting the development. Flexible QD LEDs (Q-LEDs) with three primary colors were fabricated by mixing CdS/ZnS, CdSe@ZnS/ZnS, and CdSe/CdS QDs with polydimethylsiloxane (PDMS) by in situ hydrosilylation based surface manipulation strategy, which endows the device with highly ultrastable and luminescent performance. The surface manipulation strategy mainly includes the control of solvent dosage, purification times of QDs, concentration of QDs in PDMS, and oxidation on the preparation process of the QDs and PDMS composites. The highest QY of CdSe@ZnS/ZnS-PDMS composite is 82.03%, higher than the QY (80%) of the QD solution. After UV bleaching, organic solvents (acetone, ethanol and water), and heating treatment, the QYs of the QDs and PDMS maintain a high value, manifesting their good stability. Q-LED hybrid light-emitting devices were further fabricated by a molding technique demonstrating satisfied current and thermal stability. Flexible Q-LEDs can be expended to other shapes, such as fibers and blocks, indicating the huge potential of QD-polymer composites for light sources and displays etc.

  16. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  17. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect.

    PubMed

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-20

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  18. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect

    NASA Astrophysics Data System (ADS)

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-01

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  19. External modes in quantum dot light emitting diode with filtered optical feedback

    NASA Astrophysics Data System (ADS)

    Al Husseini, Hussein B.; Al Naimee, Kais A.; Al-Khursan, Amin H.; Khedir, Ali. H.

    2016-06-01

    This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to a coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.

  20. Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25.

    PubMed

    Jiang, Congbiao; Zou, Jianhua; Liu, Yu; Song, Chen; He, Zhiwei; Zhong, Zhenji; Wang, Jian; Yip, Hin-Lap; Peng, Junbiao; Cao, Yong

    2018-06-15

    Solution-processed electroluminescent tandem white quantum-dot light-emitting diodes (TWQLEDs) have the advantages of being low-cost and high-efficiency and having a wide color gamut combined with color filters, making this a promising backlight technology for high-resolution displays. However, TWQLEDs are rarely reported due to the challenge of designing device structures and the deterioration of film morphology with component layers that can be deposited from solutions. Here, we report an interconnecting layer with the optical, electrical, and mechanical properties required for fully solution-processed TWQLED. The optimized TWQLEDs exhibit a state-of-the-art current efficiency as high as 60.4 cd/A and an extremely high external quantum efficiency of 27.3% at a luminance of 100 000 cd/m 2 . A high color gamut of 124% NTSC 1931 standard can be achieved when combined with commercial color filters. These results represent the highest performance for solution-processed WQLEDs, unlocking the great application potential of TWQLEDs as backlights for new-generation displays.

  1. External modes in quantum dot light emitting diode with filtered optical feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Husseini, Hussein B.; Department of Physics, College of Science, University of Baghdad, Al Jadiriyah, Baghdad; Al Naimee, Kais A.

    2016-06-14

    This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to amore » coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.« less

  2. Efficient and Stable CsPb(Br/I)3@Anthracene Composites for White Light-Emitting Devices.

    PubMed

    Shen, Xinyu; Sun, Chun; Bai, Xue; Zhang, Xiaoyu; Wang, Yu; Wang, Yiding; Song, Hongwei; Yu, William W

    2018-05-16

    Inorganic perovskite quantum dots bear many unique properties that make them potential candidates for optoelectronic applications, including color display and lighting. However, the white emission with inorganic perovskite quantum dots has rarely been realized due to the anion-exchange reaction. Here, we proposed a one-pot preparation to fabricate inorganic perovskite quantum dot-based white light-emitting composites by introducing anthracene as a blue emission component. The as-prepared white light-emitting composite exhibited a photoluminescence quantum yield of 41.9%. By combining CsPb(Br/I) 3 @anthracene composites with UV light-emitting device (LED) chips, white light-emitting devices with a color rendering index of 90 were realized with tunable color temperature from warm white to cool white. These results can promote the application of inorganic perovskite quantum dots in the field of white LEDs.

  3. Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Saito, Hideaki; Nishi, Kenichi; Ogura, Ichiro; Sugou, Shigeo; Sugimoto, Yoshimasa

    1996-11-01

    Self-assembled growth of quantum dots by molecular-beam epitaxy is used to form the active region of a vertical-cavity surface-emitting laser (VCSEL). Ten layers of InGaAs quantum dots are stacked in order to increase the gain. This quantum-dot VCSEL has a continuous-wave operating current of 32 mA at room temperature. Emission spectra at various current injections demonstrate that the lasing action is associated with a higher-order transition in the quantum dots.

  4. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  5. Cadmium-free quantum dot light emitting devices: energy-transfer realizing pure blue emission.

    PubMed

    Ji, Wenyu; Jing, Pengtao; Fan, Yi; Zhao, Jialong; Wang, Yunjun; Kong, Xianggui

    2013-01-01

    In this study, deep blue, pure electroluminescence (EL) at 441.5 nm from a ZnSe/ZnS quantum dot light-emitting device (QD-LED) is obtained by using poly (4-butylphenyl-diphenyl-amine) (poly-TPD) as the hole-transport layer (HTL) to open up the channel for energy transfer from poly-TPD to QDs. The emission originating from HTL is observed in the QD-LED with N,N'-bis (tolyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine functionalized with two styryl groups (2-TPD) as the HTL due to inefficient energy-transfer from 2-TPD to QDs. The poly-TPD based device exhibits color-saturated blue emission with a narrow spectral bandwidth of full width at half maximum (~17.2 nm). These results explore the operating mechanism of the QD EL and signify a remarkable progress in deep blue QD-LEDs based on environmental-friendly QD materials.

  6. Chip-scale white flip-chip light-emitting diode containing indium phosphide/zinc selenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang

    2017-08-01

    A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.

  7. Photoluminescent (PL) or electroluminescent (EL) quantum dots for display, lighting, and photomedicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Yajie

    2017-02-01

    Quantum dots (QDs) have gone through a long journey before finding their ways into the display field. This talk will briefly touch on the history before trying to answer several key questions related to QDs applications in display: What are QDs? How are they made? What properties do they have and Why? How can these properties be used to improve color and efficiency of display, in either photoluminescence (PL) or electroluminescence (EL) mode? And what are the remaining challenges for QDs wide adoption in display industry? Lastly, some most recent progresses in our UCF lab at both PL and EL fronts will be highlighted. For PL, a cadmium-free perovskite-polymer composite films with exceptionally narrow emission green peaks (FWHM 20 nm) and good water and thermal stability will be reported. Together with red quantum dots or PFS/KSF phosphors as down-converters for blue LEDs, a white-light source with 95% Rec. 2020 color gamut was demonstrated [1]. For EL, red quantum dot light emitting devices (QLEDs) with record luminance of 165,000 Cd/m2 has been obtained at a current density of 1000 mA/cm2 with a low driving voltage of 5.8 V and CIE coordinates of (0.69, 0.31). [2] The potential of using these QLEDs for light sources for integrated sensing platform [3] or high efficiency, high color quality hybrid white OLED [4] will be discussed. [1] Y. N. Wang, J. He, H. Chen, J. S. Chen, R. D. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, Y. J. Dong. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite - Polymer Composite Films, Advanced Materials, accepted, (2016). [2] Y. J. Dong, J.M. Caruge, Z. Q. Zhou, C. Hamilton, Z. Popovic, J. Ho, M. Stevenson, G. Liu, V. Bulovic, M. Bawendi, P. T. Kazlas, S. Coe-Sullivan, and J. Steckel Ultra-bright, Highly Efficient, Low Roll-off Inverted Quantum-Dot Light Emitting Devices (QLEDs). SID Symp. Dig. Tech. Pap. 46, 270-273 (2015). [3] J. He, H. Chen, S. T. Wu, and Y. J. Dong, Integrated Sensing Platform Based on Quantum

  8. Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices

    NASA Astrophysics Data System (ADS)

    Zhu, Jinyang; Bai, Xue; Bai, Jialin; Pan, Gencai; Zhu, Yongsheng; Zhai, Yue; Shao, He; Chen, Xu; Dong, Biao; Zhang, Hanzhuang; Song, Hongwei

    2018-02-01

    Carbon dots (CDs), one of the most significant classes of carbon-based nanophosphors, have attracted extensive attention in recent years. However, few attempts have been reported for realizing CDs with tunable emissions, especially for obtaining the red-light emissions with high photoluminescence quantum yields. Herein, we synthesized CDs with different chromatic blue, green and red emissions by facilely changing the reaction solvent during hydrothermal conditions. The photoluminescence quantum yields of 34%, 19% and 47% for the blue, green and red emissions, respectively, were achieved. Furthermore, the solid-state CD/PVA composite films were constructed through mixing the CDs with PVA polymer, in which the self-quenching of photoluminescence of CDs had been successfully avoided benefiting from the formation of hydrogen bonds between the CDs and PVA molecules. Finally, the warm white light emitting diode (WLED) was fabricated by integrating CD/PVA film on a UV-LED chip. The WLED exhibited the Commission International de l’Eclairage coordinates (CIE) of (0.38, 0.34), correlated color temperature of 3913 K and color rendering index of 91, respectively, which were comparable with the commercial WLEDs.

  9. Single-mode light source fabrication based on colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Chen, Bing; Baig, Sarfaraz; Wang, Michael R.

    2009-02-01

    There are huge market demands for innovative, cheap and efficient light sources, including light emitting devices, such as LEDs and lasers. However, the light source development in the visible spectral range encounters significant difficulties these years. The available visible wavelength LEDs or lasers are few, large and expensive. The main challenge lies at the lack of efficient light media. Semiconductor nanocrystal quantum dots (QDs) have recently commanded considerable attention. As a result of quantum confinement effect, the emission color of these QDs covers the whole visible spectral range and can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yield and photostability, make QDs attractive for potential applications in a variety of light emitting technologies. However, there are still several technical problems that hinder their application as light sources. One main issue is how to fabricate these QDs into a solid state device while still retaining their original optical emission properties. A vacuum assisted micro-fluidic fabrication of guided wave devices has demonstrated low waveguide propagation loss, lower crosstalk, and improved waveguide structures. We report herein the combination of the excellent emission properties of QDs and novel vacuum assisted micro-fluidic photonic structure fabrication technique to realize single-mode efficient light sources.

  10. Improving lumen maintenance by nanopore array dispersed quantum dots for on-chip light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Yang, Fan; Wan, Renzhuo; Fang, Dong

    2017-12-01

    The temperature stability of quantum dots (QDs), which is crucial for integrating into high power light-emitting diodes (LEDs) in the on-chip configuration, needs to be further improved. In this letter, we report warm white LEDs, where CdSe/ZnS nanoparticles were incorporated into a porous anodic alumina (PAA) matrix with a chain structure by the self-assembly method. Experiments demonstrate that the QD concentration range in toluene solvent from 1% mg/μl to 1.2% mg/μl in combination with the PAA matrix shows the best luminous property. To verify the reliability of the as-prepared device, a comparison experiment was conducted. It indicates excellent lumen maintenance of the light source and less chromaticity coordinate shift under accelerated life testing conditions. Experiments also prove that optical depreciation was only up to 4.6% of its initial value after the 1500 h aging test at the junction temperature of 76 °C.

  11. Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices

    PubMed Central

    Kang, Byoung-Ho; Lee, Jae-Sung; Lee, Sang-Won; Kim, Sae-Wan; Lee, Jun-Woo; Gopalan, Sai-Anand; Park, Ji-Sub; Kwon, Dae-Hyuk; Bae, Jin-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2016-01-01

    We demonstrate the first-ever surface modification of green CdSe/ZnS quantum dots (QDs) using bromide anions (Br-) in cetyl trimethylammonium bromide (CTAB). The Br- ions reduced the interparticle spacing between the QDs and induced an effective charge balance in QD light-emitting devices (QLEDs). The fabricated QLEDs exhibited efficient charge injection because of the reduced emission quenching effect and their enhanced thin film morphology. As a result, they exhibited a maximum luminance of 71,000 cd/m2 and an external current efficiency of 6.4 cd/A, both significantly better than those of their counterparts with oleic acid surface ligands. In addition, the lifetime of the Br- treated QD based QLEDs is significantly improved due to ionic passivation at the QDs surface. PMID:27686147

  12. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays.

    PubMed

    Ren, Mengxin; Chen, Mo; Wu, Wei; Zhang, Lihui; Liu, Junku; Pi, Biao; Zhang, Xinzheng; Li, Qunqing; Fan, Shoushan; Xu, Jingjun

    2015-05-13

    Polarizers provide convenience in generating polarized light, meanwhile their adoption raises problems of extra weight, cost, and energy loss. Aiming to realize polarizer-free polarized light sources, herein, we present a plasmonic approach to achieve direct generation of linearly polarized optical waves at the nanometer scale. Periodic slot nanoantenna arrays are fabricated, which are driven by the transition dipole moments of luminescent semiconductor quantum dots. By harnessing interactions between quantum dots and scattered fields from the nanoantennas, spontaneous emission with a high degree of linear polarization is achieved from such hybrid antenna system with polarization perpendicular to antenna slot. We also demonstrate that the polarization is engineerable in aspects of both spectrum and magnitude by tailoring plasmonic resonance of the antenna arrays. Our findings will establish a basis for the development of innovative polarized light-emitting devices, which are useful in optical displays, spectroscopic techniques, optical telecommunications, and so forth.

  13. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  14. Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications.

    PubMed

    Mintairov, S A; Kalyuzhnyy, N A; Lantratov, V M; Maximov, M V; Nadtochiy, A M; Rouvimov, Sergei; Zhukov, A E

    2015-09-25

    Hybrid quantum well-dots (QWD) nanostructures have been formed by deposition of 7-10 monolayers of In0.4Ga0.6As on a vicinal GaAs surface using metal-organic chemical vapor deposition. Transmission electron microscopy, photoluminescence and photocurrent analysis have shown that such structures represent quantum wells comprising three-dimensional (quantum dot-like) regions of two kinds. At least 20 QWD layers can be deposited defect-free providing high gain/absorption in the 0.9-1.1 spectral interval. Use of QWD media in a GaAs solar cell resulted in a photocurrent increment of 3.7 mA cm(-2) for the terrestrial spectrum and by 4.1 mA cm(-2) for the space spectrum. Diode lasers based on QWD emitting around 1.1 μm revealed high saturated gain and low transparency current density of about 15 cm(-1) and 37 A cm(-2) per layer, respectively.

  15. High-Performance, Solution-Processed Quantum Dot Light-Emitting Field-Effect Transistors with a Scandium-Incorporated Indium Oxide Semiconductor.

    PubMed

    He, Penghui; Jiang, Congbiao; Lan, Linfeng; Sun, Sheng; Li, Yizhi; Gao, Peixiong; Zhang, Peng; Dai, Xingqiang; Wang, Jian; Peng, Junbiao; Cao, Yong

    2018-05-22

    Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:In 2 O 3 ) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm 2 V -1 s -1 , a maximum brightness of 13 400 cd/m 2 , and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:In 2 O 3 and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into In 2 O 3 can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 5 and the on/off brightness ratio is 10 6 ).

  16. Quantum properties of light emitted by dipole nano-laser

    NASA Astrophysics Data System (ADS)

    Ghannam, Talal

    Recent technological advances allow entire optical systems to be lithographically implanted on small silicon chips. These systems include tiny semiconductor lasers that function as light sources for digital optical signals. Future advances will rely on even smaller components. At the theoretical limit of this process, the smallest lasers will have an active medium consisting of a single atom (natural or artificial). Several suggestions for how this can be accomplished have already been published, such as nano-lasers based on photonic crystals and nano wires. In particular, the "dipole nanolaser" consists of a single quantum dot functioning as the active medium. It is optically coupled to a metal nanoparticles that form a resonant cavity. Laser light is generated from the near-field optical signal. The proposed work is a theoretical exploration of the nature of the resulting laser light. The dynamics of the system will be studied and relevant time scales described. These will form the basis for a set of operator equations describing the quantum properties of the emitted light. The dynamics will be studied in both density matrix and quantum Langevin formulations, with attention directed to noise sources. The equations will be linearized and solved using standard techniques. The result of the study will be a set of predicted noise spectra describing the statistics of the emitted light. The goal will be to identify the major noise contributions and suggest methods for suppressing them. This will be done by studying the probability of getting squeezed light from the nanoparticle for the certain scheme of parameters.

  17. White/blue-emitting, water-dispersible CdSe quantum dots prepared by counter ion-induced polymer collapse

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.

    2015-09-01

    The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.

  18. Red Light-Emitting Diode Based on Blue InGaN Chip with CdTe x S(1 - x) Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Rongfang; Wei, Xingming; Qin, Liqin; Luo, Zhihui; Liang, Chunjie; Tan, Guohang

    2017-01-01

    Thioglycolic acid-capped CdTe x S(1 - x) quantum dots (QDs) were synthesized through a one-step approach in an aqueous medium. The CdTe x S(1 - x) QDs played the role of a color conversion center. The structural and luminescent properties of the obtained CdTe x S(1 - x) QDs were investigated. The fabricated red light-emitting hybrid device with the CdTe x S(1 - x) QDs as the phosphor and a blue InGaN chip as the excitation source showed a good luminance. The Commission Internationale de L'Eclairage coordinates of the light-emitting diode (LED) at (0.66, 0.29) demonstrated a red LED. Results showed that CdTe x S(1 - x) QDs can be excited by blue or near-UV regions. This feature presents CdTe x S(1 - x) QDs with an advantage over wavelength converters for LEDs.

  19. Influence of Shell Thickness on the Performance of NiO-Based All-Inorganic Quantum Dot Light-Emitting Diodes.

    PubMed

    Wang, Ting; Zhu, Bingyan; Wang, Shuangpeng; Yuan, Qilin; Zhang, Han; Kang, Zhihui; Wang, Rong; Zhang, Hanzhuang; Ji, Wenyu

    2018-05-02

    The effect of shell thickness on the performance of all-inorganic quantum dot light-emitting diodes (QLEDs) is explored by employing a series of green quantum dots (QDs) (Zn x Cd 1- x Se/ZnS core/shell QDs with different ZnS shell thicknesses) as the emitters. ZnO nanoparticles and sol-gel NiO are employed as the electron and hole transport materials, respectively. Time-resolved and steady-state photoluminescence results indicate that positive charging processes might occur for the QDs deposited on NiO, which results in emission quenching of QDs and poor device performance. The thick shell outside the core in QDs not only largely suppresses the QD emission quenching but also effectively preserves the excitons in QDs from dissociation of electron-hole pairs when they are subjected to an electric field. The peak efficiency of 4.2 cd/A and maximum luminance of 4205 cd/m 2 are achieved for the device based on QDs with the thickest shells (∼4.2 nm). We anticipate that these results will spur progress toward the design and realization of efficient all-inorganic QLEDs as a platform for the QD-based full-colored displays.

  20. Luminance enhancement in quantum dot light-emitting diodes fabricated with Field’s metal as the cathode

    NASA Astrophysics Data System (ADS)

    Basilio, Carlos; Oliva, Jorge; Lopez-Luke, Tzarara; Pu, Ying-Chih; Zhang, Jin Z.; Rodriguez, C. E.; de la Rosa, E.

    2017-03-01

    This work reports the fabrication and characterization of blue-green quantum dot light-emitting diodes (QD-LEDs) by using core/shell/shell Cd1-x Zn x Se/ZnSe/ZnS quantum dots. Poly [(9,9-bis(3‧-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was introduced in order to enhance the electron injection and also acted as a protecting layer during the deposition of the cathode (a Field’s metal sheet) on the organic/inorganic active layers at low temperature (63 °C). This procedure permitted us to eliminate the process of thermal evaporation for the deposition of metallic cathodes, which is typically used in the fabrication of OLEDs. The performance of devices made with an aluminum cathode was compared with that of devices which employed Field’s metal (FM) as the cathode. We found that the luminance and efficiency of devices with FM was ~70% higher with respect to those that employed aluminum as the cathode and their consumption of current was similar up to 13 V. We also demonstrated that the simultaneous presence of 1,2-ethanedethiol (EDT) and PFN enhanced the luminance in our devices and improved the current injection in QD-LEDs. Hence, the architecture for QD-LEDs presented in this work could be useful for the fabrication of low-cost luminescent devices.

  1. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots.

    PubMed

    Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy

    2018-05-02

    In this work, we prepared CdTe quantum dots, and series of Cd 1-x Mn x Te-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn 2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd 1-x Mn x Te-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd 1-x Mn x Te-alloyed quantum dots which confirmed the successful ion-exchange reaction.

  2. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy

    2018-05-01

    In this work, we prepared CdTe quantum dots, and series of Cd1-xMnxTe-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd1-xMnxTe-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd1-xMnxTe-alloyed quantum dots which confirmed the successful ion-exchange reaction.

  3. White light-emitting nanocomposites based on an oxadiazole-carbazole copolymer (POC) and InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Nenna, Giuseppe; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2013-11-01

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  4. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes.

    PubMed

    Jun, Shinae; Lee, Junho; Jang, Eunjoo

    2013-02-26

    A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.

  5. An entangled-light-emitting diode.

    PubMed

    Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2010-06-03

    An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.

  6. Quantum dots for GaAs-based surface emitting lasers at 1300 nm

    NASA Astrophysics Data System (ADS)

    Grundmann, M.; Ledentsov, N. N.; Hopfer, F.; Heinrichsdorff, F.; Guffarth, F.; Bimberg, D.; Ustinov, V. M.; Zhukov, A. E.; Kovsh, A. R.; Maximov, M. V.; Musikhin, Yu. G.; Alferov, Zh. I.; Lott, J. A.; Zhakharov, N. D.; Werner, P.

    InGaAs quantum dots (QD's) on GaAs substrate have been fabricated using metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) for the use in vertical cavity surface emitting laser diodes. Similar recombination spectra are obtained by employing the two different approaches of seeding and overgrowth with a quantum well. Despite the shift to larger wavelengths a large separation (=80 meV) between excited states is maintained. The introduction of such QD's into a vertical cavity leads to strong narrowing of the emission spectrum. Lasing from a 1300 nm InGaAs quantum dot VCSEL is reported.

  7. White light emitting device based on single-phase CdS quantum dots.

    PubMed

    Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua

    2018-05-18

    White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.

  8. White light emitting device based on single-phase CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua

    2018-05-01

    White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.

  9. Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Xie, Bin; Zhang, Jingjing; Chen, Wei; Hao, Junjie; Cheng, Yanhua; Hu, Run; Wu, Dan; Wang, Kai; Luo, Xiaobing

    2017-10-01

    Human comfort has become one of the most important criteria in modern lighting architecture. Here, we proposed a tuning strategy to enhance the non-image forming photobiological effect on the human circadian rhythm based on quantum-dots-converted white light-emitting diodes (QDs-WLEDs). We introduced the limiting variability of the circadian action factor (CAF), defined as the ratio of circadian efficiency and luminous efficiency of radiation. The CAF was deeply discussed and was found to be a function of constraining the color rendering index (CRI) and correlated color temperatures. The maximum CAF variability of QDs-WLEDs was found to be dependent on the QDs’ peak wavelength and full width at half maximum. With the optimized parameters, the packaging materials were synthesized and WLEDs were packaged. Experimental results show that at CRI > 90, the maximum CAF variability can be tuned by 3.83 times (from 0.251 at 2700 K to 0.961 at 6500 K), which implies that our approach could reduce the number of tunable channels, and could achieve wider CAF variability.

  10. UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several

  11. UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several

  12. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    PubMed Central

    Muñoz-Rosas, Ana Luz; Alonso-Huitrón, Juan Carlos

    2018-01-01

    Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs) to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD) in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC)-sputtering technique, and an aluminum doped zinc oxide thin film (AZO) which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL) enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL) enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer. PMID:29565267

  13. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-01

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  14. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  15. Theory of few photon dynamics in light emitting quantum dot devices

    NASA Astrophysics Data System (ADS)

    Carmele, Alexander; Richter, Marten; Sitek, Anna; Knorr, Andreas

    2009-10-01

    We present a modified cluster expansion to describe single-photon emitters in a semiconductor environment. We calculate microscopically to what extent semiconductor features in quantum dot-wetting layer systems alter the exciton and photon dynamics in comparison to the atom-like emission dynamics. We access these systems by the photon-probability-cluster-expansion: a reliable approach for few photon dynamics in many body electron systems. As a first application, we show that the amplitude of vacuum Rabi flops determines the number of electrons in the quantum dot.

  16. Improved Efficiency and Enhanced Color Quality of Light-Emitting Diodes with Quantum Dot and Organic Hybrid Tandem Structure.

    PubMed

    Zhang, Heng; Feng, Yuanxiang; Chen, Shuming

    2016-10-03

    Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.

