Sample records for quantum dots emission

  1. Field-emission from quantum-dot-in-perovskite solids

    PubMed Central

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-01-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission. PMID:28337981

  2. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from themore » photonic crystal structure.« less

  3. Effect of organic materials used in the synthesis on the emission from CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Won; Yang, Ho-Soon; Hong, K. S.; Kim, S. M.

    2013-12-01

    Quantum-dot nanocrystals have particular optical properties due to the quantum confinement effect and the surface effect. This study focuses on the effect of surface conditions on the emission from quantum dots. The quantum dots prepared with 1-hexadecylamine (HDA) in the synthesis show strong emission while the quantum dots prepared without HDA show weak emission, as well as emission from surface energy traps. The comparison of the X-ray patterns of these two sets of quantum dots reveals that HDA forms a layer on the surface of quantum dot during the synthesis. This surface passivation with a layer of HDA reduces surface energy traps, therefore the emission from surface trap levels is suppressed in the quantum dots synthesized with HDA.

  4. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  5. Polarization control of quantum dot emission by chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.

  6. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    PubMed

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  7. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiao; Wang, Hao; Yi, Qinghua

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefitsmore » the future development of optoelectronic nanodevices with new functionalities.« less

  8. Single photon emission from charged excitons in CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Belyaev, K. G.; Rakhlin, M. V.; Sorokin, S. V.; Klimko, G. V.; Gronin, S. V.; Sedova, I. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.

    2017-11-01

    We report on micro-photoluminescence studies of individual self-organized CdTe/ZnTe quantum dots intended for single-photon-source applications in a visible spectral range. The quantum dots surface density below 1010 per cm2 was achieved by using a thermally activated regime of molecular beam epitaxy that allowed fabrication of etched mesa-structures containing only a few emitting quantum dots. The single photon emission with the autocorrelation function g(2)(0)<0.2 was detected and identified as recombination of charged excitons in the individual quantum dot.

  9. The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xingxia; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210; University of Chinese Academy of Sciences, Beijing 100049

    2015-12-14

    Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.

  10. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  11. Acoustically regulated optical emission dynamics from quantum dot-like emission centers in GaN/InGaN nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P. V.; van der Meulen, H. P.

    2018-03-01

    We report on experimental studies of the effects induced by surface acoustic waves on the optical emission dynamics of GaN/InGaN nanowire quantum dots. We employ stroboscopic optical excitation with either time-integrated or time-resolved photoluminescence detection. In the absence of the acoustic wave, the emission spectra reveal signatures originated from the recombination of neutral exciton and biexciton confined in the probed nanowire quantum dot. When the nanowire is perturbed by the propagating acoustic wave, the embedded quantum dot is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling. Depending on the recombination lifetime of the involved optical transitions, we can resolve acoustically driven radiative processes over time scales defined by the acoustic cycle. At high acoustic amplitudes, we also observe distortions in the transmitted acoustic waveform, which are reflected in the time-dependent spectral response of our sensor quantum dot. In addition, the correlated intensity oscillations observed during temporal decay of the exciton and biexciton emission suggest an effect of the acoustic piezoelectric fields on the quantum dot charge population. The present results are relevant for the dynamic spectral and temporal control of photon emission in III-nitride semiconductor heterostructures.

  12. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.

    PubMed

    Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L

    2017-03-03

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  13. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.

    2017-03-01

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  14. GaAs/GaP quantum dots: Ensemble of direct and indirect heterostructures with room temperature optical emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadgostar, S.; Mogilatenko, A.; Masselink, W. T.

    2016-03-07

    We describe the optical emission and the carrier dynamics of an ensemble of self-assembled GaAs quantum dots embedded in GaP(001). The QD formation is driven by the 3.6% lattice mismatch between GaAs and GaP in the Stranski-Krastanow mode after deposition of more than 1.2 monolayers of GaAs. The quantum dots have an areal density between 6 and 7.6 × 10{sup 10} per cm{sup −2} and multimodal size distribution. The luminescence spectra show two peaks in the range of 1.7 and 2.1 eV. The samples with larger quantum dots have red emission and show less thermal quenching compared with the samples with smaller QDs.more » The large QDs luminescence up to room temperature. We attribute the high energy emission to indirect carrier recombination in the thin quantum wells or small strained quantum dots, whereas the low energy red emission is due to the direct electron-hole recombination in the relaxed quantum dots.« less

  15. Linearly polarized emission from an embedded quantum dot using nanowire morphology control.

    PubMed

    Foster, Andrew P; Bradley, John P; Gardner, Kirsty; Krysa, Andrey B; Royall, Ben; Skolnick, Maurice S; Wilson, Luke R

    2015-03-11

    GaAs nanowires with elongated cross sections are formed using a catalyst-free growth technique. This is achieved by patterning elongated nanoscale openings within a silicon dioxide growth mask on a (111)B GaAs substrate. It is observed that MOVPE-grown vertical nanowires with cross section elongated in the [21̅1̅] and [1̅12] directions remain faithful to the geometry of the openings. An InGaAs quantum dot with weak radial confinement is realized within each nanowire by briefly introducing indium into the reactor during nanowire growth. Photoluminescence emission from an embedded nanowire quantum dot is strongly linearly polarized (typically >90%) with the polarization direction coincident with the axis of elongation. Linearly polarized PL emission is a result of embedding the quantum dot in an anisotropic nanowire structure that supports a single strongly confined, linearly polarized optical mode. This research provides a route to the bottom-up growth of linearly polarized single photon sources of interest for quantum information applications.

  16. Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods.

    PubMed

    Sadeghi, Seyed M; Gutha, Rithvik R; Wing, Waylin J; Sharp, Christina; Capps, Lucas; Mao, Chuanbin

    2017-01-01

    We study biological sensing using plasmonic and photonic-plasmonic resonances of arrays of ultralong metallic nanorods and analyze the impact of these resonances on emission dynamics of quantum dot bioconjugates. We demonstrate that the LSPRs and plasmonic lattice modes of such array can be used to detect a single self-assembled monolayer of alkanethiol at the visible (550 nm) and near infrared (770 nm) range with well resolved shifts. We study adsorption of streptavidin-quantum dot conjugates to this monolayer, demonstrating that formation of nearly two dimensional arrays of quantum dots with limited emission blinking can lead to extra well-defined wavelength shifts in these modes. Using spectrally-resolved lifetime measurements we study the emission dynamics of such quantum dot bioconjugates within their monodispersed size distribution. We show that, despite their close vicinity to the nanorods, the rate of energy transfer from these quantum dots to nanorods is rather weak, while the plasmon field enhancement can be strong. Our results reveal that the nanorods present a strongly wavelength or size-dependent non-radiative decay channel to the quantum dot bioconjugates.

  17. Stimulated emission and lasing from all-inorganic perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Haibo, Zeng

    We present superior optical gain and lasing properties in a new class of emerging quantum materials, the colloidal all-inorganic cesium lead halide perovskite quantum dots (IPQDs) (CsPbX3, X = Cl, Br, I). Our result has indicated that such material system show combined merits of both colloidal quantum dots and halide perovskites. Low-threshold and ultrastable stimulated emission was demonstrated under atmospheric condition. The flexibility and advantageous optical gain properties of these CsPbX3 IPQDs were manifested by demonstration of an optically pumped micro-laser. The nonlinear optical properties including the multi-photon absorption and resultant photoluminescence of the CsPbX3 nanocrystals were investigated. A large two-photon absorption cross-section of up to ~1.2×105 GM is determined from 9 nm-sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin films of close-packed CsPbBr3 nanocrystals. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal IPQD.

  18. Continuous distribution of emission states from single CdSe/ZnS quantum dots.

    PubMed

    Zhang, Kai; Chang, Hauyee; Fu, Aihua; Alivisatos, A Paul; Yang, Haw

    2006-04-01

    The photoluminescence dynamics of colloidal CdSe/ZnS/streptavidin quantum dots were studied using time-resolved single-molecule spectroscopy. Statistical tests of the photon-counting data suggested that the simple "on/off" discrete state model is inconsistent with experimental results. Instead, a continuous emission state distribution model was found to be more appropriate. Autocorrelation analysis of lifetime and intensity fluctuations showed a nonlinear correlation between them. These results were consistent with the model that charged quantum dots were also emissive, and that time-dependent charge migration gave rise to the observed photoluminescence dynamics.