  17. High Color-Purity Green, Orange, and Red Light-Emitting Didoes Based on Chemically Functionalized Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo

    2016-04-01

    Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A-1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.

  18. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    PubMed

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  19. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.

    PubMed

    Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi

    2012-11-07

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.

  20. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Wang, Yaling; Miao, Yanqin

    Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral compositionmore » of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.« less

  1. Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; di Carlo, Aldo; Pecchia, Alessandro; Tsatsulnikov, Andrei F.; Lundin, Wsevolod V.; Sakharov, Alexei V.; Nikolaev, Andrei E.; Korytov, Maxim; Cherkashin, Nikolay; Hÿtch, Martin J.; Karpov, Sergey Yu

    2017-07-01

    We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of

  2. Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes.

    PubMed

    Barettin, Daniele; Auf der Maur, Matthias; di Carlo, Aldo; Pecchia, Alessandro; Tsatsulnikov, Andrei F; Lundin, Wsevolod V; Sakharov, Alexei V; Nikolaev, Andrei E; Korytov, Maxim; Cherkashin, Nikolay; Hÿtch, Martin J; Karpov, Sergey Yu

    2017-07-07

    We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of

  3. ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect

    DOE PAGES

    Liu, Wenyan; Zhang, Yu; Wang, Dan; ...

    2015-08-13

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half-maximum (FWHM) and power efficiencies (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed littlemore » due to the low emission temperature coefficients of 0.022, 0.050 and 0.068 nm/°C for red-, yellow- and green-emitting ZnCuInS/ZnSe/ZnS QDs. Lastly this indicates that ZnCuInS/ZnSe/ZnS QDs are more suitable for down-conversion LEDs compared to CdSe QDs.« less

  4. One-Step Preparation of Long-Term Stable and Flexible CsPbBr3 Perovskite Quantum Dots/Ethylene Vinyl Acetate Copolymer Composite Films for White Light-Emitting Diodes.

    PubMed

    Li, Yang; Lv, Ying; Guo, Ziquan; Dong, Liubing; Zheng, Jianghui; Chai, Chufen; Chen, Nan; Lu, Yijun; Chen, Chao

    2018-05-09

    CsPbBr 3 perovskite quantum dots (PQDs)/ethylene vinyl acetate (EVA) composite films were prepared via a one-step method; on the basis of this, both supersaturated recrystallization of CsPbBr 3 PQDs and dissolution of EVA were realized in toluene. The prepared films display outstanding green-emitting performance with high color purity of 92% and photoluminescence (PL) quantum yield of 40.5% at appropriate CsPbBr 3 PQD loading. They possess long-term stable luminescent properties in the air and in water, benefiting from the effective protection of CsPbBr 3 PQDs by the EVA matrix. Besides, the prepared CsPbBr 3 PQDs/EVA films are flexible enough to be repeatedly bent for 1000 cycles while keeping unchanged the PL intensity. The optical properties of the CsPbBr 3 PQDs/EVA films in white light-emitting diodes were also studied by experiments and theoretical simulation. Overall, facile preparation process, good long-term stability, and high flexibility allow our green-emitting CsPbBr 3 PQDs/EVA films to be applied in lighting applications and flexible displays.

  5. The performance of quantum dots-based white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Lin; Chung, Shu-Ru

    2017-08-01

    Recently, the investigation of quantum dots (QDs) as a color converter for white light-emitting diodes (WLEDs) application has attracted a great deal of attention. Because the narrow emission wavelength of QDs can be controlled by their particle sizes and compositions, which is facilitated to improve the color gamut of display as well as color rendering index (CRI) and the correlated color temperature (CCT) of WLEDs. In a typical commercially available LCD display, the color gamut is approximately to 75 % which is defined by the National Television System Committee (NTSC). In order to enhance NTSC, the full width at half-maximum (FWHM) of color converter should be less than 30 nm. Therefore, the QDs are the best choice for display application due to the FWHM of QDs is meet the demand of display application. In this study, the hot injection method with one-pot process is used to synthesis of colloidal ternary ZnCdSe green (G-) and red-emission (R-) QDs with a narrow emission wavelength around 537 and 610 nm. By controlling the complex reagents-stearic acid (SA) and lauric acid (LA), high performance of G- and R-QDs can be prepared. The quantum yields (QYs), particle sizes and FWHM for G- and R-QDs are 70, 30 %, 3.2 +/- 0.5, 4.1 +/- 0.5 nm and 25, 26 nm, respectively. In order to explore the performance of QDs-based WLEDs, mixing ratios effect between G-QD and R-QD are studied and the WLED is packed as conformal-type. Different ratios of R-QD and G-QD (1:10, 1:20 and 1:30) are mixed and fill up the 3020 SMD blue-InGaN LED, and named as LED-10, LED-20 and LED-30. After that, UV curable gel is deposited on the top of QD layer to form WLED and named as LED-10*, LED-20* and LED-30*. The results show that the Commission International d'Eclairage (CIE) chromaticity coordinates, color rendering index (CRI), luminous efficacy of LED-10*, LED-20* and LED-30* are (0.27, 0.21), 53, 1.9 lm/W, (0.29, 0.30), 72, 3.3 lm/W and (0.25, 0.34), 45, 6.8 lm/W, respectively. We can find

  6. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers

    PubMed Central

    2012-01-01

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm. PMID:23134721

  7. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    NASA Astrophysics Data System (ADS)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  8. Energy-saving quality road lighting with colloidal quantum dot nanophosphors

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan

    2014-12-01

    Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.

  9. Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices

    NASA Astrophysics Data System (ADS)

    Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J.

    2012-06-01

    In this experiment a technique of mist deposition was explored as a way to form patterned ultra-thin-films of CdSe/ZnS core/shell nanocrystalline quantum dots using colloidal solutions. The objective of this study was to investigate the feasibility of mist deposition as a patterning method for creating multicolour quantum dot light emitting diodes. Mist deposition was used to create three rows of quantum dot light emitting diodes on a single device with each row having a separate colour. The colours chosen were red, green and yellow with corresponding peak wavelengths of 620 nm, 558 nm, and 587 nm. The results obtained from this experiment show that it is possible to create multicolour devices on a single substrate. The peak brightnesses obtained in this experiment for the red, green, and yellow were 508 cd/m, 507 cd/m, and 665 cd/m, respectively. The similar LED brightness is important in display technologies using colloidal quantum dots in a precursor solution to ensure one colour does not dominate the emitted spectrum. Results obtained in-terms of brightness were superior to those achieved with inkjet deposition. This study has shown that mist deposition is a viable method for patterned deposition applied to quantum dot light emitting diode display technologies.

  10. Balancing the Electron and Hole Transfer for Efficient Quantum Dot Light-Emitting Diodes by Employing a Versatile Organic Electron-Blocking Layer.

    PubMed

    Jin, Xiao; Chang, Chun; Zhao, Weifeng; Huang, Shujuan; Gu, Xiaobing; Zhang, Qin; Li, Feng; Zhang, Yubao; Li, Qinghua

    2018-05-09

    The electron-blocking layer (EBL) is important to balance the charge carrier transfer and achieve highly efficient quantum dot light-emitting diodes (QLEDs). Here, we report the utilization of a soluble tert-butyldimethylsilyl chloride-modified poly( p-phenylene benzobisoxazole) (TBS-PBO) as an EBL for simultaneous good charge carrier transfer balance while maintaining a high current density. We show that the versatile TBS-PBO blocks excess electron injection into the quantum dots (QDs), thus leading to better charge carrier transfer balance. It also restricts the undesired QD-to-EBL electron-transfer process, which preserves the superior emission capabilities of the emitter. As a consequence, the TBS-PBO device delivers an external quantum efficiency (EQE) maximum of 16.7% along with a remarkable current density as high as 139 mA/cm 2 with a brightness of 5484 cd/m 2 . The current density of our device is higher than those of insulator EBL-based devices because of the higher conductivity of the TBS-PBO versus insulator EBL, thus helping achieve high luminance values ranging from 1414 to 20 000 cd/cm 2 with current densities ranging from 44 to 648 mA/cm 2 and EQE > 14%. We believe that these unconventional features of the present TBS-PBO-based QLEDs will expand the wide use of TBS-PBO as buffer layers in other advanced QLED applications.

  11. A dual-emitting core-shell carbon dot-silica-phosphor composite for white light emission

    NASA Astrophysics Data System (ADS)

    Chen, Yonghao; Lei, Bingfu; Zheng, Mingtao; Zhang, Haoran; Zhuang, Jianle; Liu, Yingliang

    2015-11-01

    A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated.A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated

  12. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.

    PubMed

    Jang, Eun-Pyo; Yang, Heesun

    2013-09-01

    This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

  13. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  14. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.

    PubMed

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S; Schmidt, Oliver G; Rastelli, Armando; Trotta, Rinaldo

    2017-05-26

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.

  15. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    PubMed Central

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S.; Schmidt, Oliver G.; Rastelli, Armando; Trotta, Rinaldo

    2017-01-01

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. PMID:28548081

  16. High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers.

    PubMed

    Castelli, Andrea; Meinardi, Francesco; Pasini, Mariacecilia; Galeotti, Francesco; Pinchetti, Valerio; Lorenzon, Monica; Manna, Liberato; Moreels, Iwan; Giovanella, Umberto; Brovelli, Sergio

    2015-08-12

    Colloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.

  17. Tuning Single Quantum Dot Emission with a Micromirror.

    PubMed

    Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul

    2018-02-14

    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

  18. Tricolor White-Light-Emitting Carbon Dots with Multiple-Cores@Shell Structure for WLED Application.

    PubMed

    Zhang, Tianyi; Zhao, Feifei; Li, Li; Qi, Bin; Zhu, Dongxia; Lü, Jianhua; Lü, Changli

    2018-06-13

    The past few years have witnessed the rapid development of carbon dots (CDs) due to their outstanding optical properties and a wide range of applications. However, the design and control of CDs with long-wavelength multicolor emission are still huge challenges to be addressed for their practical use in different fields. Here, novel nitrogen-doped multiple-core@shell-structured AC-CDs with tricolor emissions of red, green, and blue were constructed via one-pot hydrothermal method from 5-amino-1,10-phenanthroline and citric acid as reactants and the growth process of AC-CDs was monitored with the reaction time in the synthetic system. The origin of different fluorescence emissions was explored using the unique coordination ability of the surface groups of AC-CDs. An obvious concentration dependence of fluorescent properties was observed for the as-prepared AC-CDs, and a highly fluorescent quantum yield (QY) of 67% for red emission at 630 nm can be obtained by adjusting concentration of AC-CDs. The pure white-light emission (0.33, 0.33; Commission Internationale de l'Elcairage coordinate) was carried out from single carbon dot with QY of 29% through regulation of the excitation and concentration of multiple-core@shell-structured AC-CDs. In addition, because of their excellent photoluminescent properties, the white-emitting AC-CDs as emitting phosphor can be easily used in the fabrication of white-light-emitting diode with good anti-photobleaching and temperature stability.

  19. Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene

    DTIC Science & Technology

    2015-07-16

    SECURITY CLASSIFICATION OF: The InAs quantum dot (QD) grown on GaAs substrates represents a highly performance active region in the 1 - 1.3 µm...2015 Approved for Public Release; Distribution Unlimited Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface...ABSTRACT Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene Report

  20. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less

  1. Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Yaling; Zheng, Jingxia; Wang, Junli; Yang, Yongzhen; Liu, Xuguang

    2017-11-01

    Highly luminescent nitrogen-doped carbon dots (N-CDs) were synthesized rapidly by one-step microwave-assisted hydrothermal method using citric acid as carbon source and ethylenediamine as dopant. The influences of reaction temperature, reaction time and raw material ratio on the fluorescence performance of N-CDs were investigated. Then N-CDs with the highest quantum yield were selected as fluorescent materials for fabricating white light-emitting diodes (LEDs). Highly luminescent N-CDs with the quantum yield of 75.96% and blue-to-red spectral composition of 51.48% were obtained at the conditions of 180 °C, 8 min and the molar ratio of citric acid to ethylenediamine 2:1. As-prepared highly luminescent N-CDs have an average size of 6.06 nm, possess extensive oxygen- and nitrogen-containing functional groups on their surface, and exhibit strong absorption in ultraviolet region. White LEDs based on the highly luminescent N-CDs emit warm white light with color coordinates of (0.42, 0.40) and correlated color temperature of 3416 K.

  2. Enhancing the thermal dissipation of a light-converting composite for quantum dot-based white light-emitting diodes through electrospinning nanofibers

    NASA Astrophysics Data System (ADS)

    Zheng, Huai; Lei, Xiang; Cheng, Ting; Liu, Sheng; Zeng, Xiaoliang; Sun, Rong

    2017-06-01

    Quantum dots (QDs) have been developed as one of the most promising light-converting materials for white light-emitting diodes (LEDs). In current QD-based LED packaging structures, composites of QDs and polymers are used as light-converting layers. However, the ultralow thermal conductivity of such composites seriously hinders the dissipation of QD-generating heat. In this paper, we demonstrate a method to enhance the thermal dissipation of QD-polymer composites through electrospinning polymer nanofibers. QD-polymer films embedded by electrospun nanofibers were prepared. Benefitting from aligned polymer chains in the electrospun nanofibers, the through-panel and in-panel thermal conductivities of the proposed QD-polymer film increased by 39.9% and 423.1%, respectively, compared to traditional QD-polymer film. The proposed and traditional QD-polymer films were both packaged on chip on board (CoB) LEDs for experimental comparison. Compared to traditional QD-polymer film, the luminous flux and luminous efficiency of the LEDs were increased by up to 51.8% and 42.9% by the proposed QD-polymer film under a current of 800 mA, respectively. With an increase in the driving current from 20-800 mA, the correlated color temperature (CCT) variation decreased by 72.7%. The maximum temperatures in the QD-polymer films were reduced from 419 K-411 K under a driving current of 200 mA.

  3. Engineered core/shell quantum dots as phosphors for solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, Victor Ivanovich; Pietryga, Jeffrey Michael; McDaniel, Hunter

    2015-01-14

    Light-emitting diodes (LEDs) for solid state light ing (SSL) typically combine a blue or near- ultraviolet drive LED with one or more dow nconverting phosphors to produce “white” light. Further advances in both efficiency and wh ite-light quality will re quire new phosphors with narrow-band, highly efficient emission, particul arly in the red. A team led by principal investigator Dr. Victor Klim ov of Los Alamos National Labo ratory proposes to develop engineered semiconductor nanocrystal quantum dots (QDs) that combine optimal luminescent properties with long-term stability under ty pical downconverting conditions to enable new performance levels in SSL. The whitemore » LED phosphor industry is estimated to have sales of roughly $400 million in 2018 and would significantly benefit from the development of bright and narrow red-emitting QD phosphors because they woul d enable warmer whites without wasting energy by emission of light beyond the response of the human eye. In order to capitalize on the market opportunity, the LANL team is partnering with a local company called UbiQD that will facilitate US manufacturing.« less

  4. Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas

    DOE PAGES

    Akselrod, Gleb M.; Weidman, Mark C.; Li, Ying; ...

    2016-09-13

    Infrared (IR) light sources with high modulation rates are critical components for on-chip optical communications. Lead-based colloidal quantum dots are promising nonepitaxial materials for use in IR light-emitting diodes, but their slow photoluminescence lifetime is a serious limitation. Here we demonstrate coupling of PbS quantum dots to colloidal plasmonic nanoantennas based on film-coupled metal nanocubes, resulting in a dramatic 1300-fold reduction in the emission lifetime from the microsecond to the nanosecond regime. This lifetime reduction is primarily due to a 1100-fold increase in the radiative decay rate owing to the high quantum yield (65%) of the antenna. The short emissionmore » lifetime is accompanied by high antenna quantum efficiency and directionality. Lastly, this nonepitaxial platform points toward GHz frequency, electrically modulated, telecommunication wavelength light-emitting diodes and single-photon sources.« less

  5. Investigation of Exciton Recombination Zone in Quantum Dot Light-Emitting Diodes Using a Fluorescent Probe.

    PubMed

    Huang, Xiaoyu; Zhang, Heng; Xu, Dingxin; Wen, Feng; Chen, Shuming

    2017-08-23

    Exciton recombination zone, where the photons are generated, can greatly affect the performance, such as the efficiency and color purity, of the quantum dot (QD) light-emitting diodes (QLEDs). To probe the exciton recombination zone, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) is doped into the charge transport layer as a fluorescent sensor; by monitoring the Förster resonant energy transfer (FRET) between QD and DCJTB, the location of the recombination zone can be determined. It is found that the electron transport layer (ETL) has a great impact on the recombination zone. For example, in QLEDs with ZnMgO ETL, the recombination zone is near the interface of the QD/hole transport layer (HTL) and is shifted to the interface of the QD/ETL as the driving voltage is increased, whereas in devices with 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene (TPBi) ETL, the recombination zone is close to the interface of the QD/ETL and moved to the interface of the QD/HTL with the increase in the driving voltage. Our results can also clarify the light emission mechanism in QLEDs. In devices with ZnMgO ETL, the emission is dominated by the direct charge recombination, whereas in devices with TPBi ETL, the emission is contributed by both FRET and direct charge recombination. Our studies suggest that fluorescent probe can be a powerful tool for investigating the exciton recombination zone, light emission mechanism, and other fundamental processes in QLEDs.

  6. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-09-01

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

  7. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.

    PubMed

    Liu, Xiangkai; Zhao, Shuangyi; Gu, Wei; Zhang, Yuting; Qiao, Xvsheng; Ni, Zhenyi; Pi, Xiaodong; Yang, Deren

    2018-02-14

    Colloidal silicon quantum dots (Si QDs) hold ever-growing promise for the development of novel optoelectronic devices such as light-emitting diodes (LEDs). Although it has been proposed that ligands at the surface of colloidal Si QDs may significantly impact the performance of LEDs based on colloidal Si QDs, little systematic work has been carried out to compare the performance of LEDs that are fabricated using colloidal Si QDs with different ligands. Here, colloidal Si QDs with rather short octyl ligands (Octyl-Si QDs) and phenylpropyl ligands (PhPr-Si QDs) are employed for the fabrication of LEDs. It is found that the optical power density of PhPr-Si QD LEDs is larger than that of Octyl-Si QD LEDs. This is due to the fact that the surface of PhPr-Si QDs is more oxidized and less defective than that of Octyl-Si QDs. Moreover, the benzene rings of phenylpropyl ligands significantly enhance the electron transport of QD LEDs. It is interesting that the external quantum efficiency (EQE) of PhPr-Si QD LEDs is lower than that of Octyl-Si QD LEDs because the benzene rings of phenylpropyl ligands suppress the hole transport of QD LEDs. The unbalance between the electron and hole injection in PhPr-Si QD LEDs is more serious than that in Octyl-Si QD LEDs. The currently obtained highest optical power density of ∼0.64 mW/cm 2 from PhPr-Si QD LEDs and highest EQE of ∼6.2% from Octyl-Si QD LEDs should encourage efforts to further advance the development of high-performance optoelectronic devices based on colloidal Si QDs.

  8. Enhanced Electron Injection and Exciton Confinement for Pure Blue Quantum-Dot Light-Emitting Diodes by Introducing Partially Oxidized Aluminum Cathode.

    PubMed

    Wang, Zhibin; Cheng, Tai; Wang, Fuzhi; Bai, Yiming; Bian, Xingming; Zhang, Bing; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2018-05-31

    Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer. Herein, through a simple autoxidation strategy, pure blue QD-LEDs which are highly bright and efficient are demonstrated, with a structure of ITO/PEDOT:PSS/Poly-TPD/QDs/Al:Al2O3. The autoxidized Al:Al2O3 cathode can effectively balance the injected charges and enhance radiative recombination without introducing an additional electron transport layer (ETL). As a result, high color-saturated blue QD-LEDs are achieved with a maximum luminance over 13,000 cd m -2 , and a maximum current efficiency of 1.15 cd A -1 . The easily controlled autoxidation procedure paves the way for achieving high-performance blue QD-LEDs.

  9. Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell

    NASA Astrophysics Data System (ADS)

    Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo; Gregersen, Niels; Bellet-Amalric, Edith; Nogues, Gilles; Kheng, Kuntheak

    2017-11-01

    Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach to fabricate a photonic fiberlike structure around such nanowire quantum dots by depositing an oxide shell using atomic-layer deposition. Simulations suggest that the intensity collected in our NA =0.6 microscope objective can be increased by a factor 7 with respect to the bare nanowire case. Combining microphotoluminescence, decay time measurements, and numerical simulations, we obtain a fourfold increase in the collected photoluminescence from the quantum dot. We show that this improvement is due to an increase of the quantum-dot emission rate and a redirection of the emitted light. Our ex situ fabrication technique allows a precise and reproducible fabrication on a large scale. Its improved extraction efficiency is compared to state-of-the-art top-down devices.

  10. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  11. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes.

    PubMed

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-09-19

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at ~ 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at ~ 5 V, the highest luminance (160 cd/m 2 ) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

  12. Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes.

    PubMed

    Yuan, Xi; Ma, Ruixin; Zhang, Wenjin; Hua, Jie; Meng, Xiangdong; Zhong, Xinhua; Zhang, Jiahua; Zhao, Jialong; Li, Haibo

    2015-04-29

    Novel white light emitting diodes (LEDs) with environmentally friendly dual emissive quantum dots (QDs) as single color-converters are one of the most promising high-quality solid-state lighting sources for meeting the growing global demand for resource sustainability. A facile method was developed for the synthesis of the bright green-red-emitting Mn and Cu codoped Zn-In-S QDs with an absorption bangdgap of 2.56 eV (485 nm), a large Stokes shift of 150 nm, and high emission quantum yield up to 75%, which were suitable for warm white LEDs based on blue GaN chips. The wide photoluminescence (PL) spectra composed of Cu-related green and Mn-related red emissions in the codoped QDs could be controlled by varying the doping concentrations of Mn and Cu ions. The energy transfer processes in Mn and Cu codoped QDs were proposed on the basis of the changes in PL intensity and lifetime measured by means of steady-state and time-resolved PL spectra. By integrating these bicolor QDs with commercial GaN-based blue LEDs, the as-fabricated tricolor white LEDs showed bright natural white light with a color rendering index of 95, luminous efficacy of 73.2 lm/W, and color temperature of 5092 K. These results indicated that (Mn,Cu):Zn-In-S/ZnS QDs could be used as a single color-converting material for the next generation of solid-state lighting.

  13. A quantum light-emitting diode for the standard telecom window around 1,550 nm.

    PubMed

    Müller, T; Skiba-Szymanska, J; Krysa, A B; Huwer, J; Felle, M; Anderson, M; Stevenson, R M; Heffernan, J; Ritchie, D A; Shields, A J

    2018-02-28

    Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware.

  14. Development of transition metal dichalcogenide based quantum dots for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seth, Subhashree; Sharma, S. K.

    2018-05-01

    Photoluminescent quantum dots (QDs) were synthesized by facile colloidal chemical route. Its properties were characterized and analysed by utilizing Fluorescence, FTIR and UV-Vis spectrophotometers. The resultant MoS2 QD exhibits fluorescence at 470 nm for excitation wavelength 400 nm. The as prepared sample exhibits excitation dependent emission due to polydispersion of MoS2 in the dispersive medium which is the characteristics of colloidal synthesis. It is also observed that resultant MoS2 QDs show size tunable emission in the visible region. The FTIR spectrum confirms the attachment of oleic acid on the surface of MoS2. Absorption spectrum shows a band at 346 nm and a shoulder band at 400 nm. The band gap of quantum dots was obtained as 3.5 eV. CIE diagram indicates the shifting of colour coordinates towards green region with increasing excitation wavelength.

  15. Development of 1300 nm GaAs-Based Microcavity Light-Emitting Diodes

    DTIC Science & Technology

    2001-06-01

    vertical - cavity surface emitting lasers ( VCSEL ) and micro- cavity light- emitting diodes (MC-LED) for short-to-medium... epitaxial growth run [1 ]. Self-organized In(Ga)As quantum dot (QD) heterostructures grown by molecular beam epitaxy ( MBE ) are promising candidates as...successfully grown by molecular beam epitaxy on GaAs substrates without the need to rely on any in-situ calibration technique. Fabricated

  16. Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots.

    PubMed

    Panzer, René; Guhrenz, Chris; Haubold, Danny; Hübner, René; Gaponik, Nikolai; Eychmüller, Alexander; Weigand, Jan J

    2017-11-13

    Tri(pyrazolyl)phosphanes (5 R1,R2 ) are utilized as an alternative, cheap and low-toxic phosphorus source for the convenient synthesis of InP/ZnS quantum dots (QDs). From these precursors, remarkably long-term stable stock solutions (>6 months) of P(OLA) 3 (OLAH=oleylamine) are generated from which the respective pyrazoles are conveniently recovered. P(OLA) 3 acts simultaneously as phosphorus source and reducing agent in the synthesis of highly emitting InP/ZnS core/shell QDs. These QDs are characterized by a spectral range between 530-620 nm and photoluminescence quantum yields (PL QYs) between 51-62 %. A proof-of-concept white light-emitting diode (LED) applying the InP/ZnS QDs as a color-conversion layer was built to demonstrate their applicability and processibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-performance semiconductor quantum-dot single-photon sources

    NASA Astrophysics Data System (ADS)

    Senellart, Pascale; Solomon, Glenn; White, Andrew

    2017-11-01

    Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

  18. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  19. Highly pure yellow light emission of perovskite CsPb(BrxI1-x)3 quantum dots and their application for yellow light-emitting diodes

    NASA Astrophysics Data System (ADS)

    He, Yuandan; Gong, Jinhui; Zhu, Yiyuan; Feng, Xingcan; Peng, Hong; Wang, Wei; He, Haiyang; Liu, Hu; Wang, Li

    2018-06-01

    High-quality all-inorganic perovskite CsPb(BrxI1-x)3 quantum dots (QDs) with quantum yield of 50% were systematically studied as yellow light convertor for light emitting diodes (LEDs). A novel heat insulation structure was designed for the QD-converted yellow LEDs. In this structure, a silicone layer was set on top of the GaN LED chip to prevent directly heating of the QDs by the LED chip. Then the CsPb(BrxI1-x)3 QDs were filled in the bowl-shaped silicone layer after ultrasonic dispersion treatment. Finally, an Al2O3 passivation layer was grown on the QDs layer by Atomic Layer Disposition at 40 °C. When x = 0.55, highly pure yellow LEDs with an emission peak at ∼570 nm and a full width at half maximum of 25 nm were achieved. The chromaticity coordinates of the QD-converted yellow LEDs (0.4920 ± 0.0017, 0.4988 ± 0.0053) showed almost no variation under driving current from 5 mA to 150 mA. During an operation period of 60 min, the emission wavelength of the yellow LEDs showed no distinct shift. Moreover, the luminous efficiency of the QD-converted yellow LEDs achieved 13.51 l m/W at 6 mA. These results demonstrated that CsPb(BrxI1-x)3 QDs and the heat insulation structure are promising candidate for high purity yellow LEDs.

  20. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, T.; Amand, T.; Kunz, S.

    2010-08-02

    We report strong heavy hole-light hole mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k{center_dot}p theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.

  1. Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes.

    PubMed

    Zhu, Jinyang; Shao, He; Bai, Xue; Zhai, Yue; Zhu, Yongsheng; Chen, Xu; Pan, Gencai; Dong, Biao; Xu, Lin; Zhang, Hanzhuang; Song, Hongwei

    2018-06-15

    Carbon dots (CDs) have emerged as a new type of fluorescent material because of their unique optical advantages, such as high photoluminescence quantum yields (QYs), excellent photo-stability, excitation-dependent emissions, and low toxicity. However, the photoluminescence mechanism for CDs remains unclear, which limits their further practical application. Here, CDs were synthesized via a solvothermal route from citric acid and urea. Through the oxidation and reduction treatment of pristine CDs, the origin of the photoluminescence and the involved mechanism were revealed. We found that the blue/green/red emissions originated from three diverse emitting states, i.e. the intrinsic state, and C=O- and C=N-related surface states, respectively. Based on the as-prepared CDs, a pH sensor depending on the radiometric luminescence detection was developed. Furthermore, we constructed CD/PVP (PVP, polyvinylpyrrolidone) composite films, which exhibited white light emission with photoluminescence QYs of 15.3%. The white light emission with different correlated color temperatures (CCTs), from 4807 K to 3319 K, was obtained by simply changing the amount of PVP solution. Benefiting from the white light-emitting solid-state films, single-component white light-emitting diodes were fabricated with an average color rendering index value (Ra) of 80.0, luminous efficiency of 10.2 lm W -1 , and good working stability, thus indicating a promising potential for practical lighting applications.

  2. Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Jinyang; Shao, He; Bai, Xue; Zhai, Yue; Zhu, Yongsheng; Chen, Xu; Pan, Gencai; Dong, Biao; Xu, Lin; Zhang, Hanzhuang; Song, Hongwei

    2018-06-01

    Carbon dots (CDs) have emerged as a new type of fluorescent material because of their unique optical advantages, such as high photoluminescence quantum yields (QYs), excellent photo-stability, excitation-dependent emissions, and low toxicity. However, the photoluminescence mechanism for CDs remains unclear, which limits their further practical application. Here, CDs were synthesized via a solvothermal route from citric acid and urea. Through the oxidation and reduction treatment of pristine CDs, the origin of the photoluminescence and the involved mechanism were revealed. We found that the blue/green/red emissions originated from three diverse emitting states, i.e. the intrinsic state, and C=O- and C=N-related surface states, respectively. Based on the as-prepared CDs, a pH sensor depending on the radiometric luminescence detection was developed. Furthermore, we constructed CD/PVP (PVP, polyvinylpyrrolidone) composite films, which exhibited white light emission with photoluminescence QYs of 15.3%. The white light emission with different correlated color temperatures (CCTs), from 4807 K to 3319 K, was obtained by simply changing the amount of PVP solution. Benefiting from the white light-emitting solid-state films, single-component white light-emitting diodes were fabricated with an average color rendering index value (Ra) of 80.0, luminous efficiency of 10.2 lm W‑1, and good working stability, thus indicating a promising potential for practical lighting applications.

  3. Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots

    PubMed Central

    Li, Hongjian; Li, Panpan; Kang, Junjie; Ding, Jiianfeng; Ma, Jun; Zhang, Yiyun; Yi, Xiaoyan; Wang, Guohong

    2016-01-01

    We have presented broadband full-color monolithic InGaN light-emitting diodes (LEDs) by self-assembled InGaN quantum dots (QDs) using metal organic chemical vapor deposition (MOCVD). The electroluminescence spectra of the InGaN QDs LEDs are extremely broad span from 410 nm to 720 nm with a line-width of 164 nm, covering entire visible wavelength range. A color temperature of 3370 K and a color rendering index of 69.3 have been achieved. Temperature-dependent photoluminescence measurements reveal a strong carriers localization effect of the InGaN QDs layer by obvious blue-shift of emission peak from 50 K to 300 K. The broadband luminescence spectrum is believed to be attributed to the injected carriers captured by the different localized states of InGaN QDs with various sizes, shapes and indium compositions, leading to a full visible color emission. The successful realization of our broadband InGaN QDs LEDs provide a convenient and practical method for the fabrication of GaN-based monolithic full-color LEDs in wafer scale. PMID:27734917

  4. On-chip interference of single photons from an embedded quantum dot and an external laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O'Hara, J.

    2016-06-20

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler.more » This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.« less

  5. Quantum key distribution with an entangled light emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurementsmore » also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.« less

  6. Controlling reabsorption effect of bi-color CdSe quantum dots-based white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Siao, Cyuan-Bin; Chung, Shu-Ru; Wang, Kuan-Wen

    2017-08-01

    The colloidal semiconductor quantum dots (QDs) have the potentials to be used in white light-emitting diode (WLED) as a down-converting component to replace incandescent lamps, because the traditional WLED composed of Y3Al5O12:Ce3+ (YAG:Ce) phosphor lack of red color emissions and shows low color quality. Among various QDs, CdSe has been extensively studied because it possesses attractive characteristics such as high quantum yields (QYs), narrow emission spectral bandwidth, as well as size-tunable optical characteristics. However, in order to enhance the color rendering index (CRI) of WLED, blending materials with different emission wavelengths has been used frequently. Unfortunately, these procedures are complex and time-consuming, and the emission energy of smaller QDs can be reabsorbed by larger QDs, resulting in decreasing the excitation intensity in yellowish-green region. Therefore, in this study, in order to decrease the reabsorption effect and to simplify the procedures, we have demonstrated a facile thermal pyrolyzed route to prepare bicolor CdSe QDs with dual-wavelengths. The emission wavelengths, particle sizes, and QYs of QDs can be tuned from 537/595 to 537/602 nm, 2.59/3.92 to 2.59/4.01 nm, and 27 to 40 %, for GR1 to 3 samples, respectively when the amount of Se precursor is decreased from 1.5 to 0.75 mmol. Meanwhile, the area ratio of green to red (Ag/Ar) in fluorescence spectra is gradually increased, due to the increase in growth rate, and decrease in nuclei formation in red emission. The GR1, GR2, and GR3 QDs are then encapsulated by convert types to form the LED, in which the QDs are deposited on the blue-emitting InGaN LED chip (λem = 450 nm). After encapsulation, the devices properties of Commission International d'Eclairage (CIE) chromaticity and Ag/Ar area ratio are (0.40, 0.24), 0.28/1, (0.40, 0.31), 0.52/1, and (0.40, 0.38), 1.02/1, respectively for GR1, GR2, and GR3. The results show that the green emission intensity are strongly

  7. Highly Efficient Carbon Dots with Reversibly Switchable Green-Red Emissions for Trichromatic White Light-Emitting Diodes.

    PubMed

    Yuan, Biao; Guan, Shanyue; Sun, Xingming; Li, Xiaoming; Zeng, Haibo; Xie, Zheng; Chen, Ping; Zhou, Shuyun

    2018-05-09

    Carbon dots (CDs) have potentials to be utilized in optoelectronic devices, bioimaging, and photocatalysis. The majority of the current CDs with high quantum yield to date were limited in the blue light emission region. Herein, on the basis of surface electron-state engineering, we report a kind of CDs with reversible switching ability between green and red photoluminescence with a quantum yield (QY) of both up to 80%. Highly efficient green and red solid-state luminescence is realized by doping CDs into a highly transparent matrix of methyltriethoxysilane and 3-triethoxysilylpropylamine to form CDs/gel glasses composites with QYs of 80 and 78%. The CDs/gel glasses show better transmittance in visible light bands and excellent thermal stability. A blue-pumped CDs/gel glasses phosphor-based trichromatic white light-emitting diode (WLED) is realized, whose color rendering index is 92.9. The WLED gets the highest luminous efficiency of 71.75 lm W -1 in CDs-based trichromatic WLEDs. This work opens a door for developing highly efficient green- and red-emissive switching CDs which were used as phosphors for WLEDs and have the tendency for applications in other fields, such as sensing, bioimaging, and photocatalysis.

  8. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92.

    PubMed

    Zhai, Yuechen; Wang, Yi; Li, Di; Zhou, Ding; Jing, Pengtao; Shen, Dezhen; Qu, Songnan

    2018-05-29

    Exploration of solid-state efficient red emissive carbon dots (CDs) phosphors is strongly desired for the development of high performance CDs-based white light-emitting diodes (WLEDs). In this work, enhanced red emissive CDs-based phosphors with photoluminescence quantum yields (PLQYs) of 25% were prepared by embedding red emissive CDs (PLQYs of 23%) into polyvinyl pyrrolidone (PVP). Because of the protection of PVP, the phosphors could preserve strong luminescence under long-term UV excitation or being mixed with conventional packaging materials. By applying the red emissive phosphors as the color conversion layer, WLEDs with high color rendering index of 92 and color coordinate of (0.33, 0.33) are fabricated. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    PubMed

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  10. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  11. Quantum-well-base heterojunction bipolar light-emitting transistor

    NASA Astrophysics Data System (ADS)

    Feng, M.; Holonyak, N.; Chan, R.

    2004-03-01

    This letter reports the enhanced radiative recombination realized by incorporating InGaAs quantum wells in the base layer of light-emitting InGaP/GaAs heterojunction bipolar transistors (LETs) operating in the common-emitter configuration. Two 50 Å In1-xGaxAs (x=85%) quantum wells (QWs) acting, in effect, as electron capture centers ("traps") are imbedded in the 300 Å GaAs base layer, thus improving (as a "collector" and recombination center) the light emission intensity compared to a similar LET structure without QWs in the base. Gigahertz operation of the QW LET with simultaneously amplified electrical output and an optical output with signal modulation is demonstrated.

  12. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.

  13. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices.

    PubMed

    Moyen, Eric; Kanwat, Anil; Cho, Sinyoung; Jun, Haeyeon; Aad, Roy; Jang, Jin

    2018-05-10

    Perovskite quantum dots have recently emerged as a promising light source for optoelectronic applications. However, integrating them into devices while preserving their outstanding optical properties remains challenging. Due to their ionic nature, perovskite quantum dots are extremely sensitive and degrade on applying the simplest processes. To maintain their colloidal stability, they are surrounded by organic ligands; these prevent efficient charge carrier injection in devices and have to be removed. Here we report on a simple method, where a moderate thermal process followed by exposure to UV in air can efficiently remove ligands and increase the photo-luminescence of the room temperature synthesized perovskite quantum dot thin films. Annealing is accompanied by a red shift of the emission wavelength, usually attributed to the coalescence and irreversible degradation of the quantum dots. We show that it is actually related to the relaxation of the quantum dots upon the ligand removal, without the creation of non-radiative recombining defects. The quantum dot surface, as devoid of ligands, is subsequently photo-oxidized and smoothened upon exposure to UV in air, which drastically enhances their photo-luminescence. This adequate combination of treatments improves by more than an order of magnitude the performances of perovskite quantum dot light emitting diodes.

  14. Polarization of the photoluminescence of quantum dots incorporated into quantum wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platonov, A. V., E-mail: alexei.platonov@mail.ioffe.ru; Kochereshko, V. P.; Kats, V. N.

    The photoluminescence spectra of individual quantum dots incorporated into a quantum wire are studied. From the behavior of the spectra in a magnetic field, it is possible to estimate the exciton binding energy in a quantum dot incorporated into a quantum wire. It is found that the exciton photoluminescence signal emitted from a quantum dot along the direction of the nanowire axis is linearly polarized. At the same time, the photoluminescence signal propagating in the direction orthogonal to the nanowire axis is practically unpolarized. The experimentally observed effect is attributed to the nonaxial arrangement of the dot in the wiremore » under conditions of a huge increase in the exciton binding energy due to the effect of the image potential on the exciton.« less

  15. Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer.

    PubMed

    Park, Young Ran; Jeong, Hu Young; Seo, Young Soo; Choi, Won Kook; Hong, Young Joon

    2017-04-12

    Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Förster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and -resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices.

  16. Fabrication of CuInS2/ZnS quantum dots-based white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Chun; Su, Yu-Sheng; Chung, Shu-Ru

    2017-09-01

    Among solid-state lighting technology, phosphor-converted white light-emitting diodes (pc-WLEDs) are excellent candidates to replace incandescent lamps for their merit of high energy conservation, long lifetime, high luminous efficiency as well as polarized emissions. Semiconductor quantum dots (QDs) are emerging color tunable emissive light converters. They have shown significant promise as light emitters, as solar cells, and in biological imaging. It has been demonstrated that the pc-WLED devices integrated with red emissive ZnCdSe QDs show improved color rendering index of device. However, cadmium-based QDs have limited future owing to the well-known toxicity. Recently, non-cadmium luminescence materials, i.e. CuInS2-based QDs, are investigated as desirable low toxic alternatives. Particularly, CuInS2-based QDs exhibit very broad emissions spectra with full width at half maximum (FWHM) of 100-120 nm, large Stokes shifts of 200 300 meV and finely-tunable emissions. In order to adjust emission wavelengths and improved quantum yield (QY), CuInS2/ZnS (CIS/ZnS) core/shell structure was introduced. Therefore, CIS/ZnS QDs have been extensively investigated and be used as color converter in solid-state lighting. Synthesis and application of CuInS2/ZnS core/shell QDs are conducted using a hot injection route. CIS/ZnS core/shell QDs with molar ratio of Cu:In equal to 1:4 are prepared. For WLED fabrication, the CIS/ZnS QD is dispersed in toluene first, and then it is blended with transparent acrylic-based UV resin. Subsequently, the commercial green-emitting Lu3Al5O12: Ce3+ (LuAG) phosphors are mixed with QDs-resin mixture. After that, the QDs-phosphors-resin mixtures are put in the oven at 140 °C for 1 h to evaporate the toluene. Subsequently, the homogeneous QDs-phosphors-resin mixture is dropped on the top of a blue LED chip (InGaN). Then, the device is cured by 400 W UV light to form WLED. The emission wavelength of CIS/ZnS QD exhibits yellow region of 552 nm with QY

  17. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    PubMed

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  18. Designing artificial 2D crystals with site and size controlled quantum dots.

    PubMed

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  19. Nano-Dots Enhanced White Organic Light-Emitting Diodes

    DTIC Science & Technology

    2006-11-30

    phenolato)-aluminum (BAlq) and a 20 nm electron-transporting layer of tris(8-hydroxyl-quino- line)-aluminum ( Alq3 ) were sequentially deposited at 2...resultant red OLED at emission. The device composes structure of ITO/PEDOT: PSS/CBP: 6 wt% Btp2Ir(acac): x wt% CdSe quantum dots/BAlq/ Alq3 /LiF/ Al...The device composes struc- ture of ITO/PEDOT: PSS/CBP: 6 wt% Ir(ppy)3: x wt% CdSe quantum dots/BAlq/ Alq3 /LiF/ Al. Figure 8 shows the effect of

  20. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  1. Broadband light sources based on InAs/InGaAs metamorphic quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Trevisi, G.; Frigeri, P.

    We propose a design for a semiconductor structure emitting broadband light in the infrared, based on InAs quantum dots (QDs) embedded into a metamorphic step-graded In{sub x}Ga{sub 1−x}As buffer. We developed a model to calculate the metamorphic QD energy levels based on the realistic QD parameters and on the strain-dependent material properties; we validated the results of simulations by comparison with the experimental values. On this basis, we designed a p-i-n heterostructure with a graded index profile toward the realization of an electrically pumped guided wave device. This has been done by adding layers where QDs are embedded in In{submore » x}Al{sub y}Ga{sub 1−x−y}As layers, to obtain a symmetric structure from a band profile point of view. To assess the room temperature electro-luminescence emission spectrum under realistic electrical injection conditions, we performed device-level simulations based on a coupled drift-diffusion and QD rate equation model. On the basis of the device simulation results, we conclude that the present proposal is a viable option to realize broadband light-emitting devices.« less

  2. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites.

    PubMed

    Zhou, Li; He, Benzhao; Huang, Jiachang

    2013-09-21

    A facile and green approach for the synthesis of amphibious fluorescent carbon dots (CDs) from natural polysaccharide is reported. Light-emitting polymer nanocomposites with excellent optical performance can be easily prepared by incorporation of the amphibious CDs into the polymer matrix.

  3. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    PubMed

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-08-07

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.

  4. CdSe white quantum dots-based white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru

    2016-09-01

    A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.

  5. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.

    PubMed

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-10-15

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.

  6. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    PubMed Central

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  7. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  8. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  9. Studies of mist deposition for the formation of quantum dot CdSe films

    NASA Astrophysics Data System (ADS)

    Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.

    2009-10-01

    Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.

  10. Quantum cascade light emitting diodes based on type-2 quantum wells

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.

    1997-01-01

    The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  11. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y. F.; Cao, X. A., E-mail: xacao@mail.wvu.edu

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasinglymore » dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.« less

  12. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  13. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  14. Polarization of edge emission from III-nitride light emitting diodes of emission wavelength from 395 to 455 nm

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Mu, Sen; Pan, Yaobo; Yang, Zhijian; Chen, Zhizhong; Qin, Zhixin; Zhang, Guoyi

    2007-05-01

    Polarization-resolved edge-emitting electroluminescence of InGaN /GaN multiple quantum well (MQW) light emitting diodes (LEDs) from 395to455nm was measured. Polarization ratio decreased from 3.2 of near-ultraviolet LEDs (395nm) to 1.9 of blue LEDs (455nm). Based on TE mode dominant emissions in InGaN /GaN MQWs, compressive strain in well region favors TE mode, indium induced quantum-dot-like behavior leads to an increased TM component. As wavelength increased, indium enhanced quantum-dot-like behavior became obvious and E ‖C electroluminescence signal increased thus lower polarization ratio. Electroluminescence spectrum shifts confirmed that quantum dotlike behaviors rather than strain might be dominant in modifying luminescence mode of InGaN /GaN MQWs from near ultraviolet to blue.

  15. Superabsorption of light via quantum engineering

    PubMed Central

    Higgins, K. D. B.; Benjamin, S. C.; Stace, T. M.; Milburn, G. J.; Lovett, B. W.; Gauger, E. M.

    2014-01-01

    Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N2. Structures that superradiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that this restriction can be overcome by combining several well-established quantum control techniques. Our analytical and numerical calculations show that superabsorption can then be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state through transition rate engineering. This opens the prospect of a new class of quantum nanotechnology with potential applications including photon detection and light-based power transmission. An array of quantum dots or a molecular ring structure could provide a suitable platform for an experimental demonstration. PMID:25146588

  16. Quantum dot quantum cascade infrared photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning

    2014-04-28

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirpedmore » superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.« less

  17. Non-Toxic Gold Nanoclusters for Solution-Processed White Light-Emitting Diodes.

    PubMed

    Chao, Yu-Chiang; Cheng, Kai-Ping; Lin, Ching-Yi; Chang, Yu-Li; Ko, Yi-Yun; Hou, Tzu-Yin; Huang, Cheng-Yi; Chang, Walter H; Lin, Cheng-An J

    2018-06-11

    Solution-processed optoelectronic devices are attractive because of the potential low-cost fabrication and the compatibility with flexible substrate. However, the utilization of toxic elements such as lead and cadmium in current optoelectronic devices on the basis of colloidal quantum dots raises environmental concerns. Here we demonstrate that white-light-emitting diodes can be achieved by utilizing non-toxic and environment-friendly gold nanoclusters. Yellow-light-emitting gold nanoclusters were synthesized and capped with trioctylphosphine. These gold nanoclusters were then blended with the blue-light-emitting organic host materials to form the emissive layer. A current efficiency of 0.13 cd/A was achieved. The Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.33) were obtained from our experimental analysis, which is quite close to the ideal pure white emission coordinates (0.33, 0.33). Potential applications include innovative lighting devices and monitor backlight.

  18. Optical signatures of coupled quantum dots.

    PubMed

    Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D

    2006-02-03

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  19. Optical Signatures of Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  20. Detection of CdSe quantum dot photoluminescence for security label on paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok; Bilqis, Ratu

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program tomore » reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.« less

  1. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

    PubMed Central

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-01-01

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357

  2. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    PubMed

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  3. Quantum structures for recombination control in the light-emitting transistor

    NASA Astrophysics Data System (ADS)

    Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.

    2017-02-01

    Recombination of carriers in the direct-bandgap base of a transistor-injected quantum cascade laser (TI-QCL) is shown to be controllable through the field applied across the quantum cascade region located in the transistor's base-collector junction. The influence of the electric field on the quantum states in the cascade region's superlattice allows free flow of electrons out of the transistor base only for field values near the design field that provides optimal QCL gain. Quantum modulation of base recombination in the light-emitting transistor is therefore observed. In a GaAs-based light-emitting transistor, a periodic superlattice is grown between the p-type base and the n-type collector. Under different base-collector biasing conditions the distribution of quantum states, and as a consequence transition probabilities through the wells and barriers forming the cascade region, leads to strong field-dependent mobility for electrons in transit through the base-collector junction. The radiative base recombination, which is influenced by minority carrier transition lifetime, can be modulated through the quantum states alignment in the superlattice. A GaAs-based transistor-injected quantum cascade laser with AlGaAs/GaAs superlattice is designed and fabricated. Radiative base recombination is measured under both common-emitter and common-base configuration. In both configurations the optical output from the base is proportional to the emitter injection. When the quantum states in the superlattice are aligned the optical output in the base is reduced as electrons encounter less impedance entering the collector; when the quantum states are misaligned electrons have longer lifetime in the base and the radiative base recombination process is enhanced.

  4. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  5. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  6. Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.

    2018-04-01

    Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.

  7. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties

    NASA Astrophysics Data System (ADS)

    Mumin, Md Abdul; Xu, William Z.; Charpentier, Paul A.

    2015-08-01

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (˜65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (˜90%) and decreased UV transmission (˜75%).

  8. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties.

    PubMed

    Mumin, Md Abdul; Xu, William Z; Charpentier, Paul A

    2015-08-07

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (∼65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (∼90%) and decreased UV transmission (∼75%).