  19. Double channel emission from a redox active single component quantum dot complex.

    PubMed

    Bhandari, Satyapriya; Roy, Shilaj; Pramanik, Sabyasachi; Chattopadhyay, Arun

    2015-01-13

    Herein we report the generation and control of double channel emission from a single component system following a facile complexation reaction between a Mn(2+) doped ZnS colloidal quantum dot (Qdot) and an organic ligand (8-hydroxy quinoline; HQ). The double channel emission of the complexed quantum dot-called the quantum dot complex (QDC)-originates from two independent pathways: one from the complex (ZnQ2) formed on the surface of the Qdot and the other from the dopant Mn(2+) ions of the Qdot. Importantly, reaction of ZnQ2·2H2O with the Qdot resulted in the same QDC formation. The emission at 500 nm with an excitation maximum at 364 nm is assigned to the surface complex involving ZnQ2 and a dangling sulfide bond. On the other hand, the emission at 588 nm-with an excitation maximum at 330 nm-which is redox tunable, is ascribed to Mn(2+) dopant. The ZnQ2 complex while present in QDC has superior thermal stability in comparison to the bare complex. Interestingly, while the emission of Mn(2+) was quenched by an electron quencher (benzoquinone), that due to the surface complex remained unaffected. Further, excitation wavelength dependent tunability in chromaticity color coordinates makes the QDC a potential candidate for fabricating a light emitting device of desired color output.

  20. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina

    2018-01-01

    We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.

  1. Quantum Dots and Their Multimodal Applications: A Review

    PubMed Central

    Bera, Debasis; Qian, Lei; Tseng, Teng-Kuan; Holloway, Paul H.

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence) or electric field (electroluminescence). In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  2. Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.

    2000-01-01

    The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.

  3. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  4. Tuning Single Quantum Dot Emission with a Micromirror.

    PubMed

    Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul

    2018-02-14

    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

  5. Spectroscopy characterization and quantum yield determination of quantum dots

    NASA Astrophysics Data System (ADS)

    Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.

    2016-02-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.

  6. Spectroscopy of Single AlInAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Derebezov, I. A.; Gaisler, A. V.; Gaisler, V. A.; Dmitriev, D. V.; Toropov, A. I.; Kozhukhov, A. S.; Shcheglov, D. V.; Latyshev, A. V.; Aseev, A. L.

    2018-03-01

    A system of quantum dots based on Al x In1- x As/Al y Ga1- y As solid solutions is investigated. The use of Al x In1- x As wide-gap solid solutions as the basis of quantum dots substantially extends the spectral emission range to the short-wavelength region, including the wavelength region near 770 nm, which is of interest for the development of aerospace systems of quantum cryptography. The optical characteristics of Al x In1- x As single quantum dots grown by the Stranski-Krastanov mechanism were studied by cryogenic microphotoluminescence. The statistics of the emission of single quantum dot excitons was studied using a Hanbury Brown-Twiss interferometer. The pair photon correlation function indicates the sub-Poissonian nature of the emission statistics, which directly confirms the possibility of developing single-photon emitters based on Al x In1- x As quantum dots. The fine structure of quantum dot exciton states was investigated at wavelengths near 770 nm. The splitting of the exciton states is found to be similar to the natural width of exciton lines, which is of great interest for the development of entangled photon pair emitters based on Al x In1- x As quantum dots.

  7. Detection of CdSe quantum dot photoluminescence for security label on paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok; Bilqis, Ratu

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program tomore » reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.« less

  8. Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, M. M., E-mail: m.sobolev@mail.ioffe.ru; Buyalo, M. S.; Nevedomskiy, V. N.

    2015-10-15

    The spectral characteristics of a laser with an active region based on a ten-layer system of In(Ga)As/GaAs vertically correlated quantum dots with 4.5-nm GaAs spacer layers between InAs quantum dots are studied under the conditions of spontaneous and stimulated emission, depending on the current and the duration of pump pulses. Data obtained by transmission electron microscopy and electroluminescence and absorption polarization anisotropy measurements make it possible to demonstrate that the investigated system of tunnel-coupled InAs quantum dots separated by thin GaAs barriers represents a quantum-dot superlattice. With an increase in the laser pump current, the electroluminescence intensity increases linearly andmore » the spectral position of the electroluminescence maximum shifts to higher energies, which is caused by the dependence of the miniband density-of-states distribution on the pump current. Upon exceeding the threshold current, multimode lasing via the miniband ground state is observed. One of the lasing modes can be attributed to the zero-phonon line, and the other is determined by the longitudinal-optical phonon replica of quantum-dot emission. The results obtained give evidence that, under conditions of the laser pumping of an In(Ga)As/GaAs quantum-dot superlattice, strong coupling between the discrete electron states in the miniband and optical phonons takes place. This leads to the formation of quantum-dot polarons, resulting from the resonant mixing of electronic states whose energy separation is comparable to the optical-phonon energy.« less

  9. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Höfer, B.; Zhang, J.; Wildmann, J.; Zallo, E.; Trotta, R.; Ding, F.; Rastelli, A.; Schmidt, O. G.

    2017-04-01

    Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources.

  10. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    PubMed

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  11. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, T.; Schneider, C.; Maier, S.

    In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches.

  12. Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2017-11-01

    The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.

  13. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm-2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm-2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  14. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    NASA Astrophysics Data System (ADS)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  15. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.

    PubMed

    Patty, K; Sadeghi, S M; Nejat, A; Mao, C-B

    2014-04-18

    We demonstrate that an ultra-thin layer of aluminum oxide can significantly enhance the emission efficiency of colloidal quantum dots on a Si substrate. For an ensemble of single quantum dots, our results show that this super brightening process can increase the fluorescence of CdSe quantum dots, forming well-resolved spectra, while in the absence of this layer the emission remains mostly at the noise level. We demonstrate that this process can be further enhanced with irradiation of the quantum dots, suggesting a significant photo-induced fluorescence enhancement via considerable suppression of non-radiative decay channels of the quantum dots. We study the impact of the Al oxide thickness on Si and interdot interactions, and discuss the results in terms of photo-induced catalytic properties of the Al oxide and the effects of such an oxide on the Coulomb blockade responsible for suppression of photo-ionization of the quantum dots.

  16. Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.

    PubMed

    Chin, Patrick T K; Buckle, Tessa; Aguirre de Miguel, Arantxa; Meskers, Stefan C J; Janssen, René A J; van Leeuwen, Fijs W B

    2010-09-01

    Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging. To this end, we now describe multispectral InP/ZnS quantum dots (QDs) that exhibit a bright visible green/yellow exciton emission combined with a long-lived far red defect emission. The intensity of the latter emission was enhanced by X-ray irradiation and allows for: 1) inverted QD density dependent defect emission intensity, showing improved efficacies at lower QD densities, and 2) detection without direct illumination and interference from autofluorescence. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    PubMed

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  18. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observedmore » response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.« less

  19. Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots.

    PubMed

    Wang, T; Puchtler, T J; Zhu, T; Jarman, J C; Nuttall, L P; Oliver, R A; Taylor, R A

    2017-07-13

    Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g (2) (0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems.

  20. Realizing Rec. 2020 color gamut with quantum dot displays.

    PubMed

    Zhu, Ruidong; Luo, Zhenyue; Chen, Haiwei; Dong, Yajie; Wu, Shin-Tson

    2015-09-07

    We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.

  1. Metamorphic quantum dots: Quite different nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Frigeri, P.; Nasi, L.

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less

  2. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Trevisi, G.; Frigeri, P.

    We report on the growth by molecular beam epitaxy and the study by atomic force microscopy and photoluminescence of low density metamorphic InAs/InGaAs quantum dots. subcritical InAs coverages allow to obtain 10{sup 8} cm{sup -2} dot density and metamorphic In{sub x}Ga{sub 1-x}As (x=0.15,0.30) confining layers result in emission wavelengths at 1.3 {mu}m. We discuss optimal growth parameters and demonstrate single quantum dot emission up to 1350 nm at low temperatures, by distinguishing the main exciton complexes in these nanostructures. Reported results indicate that metamorphic quantum dots could be valuable candidates as single photon sources for long wavelength telecom windows.

  3. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers

    NASA Astrophysics Data System (ADS)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-01

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.

  4. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    PubMed

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  5. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  6. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  7. Non-blinking quantum dot with a plasmonic nanoshell resonator

    NASA Astrophysics Data System (ADS)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  8. Time-resolved photoluminescence measurements of InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Thi Thuy, Pham; Thi Dieu Thuy, Ung; Chi, Tran Thi Kim; Phuong, Le Quang; Liem, Nguyen Quang; Li, Liang; Reiss, Peter

    2009-09-01

    This paper reports the results on the time-resolved photoluminescence study of InP/ZnS core/shell quantum dots. The ZnS shell played a decisive role to passivate imperfections on the surface of InP quantum dots, consequently giving rise to a strong enhancement of the photoluminescence from the InP core. Under appropriate excitation conditions, not only the emission from the InP core but also that from the ZnS shell was observed. The emission peak in InP core quantum dots varied as a function of quantum dots size, ranging in the 600 - 700 nm region; while the ZnS shell showed emission in the blue region around 470 nm, which is interpreted as resulting from defects in ZnS.

  9. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna

    DOE PAGES

    Matsuzaki, Korenobu; Vassant, Simon; Liu, Hsuan-Wei; ...