  9. Long lifetime near-infrared-emitting quantum dots for time-gated in vivo imaging of rare circulating cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fragola, Alexandra; Bouccara, Sophie; Pezet, Sophie; Lequeux, Nicolas; Loriette, Vincent; Pons, Thomas

    2017-02-01

    The in vivo detection of rare circulating cells using non invasive fluorescence imaging would provide a key tool to study migration of eg. tumoral or immunological cells. Fluorescence detection is however currently limited by a lack of contrast between the small emission of isolated, fast circulating cells and the strong autofluorescence background of the surrounding tissues. We present the development of near infrared emitting quantum dots (NIR-QDs) with long fluorescence lifetime for sensitive time-gated in vivo imaging of circulating cells. These QDs are composed of low toxicity ZnCuInSe/ZnS materials and made biocompatible using a novel multidentate imidazole zwitterionic block copolymer, ensuring their long term intracellular stability. Cells of interest can thus be labeled ex vivo with QDs, injected intravenously and imaged in the near infrared range. Excitation using a pulsed laser coupled to time-gated detection enables the efficient rejection of short lifetime (≈ ns) autofluorescence background and detection of long lifetime (≈ 150 ns) fluorescence from QD-labeled cells. We demonstrate efficient in vivo imaging of single fast-flowing cells, which opens opportunities for future biological studies. [1] M. Tasso et al, "Sulfobetaine-Vinylimidazole block copolymers: a robust quantum dot surface chemistry expanding bioimaging's horizons", ACS Nano, 9(11), 2015 [2] S. Bouccara et al, "Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection", J Biomed Optc, 19(5), 2014

  10. Novel Biomedical Device Utilizing Light-Emitting Nanostructures Developed

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Goldman, Rachel

    2004-01-01

    Sketches and chemical diagrams of state-of-the-art device and novel proposed device are presented. Current device uses a diode laser that emits into a fluorescent fluid only one wavelength and a photodetector diode that detects only one wavelength. Only one type of bacteria can be detected. The proposed device uses a quantum dot array that emits into a fluorescent fluid multiple wavelengths and an NIR 512 spectrometer that scans 0.8- to 1.7-mm wavelengths. Hundreds of different bacteria and viruses can be detected. A novel biomedical device is being developed at the NASA Glenn Research Center in cooperation with the University of Michigan. This device uses nano-structured quantum dots that emit light in the near-infrared (IR) region. The nanostructured quantum dots are used as a source and excite fluorochrome polymers coupled with antibodies that seek out and attach to specific bacteria and viruses. The fluorochrome polymers/antibodies fluoresce at specific wavelengths in the near-IR spectrum, but these wavelengths are offset from the excitation wavelength and can be detected with a tunable spectrometer. The device will be used to detect the presence of viruses and bacteria in simple fluids and eventually in more complex fluids, such as blood. Current state-of-the-art devices are limited to single bacteria or virus detection and a considerable amount of time and effort is required to prepare samples for analysis. Most importantly, the devices are quite large and cumbersome, which prohibits them from being used on the International Space Station and the space shuttles. This novel device uses nanostructured quantum dots which, through molecular beam epitaxy and highly selective annealing processes, can be developed into an illumination source that could potentially generate hundreds of specific wavelengths. As a result, this device will be able to excite hundreds of antibody/fluorochrome polymer combinations, which in turn could be used to detect hundreds of bacteria

  11. Tuning Optoelectronic Properties of the Graphene-Based Quantum Dots C16- xSi xH10 Family.

    PubMed

    Ramadan, F-Z; Ouarrad, H; Drissi, L B

    2018-06-07

    The electronic and optical properties of graphene-based quantum dots (QDs) are investigated using DFT and many-body perturbation theory. Formation energy, hardeness and electrophilicity show that all structures, from pyrene to silicene QD passing through 15 CSi QD configurations, are energetically and chemically stable. It is also found that they are reactive which implies their favorable character for the possible electronic transport and conductivity. The electronic and optical properties are very sensitive to the number and position of the substituted silicon atoms as well as the directions of the light polarization. Moreover, quantum confinement effects make the exciton binding energy of CSi quantum dots larger than those of their higher dimensional allotropes such as silicene, graphene, and SiC sheet and nanotube. It is also higher those of other shapes of quantum dots like hexagonal graphene QDs and can be tailored from the ultraviolet region to the visible one. The values of the singlet-triplet splitting determined for the X- and Y-light polarized indicate that all configurations have a high fluorescence quantum yield compared to the yield of typical semiconductors, which makes them very promising for various applications such as the light-emitting diode material and nanomedicine.

  12. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics.

    PubMed

    Sanchez, Rafael S; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3-xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The "color" of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit.

  13. Scintillating Quantum Dots for Imaging X-Rays (SQDIX) for Aircraft Inspection

    NASA Technical Reports Server (NTRS)

    Burke, E. R.; DeHaven, S. L.; Williams, P. A.

    2015-01-01

    Scintillation is the process currently employed by conventional X-ray detectors to create X-ray images. Scintillating quantum dots (StQDs) or nano-crystals are novel, nanometer-scale materials that upon excitation by X-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmentally friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread X-ray imaging. Initial work on the scintillating quantum dots for imaging X-rays (SQDIX) system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency of a StQDs based imaging sensor.

  14. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-27

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  15. Quantum interference of electrically generated single photons from a quantum dot.

    PubMed

    Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2010-07-09

    Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

  16. Influence of electromechanical coupling on optical properties of InGaN quantum-dot based light-emitting diodes.

    PubMed

    Barettin, Daniele; Maur, Matthias Auf der; Carlo, Aldo di; Pecchia, Alessandro; Tsatsulnikov, Andrei F; Sakharov, Alexei V; Lundin, Wsevolod V; Nikolaev, Andrei E; Usov, Sergey O; Cherkashin, Nikolay; Hÿtch, Martin J; Karpov, Sergey Yu

    2017-01-06

    The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e. the shape and the average In content of the QDs, has been directly derived from experimental data on out-of-plane strain distribution obtained from the geometric-phase analysis of a high-resolution transmission electron microscopy image of an LED structure grown by metalorganic vapor-phase epitaxy. Using continuum [Formula: see text] calculations, we have studied first the lateral and full electromechanical coupling between the QDs in the active region and its impact on the emission spectrum of a single QD located in the center of the region. Our simulations demonstrate the spectrum to be weakly affected by the coupling despite the strong common strain field induced in the QD active region. Then we analyzed the effect of vertical coupling between vertically stacked QDs as a function of the interdot distance. We have found that QCSE gives rise to a blue-shift of the overall emission spectrum when the interdot distance becomes small enough. Finally, we compared the theoretical spectrum obtained from simulation of the entire active region with an experimental electroluminescence (EL) spectrum. While the theoretical peak emission wavelength of the selected central QD corresponded well to that of the EL spectrum, the width of the latter one was determined by the scatter in the structures of various QDs located in the active region. Good agreement between the simulations and experiment achieved as a whole validates our model based on realistic structure of the QD active region and demonstrates advantages of the applied approach.

  17. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  18. Controlling Quantum-dot Light Absorption and Emission by a Surface-plasmon Field

    DTIC Science & Technology

    2014-11-03

    as well as photon conversion by a surface-plasmon- polariton near field is explored for a quantum dot located above a metal surface. In contrast to the...2009). 7. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity polariton splitting of intersubband transitions,” Phys. Rev. Lett...S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105

  19. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  20. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  1. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  2. Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors

    NASA Astrophysics Data System (ADS)

    Bicanic, Kristopher T.

    This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.

  3. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions

    NASA Astrophysics Data System (ADS)

    Vanessa, Hinterberger; Wenshuo, Wang; Cornelia, Damm; Simon, Wawra; Martin, Thoma; Wolfgang, Peukert

    2018-06-01

    In this contribution, we demonstrate that an aqueous solution with adjustable fluorescent color, including white light emission, can be achieved by a rapid one-step microwave synthesis method resulting in a mixture of blue-emitting carbon dots (CDs) and the yellow-emitting 2,3-diaminophenazine (DAP). Aqueous mixtures of o-phenylene-diamine (oPD) and citric acid (CA) are used as precursors. The resulting product structures are analyzed by FT-IR and NMR spectroscopy and the size of the resulting CDs is determined by atomic force microscopy to be 1.1 ± 0.3 nm. The synthesized solution exhibits two fluorescence emission peaks at 430 and 560 nm, which were found to originate from the CDs and DAP, respectively. The intensity ratio of both fluorescence peaks depends on pH, which is driven by the protonation state of DAP. In consequence, the fluorescence emission color of the CD solution can be tuned precisely and reproducibly from blue to white to yellow by careful control of the pH. Finally, at a pH level of 5.4, at which there is equal blue and yellow emission intensity, a white light emitting solution can be successfully produced in a very fast and simple synthesis procedure.

  4. InGaN/GaN dot-in-nanowire monolithic LEDs and lasers on (001) silicon

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Hazari, A.; Jahangir, S.

    2017-02-01

    GaN-based nanowire arrays have been grown on (001)Si substrate by plasma-assisted molecular beam epitaxy and their structural and optical properties have been determined. InxGa1-xN disks inserted in the nanowires behave as quantum dots with emission ranging from visible to near-infrared. We have exploited these nanowire heterostructure arrays to realize light-emitting diodes and diode lasers in which the quantum dots form the active light emitting media. The fabrication and characteristics of 630nm light-emitting diodes and 1.3μm edge-emitting diode lasers are described.

  5. Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia

    2018-02-01

    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.

  6. Towards Violation of Classical Inequalities using Quantum Dot Resonance Fluorescence

    NASA Astrophysics Data System (ADS)

    Peiris, Manoj

    Self-assembled semiconductor quantum dots have attracted considerable interest recently, ranging from fundamental studies of quantum optics to advanced applications in the field of quantum information science. With their atom-like properties, quantum dot based nanophotonic devices may also substantially contribute to the development of quantum computers. This work presents experimental progress towards the understanding of light-matter interactions that occur beyond well-understood monochromatic resonant light scattering processes in semiconductor quantum dots. First, we report measurements of resonance fluorescence under bichromatic laser excitation. With the inclusion of a second laser, both first-order and second-order correlation functions are substantially altered. Under these conditions, the scattered light exhibits a rich spectrum containing many spectral features that lead to a range of nonlinear multiphoton dynamics. These observations are discussed and compared with a theoretical model. Second, we investigated the light scattered by a quantum dot in the presence of spectral filtering. By scanning the tunable filters placed in front of each detector of a Hanbury-Brown and Twiss setup and recording coincidence measurements, a \\two-photon spectrum" has been experimentally reconstructed for the first time. The two-photon spectrum contains a wealth of information about the cascaded emission involved in the scattering process, such as transitions occurring via virtual intermediate states. Our measurements also reveal that the scattered frequency-filtered light from a quantum dot violates the Cauchy-Schwarz inequality. Finally, Franson-interferometry has been performed using spectrally filtered light from quantum dot resonance fluorescence. Visibilities exceeding the classical limit were demonstrated by using a pair of folded Mach-Zehnder interferometers, paving the way for producing single time-energy entangled photon pairs that could violate Bell

  7. Single photon emission from charged excitons in CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Belyaev, K. G.; Rakhlin, M. V.; Sorokin, S. V.; Klimko, G. V.; Gronin, S. V.; Sedova, I. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.

    2017-11-01

    We report on micro-photoluminescence studies of individual self-organized CdTe/ZnTe quantum dots intended for single-photon-source applications in a visible spectral range. The quantum dots surface density below 1010 per cm2 was achieved by using a thermally activated regime of molecular beam epitaxy that allowed fabrication of etched mesa-structures containing only a few emitting quantum dots. The single photon emission with the autocorrelation function g(2)(0)<0.2 was detected and identified as recombination of charged excitons in the individual quantum dot.

  8. Quantum dot-polymer conjugates for stable luminescent displays.

    PubMed

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  9. Defect induced photoluminescence in MoS2 quantum dots and effect of Eu3+/Tb3+ co-doping towards efficient white light emission

    NASA Astrophysics Data System (ADS)

    Haldar, Dhrubaa; Ghosh, Arnab; Bose, Saptasree; Mondal, Supriya; Ghorai, Uttam Kumar; Saha, Shyamal K.

    2018-05-01

    Intensive research has been carried out on optical properties of MoS2 quantum dots for versatile applications in photo catalytic, sensing and optoelectronic devices. However, white light generation from MoS2 quantum dots particularly using doping effect is relatively unexplored. Herein we report successful synthesis of Europium (Eu)/Terbium (Tb) co-doped MoS2 quantum dots to achieve white light for potential applications in optoelectronic devices. The dopant ions are introduced into the host lattice to retain the emission colors to cover the entire range of visible light of solar spectrum. Perfect white light (CIE = 0.31, 0.33) with high intensity (quantum yield = 28.29%) is achieved in these rare earth elements co-doped quantum dot system. A new peak is observed in the NIR region which is attributed to the defects present in MoS2 quantum dots. Temperature dependent study has been carried out to understand the origin of this new peak in the NIR region. It is seen that the 'S' defects in the QDs cause the appearance of this peak which shows a blue shift at higher temperature.

  10. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Michael B.; Fan, Hongyou; Brener, Igal

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. Duringmore » the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.« less

  11. Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Hosseini, Morteza; Ganjali, Mohammad R.; Vaezi, Zahra; Faridbod, Farnoush; Arabsorkhi, Batool; Sheikhha, Mohammad H.

    2014-03-01

    The intensity of emitted light from CdSe quantum dots (QDs)-H2O2 is described as a novel chemiluminescence (CL) reaction for determination of dysprosium. This reaction is based on the catalytic effect of Dy3+ ions, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 8.3 × 10-7-5.0 × 10-6 M, the detection limit of 6.0 × 10-8 M, and the relative standard deviation for five determinations of 2.5 × 10-6 M Dy3+ 3.2%. The main experimental advantage of the proposed method is its selective to Dy3+ ions compared with common coexisting cations, therefore, it was successfully applied for the determination of dysprosium ions in water samples.

  12. Quantum Dot Photonics

    NASA Astrophysics Data System (ADS)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  13. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    PubMed

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  14. Field-emission from quantum-dot-in-perovskite solids

    PubMed Central

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-01-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission. PMID:28337981

  15. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.

    PubMed

    Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab

    2013-01-01

    In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.

  16. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics

    PubMed Central

    Sanchez, Rafael S.; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3–xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The “color” of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit. PMID:26844299

  17. Quantum Dots Investigated for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  18. Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth.

    PubMed

    Lim, Kipil; Jang, Ho Seong; Woo, Kyoungja

    2012-12-07

    Blue (<480 nm) emitting Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been challenging. Here we present blue emitting InP/ZnS core/shell QDs with a band edge emission of 475 nm and a full width at half maximum of 39 nm (215 meV) from their quantum confined states. The drastic temperature drop immediately after mixing of the precursors and holding them at a temperature below 150 °C was the critical factor for the synthesis of blue emitting QDs, because the blue QDs are formed by the etching of ultra-small InP cores by residual acetic acid below 150 °C. Etching was dominant at temperatures below 150 °C, whereas growth was dominant at temperatures above 150 °C. ZnS shells were formed successfully at 150 °C, yielding blue emitting InP/ZnS QDs. The colour of the InP/ZnS QDs depicted on the CIE 1931 chromaticity diagram is located close to the edge, indicating a pure blue colour compared to other InP-based QDs.

  19. Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth

    NASA Astrophysics Data System (ADS)

    Lim, Kipil; Jang, Ho Seong; Woo, Kyoungja

    2012-12-01

    Blue (<480 nm) emitting Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been challenging. Here we present blue emitting InP/ZnS core/shell QDs with a band edge emission of 475 nm and a full width at half maximum of 39 nm (215 meV) from their quantum confined states. The drastic temperature drop immediately after mixing of the precursors and holding them at a temperature below 150 °C was the critical factor for the synthesis of blue emitting QDs, because the blue QDs are formed by the etching of ultra-small InP cores by residual acetic acid below 150 °C. Etching was dominant at temperatures below 150 °C, whereas growth was dominant at temperatures above 150 °C. ZnS shells were formed successfully at 150 °C, yielding blue emitting InP/ZnS QDs. The colour of the InP/ZnS QDs depicted on the CIE 1931 chromaticity diagram is located close to the edge, indicating a pure blue colour compared to other InP-based QDs.

  20. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  1. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  2. All Solution-processed Stable White Quantum Dot Light-emitting Diodes with Hybrid ZnO@TiO2 as Blue Emitters

    PubMed Central

    Chen, Jing; Zhao, Dewei; Li, Chi; Xu, Feng; Lei, Wei; Sun, Litao; Nathan, Arokia; Sun, Xiao Wei

    2014-01-01

    White quantum dot light-emitting diodes (QD-LEDs) have been a promising candidate for high-efficiency and color-saturated displays. However, it is challenging to integrate various QD emitters into one device and also to obtain efficient blue QDs. Here, we report a simply solution-processed white QD-LED using a hybrid ZnO@TiO2 as electron injection layer and ZnCdSeS QD emitters. The white emission is obtained by integrating the yellow emission from QD emitters and the blue emission generated from hybrid ZnO@TiO2 layer. We show that the performance of white QD-LEDs can be adjusted by controlling the driving force for hole transport and electroluminescence recombination region via varying the thickness of hole transport layer. The device is demonstrated with a maximum luminance of 730 cd/m2 and power efficiency of 1.7 lm/W, exhibiting the Commission Internationale de l'Enclairage (CIE) coordinates of (0.33, 0.33). The unencapsulated white QD-LED has a long lifetime of 96 h at its initial luminance of 730 cd/m2, primarily due to the fact that the device with hybrid ZnO@TiO2 has low leakage current and is insensitive to the oxygen and the moisture. These results indicate that hybrid ZnO@TiO2 provides an alternate and effective approach to achieve high-performance white QD-LEDs and also other optoelectronic devices. PMID:24522341

  3. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.

    PubMed

    Press, David; Götzinger, Stephan; Reitzenstein, Stephan; Hofmann, Carolin; Löffler, Andreas; Kamp, Martin; Forchel, Alfred; Yamamoto, Yoshihisa

    2007-03-16

    We observe antibunching in the photons emitted from a strongly coupled single quantum dot and pillar microcavity in resonance. When the quantum dot was spectrally detuned from the cavity mode, the cavity emission remained antibunched, and also anticorrelated from the quantum dot emission. Resonant pumping of the selected quantum dot via an excited state enabled these observations by eliminating the background emitters that are usually coupled to the cavity. This device demonstrates an on-demand single-photon source operating in the strong coupling regime, with a Purcell factor of 61+/-7 and quantum efficiency of 97%.

  4. Charge transport in strongly coupled quantum dot solids

    NASA Astrophysics Data System (ADS)

    Kagan, Cherie R.; Murray, Christopher B.

    2015-12-01

    The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

  5. Charge transport in strongly coupled quantum dot solids.

    PubMed

    Kagan, Cherie R; Murray, Christopher B

    2015-12-01

    The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

  6. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  7. [Spectral Analysis of CdZnSe Ternary Quantum Dots Sensitized TiO2 Tubes and Its Application in Visible-Light Photocatalysis].

    PubMed

    Han, Zhi-zhong; Ren, Li-li; Pan, Hai-bo; Li, Chun-yan; Chen, Jing-hua; Chen, Jian-zhong

    2015-11-01

    In this work, cadmium nitrate hexahydrate [Cd(NO₃)₂ · 6H₂O] is as a source of cadmium, zinc nitrate [Zn(NO₃)₂] as a source of zinc source, and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH₄). Then water-soluble Cd₁₋xZnxSe ternary quantum dots with different component were prepared by colloid chemistry. The as-prepared Cd₁₋xZnx Se ternary quantum dots exhibit stable fluorescent property in aqueous solution, and can still maintain good dispersivity at room temperature for four months. Powder X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd₁₋xZnxSe. It is found that the as-prepared ternary quantum dots are cubic phase, show as sphere, and the average of particle size is approximate 4 nm. The spectral properties and energy band structure of the as-prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd. Compared with binary quantum dots CdSe and ZnSe, the ultraviolet-visible (UV-Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red-shift. The composites (Cd₀.₅ Zn₀.₅ Se@TNTs) of Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes (TNTs) were prepared by directly immerging TNTs into quantum dots dispersive solution for 5 hours. TEM image shows that the Cd₀.₅ Zn₀.₅ Se ternary quantum dots were closely combined to nanotube surface. The infrared spectra show that the Ti-Se bond was formed between Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes, which improve the stability of the composite. Compared to pristine TNTs, UV-Visible absorption spectrum of the composites is significantly enhanced in the visible region of light. And the absorption band edge of Cd₀.₅Zn₀.₅ Se@TNTs red-shift from 400 to 700 nm. The recombination of the

  8. Growth and optical characteristics of InAs quantum dot structures with tunnel injection quantum wells for 1.55 μ m high-speed lasers

    NASA Astrophysics Data System (ADS)

    Bauer, Sven; Sichkovskyi, Vitalii; Reithmaier, Johann Peter

    2018-06-01

    InP based lattice matched tunnel injection structures consisting of a InGaAs quantum well, InAlGaAs barrier and InAs quantum dots designed to emit at 1.55 μ m were grown by molecular beam epitaxy and investigated by photoluminescence spectroscopy and atomic force microscopy. The strong influence of quantum well and barrier thicknesses on the samples emission properties at low and room temperatures was investigated. The phenomenon of a decreased photoluminescence linewidth of tunnel injection structures compared to a reference InAs quantum dots sample could be explained by the selection of the emitting dots through the tunneling process. Morphological investigations have not revealed any effect of the injector well on the dot formation and their size distribution. The optimum TI structure design could be defined.

  9. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    PubMed

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-09

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  10. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    PubMed Central

    Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa

    2017-01-01

    Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792

  11. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    NASA Astrophysics Data System (ADS)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  12. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.

    PubMed

    Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V

    2011-01-04

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.

  13. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs.

    PubMed

    Yuan, Fanglong; Yuan, Ting; Sui, Laizhi; Wang, Zhibin; Xi, Zifan; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Tan, Zhan'ao; Chen, Anmin; Jin, Mingxing; Yang, Shihe

    2018-06-08

    Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon's intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54-72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882-4762 cd m -2 and current efficiency of 1.22-5.11 cd A -1 . This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.

  14. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    PubMed

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  15. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots

    DOE PAGES

    Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; ...

    2016-02-16

    Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective

  16. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    PubMed

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  17. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    NASA Astrophysics Data System (ADS)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  18. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    PubMed Central

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  19. Overcoming the limitations of silver nanowire electrodes for light emitting applications

    NASA Astrophysics Data System (ADS)

    Chen, Dustin Yuan

    show significant morphological stability over pristine silver nanowires when electrically stressed at normal operating conditions for OLEDs. These electrically stable substrates were able to produce high performance OLEDs with lifetimes 140% longer than the same devices fabricated on ITO, and 20% higher than non-electrically stable AgNW-based substrates. Thirdly, the thermally and electrically stable substrate was used to fabricate a high performing perovskite quantum dot light-emitting device exhibiting high flexibility. The use of quantum dots instead of perovskite precursors and post treatment to convert the precursors to perovskite allowed for several new innovations. Due to the elimination of highly polar solvents typically required with perovskite precursors, a broadened range of architectures can be achieved. Furthermore, due to the small dimensions of the quantum dots in contrast to thick films of perovskite formed from precursors, the active layer can extremely thin, allowing for high mechanical flexibility. The performance metrics achieved of 10.4 cd/A, 8.1 lm/W, and 2.6% EQE at a brightness of 1000 cd/m2 were enabled in part by the substrate, which further allowed for the high mechanical performance. The electroluminescence performance of the perovskite quantum dot LEDs was found to be virtually fully recoverable after being subjected to a bending radius of 2.5 mm, or repeated cycles of bending and unbending to a 4 mm radius, representing the first report of a highly flexible and mechanically perovskite quantum dot light emitting device with high electroluminescence performance. The improved stability of AgNWs with regards to both manufacturing and operational use, in addition to proof of concept in various light emitting devices demonstrates the potential of this technology for large-scale, commercial lighting applications.

  20. Blue light hazard performance comparison of phosphor-converted LED sources with red quantum dots and red phosphor

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Liu, Shishen; Yu, Zhihua; Liu, Li; Jin, Xing

    2017-07-01

    In this study, the blue light hazard performances of phosphor converted-light-emitting diodes (pc-LEDs) with red phosphor and red quantum dots (QDs) were compared and analyzed by spectral optimization, which boosts the minimum attainable blue light hazard efficiency of radiation (BLHER) at high values of color rendering index (CRI) and luminous efficacy of radiation (LER) when the correlated color temperature (CCT) value changes from 1800 to 7800 K. It is found that the minimal BLHER value increases with the increase in the CCT value, and the minimal BLHER values of the two spectral models are nearly the same. Note that the QDs' model has advantages at CCT coverage under the same constraints of CRI and LER. Then, the relationships between minimal BLHER, CRI, CCT, and LER of pc-LEDs with QDs' model were analyzed. It is found that the minimal BLHER values are nearly the same when the CRI value changes from 50 to 90. Therefore, the influence of CRI on minimal BLHER is insignificant. Minimal BLHER increases with the increase in the LER value from 240 to 360 lm/W.

  1. Spin interactions in InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  2. Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.

    PubMed

    Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon

    2013-01-01

    A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.

  3. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  5. Purcell effect in triangular plasmonic nanopatch antennas with three-layer colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Eliseev, S. P.; Kurochkin, N. S.; Vergeles, S. S.; Sychev, V. V.; Chubich, D. A.; Argyrakis, P.; Kolymagin, D. A.; Vitukhnovskii, A. G.

    2017-05-01

    A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.

  6. Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo

    We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.

  7. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  8. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  9. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  10. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots

    DOE PAGES

    Klimov, Victor I.; Baker, Thomas A.; Lim, Jaehoon; ...

    2016-05-09

    In this study, luminescent solar concentrators (LSCs) can be utilized as both large-area collectors of solar radiation supplementing traditional photovoltaic cells as well as semitransparent “solar windows” that provide a desired degree of shading and simultaneously serve as power-generation units. An important characteristic of an LSC is a concentration factor (C) that can be thought of as a coefficient of effective enlargement (or contraction) of the area of a solar cell when it is coupled to the LSC. Here we use analytical and numerical Monte Carlo modeling in addition to experimental studies of quantum-dot-based LSCs to analyze the factors thatmore » influence optical concentration in practical devices. Our theoretical model indicates that the maximum value of C achievable with a given fluorophore is directly linked to the LSC quality factor (Q LSC) defined as the ratio of absorption coefficients at the wavelengths of incident and reemitted light. In fact, we demonstrate that the ultimate concentration limit (C 0) realized in large-area devices scales linearly with the LSC quality factor and in the case of perfect emitters and devices without back reflectors is approximately equal to Q LSC. To test the predictions of this model, we conduct experimental studies of LSCs based on visible-light emitting II–VI core/shell quantum dots with two distinct LSC quality factors. We also investigate devices based on near-infrared emitting CuInSe xS 2–x quantum dots for which the large emission bandwidth allows us to assess the impact of varied Q LSC on the concentration factor by simply varying the detection wavelength. In all cases, we find an excellent agreement between the model and the experimental observations, suggesting that the developed formalism can be utilized for express evaluation of prospective LSC performance based on the optical spectra of LSC fluorophores, which should facilitate future efforts on the development of high-performance devices based

  11. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, Victor I.; Baker, Thomas A.; Lim, Jaehoon

    In this study, luminescent solar concentrators (LSCs) can be utilized as both large-area collectors of solar radiation supplementing traditional photovoltaic cells as well as semitransparent “solar windows” that provide a desired degree of shading and simultaneously serve as power-generation units. An important characteristic of an LSC is a concentration factor (C) that can be thought of as a coefficient of effective enlargement (or contraction) of the area of a solar cell when it is coupled to the LSC. Here we use analytical and numerical Monte Carlo modeling in addition to experimental studies of quantum-dot-based LSCs to analyze the factors thatmore » influence optical concentration in practical devices. Our theoretical model indicates that the maximum value of C achievable with a given fluorophore is directly linked to the LSC quality factor (Q LSC) defined as the ratio of absorption coefficients at the wavelengths of incident and reemitted light. In fact, we demonstrate that the ultimate concentration limit (C 0) realized in large-area devices scales linearly with the LSC quality factor and in the case of perfect emitters and devices without back reflectors is approximately equal to Q LSC. To test the predictions of this model, we conduct experimental studies of LSCs based on visible-light emitting II–VI core/shell quantum dots with two distinct LSC quality factors. We also investigate devices based on near-infrared emitting CuInSe xS 2–x quantum dots for which the large emission bandwidth allows us to assess the impact of varied Q LSC on the concentration factor by simply varying the detection wavelength. In all cases, we find an excellent agreement between the model and the experimental observations, suggesting that the developed formalism can be utilized for express evaluation of prospective LSC performance based on the optical spectra of LSC fluorophores, which should facilitate future efforts on the development of high-performance devices based

  12. Efficiency enhancement of blue light emitting diodes by eliminating V-defects from InGaN/GaN multiple quantum well structures through GaN capping layer control

    NASA Astrophysics Data System (ADS)

    Tsai, Sheng-Chieh; Li, Ming-Jui; Fang, Hsin-Chiao; Tu, Chia-Hao; Liu, Chuan-Pu

    2018-05-01

    A facile method for fabricating blue light-emitting diodes (B-LEDs) with small embedded quantum dots (QDs) and enhanced light emission is demonstrated by tuning the temperature of the growing GaN capping layer to eliminate V-defects. As the growth temperature increases from 770 °C to 840 °C, not only does the density of the V-defects reduce from 4.12 ∗ 108 #/cm2 nm to zero on a smooth surface, but the QDs also get smaller. Therefore, the growth mechanism of smaller QDs assisted by elimination of V-defects is discussed. Photoluminescence and electroluminescence results show that smaller embedded QDs can improve recombination efficiency, and thus achieve higher peak intensity with smaller peak broadening. Accordingly, the external quantum efficiency of the B-LEDs with smaller QDs is enhanced, leading to a 6.8% increase in light output power in lamp-form package LEDs.

  13. Interfacing a quantum dot with a spontaneous parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor

    2017-09-01

    Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.

  14. Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiella, Roberto; Moustakas, Theodore D.

    This document reviews a research program funded by the DOE Office of Science, which has been focused on the control of radiation and absorption processes in semiconductor photonic materials (including III-nitride quantum wells and quantum dots), through the use of specially designed metallic nanoparticles (NPs). By virtue of their strongly confined plasmonic resonances (i.e., collective oscillations of the electron gas), these nanostructures can concentrate incident radiation into sub-wavelength “hot spots” of highly enhanced field intensity, thereby increasing optical absorption by suitably positioned absorbers. By reciprocity, the same NPs can also dramatically increase the spontaneous emission rate of radiating dipoles locatedmore » within their hot spots. The NPs can therefore be used as optical antennas to enhance the radiation output of the underlying active material and at the same time control the far-field pattern of the emitted light. The key accomplishments of the project include the demonstration of highly enhanced light emission efficiency as well as plasmonic collimation and beaming along geometrically tunable directions, using a variety of plasmonic excitations. Initial results showing the reverse functionality (i.e., plasmonic unidirectional absorption and photodetection) have also been generated with similar systems. Furthermore, a new paradigm for the near-field control of light emission has been introduced through rigorous theoretical studies, based on the use of gradient metasurfaces (i.e., optical nanoantenna arrays with spatially varying shape, size, and/or orientation). These activities have been complemented by materials development efforts aimed at the synthesis of suitable light-emitting samples by molecular beam epitaxy. In the course of these efforts, a novel technique for the growth of III-nitride quantum dots has also been developed (droplet heteroepitaxy), with several potential advantages in terms of compositional and

  15. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  16. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    PubMed

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  17. Optical manipulation of electron spin in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Villas-Boas, Jose; Ulloa, Sergio; Govorov, Alexander

    2006-03-01

    Self-assembled quantum dots (QDs) are of particular interest for fundamental physics because of their similarity with atoms. Coupling two of such dots and addressing them with polarized laser light pulses is perhaps even more interesting. In this paper we use a multi-exciton density matrix formalism to model the spin dynamics of a system with single or double layers of QDs. Our model includes the anisotropic electron-hole exchange in the dots, the presence of wetting layer states, and interdot tunneling [1]. Our results show that it is possible to switch the spin polarization of a single self-assembled quantum dot under elliptically polarized light by increasing the laser intensity. In the nonlinear mechanism described here, intense elliptically polarized light creates an effective exchange channel between the exciton spin states through biexciton states, as we demonstrate by numerical and analytical methods. We further show that the effect persists in realistic ensembles of dots, and we propose alternative ways to detect it. We also extend our study to a double layer of quantum dots, where we find a competition between Rabi frequency and tunneling oscillations. [1] J. M. Villas-Boas, S. E. Ulloa, and A. O. Govorov, Phys. Rev. Lett. 94, 057404 (2005); Phys. Rev. B 69, 125342 (2004).

  18. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    2016-07-04

    Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.

  19. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs.

    PubMed

    Kumar, Baskaran Ganesh; Sadeghi, Sadra; Melikov, Rustamzhon; Aria, Mohammad Mohammadi; Jalali, Houman Bahmani; Ow-Yang, Cleva W; Nizamoglu, Sedat

    2018-08-24

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W -1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

  20. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes.

    PubMed

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, GuanHua; Yam, ChiYung

    2016-07-21

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems.

  1. Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots

    PubMed Central

    Park, Hun; Hyun Noh, Sung; Hye Lee, Ji; Jun Lee, Won; Yun Jaung, Jae; Geol Lee, Seung; Hee Han, Tae

    2015-01-01

    Graphene oxide (GO), which is an oxidized form of graphene, has a mixed structure consisting of graphitic crystallites of sp2 hybridized carbon and amorphous regions. In this work, we present a straightforward route for preparing graphene-based quantum dots (GQDs) by extraction of the crystallites from the amorphous matrix of the GO sheets. GQDs with controlled functionality are readily prepared by varying the reaction temperature, which results in precise tunability of their optical properties. Here, it was concluded that the tunable optical properties of GQDs are a result of the different fraction of chemical functionalities present. The synthesis approach presented in this paper provides an efficient strategy for achieving large-scale production and long-time optical stability of the GQDs, and the hybrid assembly of GQD and polymer has potential applications as photoluminescent fibers or films. PMID:26383257

  2. Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-04-01

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  3. Site-controlled InGaN/GaN single-photon-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Deng, Hui, E-mail: dengh@umich.edu; Teng, Chu-Hsiang

    2016-04-11

    We report single-photon emission from electrically driven site-controlled InGaN/GaN quantum dots. The device is fabricated from a planar light-emitting diode structure containing a single InGaN quantum well, using a top-down approach. The location, dimension, and height of each single-photon-emitting diode are controlled lithographically, providing great flexibility for chip-scale integration.

  4. Device and Method of Scintillating Quantum Dots for Radiation Imaging

    NASA Technical Reports Server (NTRS)

    Burke, Eric R. (Inventor); DeHaven, Stanton L. (Inventor); Williams, Phillip A. (Inventor)

    2017-01-01

    A radiation imaging device includes a radiation source and a micro structured detector comprising a material defining a surface that faces the radiation source. The material includes a plurality of discreet cavities having openings in the surface. The detector also includes a plurality of quantum dots disclosed in the cavities. The quantum dots are configured to interact with radiation from the radiation source, and to emit visible photons that indicate the presence of radiation. A digital camera and optics may be used to capture images formed by the detector in response to exposure to radiation.

  5. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2015-01-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  6. Highly Fluorescent Noble Metal Quantum Dots

    PubMed Central

    Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

    2009-01-01

    Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

  7. Tunability and Stability of Lead Sulfide Quantum Dots in Ferritin

    NASA Astrophysics Data System (ADS)

    Peterson, J. Ryan; Hansen, Kameron

    Quantum dot solar cells have become one of the fastest growing solar cell technologies to date, and lead sulfide has proven to be an efficient absorber. However, one of the primary concerns in dye-sensitized quantum dot solar cell development is core degradation. We have synthesized lead sulfide quantum dots inside of the spherical protein ferritin in order to protect them from photocorrosion. We have studied the band gaps of these quantum dots and found them to be widely tunable inside ferritin just as they are outside the protein shell. In addition, we have examined their stability by measuring changes in photoluminescence as they are exposed to light over minutes and hours and found that the ferritin-enclosed PbS quantum dots have significantly better resistance to photocorrosion. Brigham Young University, National Science Foundation.

  8. Bandgap Tuning of Silicon Quantum Dots by Surface Functionalization with Conjugated Organic Groups.

    PubMed

    Zhou, Tianlei; Anderson, Ryan T; Li, Huashan; Bell, Jacob; Yang, Yongan; Gorman, Brian P; Pylypenko, Svitlana; Lusk, Mark T; Sellinger, Alan

    2015-06-10

    The quantum confinement and enhanced optical properties of silicon quantum dots (SiQDs) make them attractive as an inexpensive and nontoxic material for a variety of applications such as light emitting technologies (lighting, displays, sensors) and photovoltaics. However, experimental demonstration of these properties and practical application into optoelectronic devices have been limited as SiQDs are generally passivated with covalently bound insulating alkyl chains that limit charge transport. In this work, we show that strategically designed triphenylamine-based surface ligands covalently bonded to the SiQD surface using conjugated vinyl connectivity results in a 70 nm red-shifted photoluminescence relative to their decyl-capped control counterparts. This suggests that electron density from the SiQD is delocalized into the surface ligands to effectively create a larger hybrid QD with possible macroscopic charge transport properties.

  9. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.

    PubMed

    Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-07-01

    Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.

  10. Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSexTe1-x quantum dots

    NASA Astrophysics Data System (ADS)

    Szeremeta, Janusz; Lamch, Lukasz; Wawrzynczyk, Dominika; Wilk, Kazimiera A.; Samoc, Marek; Nyk, Marcin

    2015-07-01

    Hydrophobic CdSexTe1-x quantum dots with near infrared emission in the 700-750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSexTe1-x quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.

  11. Quantum dots and nanocomposites.

    PubMed

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  12. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer

    PubMed Central

    Juzenas, Petras; Chen, Wei; Sun, Ya-Ping; Coelho, Manuel Alvaro Neto; Generalov, Roman; Generalova, Natalia; Christensen, Ingeborg Lie

    2009-01-01

    Semiconductor quantum dots and nanoparticles composed of metals, lipids or polymers have emerged with promising applications for early detection and therapy of cancer. Quantum dots with unique optical properties are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous, and toxicity of such quantum dots to living cells, and humans, is not yet systematically investigated. Therefore, search for less toxic materials with similar targeting and optical properties is of further interest. Whereas, the investigation of luminescence nanoparticles as light sources for cancer therapy is very interesting. Despite advances in neurosurgery and radiotherapy the prognosis for patients with malignant gliomas has changed little for the last decades. Cancer treatment requires high accuracy in delivering ionizing radiation to reduce toxicity to surrounding tissues. Recently some research has been focused in developing photosensitizing quantum dots for production of radicals upon absorption of visible light. In spite of the fact that visible light is safe, this approach is suitable to treat only superficial tumours. Ionizing radiation (X-rays and gamma rays) penetrate much deeper thus offering a big advantage in treating patients with tumours in internal organs. Such concept of using quantum dots and nanoparticles to yield electrons and radicals in photodynamic and radiation therapies as well their combination is reviewed in this article. PMID:18840487

  13. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    PubMed

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  14. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening

    PubMed Central

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-01-01

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications. PMID:26138830

  15. Enhanced Photoluminescence from Long Wavelength InAs Quantum Dots Embedded in a Graded (In,Ga)As Quantum Well

    DTIC Science & Technology

    2002-01-01

    emitting lasers operating from 1.0 to 1.3 gim with very low threshold currents have been reported [2,3,9]; in addition, vertical - cavity surface - emitting ...grown by solid source molecular beam epitaxy ( MBE ). By modifying Indium composition profile within quantum well (QW) region, it’s found the... lasers ( VCSELs ) have also been successfully demonstrated [4]. There are currently several approaches to grow 1.3 jim (In,Ga)As quantum dots by MBE

  16. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  17. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces.

    PubMed

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-02

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  18. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    PubMed

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  19. Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel Martin

    The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of attention with regards to finding appropriate applications for these materials. This dissertation is divided into multiple sections grouped by the type of application explored. The first sectoin investigates the energetic interactions of physically-coupled quantum dots and DNA, with the goal of gaining insight into how self-assembled molecular wires can bridge the energetic states of physically separated nanocrystals. Chapter 1 begins with an introduction to the properties of quantum dots, the conductive properties of DNA, and the common characterization methods used to characterize materials on the nanoscale. In Chapter 2 scanning tunneling measurements of QD-DNA constructs on the single particle level are presented which show the tunable coupling between the two materials and their resulting hybrid electronic structure. This is expanded upon in Chapter 3 where the conduction of photogenerated charges in QD-DNA hybrid thin films are characterized, which exhibit different charge transfer pathways through the constituent nucleobases depending on the energy of the incident light and resulting electrons. Complementary investigations of energy transfer mediated through DNA are presented in Chapter 4, with confirmation of Dexter-like transfer being facilitated through the oligonucleotides. The second section quantifies the

  20. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  1. Nuclear spin nanomagnet in an optically excited quantum dot.

    PubMed

    Korenev, V L

    2007-12-21

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.

  2. One-pot synthesis of polythiol ligand for highly bright and stable hydrophilic quantum dots toward bioconjugate formation

    NASA Astrophysics Data System (ADS)

    Dezhurov, Sergey V.; Krylsky, Dmitry V.; Rybakova, Anastasia V.; Ibragimova, Sagila A.; Gladyshev, Pavel P.; Vasiliev, Alexey A.; Morenkov, Oleg S.

    2018-03-01

    A fast and efficient one-pot synthesis of thiol-terminated poly(vinylpirrolidone-co-maleic anhydride-co-ethylene glycol dimethacrylate) based heterobifunctional polymer (PTVP) has been developed. The polymer was used for the modification of quantum dots (QDs) to prepare water soluble and stable QDs with emission quantum yield as high as 80%. Using carbodiimide method, PTVP-capped red light-emitting QDs were conjugated to model monoclonal antibodies specific to glycoprotein B (gB) of Aujeszky’s disease virus (ADV) and successfully used in the lateral flow assay (LFA) for the detection of ADV gB in biological fluids. A comparative analysis of the sensitivity of the method was carried out using three types of QDs emitting in the red and far-red region.

  3. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series ofmore » analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.« less

  4. Near-infrared-emitting colloidal Ag2S quantum dots exhibiting upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Jiang, Danyu; Yang, Wei; Wang, Dandan; Zheng, Huiping; Du, Yuansheng; Li, Xi; Li, Qiang

    2017-02-01

    Ag2S quantum dots (QDs) coated with thioglycolic acid (Ag2S QDs-TGA) have been synthesized in an organic solvent via a stepwise addition of reagents. When excited by a 980 nm laser, the near-infrared-emitting colloidal Ag2S QDs-TGA exhibit upconversion luminescence (UCL). The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces. Hence, upon dilution of the solution, the PL intensity initially increased before subsequently decreasing, accompanied by a blue shift in the PL spectra. The PL phenomena can be attributed to the increase in the amount of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET) and re-emission of the surface energy level. The relations between the emission intensity of Ag2S QDs-TGA and the excitation power are investigated, and the results confirm that the UCL in Ag2S QDs-TGA can be ascribed to a two-photon-assisted absorption process via a real energy state.

  5. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots

    NASA Astrophysics Data System (ADS)

    Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando

    2015-12-01

    We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.

  6. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    PubMed

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10 5 cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Selecting the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots for a hybrid remote phosphor white LED for general lighting applications.

    PubMed

    Ryckaert, Jana; Correia, António; Tessier, Mickael D; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-11-27

    Quantum dots can be used in white LEDs for lighting applications to fill the spectral gaps in the combined emission spectrum of the blue pumping LED and a broad band phosphor, in order to improve the source color rendering properties. Because quantum dots are low scattering materials, their use can also reduce the amount of backscattered light which can increase the overall efficiency of the white LED. The absorption spectrum and narrow emission spectrum of quantum dots can be easily tuned by altering their synthesis parameters. Due to the re-absorption events between the different luminescent materials and the light interaction with the LED package, determining the optimal quantum dot properties is a highly non-trivial task. In this paper we propose a methodology to select the optimal quantum dot to be combined with a broad band phosphor in order to realize a white LED with optimal luminous efficacy and CRI. The methodology is based on accurate and efficient simulations using the extended adding-doubling approach that take into account all the optical interactions. The method is elaborated for the specific case of a hybrid, remote phosphor white LED with YAG:Ce phosphor in combination with InP/CdxZn 1-x Se type quantum dots. The absorption and emission spectrum of the quantum dots are generated in function of three synthesis parameters (core size, shell size and cadmium fraction) by a semi-empirical 'quantum dot model' to include the continuous tunability of these spectra. The sufficiently fast simulations allow to scan the full parameter space consisting of these synthesis parameters and luminescent material concentrations in terms of CRI and efficacy. A conclusive visualization of the final performance allows to make a well-considered trade-off between these performance parameters. For the hybrid white remote phosphor LED with YAG:Ce and InP/CdxZn 1-x Se quantum dots a CRI Ra = 90 (with R9>50) and an overall efficacy of 110 lm/W is found.

  8. Controlling the Properties of Matter with Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, Victor

    2017-03-22

    Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes. Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of “solar fuels”). The appeal of quantum dots comes from the unmatchedmore » tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots. At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.« less

  9. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barettin, Daniele, E-mail: Daniele.Barettin@uniroma2.it; Auf der Maur, Matthias; De Angelis, Roberta

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateralmore » quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.« less

  10. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  11. Double channel emission from a redox active single component quantum dot complex.

    PubMed

    Bhandari, Satyapriya; Roy, Shilaj; Pramanik, Sabyasachi; Chattopadhyay, Arun

    2015-01-13

    Herein we report the generation and control of double channel emission from a single component system following a facile complexation reaction between a Mn(2+) doped ZnS colloidal quantum dot (Qdot) and an organic ligand (8-hydroxy quinoline; HQ). The double channel emission of the complexed quantum dot-called the quantum dot complex (QDC)-originates from two independent pathways: one from the complex (ZnQ2) formed on the surface of the Qdot and the other from the dopant Mn(2+) ions of the Qdot. Importantly, reaction of ZnQ2·2H2O with the Qdot resulted in the same QDC formation. The emission at 500 nm with an excitation maximum at 364 nm is assigned to the surface complex involving ZnQ2 and a dangling sulfide bond. On the other hand, the emission at 588 nm-with an excitation maximum at 330 nm-which is redox tunable, is ascribed to Mn(2+) dopant. The ZnQ2 complex while present in QDC has superior thermal stability in comparison to the bare complex. Interestingly, while the emission of Mn(2+) was quenched by an electron quencher (benzoquinone), that due to the surface complex remained unaffected. Further, excitation wavelength dependent tunability in chromaticity color coordinates makes the QDC a potential candidate for fabricating a light emitting device of desired color output.

  12. Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.

    PubMed

    Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet

    2011-04-26

    Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.

  13. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  14. Mode locking of electron spin coherences in singly charged quantum dots.

    PubMed

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  15. [Progress of light extraction enhancement in organic light-emitting devices].

    PubMed

    Liu, Mo; Li, Tong; Wang, Yan; Zhang, Tian-Yu; Xie, Wen-Fa

    2011-04-01

    Organic light emitting devices (OLEDs) have been used in flat-panel displays and lighting with a near-30-year development. OLEDs possess many advantages, such as full solid device, fast response, flexible display, and so on. As the application of phosphorescence material, the internal quantum efficiency of OLED has almost reached 100%, but its external quantum efficiency is still not very high due to the low light extraction efficiency. In this review the authors summarizes recent advances in light extraction techniques that have been developed to enhance the light extraction efficiency of OLEDs.

  16. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  17. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    PubMed

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%.

  18. [A novel yellow organic light-emitting device].

    PubMed

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules.

  19. Composite Supraparticles with Tunable Light Emission

    PubMed Central

    2017-01-01

    Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and fine-tuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research. PMID:28787121

  20. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide

    NASA Astrophysics Data System (ADS)

    Haffouz, Sofiane; Zeuner, Katharina D.; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D.; Zwiller, Valery; Williams, Robin L.

    2018-05-01

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  1. On the effect of ballistic overflow on the temperature dependence of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudaev, I. A., E-mail: funcelab@gmail.com; Kopyev, V. V.; Romanov, I. S.

    The dependences of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes on the temperature and excitation level are studied. The experiment is performed for two luminescence excitation modes. A comparison of the results obtained during photo- and electroluminescence shows an additional (to the loss associated with Auger recombination) low-temperature loss in the high-density current region. This causes inversion of the temperature dependence of the quantum efficiency at temperatures lower than 220–300 K. Analysis shows that the loss is associated with electron leakage from the light-emitting-diode active region. The experimental data are explained using the ballistic-overflow model. The simulationmore » results are in qualitative agreement with the experimental dependences of the quantum efficiency on temperature and current density.« less

  2. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  3. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  4. Magneto-optical studies of quantum dots

    NASA Astrophysics Data System (ADS)

    Russ, Andreas Hans

    Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.

  5. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    PubMed

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  6. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen; Agarwal, Girish S.

    2017-02-01

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  7. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.

    PubMed

    Hughes, Stephen; Agarwal, Girish S

    2017-02-10

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  8. Two-electrons quantum dot in plasmas under the external fields

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-02-01

    In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.

  9. Room-temperature lasing in a single nanowire with quantum dots

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Kako, Satoshi; Ho, Jinfa; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-08-01

    Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials or multi-quantum-wells/disks, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.