    2017-02-14

    Multiexcitonic transitions and emission of several photons per excitation comprise a very attractive feature of semiconductor quantum dots for optoelectronics applications. However, these higher-order radiative processes are usually quenched in colloidal quantum dots by Auger and other nonradiative decay channels. To increase the multiexcitonic quantum efficiency, several groups have explored plasmonic enhancement, so far with moderate results. By controlled positioning of individual quantum dots in the near field of gold nanocone antennas, we enhance the radiative decay rates of monoexcitons and biexcitons by 109 and 100 folds at quantum efficiencies of 60 and 70%, respectively, in very good agreement withmore » the outcome of numerical calculations. We discuss the implications of our work for future fundamental and applied research in nano-optics.« less

  10. Linearly polarized light emission from quantum dots with plasmonic nanoantenna arrays.

    PubMed

    Ren, Mengxin; Chen, Mo; Wu, Wei; Zhang, Lihui; Liu, Junku; Pi, Biao; Zhang, Xinzheng; Li, Qunqing; Fan, Shoushan; Xu, Jingjun

    2015-05-13

    Polarizers provide convenience in generating polarized light, meanwhile their adoption raises problems of extra weight, cost, and energy loss. Aiming to realize polarizer-free polarized light sources, herein, we present a plasmonic approach to achieve direct generation of linearly polarized optical waves at the nanometer scale. Periodic slot nanoantenna arrays are fabricated, which are driven by the transition dipole moments of luminescent semiconductor quantum dots. By harnessing interactions between quantum dots and scattered fields from the nanoantennas, spontaneous emission with a high degree of linear polarization is achieved from such hybrid antenna system with polarization perpendicular to antenna slot. We also demonstrate that the polarization is engineerable in aspects of both spectrum and magnitude by tailoring plasmonic resonance of the antenna arrays. Our findings will establish a basis for the development of innovative polarized light-emitting devices, which are useful in optical displays, spectroscopic techniques, optical telecommunications, and so forth.

  11. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  12. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  13. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission

    PubMed Central

    Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.

    2016-01-01

    The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357

  14. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantummore » dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.« less

  15. Polarization-dependent enhanced photoluminescence and polarization-independent emission rate of quantum dots on gold elliptical nanodisc arrays.

    PubMed

    Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun

    2014-07-07

    We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.

  16. Interplay of coupling and superradiant emission in the optical response of a double quantum dot

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2009-09-01

    We study theoretically the optical response of a double quantum dot structure to an ultrafast optical excitation. We show that the interplay of a specific type of coupling between the dots and their collective interaction with the radiative environment leads to very characteristic features in the time-resolved luminescence as well as in the absorption spectrum of the system. For a sufficiently strong coupling, these effects survive even if the transition energy mismatch between the two dots exceeds by far the emission linewidth.

  17. Los Alamos Quantum Dots for Solar, Display Technology

    ScienceCinema

    Klimov, Victor

    2018-05-01

    Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.

  18. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  19. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    NASA Astrophysics Data System (ADS)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  20. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Mrowiński, P.; Emmerling, M.; Schneider, C.; Reithmaier, J. P.; Misiewicz, J.; Höfling, S.; Sek, G.

    2018-04-01

    In this work, we discuss a method to control the polarization anisotropy of spontaneous emission from neutral excitons confined in quantum-dot-like nanostructures, namely single epitaxial InAs quantum dashes emitting at telecom wavelengths. The nanostructures are embedded inside lithographically defined, in-plane asymmetric photonic mesa structures, which generate polarization-dependent photonic confinement. First, we study the influence of the photonic confinement on the polarization anisotropy of the emission by photoluminescence spectroscopy, and we find evidence of different contributions to a degree of linear polarization (DOLP), i.e., from the quantum dash and the photonic mesa, in total giving rise to DOLP =0.85 . Then, we perform finite-difference time-domain simulations of photonic confinement, and we calculate the DOLP in a dipole approximation showing well-matched results for the established model. Furthermore, by using numerical calculations, we demonstrate several types of photonic confinements where highly linearly polarized emission with DOLP of about 0.9 is possible by controlling the position of a quantum emitter inside the photonic structure. Then, we elaborate on anisotropic quantum emitters allowing for exceeding DOLP =0.95 in an optimized case, and we discuss the ways towards efficient linearly polarized single photon source at telecom bands.

  3. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.

    PubMed

    Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik

    2017-07-24

    We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.

  4. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    PubMed

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  5. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    PubMed Central

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-01-01

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080

  6. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    PubMed

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  7. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.

    PubMed

    Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab

    2013-01-01

    In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.

  8. Influence of dilution with organic solvents on emission spectra of CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kumakura, Mitsutaka; Kinan, Asuka; Moriyasu, Takeshi

    2017-04-01

    The emission spectra of CdSe/ZnS core-shell dots have been monitored after the dilution of their toluene solution with organic solvents (toluene, n-hexane, diethyl ether, acetone, ethanol, and methanol). In addition to the well-known difference of the emission efficiency according to the solvent, we found their time variation depending on the solvent. From the discussion based on the solubility of the capping organic ligand, hexadecylamine (HDA), to each solvent it is suggested that the observed time variation is caused by the liquation of the capping molecules form the dot surface and the resulting change of the number of the trap site for charges in the quantum dot.

  9. Precision tuning of InAs quantum dot emission wavelength by iterative laser annealing

    NASA Astrophysics Data System (ADS)

    Dubowski, Jan J.; Stanowski, Radoslaw; Dalacu, Dan; Poole, Philip J.

    2018-07-01

    Controlling the emission wavelength of quantum dots (QDs) over large surface area wafers is challenging to achieve directly through epitaxial growth methods. We have investigated an innovative post growth laser-based tuning procedure of the emission of self-assembled InAs QDs grown epitaxially on InP (001). A targeted blue shift of the emission is achieved with a series of iterative steps, with photoluminescence diagnostics employed between the steps to monitor the result of intermixing. We demonstrate tuning of the emission wavelength of ensembles of QDs to within approximately ±1 nm, while potentially better precision should be achievable for tuning the emission of individual QDs.

  10. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.

    PubMed

    Press, David; Götzinger, Stephan; Reitzenstein, Stephan; Hofmann, Carolin; Löffler, Andreas; Kamp, Martin; Forchel, Alfred; Yamamoto, Yoshihisa

    2007-03-16

    We observe antibunching in the photons emitted from a strongly coupled single quantum dot and pillar microcavity in resonance. When the quantum dot was spectrally detuned from the cavity mode, the cavity emission remained antibunched, and also anticorrelated from the quantum dot emission. Resonant pumping of the selected quantum dot via an excited state enabled these observations by eliminating the background emitters that are usually coupled to the cavity. This device demonstrates an on-demand single-photon source operating in the strong coupling regime, with a Purcell factor of 61+/-7 and quantum efficiency of 97%.

  11. Single colloidal quantum dots as sources of single photons for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo

    2011-02-01

    Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.

  12. Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity

    PubMed Central

    Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan

    2014-01-01

    Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617

  13. The design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared

    DOE PAGES

    Lin, Qianglu; Makarov, Nikolay S.; Koh, Weon-kyu; ...

    2014-11-26

    The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR) -active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intra-band relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from themore » CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogenous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe as well as the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation.« less

  14. Array of nanoparticles coupling with quantum-dot: Lattice plasmon quantum features

    NASA Astrophysics Data System (ADS)

    Salmanogli, Ahmad; Gecim, H. Selcuk

    2018-06-01

    In this study, we analyze the interaction of lattice plasmon with quantum-dot in order to mainly examine the quantum features of the lattice plasmon containing the photonic/plasmonic properties. Despite optical properties of the localized plasmon, the lattice plasmon severely depends on the array geometry, which may influence its quantum features such as uncertainty and the second-order correlation function. To investigate this interaction, we consider a closed system containing an array of the plasmonic nanoparticles and quantum-dot. We analyze this system with full quantum theory by which the array electric far field is quantized and the strength coupling of the quantum-dot array is analytically calculated. Moreover, the system's dynamics are evaluated and studied via the Heisenberg-Langevin equations to attain the system optical modes. We also analytically examine the Purcell factor, which shows the effect of the lattice plasmon on the quantum-dot spontaneous emission. Finally, the lattice plasmon uncertainty and its time evolution of the second-order correlation function at different spatial points are examined. These parameters are dramatically affected by the retarded field effect of the array nanoparticles. We found a severe quantum fluctuation at points where the lattice plasmon occurs, suggesting that the lattice plasmon photons are correlated.

  15. Quantum Dot Photonics

    NASA Astrophysics Data System (ADS)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  16. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-27

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  17. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    PubMed

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  18. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    NASA Astrophysics Data System (ADS)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  19. Integrated photonics using colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  20. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  1. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement.

    PubMed

    Liu, Weijian; Li, Chun; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping

    2017-12-01

    In this article, fresh tomatoes are explored as a low-cost source to prepare high-performance carbon dots by using microwave-assisted pyrolysis. Given that amino groups might act as nucleophiles for cleaving covalent bridging ester or ether in the crosslinked macromolecules in the biomass bulk, ethylenediamine (EDA) and urea with amino groups were applied as nucleophiles to modulate the chemical composites of the carbon nanoparticles in order to tune their fluorescence emission and enhance their quantum yields. Very interestingly, the carbon dots synthesized in the presence of urea had a highly crystalline nature, a low-degree amorphous surface and were smaller than 5 nm. Moreover, the doped N contributed to the formation of a cyclic form of core that resulted in a strong electron-withdrawing ability within the conjugated C plane. Therefore, this type of carbon dot exhibited marked quantum confinement, with the maximum fluorescence peak located in the UV region. Carbon nanoparticles greater than 20 nm in size, prepared using pristine fresh tomato and in the presence of EDA, emitted surface state controlled fluorescence. Additionally, carbon nanoparticles synthesized using fresh tomato pulp in the presence of EDA and urea were explored for bioimaging of plant pathogenic fungi and the detection of vanillin.

  2. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement

    NASA Astrophysics Data System (ADS)

    Liu, Weijian; Li, Chun; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping

    2017-12-01

    In this article, fresh tomatoes are explored as a low-cost source to prepare high-performance carbon dots by using microwave-assisted pyrolysis. Given that amino groups might act as nucleophiles for cleaving covalent bridging ester or ether in the crosslinked macromolecules in the biomass bulk, ethylenediamine (EDA) and urea with amino groups were applied as nucleophiles to modulate the chemical composites of the carbon nanoparticles in order to tune their fluorescence emission and enhance their quantum yields. Very interestingly, the carbon dots synthesized in the presence of urea had a highly crystalline nature, a low-degree amorphous surface and were smaller than 5 nm. Moreover, the doped N contributed to the formation of a cyclic form of core that resulted in a strong electron-withdrawing ability within the conjugated C plane. Therefore, this type of carbon dot exhibited marked quantum confinement, with the maximum fluorescence peak located in the UV region. Carbon nanoparticles greater than 20 nm in size, prepared using pristine fresh tomato and in the presence of EDA, emitted surface state controlled fluorescence. Additionally, carbon nanoparticles synthesized using fresh tomato pulp in the presence of EDA and urea were explored for bioimaging of plant pathogenic fungi and the detection of vanillin.

  3. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  4. Design of Strain-Engineered GeSn/GeSiSn Quantum Dots for Mid-IR Direct Bandgap Emission on Si Substrate

    NASA Astrophysics Data System (ADS)

    Al-Saigh, Reem; Baira, Mourad; Salem, Bassem; Ilahi, Bouraoui

    2018-06-01

    Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn surrounding layer has been tuned between - 2.3 and - 4.5% through the variation of the Sn barrier composition for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 μm opening new perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.

  5. Quantum dots and nanocomposites.

    PubMed

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  6. Tandem luminescent solar concentrators based on engineered quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.

    2018-02-01

    Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.

  7. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  8. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  9. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-06-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria. These quantum dots were solubilized with mercaptoacetic acid and conjugated to adenine. Significant evidence for the internal staining of Bacillus subtilis (Gram positive) and Escherichia coli (Gram negative) using these structures is presented via steady-state emission, epifluorescence microscopy, transmission electron microscopy, and energy dispersive spectroscopy. In particular, the E. coli adenine auxotroph, and not the wild type, took up adenine coated quantum dots, and this only occurred in adenine deficient growth media. Labeling strength was enhanced by performing the incubation under room light. This process was examined with steady-state emission spectra and time-resolved luminescence profiles obtained from time-correlated-single-photon counting.

  10. Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects

    PubMed Central

    Gaponik, Nikolai; Gerlach, Matthias; Donegan, John F; Savateeva, Diana; Rogach, Andrey L

    2006-01-01

    We have studied the photoluminescence and Raman spectra of a system consisting of a polystyrene latex microsphere coated by CdTe colloidal quantum dots. The cavity-induced enhancement of the Raman scattering allows the observation of Raman spectra from only a monolayer of CdTe quantum dots. Periodic structure with very narrow peaks in the photoluminescence spectra of a single microsphere was detected both in the Stokes and anti-Stokes spectral regions, arising from the coupling between the emission of quantum dots and spherical cavity modes.

  11. Understanding/Modelling of Thermal and Radiation Benefits of Quantum Dot Solar Cells

    DTIC Science & Technology

    2008-07-11

    GaAs solar cells have been investigated. Strain compensation is a key step in realizing high- efficiency quantum dots solar cells (QDSC). InAs...factor. A strong correlation between the temperature dependent quantum dot electroluminescence peak emission wavelength and the sub-GaAs bandgap...increased efficiency and radiation resistance devices. The incorporation of quantum dots (QDs) into traditional single or multi-junction crystalline solar

  12. Magnetic control of dipolaritons in quantum dots.

    PubMed

    Rojas-Arias, J S; Rodríguez, B A; Vinck-Posada, H

    2016-12-21

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure.

  13. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  14. Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Gordon, E-mail: Gordon.Schmidt@ovgu.de; Berger, Christoph; Veit, Peter

    2015-06-22

    Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function atmore » zero time delay.« less

  15. UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several

  16. UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several

  17. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.

    PubMed

    Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-07-01

    Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.

  18. Interband emission energy in a dilute nitride quaternary semiconductor quantum dot for longer wavelength applications

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo; Duque, C. A.

    2016-07-01

    Excitonic properties are studied in a strained Ga1-xInxNyAs1-y/GaAs cylindrical quantum dot. The optimum condition for the desired band alignment for emitting wavelength 1.55 μm is investigated using band anticrossing model and the model solid theory. The band gap and the band discontinuities of a Ga1-xInxNyAs1-y/GaAs quantum dot on GaAs are computed with the geometrical confinement effect. The binding energy of the exciton, the oscillator strength and its radiative life time for the optimum condition are found taking into account the spatial confinement effect. The effects of geometrical confinement and the nitrogen incorporation on the interband emission energy are brought out. The result shows that the desired band alignment for emitting wavelength 1.55 μm is achieved for the inclusion of alloy contents, y=0.0554% and x=0.339% in Ga1-xInxNyAs1-y/GaAs quantum dot. And the incorporation of nitrogen and indium shows the red-shift and the geometrical confinement shows the blue-shift. And it can be applied for fibre optical communication networks.

  19. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    PubMed

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10 5 cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Saito, Hideaki; Nishi, Kenichi; Ogura, Ichiro; Sugou, Shigeo; Sugimoto, Yoshimasa

    1996-11-01

    Self-assembled growth of quantum dots by molecular-beam epitaxy is used to form the active region of a vertical-cavity surface-emitting laser (VCSEL). Ten layers of InGaAs quantum dots are stacked in order to increase the gain. This quantum-dot VCSEL has a continuous-wave operating current of 32 mA at room temperature. Emission spectra at various current injections demonstrate that the lasing action is associated with a higher-order transition in the quantum dots.

  1. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications.

    PubMed

    Ellis, Matthew A; Grandinetti, Giovanna; Fichter, Katye M; Fichter, Kathryn M

    2016-02-06

    Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd(2+) ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.

  2. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications

    PubMed Central

    Ellis, Matthew A.; Grandinetti, Giovanna; Fichter, Katye M.

    2016-01-01

    Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd2+ ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications. PMID:26891282

  3. Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia

    2018-02-01

    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.

  4. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barettin, Daniele, E-mail: Daniele.Barettin@uniroma2.it; Auf der Maur, Matthias; De Angelis, Roberta

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateralmore » quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.« less

  5. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  6. Effects of multiple organic ligands on size uniformity and optical properties of ZnSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archana, J., E-mail: archana.jayaram@yahoo.com; Navaneethan, M.; Hayakawa, Y.