  10. Multi-Excitonic Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  11. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-05-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  12. Confinement control mechanism for two-electron Hulthen quantum dots in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-05-01

    In this study, for the first time, the energies of two-electron Hulthen quantum dots (TEHQdots) embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential under the combined influence of electric and magnetic fields are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. To do this, the four different forms of the MGECSC potential, which set through the different cases of the potential parameters, are taken into consideration. We propose that plasma environments form considerable quantum mechanical effects for quantum dots and other atomic systems and that plasmas are important experimental arguments. In this study, by considering the quantum dot parameters, the external field parameters, and the plasma screening parameters, a control mechanism of the confinement on energies of TEHQdots and the frequency of the radiation emitted by TEHQdots as a result of any excitation is discussed. In this mechanism, the behaviors, similarities, the functionalities of the control parameters, and the influences of plasmas on these quantities are explored.

  13. Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin C.; Mathai, Mathew; So, Franky; Choulis, Stelios; Choong, And-En, Vi

    2007-06-01

    Molecular dye dispersed solution processable blue emitting organic light-emitting devices have been fabricated and the resulting devices exhibit efficiency as high as 25 cd/A. With down-conversion phosphors, white emitting devices have been demonstrated with peak efficiency of 38 cd/A and luminous efficiency of 25 lm/W. The high efficiencies have been a product of proper tuning of carrier transport, optimization of the location of the carrier recombination zone and, hence, microcavity effect, efficient down-conversion from blue to white light, and scattering/isotropic remission due to phosphor particles. An optical model has been developed to investigate all these effects. In contrast to the common misunderstanding that light out-coupling efficiency is about 22% and independent of device architecture, our device data and optical modeling results clearly demonstrated that the light out-coupling efficiency is strongly dependent on the exact location of the recombination zone. Estimating the device internal quantum efficiencies based on external quantum efficiencies without considering the device architecture could lead to erroneous conclusions.

  14. White lighting device from composite films embedded with hydrophilic Cu(In, Ga)S2/ZnS and hydrophobic InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoon; Yang, Heesun

    2014-06-01

    Two types of non-Cd quantum dots (QDs)—In/Ga ratio-varied, green-to-greenish-yellow fluorescence-tuned Cu-In-Ga-S (CIGS) alloy ones, and red-emitting InP ones—are synthesized for use as down-converters in conjunction with a blue light-emitting diode (LED). Among a series of Ga-rich CI1-xGxS/ZnS core/shell QDs (x = 0.7, 0.8, and 0.9), CI0.2G0.8S/ZnS QD is chosen for the hydrophobic-to-hydrophilic surface modification via an in-situ ligand exchange and then embedded in a water-soluble polyvinyl alcohol (PVA). This free-standing composite film is utilized as a down-converter for the fabrication of a remote-type white QD-LED, but the resulting bi-colored device exhibits a cool white light with a limited color rendering index property. To improve white light qualities, another QD-polymer film of hydrophobic red InP/ZnS QD-embedding polyvinylpyrrolidone is sequentially stacked onto the CI0.2G0.8S/ZnS QD-PVA film, producing a unique dual color-emitting, flexible and transparent bilayered composite film. Tri-colored white QD-LED integrated with the bilayered QD film possesses an exceptional color rendering property through reinforcing a red spectral component and balancing a white spectral distribution.

  15. White lighting device from composite films embedded with hydrophilic Cu(In, Ga)S2/ZnS and hydrophobic InP/ZnS quantum dots.

    PubMed

    Kim, Jong-Hoon; Yang, Heesun

    2014-06-06

    Two types of non-Cd quantum dots (QDs)-In/Ga ratio-varied, green-to-greenish-yellow fluorescence-tuned Cu-In-Ga-S (CIGS) alloy ones, and red-emitting InP ones-are synthesized for use as down-converters in conjunction with a blue light-emitting diode (LED). Among a series of Ga-rich CI1-xGxS/ZnS core/shell QDs (x = 0.7, 0.8, and 0.9), CI0.2G0.8S/ZnS QD is chosen for the hydrophobic-to-hydrophilic surface modification via an in-situ ligand exchange and then embedded in a water-soluble polyvinyl alcohol (PVA). This free-standing composite film is utilized as a down-converter for the fabrication of a remote-type white QD-LED, but the resulting bi-colored device exhibits a cool white light with a limited color rendering index property. To improve white light qualities, another QD-polymer film of hydrophobic red InP/ZnS QD-embedding polyvinylpyrrolidone is sequentially stacked onto the CI0.2G0.8S/ZnS QD-PVA film, producing a unique dual color-emitting, flexible and transparent bilayered composite film. Tri-colored white QD-LED integrated with the bilayered QD film possesses an exceptional color rendering property through reinforcing a red spectral component and balancing a white spectral distribution.

  16. Phosphor-free nanopyramid white light-emitting diodes grown on (101{sup ¯}1) planes using nanospherical-lens photolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kui; Department of Electronic Engineering, Tsinghua National Laboratory for Information Science and Technology/State Key Lab on Integrated Optoelectronics, Tsinghua University, Beijing 100084; Wei, Tongbo, E-mail: tbwei@semi.ac.cn

    2013-12-09

    We reported a high-efficiency and low-cost nano-pattern method, the nanospherical-lens photolithography technique, to fabricate a SiO{sub 2} mask for selective area growth. By controlling the selective growth, we got a highly ordered hexagonal nanopyramid light emitting diodes with InGaN/GaN quantum wells grown on nanofacets, demonstrating an electrically driven phosphor-free white light emission. We found that both the quantum well width and indium incorporation increased linearly along the (101{sup ¯}1) planes towards the substrate and the perpendicular direction to the (101{sup ¯}1) planes as well. Such spatial distribution was responsible for the broadband emission. Moreover, using cathodoluminescence techniques, it was foundmore » that the blue emission originated from nanopyramid top, resembling the quantum dots, green emission from the InGaN quantum wells layer at the middle of sidewalls, and yellow emission mainly from the bottom of nanopyramid ridges, similar to the quantum wires.« less

  17. Laterally Coupled Quantum-Dot Distributed-Feedback Lasers

    NASA Technical Reports Server (NTRS)

    Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke

    2003-01-01

    InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.

  18. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation.

    PubMed

    Liu, Chao; Li, Zhou; Hajagos, Tibor Jacob; Kishpaugh, David; Chen, Dustin Yuan; Pei, Qibing

    2017-06-27

    Spectroscopic gamma-photon detection has widespread applications for research, defense, and medical purposes. However, current commercial detectors are either prohibitively expensive for wide deployment or incapable of producing the characteristic gamma photopeak. Here we report the synthesis of transparent, ultra-high-loading (up to 60 wt %) Cd x Zn 1-x S/ZnS core/shell quantum dot/polymer nanocomposite monoliths for gamma scintillation by in situ copolymerization of the partially methacrylate-functionalized quantum dots in a monomer solution. The efficient Förster resonance energy transfer of the high-atomic-number quantum dots to lower-band-gap organic dyes enables the extraction of quantum-dot-borne excitons for photon production, resolving the problem of severe light yield deterioration found in previous nanoparticle-loaded scintillators. As a result, the nanocomposite scintillator exhibited simultaneous improvements in both light yield (visible photons produced per MeV of gamma-photon energy) and gamma attenuation. With these enhancements, a 662 keV Cs-137 gamma photopeak with 9.8% resolution has been detected using a 60 wt % quantum-dot nanocomposite scintillator, demonstrating the potential of such a nanocomposite system in the development of high-performance low-cost spectroscopic gamma detectors.

  19. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    PubMed

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  20. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    NASA Astrophysics Data System (ADS)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  1. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.

    PubMed

    Haffouz, Sofiane; Zeuner, Katharina D; Dalacu, Dan; Poole, Philip J; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D; Zwiller, Valery; Williams, Robin L

    2018-05-09

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  2. Spectroscopy characterization and quantum yield determination of quantum dots

    NASA Astrophysics Data System (ADS)

    Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.

    2016-02-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.

  3. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    PubMed

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  4. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.

    PubMed

    Mendes, Manuel J; Hernández, Estela; López, Esther; García-Linares, Pablo; Ramiro, Iñigo; Artacho, Irene; Antolín, Elisa; Tobías, Ignacio; Martí, Antonio; Luque, Antonio

    2013-08-30

    A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude.In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance.The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.

  5. Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.

    PubMed

    de Weerd, Chris; Shin, Yonghun; Marino, Emanuele; Kim, Joosung; Lee, Hyoyoung; Saeed, Saba; Gregorkiewicz, Tom

    2017-10-31

    Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.

  6. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.

    PubMed

    Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S

    2007-06-01

    We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.

  7. A strongly interacting polaritonic quantum dot

    NASA Astrophysics Data System (ADS)

    Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan

    2018-06-01

    Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

  8. Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier.

    PubMed

    Ji, Yun; Zhang, Zi-Hui; Tan, Swee Tiam; Ju, Zhen Gang; Kyaw, Zabu; Hasanov, Namig; Liu, Wei; Sun, Xiao Wei; Demir, Hilmi Volkan

    2013-01-15

    We study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure.

  9. Nanophotonic enhanced quantum emitters

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Zhang-Kai; Yu, Ying; Gather, Malte; Di Falco, Andrea

    2017-08-01

    Quantum dots are excellent solid-state quantum sources, because of their stability, their narrow spectral linewidth, and radiative lifetime in the range of 1ns. Most importantly, they can be integrated into more complex nanophononics devices, to realize high quality quantum emitters of single photons or entangled photon sources. Recent progress in nanotechnology materials and devices has opened a number of opportunities to increase, optimize and ultimately control the emission property of single quantum dot. In this work, we present an approach that combines the properties of quantum dots with the flexibility of light control offered by nanoplasmonics and metamaterials structuring. Specifically, we show the nanophotonic enhancement of two types of quantum dots devices. The quantum dots are inserted into optical-positioned micropillar cavities, or decorated on the facets of core-shell GaAs/AlGaAs nanowires, fabricated with a bottom-up approach. In both cases, the metallic nanofeatures, which are designed to control the emission and the polarization state of the emitted light, are realized via direct electron-beam-induced deposition. This approach permits to create three-dimensional features with nanometric resolution and positional accuracy, and does not require wet lithographic steps and previous knowledge of the exact spatial arrangement of the quantum devices.

  10. Control of radiative base recombination in the quantum cascade light-emitting transistor using quantum state overlap

    NASA Astrophysics Data System (ADS)

    Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.

    2018-07-01

    The concept of the quantum cascade light-emitting transistor (QCLET) is proposed by incorporating periodic stages of quantum wells and barriers in the completely depleted base-collector junction of a heterojunction bipolar transistor. The radiative band-to-band base recombination in the QCLET is shown to be controllable using the base-collector voltage bias for a given emitter-base biasing condition. A self-consistent Schrödinger-Poisson Equation model is built to validate the idea of the QCLET. A GaAs-based QCLET is designed and fabricated. Control of radiative band-to-band base recombination is observed and characterized. By changing the voltage across the quantum cascade region in the QCLET, the alignment of quantum states in the cascade region creates a tunable barrier for electrons that allows or suppresses emitter-injected electron flow from the p-type base through the quantum cascade region into the collector. The field-dependent electron barrier in the base-collector junction manipulates the effective minority carrier lifetime in the base and controls the radiative base recombination process. Under different quantum cascade region biasing conditions, the radiative base recombination is measured and analyzed.

  11. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2009-09-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  12. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2010-05-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  13. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of

  14. Double quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.

    2017-08-01

    Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.

  15. Quantum-dot-sensitized solar cells.

    PubMed

    Rühle, Sven; Shalom, Menny; Zaban, Arie

    2010-08-02

    Quantum-dot-sensitized solar cells (QDSCs) are a promising low-cost alternative to existing photovoltaic technologies such as crystalline silicon and thin inorganic films. The absorption spectrum of quantum dots (QDs) can be tailored by controlling their size, and QDs can be produced by low-cost methods. Nanostructures such as mesoporous films, nanorods, nanowires, nanotubes and nanosheets with high microscopic surface area, redox electrolytes and solid-state hole conductors are borrowed from standard dye-sensitized solar cells (DSCs) to fabricate electron conductor/QD monolayer/hole conductor junctions with high optical absorbance. Herein we focus on recent developments in the field of mono- and polydisperse QDSCs. Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy-level alignment to increase the light to electric power conversion efficiency.

  16. Quantum technology past, present, future: quantum energetics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.

    2017-04-01

    Since the development of quantum physics in the early part of the 1900s, this field of study has made remarkable contributions to our civilization. Some of these advances include lasers, light-emitting diodes (LED), sensors, spectroscopy, quantum dots, quantum gravity and quantum entanglements. In 1998, the NASA Langley Research Center established a quantum technology committee to monitor the progress in this area and initiated research to determine the potential of quantum technology for future NASA missions. The areas of interest in quantum technology at NASA included fundamental quantum-optics materials associated with quantum dots and quantum wells, device-oriented photonic crystals, smart optics, quantum conductors, quantum information and computing, teleportation theorem, and quantum energetics. A brief review of the work performed, the progress made in advancing these technologies, and the potential NASA applications of quantum technology will be presented.

  17. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs.

    PubMed

    Zhang, Feng; Feng, Xiaoting; Zhang, Yi; Yan, Lingpeng; Yang, Yongzhen; Liu, Xuguang

    2016-04-28

    Photoluminescent organosilane-functionalized carbon quantum dots (CQDs), 3.0-3.5 nm in diameter, were synthesized via a facile hydrothermal method using citric acid monohydrate as a precursor and N-(3-(trimethoxysilyl) propyl) ethylenediamine as a coordinating and passivation agent. The optical properties of the as-obtained CQDs were investigated in detail. The CQD aqueous solution emits bright blue-white light under ultraviolet (UV) illumination with a quantum yield of 57.3% and high red-green-blue (RGB) spectral composition of 60.1%, and in particular the CQDs exhibit excitation-independent photoluminescence. The CQDs have a narrow size distribution around 3.1 nm and good film-forming ability through simple heat-treatment. By virtue of these excellent optical characteristics and good film-forming ability, a white light-emitting device (LED) was fabricated by combining a UV-LED chip with a single CQD phosphor film, which exhibited cool white light with a CIE coordinate of (0.31, 0.36), a color rendering index of 84 and a correlated color temperature of 6282 K. In addition, the white LED exhibits good optical stability under various working currents and for different working time intervals. Moreover, the interaction between the carbogenic core and surface groups was discussed using the DMol(3) program based on density functional theory. This research suggests the great potential of CQDs for solid-state lighting systems and reveals the effect of the surface state on the photoluminescent mechanism of CQDs.

  18. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology.

    PubMed

    Han, Hau-Vei; Lin, Huang-Yu; Lin, Chien-Chung; Chong, Wing-Cheung; Li, Jie-Ru; Chen, Kuo-Ju; Yu, Peichen; Chen, Teng-Ming; Chen, Huang-Ming; Lau, Kei-May; Kuo, Hao-Chung

    2015-12-14

    Colloidal quantum dots which can emit red, green, and blue colors are incorporated with a micro-LED array to demonstrate a feasible choice for future display technology. The pitch of the micro-LED array is 40 μm, which is sufficient for high-resolution screen applications. The method that was used to spray the quantum dots in such tight space is called Aerosol Jet technology which uses atomizer and gas flow control to obtain uniform and controlled narrow spots. The ultra-violet LEDs are used in the array to excite the red, green and blue quantum dots on the top surface. To increase the utilization of the UV photons, a layer of distributed Bragg reflector was laid down on the device to reflect most of the leaked UV photons back to the quantum dot layers. With this mechanism, the enhanced luminous flux is 194% (blue), 173% (green) and 183% (red) more than that of the samples without the reflector. The luminous efficacy of radiation (LER) was measured under various currents and a value of 165 lm/Watt was recorded.

  19. Time-bin entangled photons from a quantum dot

    PubMed Central

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor

    2014-01-01

    Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024

  20. Time-bin entangled photons from a quantum dot.

    PubMed

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor

    2014-06-26

    Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.

  1. Thermoelectric energy harvesting with quantum dots

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N.

    2015-01-01

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  2. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    NASA Astrophysics Data System (ADS)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  3. Subdiffusive exciton transport in quantum dot solids.

    PubMed

    Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulović, Vladimir; Tisdale, William A

    2014-06-11

    Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.

  4. Clinical Potential of Quantum Dots

    PubMed Central

    Iga, Arthur M.; Robertson, John H. P.; Winslet, Marc C.; Seifalian, Alexander M.

    2007-01-01

    Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity. PMID:18317518

  5. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    PubMed

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  6. Development of GaN/AIN Self Assembled Quantum Dots for Room Temperature Operation of Quantum Dot Devices

    DTIC Science & Technology

    2003-01-01

    Kramer Fabrication of hcp-Co nanocrystals via rapid pyrolysis in inverse PS - b - P2VP micelles and thermal annealing Nano Letters In Press ...the figure) and different pump photon energies. a) hν=1.684eV, b ) hν= 1.536eV and c) hν= 1.433eV. All spectra are normalized to the maximum value of...correlation functions of two consecutively emitted photons from a single excited semiconductor quantum dot. We have shown that a 6 a) b ) 0.10 [ML/s] 250 nm 3.0

  7. Quantum soldering of individual quantum dots.

    PubMed

    Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L

    2012-12-07

    Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  9. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    DOE PAGES

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-01

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less

  10. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Quan; Kang, Bin; Dai, Yao-Dong; Zhang, Hong-Xu; Chen, Da

    2011-11-01

    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan. PACS: 81.07.Ta; 78.67.Hc; 82.35.Np; 87.85.Rs.

  11. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  12. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-06-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria. These quantum dots were solubilized with mercaptoacetic acid and conjugated to adenine. Significant evidence for the internal staining of Bacillus subtilis (Gram positive) and Escherichia coli (Gram negative) using these structures is presented via steady-state emission, epifluorescence microscopy, transmission electron microscopy, and energy dispersive spectroscopy. In particular, the E. coli adenine auxotroph, and not the wild type, took up adenine coated quantum dots, and this only occurred in adenine deficient growth media. Labeling strength was enhanced by performing the incubation under room light. This process was examined with steady-state emission spectra and time-resolved luminescence profiles obtained from time-correlated-single-photon counting.

  13. Attachment of Quantum Dots on Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Seay, Jared; Liang, Huan; Harikumar, Parameswar

    2011-03-01

    ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.

  14. Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging

    PubMed Central

    Smith, Andrew M.; Duan, Hongwei; Mohs, Aaron M.; Nie, Shuming

    2008-01-01

    Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to photobleaching, and broad absorption spectra for simultaneous excitation of multiple fluorescence colors. QDs also provide a versatile nanoscale scaffold for designing multifunctional nanoparticles with both imaging and therapeutic functions. When linked with targeting ligands such as antibodies, peptides or small molecules, QDs can be used to target tumor biomarkers as well as tumor vasculatures with high affinity and specificity. Here we discuss the synthesis and development of state-of-the-art QD probes and their use for molecular and cellular imaging. We also examine key issues for in vivo imaging and therapy, such as nanoparticle biodistribution, pharmacokinetics, and toxicology. PMID:18495291

  15. Effect of broad recombination zone in multiple quantum well structures on lifetime and efficiency of blue organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Seok Jae; Lee, Song Eun; Lee, Dong Hyung; Koo, Ja Ryong; Lee, Ho Won; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan

    2014-10-01

    Blue phosphorescent organic light-emitting diodes with multiple quantum well (MQW) structures (from one to four quantum wells) within an emitting layer (EML) are fabricated with charge control layers (CCLs) to control carrier movement. The distributed recombination zone and balanced charge carrier injection within EML are achieved through the MQW structure with CCLs. Remarkably, the half-decay lifetime of a blue device with three quantum wells, measured at an initial luminance of 500 cd/m2, is 3.5 times longer than that using a conventional structure. Additionally, the device’s efficiency improved. These results are explained with the effects of triplet exciton confinement and triplet-triplet annihilation within each EML.

  16. Magnetic enhancement of photoluminescence from blue-luminescent graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Shi, Chentian; Zhang, Chunfeng; Pu, Songyang; Wang, Rui; Wu, Xuewei; Wang, Xiaoyong; Xue, Fei; Pan, Dengyu; Xiao, Min

    2016-02-01

    Graphene quantum-dots (GQDs) have been predicted and demonstrated with fascinating optical and magnetic properties. However, the magnetic effect on the optical properties remains experimentally unexplored. Here, we conduct a magneto-photoluminescence study on the blue-luminescence GQDs at cryogenic temperatures with magnetic field up to 10 T. When the magnetic field is applied, a remarkable enhancement of photoluminescence emission has been observed together with an insignificant change in circular polarization. The results have been well explained by the scenario of magnetic-field-controlled singlet-triplet mixing in GQDs owing to the Zeeman splitting of triplet states, which is further verified by temperature-dependent experiments. This work uncovers the pivotal role of intersystem crossing in GQDs, which is instrumental for their potential applications such as light-emitting diodes, photodynamic therapy, and spintronic devices.

  17. Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR

    NASA Astrophysics Data System (ADS)

    Singh, Navjot; Sharma, J.; Tripathi, S. K.

    2016-05-01

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.

  18. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  19. Design, implementation and characterization of a quantum-dot-based volumetric display.

    PubMed

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-16

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  20. Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers.

    PubMed

    Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit

    2018-04-01

    Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.

  1. Studies of quantum dots in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  2. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging.

    PubMed

    Kuo, Wen-Shuo; Chen, Hua-Han; Chen, Shih-Yao; Chang, Chia-Yuan; Chen, Pei-Chi; Hou, Yung-I; Shao, Yu-Ting; Kao, Hui-Fang; Lilian Hsu, Chih-Li; Chen, Yi-Chun; Chen, Shean-Jen; Wu, Shang-Rung; Wang, Jiu-Yao

    2017-03-01

    Reactive oxygen species is the main contributor to photodynamic therapy. The results of this study show that a nitrogen-doped graphene quantum dot, serving as a photosensitizer, was capable of generating a higher amount of reactive oxygen species than a nitrogen-free graphene quantum dot in photodynamic therapy when photoexcited for only 3 min of 670 nm laser exposure (0.1 W cm -2 ), indicating highly improved antimicrobial effects. In addition, we found that higher nitrogen-bonding compositions of graphene quantum dots more efficiently performed photodynamic therapy actions than did the lower compositions that underwent identical treatments. Furthermore, the intrinsically emitted luminescence from nitrogen-doped graphene quantum dots and high photostability simultaneously enabled it to act as a promising contrast probe for tracking and localizing bacteria in biomedical imaging. Thus, the dual modality of nitrogen-doped graphene quantum dots presents possibilities for future clinical applications, and in particular multidrug resistant bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Charge reconfiguration in arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.

    2017-12-01

    Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.

  4. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang

    2018-06-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.

  5. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    PubMed Central

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-01-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m−2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date. PMID:28589960

  6. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  7. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  8. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5

  9. Engineering of Semiconductor Nanocrystals for Light Emitting Applications

    PubMed Central

    Todescato, Francesco; Fortunati, Ilaria; Minotto, Alessandro; Signorini, Raffaella; Jasieniak, Jacek J.; Bozio, Renato

    2016-01-01

    Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs) provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies. PMID:28773794

  10. Bioengineered II-VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells

    NASA Astrophysics Data System (ADS)

    Mansur, Alexandra A. P.; Mansur, Herman S.; Mansur, Rafael L.; de Carvalho, Fernanda G.; Carvalho, Sandhra M.

    2018-01-01

    Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M = Cd, Pb, Zn, X = S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0 nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.

  11. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Quantum dot in interacting environments

    NASA Astrophysics Data System (ADS)

    Rylands, Colin; Andrei, Natan

    2018-04-01

    A quantum impurity attached to an interacting quantum wire gives rise to an array of new phenomena. Using the Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting quantum wire: a quantum dot that is (i) side coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the ground-state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire, there exists competition between the tunneling and backscattering leading to a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.

  13. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.

    PubMed

    Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L

    2016-04-26

    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.

  14. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  15. Photonic emitters and circuits based on colloidal quantum dot composites

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  16. Interband emission energy in a dilute nitride quaternary semiconductor quantum dot for longer wavelength applications

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo; Duque, C. A.

    2016-07-01

    Excitonic properties are studied in a strained Ga1-xInxNyAs1-y/GaAs cylindrical quantum dot. The optimum condition for the desired band alignment for emitting wavelength 1.55 μm is investigated using band anticrossing model and the model solid theory. The band gap and the band discontinuities of a Ga1-xInxNyAs1-y/GaAs quantum dot on GaAs are computed with the geometrical confinement effect. The binding energy of the exciton, the oscillator strength and its radiative life time for the optimum condition are found taking into account the spatial confinement effect. The effects of geometrical confinement and the nitrogen incorporation on the interband emission energy are brought out. The result shows that the desired band alignment for emitting wavelength 1.55 μm is achieved for the inclusion of alloy contents, y=0.0554% and x=0.339% in Ga1-xInxNyAs1-y/GaAs quantum dot. And the incorporation of nitrogen and indium shows the red-shift and the geometrical confinement shows the blue-shift. And it can be applied for fibre optical communication networks.