    2012-08-15

    Highlights: ► Highly monodispersed ZnSe quantum dots have been synthesized by wet chemical route. ► Strong quantum confinement effect have been observed in ∼ 4 nm ZnSe quantum dots. ► Enhanced ultraviolet near band emission have been obtained using long chain polymer. -- Abstract: The effects of multi-ligands on the formation and optical transitions of ZnSe quantum dots have been investigated. The dots are synthesized using 3-mercapto-1,2-propanediol and polyvinylpyrrolidone ligands, and have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–visible absorption spectroscopy, photoluminescence spectroscopy, and Fourier transform infrared spectroscopy. TEM reveals high monodispersion with an average size ofmore » 4 nm. Polymer-stabilized, organic ligand-passivated ZnSe quantum dots exhibit strong UV emission at 326 nm and strong quantum confinement in the UV–visible absorption spectrum. Uniform size and suppressed surface trap emission are observed when the polymer ligand is used. The possible growth mechanism is discussed.« less

  7. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield

    NASA Astrophysics Data System (ADS)

    Yang, Wu; He, Guoxing; Mei, Shiliang; Zhu, Jiatao; Zhang, Wanlu; Chen, Qiuhang; Zhang, Guilin; Guo, Ruiqian

    2017-11-01

    Dual emissive Cd-free quantum dots (QDs) are in great demand for various applications. However, their synthesis has been faced with challenges. Here, we demonstrate the dual emissive Ag:InP/ZnS core/shell QDs with the excellent photoluminescence quantum yield (PL QY) up to 75% and their PL dependence on the reaction temperature, reaction time, the different ZnX2 (X = I, Cl, and Br) precursors, the ratio of In/Zn and the Ag dopant concentration. The as-prepared Ag:InP/ZnS QDs exhibit dual emission with one peak position of about 492 nm owing to the intrinsic emission, and the other peak position of about 575 nm resulting from Ag-doped emission. These dual emissive QDs are integrated with the commercial GaN-based blue LEDs, and the simulation results show that the Ag:InP/ZnS QDs-based white LEDs could realize bright natural white-lights with the luminous efficacy (LE) of 94.2-98.4 lm/W, the color rendering index (CRI) of 82-83 and the color quality scale (CQS) of 82-83 at different correlated color temperatures (CCT). This unique combination of the above properties makes this new class of dual emissive QDs attractive for white LED applications.

  8. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  9. Synthesis, characterization and cells and tissues imaging of carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Qilong; Zhou, JingE.; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong

    2017-10-01

    Compare to other quantum dots, carbon quantum dots have its own incomparable advantages, such as low cell toxicity, favorable biocompatibility, cheap production cost, mild reaction conditions, easy to large-scale synthesis and functionalization. In this thesis, we took citric acid monohydrate and diethylene glycol bis (3-aMinopropyl) ether as materials, used decomposition method to acquire carbon quantum dots (CQDs) which can emission blue fluorescence under ultraviolet excitation. In the aspect of application, we achieved the biological imaging of CQDs in vivo and in vitro.

  10. Cubic GaN quantum dots embedded in zinc-blende AlN microdisks

    NASA Astrophysics Data System (ADS)

    Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.

    2013-09-01

    Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.

  11. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, T.; Amand, T.; Kunz, S.

    2010-08-02

    We report strong heavy hole-light hole mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k{center_dot}p theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.

  12. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Matthias, E-mail: m.paul@ihfg.uni-stuttgart.de; Kettler, Jan; Zeuner, Katharina

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  13. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  14. Designed Long‐Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface‐Bound Chromophore

    PubMed Central

    La Rosa, Marcello; Denisov, Sergey A.

    2018-01-01

    Abstract The size‐tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface‐bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self‐assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. PMID:29383800

  15. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots.

    PubMed

    Zhou, Ming; Chang, Shoude; Grover, Chander

    2004-06-28

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  16. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    PubMed

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  17. Room-temperature lasing in a single nanowire with quantum dots

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Kako, Satoshi; Ho, Jinfa; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-08-01

    Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials or multi-quantum-wells/disks, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.

  18. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    PubMed Central

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison

  19. A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib

    NASA Astrophysics Data System (ADS)

    Amjadi, Mohammad; Jalili, Roghayeh

    2018-02-01

    We report on a ratiometric fluorescent sensor based on dual-emission molecularly imprinted mesoporous silica embedded with carbon dots and CdTe quantum dots (mMIP@CDs/QDs) for celecoxib (CLX) as target molecule. The fluorescence of the embedded CDs is insensitive to the analyte while the green emissive QDs are selectively quenched by it. This effect is much stronger for the MIP than for the non-imprinted polymer, which indicates a good recognition ability of the mesoporous MIP. The hybrid sensor also exhibited good selectivity to CLX over other substances. The ratio of the intensity at two wavelengths (F550/F440) proportionally decreased with the increasing of CLX concentration in the range of 0.08-0.90 μM. A detection limit as low as 57 nM was achieved. Experimental results testified that this sensor was highly sensitive and selective for the detection of CLX in human serum samples.

  20. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  1. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    PubMed

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  2. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-28

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. Thus we then extract the nonradiative recombination current associated with the quantum-dot active regionmore » from a comparison of measured and calculated gain versus current relations.« less

  3. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W., E-mail: wwchow@sandia.gov; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from amore » comparison of measured and calculated gain versus current relations.« less

  4. Enhanced Telecom Emission from Single Group-IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities.

    PubMed

    Schatzl, Magdalena; Hackl, Florian; Glaser, Martin; Rauter, Patrick; Brehm, Moritz; Spindlberger, Lukas; Simbula, Angelica; Galli, Matteo; Fromherz, Thomas; Schäffler, Friedrich

    2017-03-15

    Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime.

  5. Enhanced Telecom Emission from Single Group-IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities

    PubMed Central

    2017-01-01

    Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime. PMID:28345012

  6. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  7. Increased InAs quantum dot size and density using bismuth as a surfactant

    NASA Astrophysics Data System (ADS)

    Dasika, Vaishno D.; Krivoy, E. M.; Nair, H. P.; Maddox, S. J.; Park, K. W.; Jung, D.; Lee, M. L.; Yu, E. T.; Bank, S. R.

    2014-12-01

    We have investigated the growth of self-assembled InAs quantum dots using bismuth as a surfactant to control the dot size and density. We find that the bismuth surfactant increases the quantum dot density, size, and uniformity, enabling the extension of the emission wavelength with increasing InAs deposition without a concomitant reduction in dot density. We show that these effects are due to bismuth acting as a reactive surfactant to kinetically suppress the surface adatom mobility. This mechanism for controlling quantum dot density and size has the potential to extend the operating wavelength and enhance the performance of various optoelectronic devices.

  8. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light.

    PubMed

    Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P

    2014-02-12

    In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.

  9. Designed Long-Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface-Bound Chromophore.

    PubMed

    La Rosa, Marcello; Denisov, Sergey A; Jonusauskas, Gediminas; McClenaghan, Nathan D; Credi, Alberto

    2018-03-12

    The size-tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface-bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self-assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    PubMed

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  11. Defect induced photoluminescence in MoS2 quantum dots and effect of Eu3+/Tb3+ co-doping towards efficient white light emission

    NASA Astrophysics Data System (ADS)

    Haldar, Dhrubaa; Ghosh, Arnab; Bose, Saptasree; Mondal, Supriya; Ghorai, Uttam Kumar; Saha, Shyamal K.

    2018-05-01

    Intensive research has been carried out on optical properties of MoS2 quantum dots for versatile applications in photo catalytic, sensing and optoelectronic devices. However, white light generation from MoS2 quantum dots particularly using doping effect is relatively unexplored. Herein we report successful synthesis of Europium (Eu)/Terbium (Tb) co-doped MoS2 quantum dots to achieve white light for potential applications in optoelectronic devices. The dopant ions are introduced into the host lattice to retain the emission colors to cover the entire range of visible light of solar spectrum. Perfect white light (CIE = 0.31, 0.33) with high intensity (quantum yield = 28.29%) is achieved in these rare earth elements co-doped quantum dot system. A new peak is observed in the NIR region which is attributed to the defects present in MoS2 quantum dots. Temperature dependent study has been carried out to understand the origin of this new peak in the NIR region. It is seen that the 'S' defects in the QDs cause the appearance of this peak which shows a blue shift at higher temperature.

  12. Multi-Excitonic Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  13. Quantum dot quantum cascade infrared photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning

    2014-04-28

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirpedmore » superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.« less

  14. Two-state semiconductor laser self-mixing velocimetry exploiting coupled quantum-dot emission-states: experiment, simulation and theory

    PubMed Central

    Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan

    2014-01-01

    We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809

  15. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the

  16. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer.

    PubMed

    Wang, Hai-Qiao; Li, Yong-Qiang; Wang, Jian-Hao; Xu, Qiao; Li, Xiu-Qing; Zhao, Yuan-Di

    2008-03-03

    The resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and quantum dots (QDs, emission at 593 nm) acceptors (CRET) was investigated. The resonance energy transfer efficiencies were compared while the oil soluble QDs, water soluble QDs (modified with thioglycolate) and QD-HRP conjugates were used as acceptor. The fluorescence of QD can be observed in the three cases, indicating that the CRET occurs while QD acceptor in different status was used. The highest CRET efficiency (10.7%) was obtained in the case of oil soluble QDs, and the lowest CRET efficiency (2.7%) was observed in the QD-HRP conjugates case. This result is coincident with the quantum yields of the acceptors (18.3% and 0.4%). The same result was observed in another similar set of experiment, in which the amphiphilic polymer modified QDs (emission at 675 nm) were used. It suggests that the quantum yield of the QD in different status is the crucial factor to the CRET efficiency. Furthermore, the multiplexed CRET between luminol donor and three different sizes QD acceptors was observed simultaneously. This work will offer useful support for improving the CRET studies based on quantum dots.

  17. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs.

    PubMed

    Yuan, Fanglong; Yuan, Ting; Sui, Laizhi; Wang, Zhibin; Xi, Zifan; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Tan, Zhan'ao; Chen, Anmin; Jin, Mingxing; Yang, Shihe

    2018-06-08

    Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon's intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54-72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882-4762 cd m -2 and current efficiency of 1.22-5.11 cd A -1 . This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.

  18. Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon-exciton displays.

    PubMed

    Cadusch, Jasper J; Panchenko, Evgeniy; Kirkwood, Nicholas; James, Timothy D; Gibson, Brant C; Webb, Kevin J; Mulvaney, Paul; Roberts, Ann

    2015-09-07

    Here we present an application of a high throughput nanofabrication technique to the creation of a plasmonic metasurface and demonstrate its application to the enhancement and control of radiation by quantum dots (QDs). The metasurface consists of an array of cold-forged rectangular nanocavities in a thin silver film. High quantum efficiency graded alloy CdSe/CdS/ZnS quantum dots were spread over the metasurface and the effects of the plasmon-exciton interactions characterised. We found a four-fold increase in the QDs radiative decay rate and emission brightness, compared to QDs on glass, along with a degree of linear polarisation of 0.73 in the emitted field. Such a surface could be easily integrated with current QD display or organic solar cell designs.

  19. Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation

    NASA Astrophysics Data System (ADS)

    Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.

    2013-03-01

    Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.

  20. Plastic scintillator enhancement through Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tam, Alan; Boyraz, Ozdal; Nilsson, Mikael

    2017-08-01

    Plastic scintillators such as Polyvinyl Toluene (PVT) are used for radiation detection but due to their poor performance they are not widely implemented. In order to circumnavigate this, dopants are added to enhance scintillation by energy transfer otherwise lost through non-radiative processes. In this work, we exploit the effects of energy transfer through the use of short wavelength emission Cadmium Sulfide Quantum Dots (QD) as the transfer stimulant. Scintillation enhancement was observed as Cadmium Sulfide QD with scintillating dyes are embedded in PVT polymer matrix for beta and gamma radiation. Energy transfer was observed between Quantum Dots, scintillating dye, and the host polymer. Different concentrations of QD and 2,5-diphenyloxazole (PPO) dye are investigated to characterize the energy transfer.

  1. Synthesis and Characterizations of Pb-modified CdSe Aqueous Quantum Dots and Their Applications in Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Hsin

    Quantum Dots (QDs) are semiconductor nanocrystals with typical size ranges around 1-20 nm. They exhibit distinctive size-dependent photoluminescence (PL) properties due to the quantum confinement effect. QDs have great potentials in display, lighting, lasing, bioimaging, fluorescent label, sensor, photodetector, and photovoltaic applications, and have been widely studied in the past decades. Cadmium selenide (CdSe) QDs have been synthesized using an environmentally friendly, aqueous method under low temperature. While traditional QDs synthesized by hot injection method using organic solvent generally exhibit edge-state emission with narrow peaks, aqueous quantum dots (AQDs) tend to have trap-state emissions with broad peaks. The objective of this thesis is to investigate how Pb modifications in CdSe AQDs synthesis can affect the optoelectronic properties of the QDs and how these modifications affect their corresponding photovoltaic performance in quantum dot-sensitized solar cell (QDSSC) applications. Lead (Pb) precursor has been introduced either during the synthesis or after the synthesis of CdSe AQDs forming either Pb-doped or Pb-coated CdSe QDs, respectively. Pb-doped CdSe QDs exhibit red-shift in both absorption and emission spectra while Pb-coated CdSe QDs exhibit blue-shift in both absorption and emission spectra along with the generation of more surface defects. Although blue-shifted absorption indicating a narrower absorption range and the surface defects providing undesired recombination pathways are detrimental to solar cell performance, however surprisingly, we found that QDSSCs made from Pb-coated CdSe QDs actually had better solar cell performance than that made from Pb-doped CdSe QDs. We attributed this finding to a protection/passivation layer formed in-situ when the coated Pb react with the iodide/triiodide electrolyte during solar cell operation resulting in QDSSCs with better charge injection and stability.

  2. Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.

    PubMed

    de Weerd, Chris; Shin, Yonghun; Marino, Emanuele; Kim, Joosung; Lee, Hyoyoung; Saeed, Saba; Gregorkiewicz, Tom

    2017-10-31

    Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.

  3. Quantum dot lasers: From promise to high-performance devices

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Mi, Z.; Yang, J.; Basu, D.; Saha, D.

    2009-03-01

    Ever since self-organized In(Ga)As/Ga(AI)As quantum dots were realized by molecular beam epitaxy, it became evident that these coherently strained nanostructures could be used as the active media in devices. While the expected advantages stemming from three-dimensional quantum confinement were clearly outlined, these were not borne out by the early experiments. It took a very detailed understanding of the unique carrier dynamics in the quantum dots to exploit their full potential. As a result, we now have lasers with emission wavelengths ranging from 0.7 to 1.54 μm, on GaAs, which demonstrate ultra-low threshold currents, near-zero chip and α-factor and large modulation bandwidth. State-of-the-art performance characteristics of these lasers are briefly reviewed. The growth, fabrication and characteristics of quantum dot lasers on silicon substrates are also described. With the incorporation of multiple quantum dot layers as a dislocation filter, we demonstrate lasers with Jth=900 A/cm 2. The monolithic integration of the lasers with guided wave modulators on silicon is also described. Finally, the properties of spin-polarized lasers with quantum dot active regions are described. Spin injection of electrons is done with a MnAs/GaAs tunnel barrier. Laser operation at 200 K is demonstrated, with the possibility of room temperature operation in the near future.

  4. On the origin of blue emission from ZnO quantum dots synthesized by a sol-gel route

    NASA Astrophysics Data System (ADS)

    Han, Li-Li; Cui, Lan; Wang, Wei-Hua; Wang, Jiang-Long; Du, Xi-Wen

    2012-06-01

    ZnO quantum dots (QDs) with blue emission were synthesized by a sol-gel method. A series of control experiments were conducted to explore the origin of the blue emission. It is found that the blue emission arises from neither the quantum confinement nor intermediate products, and it can be achieved only in the presence of Li+ cations and excessive OH- anions. Moreover, the long decay time of the blue emission suggests a defect-related de-excitation process. On the basis of the experimental and calculation results, possible de-excitation paths for light emission were discussed, and the origin of the blue emission was determined as the electron transition from the conduction band to interstitial oxygen defects. Excessive OH- anions are responsible for the formation of interstitial oxygen defects, and Li+ ions can stabilize the defects by substituting for Zn atoms. Besides, Li+ ions can block the growth of ZnO QDs, broaden their band gap and cause a blue shift of the blue emission.

  5. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  6. Review – Quantum Dots and Their Application in Lighting, Displays, and Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frecker, Talitha; Bailey, Danielle; Arzeta-Ferrer, Xochitl

    2015-08-18

    In this review, we focus on the advancement of white light emitting nanocrystals, their usage as the emissive layer in LEDs and display backlights, and examine the increased efficiency and longevity of quantum dots based colored LEDs. In addition, we also explore recent discoveries on quantum dots as biological labels, dynamic trackers, and applications in drug delivery.

  7. Classical and quantum optical correlation effects between single quantum dots: The role of the hopping photon

    NASA Astrophysics Data System (ADS)

    Hughes, S.; Gotoh, H.; Kamada, H.

    2006-09-01

    We present a theoretical study of photon-coupled single quantum dots in a semiconductor. A series of optical effects are demonstrated, including a subradiant dark resonance, superradiance, reversible spontaneous emission decay, and pronounced exciton entanglement. Both classical and quantum optical approaches are presented using a self-consistent formalism that treats real and virtual photon exchange on an equal footing and can account for different quantum dot properties, surface effects, and retardation in the dipole-dipole coupling, all of which are shown to play a non-negligible role.

  8. Few-Photon Model of the Optical Emission of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Richter, Marten; Carmele, Alexander; Sitek, Anna; Knorr, Andreas

    2009-08-01

    The Jaynes-Cummings model provides a well established theoretical framework for single electron two level systems in a radiation field. Similar exactly solvable models for semiconductor light emitters such as quantum dots dominated by many particle interactions are not known. We access these systems by a generalized cluster expansion, the photon-probability cluster expansion: a reliable approach for few-photon dynamics in many body electron systems. As a first application, we discuss vacuum Rabi oscillations and show that their amplitude determines the number of electrons in the quantum dot.

  9. Detection of viral infections using colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Bentzen, Elizabeth L.; House, Frances S.; Utley, Thomas J.; Crowe, James E., Jr.; Wright, David W.