  17. Miniband-related 1.4–1.8 μm luminescence of Ge/Si quantum dot superlattices

    PubMed Central

    Cirlin, GE; Tonkikh, AA; Zakharov, ND; Werner, P; Gösele, U; Tomm, JW; Elsaesser, T

    2006-01-01

    The luminescence properties of highly strained, Sb-doped Ge/Si multi-layer heterostructures with incorporated Ge quantum dots (QDs) are studied. Calculations of the electronic band structure and luminescence measurements prove the existence of an electron miniband within the columns of the QDs. Miniband formation results in a conversion of the indirect to a quasi-direct excitons takes place. The optical transitions between electron states within the miniband and hole states within QDs are responsible for an intense luminescence in the 1.4–1.8 µm range, which is maintained up to room temperature. At 300 K, a light emitting diode based on such Ge/Si QD superlattices demonstrates an external quantum efficiency of 0.04% at a wavelength of 1.55 µm.

  18. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  19. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.

    PubMed

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H

    2017-04-12

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  20. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  1. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    NASA Astrophysics Data System (ADS)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  2. Entanglement in a quantum neural network based on quantum dots

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Zolnikova, N. N.; Kaputkina, N. E.; Krylov, V. A.; Lozovik, Yu E.; Dattani, N. S.

    2017-05-01

    We studied the quantum correlations between the nodes in a quantum neural network built of an array of quantum dots with dipole-dipole interaction. By means of the quasiadiabatic path integral simulation of the density matrix evolution in a presence of the common phonon bath we have shown the coherence in such system can survive up to the liquid nitrogen temperature of 77 K and above. The quantum correlations between quantum dots are studied by means of calculation of the entanglement of formation in a pair of quantum dots with the typical dot size of a few nanometers and interdot distance of the same order. We have shown that the proposed quantum neural network can keep the mixture of entangled states of QD pairs up to the above mentioned high temperatures.

  3. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  4. Nanoparticle embedded p-type electrodes for GaN-based flip-chip light emitting diodes.

    PubMed

    Kwak, Joon Seop; Song, J O; Seong, T Y; Kim, B I; Cho, J; Sone, C; Park, Y

    2006-11-01

    We have investigated high-quality ohmic contacts for flip-chip light emitting diodes using Zn-Ni nanoparticles/Ag schemes. The Zn-Ni nanoparticles/Ag contacts produce specific contact resistances of 10(-5)-10(-6) omegacm2 when annealed at temperatures of 330-530 degrees C for 1 min in air ambient, which are much better than those obtained from the Ag contacts. It is shown that blue InGaN/GaN multi-quantum well light emitting diodes fabricated with the annealed Zn-Ni nanoparticles/Ag contacts give much lower forward-bias voltages at 20 mA compared with those of the multi-quantum well light emitting diodes made with the as-deposited Ag contacts. It is further presented that the multi-quantum well light emitting diodes made with the Zn-Ni nanoparticles/Ag contacts show similar output power compared to those fabricated with the Ag contact layers.

  5. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Höfer, B.; Zhang, J.; Wildmann, J.; Zallo, E.; Trotta, R.; Ding, F.; Rastelli, A.; Schmidt, O. G.

    2017-04-01

    Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources.

  6. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308

  7. Laterally coupled circular quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  8. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2011-02-04

    Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.

  9. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers

    NASA Astrophysics Data System (ADS)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-01

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.

  10. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    PubMed

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  11. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  12. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  13. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  14. Scintillating Quantum Dots for Imaging X-rays (SQDIX) for Aircraft Inspection

    NASA Technical Reports Server (NTRS)

    Burke, Eric (Principal Investigator); Williams, Phillip (Principal Investigator); Dehaven, Stan

    2015-01-01

    Scintillation is the process currently employed by conventional x-ray detectors to create x-ray images. Scintillating quantum dots or nano-crystals (StQDs) are a novel, nanometer-scale material that upon excitation by x-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmental friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread x-ray imaging. Initial work on the SQDIX system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency a StQDs based imaging sensor.

  15. Polyfluorene light-emitting devices and amorphous silicon:hydrogen TFT pixel circuits for active-matrix organic light-emitting displays

    NASA Astrophysics Data System (ADS)

    He, Yi

    2000-10-01

    Organic light-emitting devices (OLEDs) made of single-layer and double-layer polymer thin films have been fabricated and studied. The hole transporting (polymer A) and emissive (polymer B) polymers were poly(9,9' -dioctyl fluorene-2,7-diyl)-co-poly(diphenyl-p-tolyl-amine-4,4 '-diyl) and poly(9,9'-dioctyl fluorene-2,7-diyl)-co-poly(benzothiadiazole 2,5-diyl), respectively. The optical bandgaps of polymer A and B were 2.72 and 2.82 eV, respectively. The photoluminescence (PL) peaks for polymer A and B were 502 and 546 nm, respectively. The electroluminescence (EL) peak for polymer B was 547 nm. No EL has been observed from polymer A single layer OLEDs. To obtain the spectral distribution of the emission properties of the light-emitting devices, a new light-output measurement technique was developed. Using this technique, the spectral distribution of the luminance, radiance, photon density emission can be obtained. Moreover, the device external quantum efficiency calculated using this technique is accurate and insensitive to the light emission spectrum shape. Organic light-emitting devices have been fabricated and studied on both glass and flexible plastic substrates. The OLEDs showed a near-linear relationship between the luminance and the applied current density over four orders of magnitude. For the OLEDs fabricated on the glass substrate, luminance ˜9,300 cd/m2, emission efficiency ˜14.5 cd/A, luminescence power efficiency ˜2.26 lm/W, and external quantum efficiency ˜3.85% have been achieved. For the OLEDs fabricated on the flexible plastic substrates, both aluminum and calcium were used as cathode materials. The achieved maximum OLED luminance, emission efficiency, luminescence power efficiency, and external quantum efficiency were ˜13,000 cd/m2, ˜66.1 cd/A, ˜17.2 lm/W, and 16.7%, respectively. To make an active-matrix organic light-emitting display (AM-OLED), a two-TFT pixel electrode circuit was designed and fabricated based on amorphous silicon TFT

  16. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications

    NASA Astrophysics Data System (ADS)

    Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming

    2013-06-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.

  17. Semiconductor quantum dots for bioimaging and biodiagnostic applications.

    PubMed

    Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.

  18. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications

    PubMed Central

    Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547

  19. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on

  20. Investigations into the formation of nanocrystalline quantum dot thin films by mist deposition process

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Aditya

    Semiconductor nanocrystalline quantum dots (NQDs) have material properties remarkably different compared to bulk semiconductors with the same material composition. These NQDs have various novel applications in the electronic and photonic industry, such as light emitting diodes (LEDs) and flat-panel displays. In these applications, ultra-thin films of NQDs in the monolayer regime are needed to ensure optimal current transport properties and device efficiency. There is ongoing search to find a suitable method to deposit and pattern such ultra-thin films of quantum dots with few monolayer thicknesses. Several competing approaches are available, each with its pros and cons. This study explores mist deposition as the technique to fill this void. In this study, ultra-thin films of quantum dots are deposited on diverse substrates and are characterized to understand the mechanics of mist deposition. Various applications of blanket deposited and patterned quantum dot films are studied. The results discussed here include atomic force microscopy analysis of the films to study surface morphology, fluorescence microscopy to study light emission and optical microscope images to study patterning techniques. These results demonstrate the ability of mist deposition to form 1-4 monolayers thick, uniform, defect-free patterned films with root mean square (RMS) surface roughness less than 2 nm. LEDs fabricated using mist deposition show a peak luminescence greater than 500 cd/m2 for matched red, yellow and green devices using Alq3 as the electron transport layer, and over 9000 cd/m2 for red devices using ZnO as the electron transport layer, respectively. In addition to the experimental approach to study the process and explore potential applications, simulation and modeling are carried out to understand the various aspects of mist deposition. A mathematical model is presented which discusses the atomization process of the precursor solution, the physics involved during the deposition

  1. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  2. Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Snider, Gregory

    2000-03-01

    Quantum-dot Cellular Automata (QCA) [1] is a promising architecture which employs quantum dots for digital computation. It is a revolutionary approach that holds the promise of high device density and low power dissipation. A basic QCA cell consists of four quantum dots coupled capacitively and by tunnel barriers. The cell is biased to contain two excess electrons within the four dots, which are forced to opposite "corners" of the four-dot cell by mutual Coulomb repulsion. These two possible polarization states of the cell will represent logic "0" and "1". Properly arranged, arrays of these basic cells can implement Boolean logic functions. Experimental results from functional QCA devices built of nanoscale metal dots defined by tunnel barriers will be presented. The experimental devices to be presented consist of Al islands, which we will call quantum dots, interconnected by tunnel junctions and lithographically defined capacitors. Aluminum/ aluminum-oxide/aluminum tunnel junctions were fabricated using a standard e-beam lithography and shadow evaporation technique. The experiments were performed in a dilution refrigerator at a temperature of 70 mK. The operation of a cell is evaluated by direct measurements of the charge state of dots within a cell as the input voltage is changed. The experimental demonstration of a functioning cell will be presented. A line of three cells demonstrates that there are no metastable switching states in a line of cells. A QCA majority gate will also be presented, which is a programmable AND/OR gate and represents the basic building block of QCA systems. The results of recent experiments will be presented. 1. C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Nanotechnology, 4, 49 (1993).

  3. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  4. Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auf der Maur, M., E-mail: auf.der.maur@ing.uniroma2.it; Di Carlo, A.; Galler, B.

    Based on numerical simulation and comparison with measured current characteristics, we show that the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model. The qualitative and quantitative differences in the current characteristics of devices with different emission wavelengths are demonstrated to be correlated in a physically consistent way with the tunneling model parameters.

  5. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  6. Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli's antibiotic resistance.

    PubMed

    Yan, Zheng-Yu; Du, Qing-Qing; Qian, Jing; Wan, Dong-Yu; Wu, Sheng-Mei

    2017-01-01

    In the paper, a green and efficient biosynthetical technique was reported for preparing cadmium sulfide (CdS) quantum dots, in which Escherichia coli (E. coli) was chosen as a biomatrix. Fluorescence emission spectra and fluorescent microscopic photographs revealed that as-produced CdS quantum dots had an optimum fluorescence emission peak located at 470nm and emitted a blue-green fluorescence under ultraviolet excitation. After extracted from bacterial cells and located the nanocrystals' foci in vivo, the CdS quantum dots showed a uniform size distribution by transmission electron microscope. Through the systematical investigation of the biosynthetic conditions, including culture medium replacement, input time point of cadmium source, working concentrations of raw inorganic ions, and co-cultured time spans of bacteria and metal ions in the bio-manufacture, the results revealed that CdS quantum dots with the strongest fluorescence emission were successfully prepared when E. coli cells were in stationary phase, with the replacement of culture medium and following the incubation with 1.0×10 -3 mol/L cadmium source for 2 days. Results of antimicrobial susceptibility testing indicated that the sensitivities to eight types of antibiotics of E. coli were barely changed before and after CdS quantum dots were prepared in the mild temperature environment, though a slight fall of antibiotic resistance could be observed, suggesting hinted the proposed technique of producing quantum dots is a promising environmentally low-risk protocol. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Spin-based quantum computation in multielectron quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Das Sarma, S.

    2001-10-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.

  8. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  9. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiupei, E-mail: xiupeiyang@163.com; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000; Lin, Jia

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination.more » The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.« less

  10. Three-terminal quantum-dot thermal management devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan

    2017-04-01

    We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.

  11. Quantum Dots and Their Multimodal Applications: A Review

    PubMed Central

    Bera, Debasis; Qian, Lei; Tseng, Teng-Kuan; Holloway, Paul H.

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence) or electric field (electroluminescence). In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  12. Theory and modelling of light-matter interactions in photonic crystal cavity systems coupled to quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Cartar, William K.

    Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature opera- tions. However, such semiconductor microcavity lasers are notoriously difficult to model in a self-consistent way and are primarily modelled by simplified rate equation approxima- tions, typically fit to experimental data, which limits investigations of their optimization and fundamental light-matter interaction processes. Moreover, simple cavity mode optical theory and rate equations have recently been shown to fail in explaining lasing threshold trends in triangular lattice photonic crystal cavities as a function of cavity size, and the potential impact of fabrication disorder is not well understood. In this thesis, we develop a simple but powerful numerical scheme for modelling the quantum dot active layer used for lasing in these photonic crystal cavity structures, as an ensemble of randomly posi- tioned artificial two-level atoms. Each two-level atom is defined by optical Bloch equations solved by a quantum master equation that includes phenomenological pure dephasing and an incoherent pump rate that effectively models a multi-level gain system. Light-matter in- teractions of both passive and lasing structures are analyzed using simulation defined tools and post-simulation Green function techniques. We implement an active layer ensemble of up to 24,000 statistically unique quantum dots in photonic crystal cavity simulations, using a self-consistent finite-difference time-domain method. This method has the distinct advantage of capturing effects such as dipole-dipole coupling and radiative decay, without the need for any phenomenological terms, since the time-domain solution self-consistently captures these effects. Our analysis demonstrates a powerful ability to connect with recent experimental trends, while remaining completely general in its set-up; for example, we do not invoke common

  13. Synthetic Developments of Nontoxic Quantum Dots.

    PubMed

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Moyon, F.; Houard, J.; Blum, I.; Lefebvre, W.; Vurpillot, F.; Das, A.; Monroy, E.; Rigutti, L.

    2017-12-01

    Single-dot time-resolved micro-photoluminescence spectroscopy and correlated electron tomography (ET) have been performed on self-assembled GaN/AlN quantum dots isolated within a field-emission nanoscale tip by focused ion beam (FIB). Despite the effect of the FIB, the system conserves the capability of emitting light through multi-excitonic complexes. The optical spectroscopy data have then been correlated with the electronic structure and lifetime parameters that could be extracted using the structural parameters obtained by ET via a 6 band k.p model. A biexciton-exciton cascade could be identified and thoroughly analysed. The biexciton-exciton states exhibit a non-negligible polarization component along the [0001] polar crystal axis, indicating a significant valence band mixing, while the relationship between exciton energy and biexciton binding energy is consistent with a hybrid character of the biexciton.

  15. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  16. Unveiling the composite structures of emissive consolidated p-i-n junction nanocells for white light emission.

    PubMed

    Lee, Kyu Seung; Shim, Jaeho; Lee, Hyunbok; Yim, Sang-Youp; Angadi, Basavaraj; Lim, Byungkwon; Son, Dong Ick

    2018-06-08

    Hybrid organic-Red-Green-Blue (RGB) color quantum dots were incorporated into consolidated p(polymer)-i(RGB quantum dots)-n(small molecules) junction structures to fabricate a single active layer for a light emitting diode device for white electroluminescence. The semiconductor RGB quantum dots, as an intrinsic material, were electrostatically bonded between functional groups of the p-type polymer organic material core surface and the n-type small molecular organic material shell surface. The ZnCdSe/ZnS and CdSe/ZnS quantum dots distributed uniformly and isotropically surrounding the polymer core which in turn was surrounded by small molecular organic materials. In the present study, we have identified the mechanisms of chemical synthesis and interactions of the p-i-n junction nanocell structure through modeling studies by DFT calculations. We have also investigated optical, structural and electrical properties along with the carrier transport mechanism of the light emitting diodes which have a single active layer of consolidated p-i-n junction nanocells for white electroluminescence.

  17. Dicke states in multiple quantum dots

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  18. Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 μ m telecom wavelength

    NASA Astrophysics Data System (ADS)

    Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F.

    2017-12-01

    Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 μ m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.

  19. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots.

    PubMed

    Jeong, Ho-Jung; Kim, Ye-Chan; Lee, Soo Kyung; Jeong, Yonkil; Song, Jin-Won; Yun, Ju-Hyung; Jang, Jae-Hyung

    2017-08-02

    Conventional Cu(In 1-x ,Ga x )Se 2 (CIGS) solar cells exhibit poor spectral response due to parasitic light absorption in the window and buffer layers at the short wavelength range between 300 and 520 nm. In this study, the CdSe/CdZnS core/shell quantum dots (QDs) acting as a luminescent down-shifting (LDS) layer were inserted between the MgF 2 antireflection coating and the window layer of the CIGS solar cell to improve light harvesting in the short wavelength range. The LDS layer absorbs photons in the short wavelength range and re-emits photons in the 609 nm range, which are transmitted through the window and buffer layer and absorbed in the CIGS layer. The average external quantum efficiency in the parasitic light absorption region (300-520 nm) was enhanced by 51%. The resulting short circuit current density of 34.04 mA/cm 2 and power conversion efficiency of 14.29% of the CIGS solar cell with the CdSe/CdZnS QDs were improved by 4.35 and 3.85%, respectively, compared with those of the conventional solar cells without QDs.

  20. Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification.

    PubMed

    Rastogi, Prachi; Palazon, Francisco; Prato, Mirko; Di Stasio, Francesco; Krahne, Roman

    2018-02-14

    The surface ligands on colloidal nanocrystals (NCs) play an important role in the performance of NC-based optoelectronic devices such as photovoltaic cells, photodetectors, and light-emitting diodes (LEDs). On one hand, the NC emission depends critically on the passivation of the surface to minimize trap states that can provide nonradiative recombination channels. On the other hand, the electrical properties of NC films are dominated by the ligands that constitute the barriers for charge transport from one NC to its neighbor. Therefore, surface modifications via ligand exchange have been employed to improve the conductance of NC films. However, in LEDs, such surface modifications are more critical because of their possible detrimental effects on the emission properties. In this work, we study the role of surface ligand modifications on the optical and electrical properties of CdSe/CdS dot-in-rods (DiRs) in films and investigate their performance in all-solution-processed LEDs. The DiR films maintain high photoluminescence quantum yield, around 40-50%, and their electroluminescence in the LED preserves the excellent color purity of the photoluminescence. In the LEDs, the ligand exchange boosted the luminance, reaching a fourfold increase from 2200 cd/m 2 for native surfactants to 8500 cd/m 2 for the exchanged aminoethanethiol (AET) ligands. Moreover, the efficiency roll-off, operational stability, and shelf life are significantly improved, and the external quantum efficiency is modestly increased from 5.1 to 5.4%. We relate these improvements to the increased conductivity of the emissive layer and to the better charge balance of the electrically injected carriers. In this respect, we performed ultraviolet photoelectron spectroscopy (UPS) to obtain a deeper insight into the band alignment of the LED structure. The UPS data confirm similar flat-band offsets of the emitting layer to the electron- and hole-transport layers in the case of AET ligands, which translates to

  1. Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.

    2013-05-01

    We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.

  2. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-04-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.

  3. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration

    NASA Astrophysics Data System (ADS)

    Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing

    2017-08-01

    Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.

  4. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light.

    PubMed

    Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P

    2014-02-12

    In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.

  5. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.

    PubMed

    Halim, Mohammad A

    2012-12-27

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley - Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  6. Optical pumping and negative luminescence polarization in charged GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Shabaev, Andrew; Stinaff, Eric A.; Bracker, Allan S.; Gammon, Daniel; Efros, Alexander L.; Korenev, Vladimir L.; Merkulov, Igor

    2009-01-01

    Optical pumping of electron spins and negative photoluminescence polarization are observed when interface quantum dots in a GaAs quantum well are excited nonresonantly by circularly polarized light. Both observations can be explained by the formation of long-lived dark excitons through hole spin relaxation in the GaAs quantum well prior to exciton capture. In this model, optical pumping of resident electron spins is caused by capture of dark excitons and recombination in charged quantum dots. Negative polarization results from accumulation of dark excitons in the quantum well and is enhanced by optical pumping. The dark exciton model describes the experimental results very well, including intensity and bias dependence of the photoluminescence polarization and the Hanle effect.

  7. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  8. All-solution-processed, multilayered CuInS₂/ZnS colloidal quantum-dot-based electroluminescent device.

    PubMed

    Kim, Jong-Hoon; Yang, Heesun

    2014-09-01

    While significant progress of electroluminescent (EL) quantum dot light-emitting diodes (QD-LEDs) that rely exclusively on Cd-containing II-VI quantum dots (QDs) has been reported over the past two decades with respect to device processing and performance, devices based on non-Cd QDs as an active emissive layer (EML) remain at the early stage of development. In this work, utilizing highly luminescent colloidal CuInS2 (CIS)/ZnS QDs, all-solution-processed multilayered QD-LEDs are fabricated by sequentially spin depositing a hole transport layer of poly(9-vinlycarbazole), an EML of CIS/ZnS QDs, and an electron transport layer of ZnO nanoparticles. Our focus in device fabrication is to vary the thickness of the QD EML, which is one of the primary determinants in EL performance but has not been addressed in earlier reports. The device with an optimal EML thickness exhibits a peak luminance of 1564  cd/m2 and current efficiency of 2.52  cd/A. This record value in efficiency is higher by 3-4 times that of CIS QD-LEDs reported previously.

  9. Quantum optics with nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zwiller, Val

    2017-02-01

    Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.

  10. Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots.

    PubMed

    Nagamine, Gabriel; Rocha, Jaqueline O; Bonato, Luiz G; Nogueira, Ana F; Zaharieva, Zhanet; Watt, Andrew A R; de Brito Cruz, Carlos H; Padilha, Lazaro A

    2018-06-21

    Perovskite quantum dots (PQDs) emerged as a promising class of material for applications in lighting devices, including light emitting diodes and lasers. In this work, we explore nonlinear absorption properties of PQDs showing the spectral signatures and the size dependence of their two-photon absorption (2PA) cross-section, which can reach values higher than 10 6 GM. The large 2PA cross section allows for low threshold two-photon induced amplified spontaneous emission (ASE), which can be as low as 1.6 mJ/cm 2 . We also show that the ASE properties are strongly dependent on the nanomaterial size, and that the ASE threshold, in terms of the average number of excitons, decreases for smaller PQDs. Investigating the PQDs biexciton binding energy, we observe strong correlation between the increasing on the biexciton binding energy and the decreasing on the ASE threshold, suggesting that ASE in PQDs is a biexciton-assisted process.

  11. Using of Quantum Dots in Biology and Medicine.

    PubMed

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  12. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belykh, V. V., E-mail: vasilii.belykh@tu-dortmund.de; P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991; Yakovlev, D. R.

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, frommore » 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.« less

  13. Temperature dependent optical properties of single, hierarchically self-assembled GaAs/AlGaAs quantum dots

    PubMed Central

    Rastelli, A; Schmidt, OG; Ulrich, SM; Michler, P

    2006-01-01

    We report on the experimental observation of bright photoluminescence emission at room temperature from single unstrained GaAs quantum dots (QDs). The linewidth of a single-QD ground-state emission (≈ 8.5 meV) is comparable to the ensemble inhomogeneous broadening (≈ 12.4 meV). At low temperature (T ≤ 40 K) photon correlation measurements under continuous wave excitation show nearly perfect single-photon emission from a single GaAs QD and reveal the single photon nature of the emitted light up to 77 K. The QD emission energies, homogeneous linewidths and the thermally activated behavior as a function of temperature are discussed.

  14. Few-Photon Model of the Optical Emission of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Richter, Marten; Carmele, Alexander; Sitek, Anna; Knorr, Andreas

    2009-08-01

    The Jaynes-Cummings model provides a well established theoretical framework for single electron two level systems in a radiation field. Similar exactly solvable models for semiconductor light emitters such as quantum dots dominated by many particle interactions are not known. We access these systems by a generalized cluster expansion, the photon-probability cluster expansion: a reliable approach for few-photon dynamics in many body electron systems. As a first application, we discuss vacuum Rabi oscillations and show that their amplitude determines the number of electrons in the quantum dot.

  15. 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2018-01-01

    Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.

  16. Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.

    2016-09-01

    A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

  17. Interactions between photoexcited NIR emitting CdHgTe quantum dots and graphene oxide

    NASA Astrophysics Data System (ADS)

    Jagtap, Amardeep M.; Varade, Vaibhav; Konkena, Bharathi; Ramesh, K. P.; Chatterjee, Abhijit; Banerjee, Arup; Pendyala, Naresh Babu; Koteswara Rao, K. S. R.