    2006-02-01

    Fluorescence is a tool widely employed in biological assays. Fluorescent semiconducting nanocrystals, quantum dots (QDs), are beginning to find their way into the tool box of many biologist, chemist and biochemist. These quantum dots are an attractive alternative to the traditional organic dyes due to their broad excitation spectra, narrow emission spectra and photostability. Quantum dots were used to detect and monitor the progession of viral glycoproteins, F (fusion) and G (attachment), from Respiratory Syncytial Virus (RSV) in HEp-2 cells. Additionally, oligo-Qdot RNA probes have been developed for identification and detection of mRNA of the N(nucleocapsid) protein for RSV. The use of quantum dot-FISH probes provides another confirmatory route to diagnostics as well as a new class of probes for monitoring the flux and fate of viral RNA RSV is the most common cause of lower respiratory tract infection in children worldwide and the most common cause of hospitalization of infants in the US. Antiviral therapy is available for treatment of RSV but is only effective if given within the first 48 hours of infection. Existing test methods require a virus level of at least 1000-fold of the amount needed for infection of most children and require several days to weeks to obtain results. The use of quantum dots may provide an early, rapid method for detection and provide insight into the trafficking of viral proteins during the course of infection.

  10. Double quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.

    2017-08-01

    Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.

  11. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-05

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  12. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology.

    PubMed

    Han, Hau-Vei; Lin, Huang-Yu; Lin, Chien-Chung; Chong, Wing-Cheung; Li, Jie-Ru; Chen, Kuo-Ju; Yu, Peichen; Chen, Teng-Ming; Chen, Huang-Ming; Lau, Kei-May; Kuo, Hao-Chung

    2015-12-14

    Colloidal quantum dots which can emit red, green, and blue colors are incorporated with a micro-LED array to demonstrate a feasible choice for future display technology. The pitch of the micro-LED array is 40 μm, which is sufficient for high-resolution screen applications. The method that was used to spray the quantum dots in such tight space is called Aerosol Jet technology which uses atomizer and gas flow control to obtain uniform and controlled narrow spots. The ultra-violet LEDs are used in the array to excite the red, green and blue quantum dots on the top surface. To increase the utilization of the UV photons, a layer of distributed Bragg reflector was laid down on the device to reflect most of the leaked UV photons back to the quantum dot layers. With this mechanism, the enhanced luminous flux is 194% (blue), 173% (green) and 183% (red) more than that of the samples without the reflector. The luminous efficacy of radiation (LER) was measured under various currents and a value of 165 lm/Watt was recorded.

  13. Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli's antibiotic resistance.

    PubMed

    Yan, Zheng-Yu; Du, Qing-Qing; Qian, Jing; Wan, Dong-Yu; Wu, Sheng-Mei

    2017-01-01

    In the paper, a green and efficient biosynthetical technique was reported for preparing cadmium sulfide (CdS) quantum dots, in which Escherichia coli (E. coli) was chosen as a biomatrix. Fluorescence emission spectra and fluorescent microscopic photographs revealed that as-produced CdS quantum dots had an optimum fluorescence emission peak located at 470nm and emitted a blue-green fluorescence under ultraviolet excitation. After extracted from bacterial cells and located the nanocrystals' foci in vivo, the CdS quantum dots showed a uniform size distribution by transmission electron microscope. Through the systematical investigation of the biosynthetic conditions, including culture medium replacement, input time point of cadmium source, working concentrations of raw inorganic ions, and co-cultured time spans of bacteria and metal ions in the bio-manufacture, the results revealed that CdS quantum dots with the strongest fluorescence emission were successfully prepared when E. coli cells were in stationary phase, with the replacement of culture medium and following the incubation with 1.0×10 -3 mol/L cadmium source for 2 days. Results of antimicrobial susceptibility testing indicated that the sensitivities to eight types of antibiotics of E. coli were barely changed before and after CdS quantum dots were prepared in the mild temperature environment, though a slight fall of antibiotic resistance could be observed, suggesting hinted the proposed technique of producing quantum dots is a promising environmentally low-risk protocol. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. White/blue-emitting, water-dispersible CdSe quantum dots prepared by counter ion-induced polymer collapse

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.

    2015-09-01

    The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.

  15. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes

    PubMed Central

    Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.

    2013-01-01

    Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692

  16. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  17. Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSexTe1-x quantum dots

    NASA Astrophysics Data System (ADS)

    Szeremeta, Janusz; Lamch, Lukasz; Wawrzynczyk, Dominika; Wilk, Kazimiera A.; Samoc, Marek; Nyk, Marcin

    2015-07-01

    Hydrophobic CdSexTe1-x quantum dots with near infrared emission in the 700-750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSexTe1-x quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.

  18. Thermoelectric energy harvesting with quantum dots

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N.

    2015-01-01

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  19. Monte Carlo simulations of quantum dot solar concentrators: ray tracing based on fluorescence mapping

    NASA Astrophysics Data System (ADS)

    Schuler, A.; Kostro, A.; Huriet, B.; Galande, C.; Scartezzini, J.-L.

    2008-08-01

    One promising application of semiconductor nanostructures in the field of photovoltaics might be quantum dot solar concentrators. Quantum dot containing nanocomposite thin films are synthesized at EPFL-LESO by a low cost sol-gel process. In order to study the potential of the novel planar photoluminescent concentrators, reliable computer simulations are needed. A computer code for ray tracing simulations of quantum dot solar concentrators has been developed at EPFL-LESO on the basis of Monte Carlo methods that are applied to polarization-dependent reflection/transmission at interfaces, photon absorption by the semiconductor nanocrystals and photoluminescent reemission. The software allows importing measured or theoretical absorption/reemission spectra describing the photoluminescent properties of the quantum dots. Hereby the properties of photoluminescent reemission are described by a set of emission spectra depending on the energy of the incoming photon, allowing to simulate the photoluminescent emission using the inverse function method. By our simulations, the importance of two main factors is revealed, an emission spectrum matched to the spectral efficiency curve of the photovoltaic cell, and a large Stokes shift, which is advantageous for the lateral energy transport. No significant energy losses are implied when the quantum dots are contained within a nanocomposite coating instead of being dispersed in the entire volume of the pane. Together with the knowledge on the optoelectronical properties of suitable photovoltaic cells, the simulations allow to predict the total efficiency of the envisaged concentrating PV systems, and to optimize photoluminescent emission frequencies, optical densities, and pane dimensions.

  20. Clinical Potential of Quantum Dots

    PubMed Central

    Iga, Arthur M.; Robertson, John H. P.; Winslet, Marc C.; Seifalian, Alexander M.

    2007-01-01

    Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity. PMID:18317518

  1. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    PubMed

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  2. Towards Violation of Classical Inequalities using Quantum Dot Resonance Fluorescence

    NASA Astrophysics Data System (ADS)

    Peiris, Manoj

    Self-assembled semiconductor quantum dots have attracted considerable interest recently, ranging from fundamental studies of quantum optics to advanced applications in the field of quantum information science. With their atom-like properties, quantum dot based nanophotonic devices may also substantially contribute to the development of quantum computers. This work presents experimental progress towards the understanding of light-matter interactions that occur beyond well-understood monochromatic resonant light scattering processes in semiconductor quantum dots. First, we report measurements of resonance fluorescence under bichromatic laser excitation. With the inclusion of a second laser, both first-order and second-order correlation functions are substantially altered. Under these conditions, the scattered light exhibits a rich spectrum containing many spectral features that lead to a range of nonlinear multiphoton dynamics. These observations are discussed and compared with a theoretical model. Second, we investigated the light scattered by a quantum dot in the presence of spectral filtering. By scanning the tunable filters placed in front of each detector of a Hanbury-Brown and Twiss setup and recording coincidence measurements, a \\two-photon spectrum" has been experimentally reconstructed for the first time. The two-photon spectrum contains a wealth of information about the cascaded emission involved in the scattering process, such as transitions occurring via virtual intermediate states. Our measurements also reveal that the scattered frequency-filtered light from a quantum dot violates the Cauchy-Schwarz inequality. Finally, Franson-interferometry has been performed using spectrally filtered light from quantum dot resonance fluorescence. Visibilities exceeding the classical limit were demonstrated by using a pair of folded Mach-Zehnder interferometers, paving the way for producing single time-energy entangled photon pairs that could violate Bell

  3. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.

    PubMed

    Haffouz, Sofiane; Zeuner, Katharina D; Dalacu, Dan; Poole, Philip J; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D; Zwiller, Valery; Williams, Robin L

    2018-05-09

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  4. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  5. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide

    NASA Astrophysics Data System (ADS)

    Haffouz, Sofiane; Zeuner, Katharina D.; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D.; Zwiller, Valery; Williams, Robin L.