    2016-02-01

    Hydrothermally grown mercury cadmium telluride quantum dots (CdHgTe QDs) are decorated on graphene oxide (GO) sheets through physisorption. The structural change of GO through partial reduction of oxygen functional groups is observed with X-ray photoelectron spectroscopy in GO-QDs composites. Raman spectroscopy provides relatively a small change (˜1.1 times) in D/G ratio of band intensity and red shift in G band from 1606 cm-1 to 1594 cm-1 in GO-CdHgTe QDs (2.6 nm) composites, which indicates structural modification of GO network. Steady state and time resolved photoluminescence (PL) spectroscopy shows the electronic interactions between photoexcited near infrared emitting CdHgTe QDs and GO. Another interesting observation is PL quenching in the presence of GO, and it is quite effective in the case of smaller size QDs (2.6 nm) compared to the larger size QDs (4.2 nm). Thus, the observed PL quenching is attributed to the photogenerated electron transfer from QDs to GO. The photoexcited electron transfer rate decreases from 2.2 × 109 to 1.5 × 108 s-1 with increasing particle size from 2.6 to 4.2 nm. Photoconductivity measurements on QDs-GO composite devices show nearly 3 fold increase in the current density under photo-illumination, which is a promising aspect for solar energy conversion and other optoelectronic applications.

  18. Effect of a low-temperature-grown GaAs layer on InAs quantum-dot photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosarev, A. N.; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru; Preobrazhenskii, V. V.

    2016-11-15

    The photoluminescence of InAs semiconductor quantum dots overgrown by GaAs in the low-temperature mode (LT-GaAs) using various spacer layers or without them is studied. Spacer layers are thin GaAs or AlAs layers grown at temperatures normal for molecular-beam epitaxy (MBE). Direct overgrowth leads to photoluminescence disappearance. When using a thin GaAs spacer layer, the photoluminescence from InAs quantum dots is partially recovered; however, its intensity appears lower by two orders of magnitude than in the reference sample in which the quantum-dot array is overgrown at normal temperature. The use of wider-gap AlAs as a spacer-layer material leads to the enhancementmore » of photoluminescence from InAs quantum dots, but it is still more than ten times lower than that of reference-sample emission. A model taking into account carrier generation by light, diffusion and tunneling from quantum dots to the LT-GaAs layer is constructed.« less

  19. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  20. Droplet-based microreactor for synthesis of water-soluble Ag₂S quantum dots.

    PubMed

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-10

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.

  1. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    PubMed

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Finite element method for calculating spectral and optical characteristics of axially symmetric quantum dots

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Chuluunbaatar, O.; Vinitsky, S. I.; Derbov, V. L.; Hai, L. L.; Kazaryan, E. M.; Sarkisyan, H. A.

    2018-04-01

    We present new calculation schemes using high-order finite element method implemented on unstructured grids with triangle elements for solving boundary-value problems that describe axially symmetric quantum dots. The efficiency of the algorithms and software is demonstrated by benchmark calculations of the energy spectrum, the envelope eigenfunctions of electron, hole and exciton states, and the direct interband light absorption in conical and spheroidal impenetrable quantum dots.

  3. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Luminescent Quantum Dots as Ultrasensitive Biological Labels

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2000-03-01

    Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

  5. Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming

    2006-01-01

    The figure depicts a proposed semiconductor laser, based on In(As)Sb quantum dots on a (001) InP substrate, that would operate in the wavelength range between 1.8 and 2.3 m. InSb and InAsSb are the smallest-bandgap conventional III-V semiconductor materials, and the present proposal is an attempt to exploit the small bandgaps by using InSb and InAsSb nanostructures as midinfrared emitters. The most closely related prior III-V semiconductor lasers are based, variously, on strained InGaAs quantum wells and InAs quantum dots on InP substrates. The emission wavelengths of these prior devices are limited to about 2.1 m because of critical quantum-well thickness limitations for these lattice mismatched material systems. The major obstacle to realizing the proposed laser is the difficulty of fabricating InSb quantum dots in sufficient density on an InP substrate. This difficulty arises partly because of the weakness of the bond between In and Sb and partly because of the high temperature needed to crack metalorganic precursor compounds during the vapor-phase epitaxy used to grow quantum dots: The mobility of the weakly bound In at the high growth temperature is so high that In adatoms migrate easily on the growth surface, resulting in the formation of large InSb islands at a density, usually less than 5 x 10(exp 9) cm(exp -2), that is too low for laser operation. The mobility of the In adatoms could be reduced by introducing As atoms to the growth surface because the In-As bond is about 30 percent stronger than is the In-Sb bond. The fabrication of the proposed laser would include a recently demonstrated process that involves the use of alternative supplies of precursors to separate group-III and group-V species to establish local non-equilibrium process conditions, so that In(As)Sb quantum dots assemble themselves on a (001) InP substrate at a density as high as 4 x 10(exp 10) cm(exp -2). Room-temperature photoluminescence spectra of quantum dots formed by this process

  6. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiang, E-mail: jiang.wu@ucl.ac.uk; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelengthmore » infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.« less

  7. Ultra-broadband photodetectors based on epitaxial graphene quantum dots

    NASA Astrophysics Data System (ADS)

    El Fatimy, Abdel; Nath, Anindya; Kong, Byoung Don; Boyd, Anthony K.; Myers-Ward, Rachael L.; Daniels, Kevin M.; Jadidi, M. Mehdi; Murphy, Thomas E.; Gaskill, D. Kurt; Barbara, Paola

    2018-03-01

    Graphene is an ideal material for hot-electron bolometers due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum-dot constrictions yields detectors of electromagnetic radiation with extraordinarily high intrinsic responsivity, higher than 1×109 V W-1 at 3 K. The sensing mechanism is bolometric in nature: the quantum confinement gap causes a strong dependence of the electrical resistance on the electron temperature. Here, we show that this quantum confinement gap does not impose a limitation on the photon energy for light detection and these quantum-dot bolometers work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation, with responsivity independent of wavelength. We also measure the power dependence of the response. Although the responsivity decreases with increasing power, it stays higher than 1×108 V W-1 in a wide range of absorbed power, from 1 pW to 0.4 nW.

  8. Electronic Two-Transition-Induced Enhancement of Emission Efficiency in Polymer Light-Emitting Diodes

    PubMed Central

    Chen, Ren-Ai; Wang, Cong; Li, Sheng; George, Thomas F.

    2013-01-01

    With the development of experimental techniques, effective injection and transportation of electrons is proven as a way to obtain polymer light-emitting diodes (PLEDs) with high quantum efficiency. This paper reveals a valid mechanism for the enhancement of quantum efficiency in PLEDs. When an external electric field is applied, the interaction between a negative polaron and triplet exciton leads to an electronic two-transition process, which induces the exciton to emit light and thus improve the emission efficiency of PLEDs. PMID:28809346

  9. Spectroscopy of Single AlInAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Derebezov, I. A.; Gaisler, A. V.; Gaisler, V. A.; Dmitriev, D. V.; Toropov, A. I.; Kozhukhov, A. S.; Shcheglov, D. V.; Latyshev, A. V.; Aseev, A. L.

    2018-03-01

    A system of quantum dots based on Al x In1- x As/Al y Ga1- y As solid solutions is investigated. The use of Al x In1- x As wide-gap solid solutions as the basis of quantum dots substantially extends the spectral emission range to the short-wavelength region, including the wavelength region near 770 nm, which is of interest for the development of aerospace systems of quantum cryptography. The optical characteristics of Al x In1- x As single quantum dots grown by the Stranski-Krastanov mechanism were studied by cryogenic microphotoluminescence. The statistics of the emission of single quantum dot excitons was studied using a Hanbury Brown-Twiss interferometer. The pair photon correlation function indicates the sub-Poissonian nature of the emission statistics, which directly confirms the possibility of developing single-photon emitters based on Al x In1- x As quantum dots. The fine structure of quantum dot exciton states was investigated at wavelengths near 770 nm. The splitting of the exciton states is found to be similar to the natural width of exciton lines, which is of great interest for the development of entangled photon pair emitters based on Al x In1- x As quantum dots.

  10. Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices.

    PubMed

    Jiang, Congbiao; Zhong, Zhiming; Liu, Baiquan; He, Zhiwei; Zou, Jianhua; Wang, Lei; Wang, Jian; Peng, JunBiao; Cao, Yong

    2016-10-05

    Inkjet printing has been considered an available way to achieve large size full-color RGB quantum dots LED display, and the key point is to obtain printed film with uniform and flat surface profile. In this work, mixed solvent of 20 vol % 1,2-dichlorobenzene (oDCB) with cyclohexylbenzene (CHB) was used to dissolve green quantum dots (QDs) with CdSe@ZnS/ZnS core/shell structure. Then, by inkjet printing, a flat dotlike QDs film without the coffee ring was successfully obtained on polyetherimide (PEI)-modified ZnO layer, and the printed dots array exhibited great stability and repeatability. Here, adding oDCB into CHB solutions was used to reduce surface tension, and employing ZnO nanoparticle layer with PEI-modified was used to increase the surface free energy. As a result, a small contact angle is formed, which leads to the enhancement of evaporation rate, and then the coffee ring effect was suppressed. The printed dots with flat surface profile were eventually realized. Moreover, inverted green QD-LEDs with PEI-modified ZnO film as electron transport layer (ETL) and printed green QDs film as emission layer were successfully fabricated. The QD-LEDs exhibited the maximum luminance of 12 000 cd/m 2 and the peak current efficiency of 4.5 cd/A at luminance of 1500 cd/m 2 .

  11. Top-emitting organic light-emitting diodes.

    PubMed

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  12. Compact quantum random number generator based on superluminescent light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wei, Shihai; Yang, Jie; Fan, Fan; Huang, Wei; Li, Dashuang; Xu, Bingjie

    2017-12-01

    By measuring the amplified spontaneous emission (ASE) noise of the superluminescent light emitting diodes, we propose and realize a quantum random number generator (QRNG) featured with practicability. In the QRNG, after the detection and amplification of the ASE noise, the data acquisition and randomness extraction which is integrated in a field programmable gate array (FPGA) are both implemented in real-time, and the final random bit sequences are delivered to a host computer with a real-time generation rate of 1.2 Gbps. Further, to achieve compactness, all the components of the QRNG are integrated on three independent printed circuit boards with a compact design, and the QRNG is packed in a small enclosure sized 140 mm × 120 mm × 25 mm. The final random bit sequences can pass all the NIST-STS and DIEHARD tests.

  13. Quantum strain sensor with a topological insulator HgTe quantum dot

    PubMed Central

    Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674

  14. Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis.

    PubMed

    Bajorowicz, Beata; Kobylański, Marek P; Gołąbiewska, Anna; Nadolna, Joanna; Zaleska-Medynska, Adriana; Malankowska, Anna

    2018-06-01

    Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  16. Strategy for synthesizing quantum dot-layered double hydroxide nanocomposites and their enhanced photoluminescence and photostability.

    PubMed

    Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee

    2013-01-08

    Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.

  17. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  18. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    PubMed Central

    Halim, Mohammad A.

    2012-01-01

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320

  19. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize

  20. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  2. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  3. Semiconductor Quantum Dots with Photoresponsive Ligands.

    PubMed

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  4. Lighting up micromotors with quantum dots for smart chemical sensing.

    PubMed

    Jurado-Sánchez, B; Escarpa, A; Wang, J

    2015-09-25

    A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.

  5. Investigation of Quantum Dot Lasers

    DTIC Science & Technology

    2004-08-09

    Accomplishments: • Introduction Since the first demonstration of room-temperature operation of self-assembled quantum-dot (QD) lasers about a...regions (JGaAs), wetting layer (JWL), and Auger recombination in the dots ( JAug ). for the present 1.3µm dots, the temperature invariant measured

  6. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Sukhanov, Aleksei A.

    2017-05-01

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  7. Excitonic quantum interference in a quantum dot chain with rings.

    PubMed

    Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang

    2008-04-16

    We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.

  8. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots

    PubMed Central

    2017-01-01

    Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu2-xS nanocrystals (NCs), which are converted by topotactic partial Cu+ for In3+ exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750–1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators. PMID:28638177

  9. Ultralow Noise Monolithic Quantum Dot Photonic Oscillators

    DTIC Science & Technology

    2013-10-28

    HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance

  10. Measurement back-action: Listening with quantum dots

    NASA Astrophysics Data System (ADS)

    Ladd, Thaddeus D.

    2012-07-01

    Single electrons in quantum dots can be disturbed by the apparatus used to measure them. The disturbance can be mediated by incoherent phonons -- literally, noise. Engineering acoustic interference could negate these deleterious effects and bring quantum dots closer to becoming a robust quantum technology.

  11. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  12. Zinc sulfide quantum dots for photocatalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.

    2017-09-01

    Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.

  13. Fluorescent Quantum Dots for Biological Labeling

    NASA Technical Reports Server (NTRS)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  14. Improved color metrics in solid-state lighting via utilization of on-chip quantum dots

    NASA Astrophysics Data System (ADS)

    Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.

    2017-02-01

    While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.

  15. Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen

    2016-12-01

    Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  16. Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots

    NASA Astrophysics Data System (ADS)

    Ngo, Thi Tuyen; Suarez, Isaac; Sanchez, Rafael S.; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-07-01

    Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and electroluminescence experiments. The radiative exciplex relaxation is centered in the near infrared region (NIR), ~1200 nm, which corresponds to lower energies than the corresponding band gap of both perovskite (PS) and QDs. Our approach allows the fabrication of multi-wavelength light emitting diodes (LEDs) based on a PS matrix with embedded QDs, which show considerably low turn-on potentials. The presence of the exciplex state of PS and QDs opens up a broad range of possibilities with important implications in both LEDs and solar cells.Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by photoluminescence and

  17. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    PubMed Central

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-01-01

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080

  18. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    PubMed

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  19. Multi-dimensional photonic states from a quantum dot

    NASA Astrophysics Data System (ADS)

    Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2018-04-01

    Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.

  20. Metamorphic quantum dots: Quite different nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Frigeri, P.; Nasi, L.

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less

  1. Photon-assisted tunneling in an asymmetrically coupled triple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao

    The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less

  2. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    PubMed Central

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  3. Quantum dot enabled detection of Escherichia coli using a cell-phone†

    PubMed Central

    Zhu, Hongying; Sikora, Uzair; Ozcan, Aydogan

    2013-01-01

    We report a cell-phone based Escherichia coli (E. coli) detection platform for screening of liquid samples. In this compact and cost-effective design attached to a cell-phone, we utilize anti-E. coli O157:H7 antibody functionalized glass capillaries as solid substrates to perform a quantum dot based sandwich assay for specific detection of E. coli O157:H7 in liquid samples. Using battery-powered inexpensive light-emitting-diodes (LEDs) we excite/pump these labelled E. coli particles captured on the capillary surface, where the emission from the quantum dots is then imaged using the cell-phone camera unit through an additional lens that is inserted between the capillary and the cell-phone. By quantifying the fluorescent light emission from each capillary tube, the concentration of E. coli in the sample is determined. We experimentally confirmed the detection limit of this cell-phone based fluorescent imaging and sensing platform as ~5 to 10 cfu mL−1 in buffer solution. We also tested the specificity of this E. coli detection platform by spiking samples with different species (e.g., Salmonella) to confirm that non-specific binding/detection is negligible. We further demonstrated the proof-of-concept of our approach in a complex food matrix, e.g., fat-free milk, where a similar detection limit of ~5 to 10 cfu mL−1 was achieved despite challenges associated with the density of proteins that exist in milk. Our results reveal the promising potential of this cell-phone enabled field-portable and cost-effective E. coli detection platform for e.g., screening of water and food samples even in resource limited environments. The presented platform can also be applicable to other pathogens of interest through the use of different antibodies. PMID:22396952

  4. Quantum dot enabled detection of Escherichia coli using a cell-phone.

    PubMed

    Zhu, Hongying; Sikora, Uzair; Ozcan, Aydogan

    2012-06-07

    We report a cell-phone based Escherichia coli (E. coli) detection platform for screening of liquid samples. In this compact and cost-effective design attached to a cell-phone, we utilize anti-E. coli O157:H7 antibody functionalized glass capillaries as solid substrates to perform a quantum dot based sandwich assay for specific detection of E. coli O157:H7 in liquid samples. Using battery-powered inexpensive light-emitting-diodes (LEDs) we excite/pump these labelled E. coli particles captured on the capillary surface, where the emission from the quantum dots is then imaged using the cell-phone camera unit through an additional lens that is inserted between the capillary and the cell-phone. By quantifying the fluorescent light emission from each capillary tube, the concentration of E. coli in the sample is determined. We experimentally confirmed the detection limit of this cell-phone based fluorescent imaging and sensing platform as ∼5 to 10 cfu mL(-1) in buffer solution. We also tested the specificity of this E. coli detection platform by spiking samples with different species (e.g., Salmonella) to confirm that non-specific binding/detection is negligible. We further demonstrated the proof-of-concept of our approach in a complex food matrix, e.g., fat-free milk, where a similar detection limit of ∼5 to 10 cfu mL(-1) was achieved despite challenges associated with the density of proteins that exist in milk. Our results reveal the promising potential of this cell-phone enabled field-portable and cost-effective E. coli detection platform for e.g., screening of water and food samples even in resource limited environments. The presented platform can also be applicable to other pathogens of interest through the use of different antibodies.

  5. Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots

    NASA Astrophysics Data System (ADS)

    Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-07-01

    A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.

  6. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon-Hwa; Asadirad, Mojtaba; Kim, Seung-Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon Seop; Ryou, Jae-Hyun

    2018-03-01

    We report a new route to improve quantum efficiencies of AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency is enhanced higher than three times, when the DUV LEDs are moderately bent with concave curvatures. Furthermore, an efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  7. Deep Blue Phosphorescent Organic Light-Emitting Diodes with CIEy Value of 0.11 and External Quantum Efficiency up to 22.5.

    PubMed

    Li, Xiaoyue; Zhang, Juanye; Zhao, Zifeng; Wang, Liding; Yang, Hannan; Chang, Qiaowen; Jiang, Nan; Liu, Zhiwei; Bian, Zuqiang; Liu, Weiping; Lu, Zhenghong; Huang, Chunhui

    2018-03-01

    Organic light-emitting diodes (OLEDs) based on red and green phosphorescent iridium complexes are successfully commercialized in displays and solid-state lighting. However, blue ones still remain a challenge on account of their relatively dissatisfactory Commission International de L'Eclairage (CIE) coordinates and low efficiency. After analyzing the reported blue iridium complexes in the literature, a new deep-blue-emitting iridium complex with improved photoluminescence quantum yield is designed and synthesized. By rational screening host materials showing high triplet energy level in neat film as well as the OLED architecture to balance electron and hole recombination, highly efficient deep-blue-emission OLEDs with a CIE at (0.15, 0.11) and maximum external quantum efficiency (EQE) up to 22.5% are demonstrated. Based on the transition dipole moment vector measurement with a variable-angle spectroscopic ellipsometry method, the ultrahigh EQE is assigned to a preferred horizontal dipole orientation of the iridium complex in doped film, which is beneficial for light extraction from the OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis, Characterization, and Fabrication of All Inorganic Quantum Dot LEDs

    NASA Astrophysics Data System (ADS)

    Salman, Haider Baqer

    Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO were synthesized following sol-gel method and deposited using spin coating. The anode of the device was a commercial slide of indium tin oxide deposited on glass substrate while the cathode was a 100 nm aluminum layer that was deposited using an Auto 306T Edwards thermal evaporator. In this research, Raman spectroscopy, micro-photoluminescence spectroscopy, absorbance spectroscopy, X-ray diffraction (XRD) spectroscopy, and atomic force microscopy, were used to characterize the materials. Three sharp peaks were observed in the XRD measurements of the NiO thin film related to three planes and indicated a proper level of crystallinity. The AFM image of the same material indicated a roughness RMS value of 2 nm which was accepted for a device fabrication. The photoluminescence spectrum exhibited a peak at 515 nm for the quantum dots and a peak at 315 nm for the ZnO nanocrystals. The narrow shape of these spectra proved a limited amount of size variation. The transfer characteristics of the fabricated device indicated that the current density ramped up producing green light when the voltage was higher than 5 V to reach 160 mA cm -2 at 9 V.

  9. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  10. The influence of carrier dynamics on double-state lasing in quantum dot lasers at variable temperature

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-12-01

    It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.

  11. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    PubMed

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Coherent electron{endash}hole correlations in quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, L.; Steiner, M.M.; Wilkins, J.W.

    1997-03-01

    Using numerical time propagation of the electron{endash}hole wave function, we demonstrate how various coherent correlation effects can be observed by laser excitation of a nanoscale semiconductor quantum dot. The lowest-lying states of an electron{endash}hole pair, when appropriately excited by a laser pulse, give rise to charge oscillations that are manifested by beatings in the optical or intraband polarizations. A GaAs 5{times}25{times}25 nm{sup 3} dot in the effective-mass approximation, including the screened Coulomb interaction between the electron and a heavy or light hole, is simulated. {copyright} {ital 1997 American Institute of Physics.}

  13. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  14. III–V quantum light source and cavity-QED on Silicon

    PubMed Central

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  15. III-V quantum light source and cavity-QED on silicon.

    PubMed

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  16. C8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects

    NASA Astrophysics Data System (ADS)

    Xifang, Chen; Wenxia, Zhang; Qianjin, Wang; Jiyang, Fan

    Carbon quantum dots (CQDs) have attracted great attention in the past few years due to their low cytotoxicity, exploited various synthesis methods, unexampled abundance of raw materials on earth, and robust near-infrared to near-UV luminescence. Carbon nanoparticles have applications in biological labeling, delivery of drugs and biological molecules into cells, and light emitting diodes and lasing. CQDs generally exist as nanodiamonds or graphite quantum dots according to previous research reports. In this study, we report the first synthesis of the third-allotrope CQDs through carbonization of sucrose and study their luminescence properties. These CQDs have a body-centered cubic structure and each lattice point is composed of eight atoms which form a sub-cube (so called C8 crystal structure). High-resolution transmission electron microscopy and X-ray diffraction confirm the C8 structure of the synthesized carbon nanocrystallites with an average size of 2 nm. The C8 CQDs exhibit double-band luminescence with two peaks centered at around 432 and 520 nm. The study based on the photoluminescence, UV-Vis absorption, Fourier-transform infrared, and X-ray photoelectron spectroscopies reveals that the green emission originates from the C=O related surface defect.

  17. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    PubMed

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  18. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm-2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm-2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  20. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  1. Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots.

    PubMed

    Kyhm, Kwangseuk; Je, Koo-Chul; Taylor, Robert A

    2012-08-27

    We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.

  2. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  3. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  4. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots

    PubMed Central

    2012-01-01

    Deterministic sources of polarization entangled photon pairs on demand are considered as important building blocks for quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a sufficiently small excitonic fine structure splitting (FSS) can be used as triggered, on-chip sources of polarization entangled photon pairs. As-grown QDs usually do not have the required values of the FSS, making the availability of post-growth tuning techniques highly desired. This article reviews the effect of different post-growth treatments and external fields on the FSS such as thermal annealing, magnetic fields, the optical Stark effect, electric fields, and anisotropic stress. As a consequence of the tuning of the FSS, for some tuning techniques a rotation of the polarization of the emitted light is observed. The joint modification of polarization orientation and FSS can be described by an anticrossing of the bright excitonic states. PMID:22726724

  5. Spectroscopy of Charged Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  6. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  7. Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1

    PubMed Central

    Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione

    2007-01-01

    The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555

  8. A reconfigurable gate architecture for Si/SiGe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajac, D. M.; Hazard, T. M.; Mi, X.

    2015-06-01

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  9. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  10. Designing quantum dots for solotronics.

    PubMed

    Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.

  11. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  12. Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes

    NASA Astrophysics Data System (ADS)

    Hussain, Laiq; Karimi, Mohammad; Berg, Alexander; Jain, Vishal; Borgström, Magnus T.; Gustafsson, Anders; Samuelson, Lars; Pettersson, Håkan

    2017-12-01

    Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed.

  13. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felle, M.; Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA; Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  14. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  15. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.

    2017-12-01

    A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.

  16. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo

    2018-02-01

    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  17. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications

    DOE PAGES

    Hu, Michael Z.; Zhu, Ting

    2015-12-04

    This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  18. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergren, Matthew R.; Makarov, Nikolay S.; Ramasamy, Karthik

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within themore » existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.« less

  19. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  20. Optical Signatures of Coupled Quantum Dots

    DTIC Science & Technology

    2006-02-03

    Optical Signatures of Coupled Quantum Dots E. A. Stinaff,1 M. Scheibner,1 A. S . Bracker,1 I. V. Ponomarev,1 V. L. Korenev ,2 M. E. Ware,1 M. F. Doty,1...possibility of optically coupling quantum dots for application in quantum information processing. S emiconductor approaches to quantum information can...REPORTS 3 FEBRUARY 2006 VOL 311 SCIENCE www.sciencemag.org636 o n A ug us t 1 4, 2 00 7 w w w . s ci en ce m ag .o rg D ow nl oa de d fr om Report