    2018-05-01

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  6. Quantum Dots Investigated for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  7. Photoluminescence of Gallium Phosphide-Based Nanostructures with Germanium Quantum Dots, Grown by Liquid-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Maronchuk, I. I.; Sanikovich, D. D.; Velchenko, A. A.

    2017-11-01

    We have used liquid-phase epitaxy with pulsed substrate cooling using two structural designs to grow samples of nanoheteroepitaxial structures with Ge quantum dots in a GaP matrix on Si substrates. We have measured the photoluminescence spectra of the samples at temperatures of 77 K and 300 K with excitation by laser emission at λ = 4880 Å and 5145 Å. We draw conclusions concerning the factors influencing the spectrum and intensity of emission for nanostructures with quantum dots. It was found that in order to reduce nonradiative recombination in multilayer p-n structures, we need to create quantum dot arrays inside p and n regions rather than in the central portion of the depletion layer of the p-n junction. We show that the theoretical energies for Ge quantum dots of the calculated sizes are comparable with the energies of their photoluminescence maxima.

  8. Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1

    PubMed Central

    Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione

    2007-01-01

    The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555

  9. Quantum soldering of individual quantum dots.

    PubMed

    Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L

    2012-12-07

    Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  11. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    DOE PAGES

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-01

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less

  12. A high-temperature single-photon source from nanowire quantum dots.

    PubMed

    Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak

    2008-12-01

    We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.

  13. Polarization control of quantum dot emission by chiral photonic crystal slabs.

    PubMed

    Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.

  14. Photonic emitters and circuits based on colloidal quantum dot composites

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  15. Selective biosensing of Staphylococcus aureus using chitosan quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2018-01-01

    Selective biosensing of Staphylococcus aureus (S. aureus) using chitosan modified quantum dots (CTS@CdS QDs) in the presence of hydrogen peroxide is reported. The method is based on the intrinsic positive catalase activity of S. aureus. CTS@CdS quantum dots provide high dispersion in aqueous media with high fluorescence emission. Staphylococcus aureus causes a selective quenching of the fluorescence emission of CTS@CdS QDs in the presence of H2O2 compared to other pathogens such as Escherichia coli and Pseudomonas aeruginosa. The intrinsic enzymatic character of S. aureus (catalase positive) offers selective and fast biosensing. The present method is highly selective for positive catalase species and requires no expensive reagents such as antibodies, aptamers or microbeads. It could be extended for other species that are positive catalase.

  16. Self-assembled InN quantum dots on side facets of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Bi, Zhaoxia; Ek, Martin; Stankevic, Tomas; Colvin, Jovana; Hjort, Martin; Lindgren, David; Lenrick, Filip; Johansson, Jonas; Wallenberg, L. Reine; Timm, Rainer; Feidenhans'l, Robert; Mikkelsen, Anders; Borgström, Magnus T.; Gustafsson, Anders; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars

    2018-04-01

    Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (…ABABCBC…) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.

  17. Influence of the CdSe quantum dots concentration on the amplified spontaneous emission from the conjugated polymer (MEH-PPV) in solution

    NASA Astrophysics Data System (ADS)

    Ibnaouf, K. H.

    2015-04-01

    The spectral properties of a conjugated polymer poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) in benzene have been studied intensively. The fluorescence spectra for MEH-PPV, under low concentrations, have shown two peaks around 560 nm and 600 nm, which could be attributed to the monomer and excimer states respectively. In our earlier communication, we had shown that MEH-PPV alone could produce amplified spontaneous emission (ASE) only in its excimeric state (600 nm). The spectral properties of 5 nm size of CdSe (core) quantum dots have been investigated. The fluorescence spectra of CdSe core in benzene showed only one band at 590 nm. Mixtures made of MEH-PPV and CdSe (core) quantum dots have been utilized for studying the amplified spontaneous emission characteristics (ASE) in an organic solution under laser excitation. When the mixture was pumped by the third harmonic of Nd:YAG (355 nm), we observed two ASE peaks; one at 575 nm and another at 595 nm. These ASE peaks could arise from the monomer and excimer states of MEH-PPV. This is perhaps the first report on the influence of quantum dots on the laser from the conjugated polymer MEH-PPV, in liquid solution.

  18. Studies of quantum dots in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  19. Charge reconfiguration in arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.

    2017-12-01

    Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.

  20. Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity

    PubMed Central

    Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel

    2015-01-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654

  1. Enhanced emission of quantum dots embedded within the high-index dielectric regions of photonic crystal slabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Gloria G.; Naughton, Matt S.; Kenis, Paul J. A.

    2016-04-25

    We demonstrate a method for combining sputtered TiO{sub 2} deposition with liquid phase dip-coating of a quantum dot (QD) layer that enables precise depth placement of QD emitters within a high-index dielectric film, using a photonic crystal (PC) slab resonator to demonstrate enhanced emission from the QDs when they are located at a specific depth within the film. The depth of the QDs within the PC is found to modulate the resonant wavelength of the PC as well as the emission enhancement efficiency, as the semiconducting material embedded within the dielectric changes its spatial overlap with the resonant mode.

  2. Quantum dot in interacting environments

    NASA Astrophysics Data System (ADS)

    Rylands, Colin; Andrei, Natan

    2018-04-01

    A quantum impurity attached to an interacting quantum wire gives rise to an array of new phenomena. Using the Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting quantum wire: a quantum dot that is (i) side coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the ground-state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire, there exists competition between the tunneling and backscattering leading to a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.

  3. Optical signatures of coupled quantum dots.

    PubMed

    Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D

    2006-02-03

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  4. Optical Signatures of Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  5. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    NASA Astrophysics Data System (ADS)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  6. Quantum dot-polymer conjugates for stable luminescent displays.

    PubMed

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  7. Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell

    NASA Astrophysics Data System (ADS)

    Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo; Gregersen, Niels; Bellet-Amalric, Edith; Nogues, Gilles; Kheng, Kuntheak

    2017-11-01

    Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach to fabricate a photonic fiberlike structure around such nanowire quantum dots by depositing an oxide shell using atomic-layer deposition. Simulations suggest that the intensity collected in our NA =0.6 microscope objective can be increased by a factor 7 with respect to the bare nanowire case. Combining microphotoluminescence, decay time measurements, and numerical simulations, we obtain a fourfold increase in the collected photoluminescence from the quantum dot. We show that this improvement is due to an increase of the quantum-dot emission rate and a redirection of the emitted light. Our ex situ fabrication technique allows a precise and reproducible fabrication on a large scale. Its improved extraction efficiency is compared to state-of-the-art top-down devices.

  8. Entanglement in a quantum neural network based on quantum dots

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Zolnikova, N. N.; Kaputkina, N. E.; Krylov, V. A.; Lozovik, Yu E.; Dattani, N. S.

    2017-05-01

    We studied the quantum correlations between the nodes in a quantum neural network built of an array of quantum dots with dipole-dipole interaction. By means of the quasiadiabatic path integral simulation of the density matrix evolution in a presence of the common phonon bath we have shown the coherence in such system can survive up to the liquid nitrogen temperature of 77 K and above. The quantum correlations between quantum dots are studied by means of calculation of the entanglement of formation in a pair of quantum dots with the typical dot size of a few nanometers and interdot distance of the same order. We have shown that the proposed quantum neural network can keep the mixture of entangled states of QD pairs up to the above mentioned high temperatures.

  9. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308

  10. Emission Properties from ZnO Quantum Dots Dispersed in SiO2 Matrix

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-07-01

    Dispersion of ZnO quantum dots in SiO2 matrix has been achieved in two techniques based on StÖber method to form ZnO QDs-SiO2 nanocomposites. Sample A is formed with random dispersion by adding tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles and sample B is formed with a chain-like ordered dispersion by adding ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO2 composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications.

  11. Theory of few photon dynamics in light emitting quantum dot devices

    NASA Astrophysics Data System (ADS)

    Carmele, Alexander; Richter, Marten; Sitek, Anna; Knorr, Andreas

    2009-10-01

    We present a modified cluster expansion to describe single-photon emitters in a semiconductor environment. We calculate microscopically to what extent semiconductor features in quantum dot-wetting layer systems alter the exciton and photon dynamics in comparison to the atom-like emission dynamics. We access these systems by the photon-probability-cluster-expansion: a reliable approach for few photon dynamics in many body electron systems. As a first application, we show that the amplitude of vacuum Rabi flops determines the number of electrons in the quantum dot.

  12. Temperature dependence of excitonic emission in [(CH3)2NH2]3[BiI6] organic-inorganic natural self assembled bimodal quantum dots

    NASA Astrophysics Data System (ADS)

    Abid, Haitham; Samet, Amira; Mlayah, Adnen; Boughzala, Habib; Abid, Younes

    2017-11-01

    This paper reports on the optical properties of organic - inorganic natural self assembled bimodal quantum dots (dimetylammonium) hexa-iodobismuthate [(CH3)2NH2]3[BiI6]. The crystal structure consists of isolated BiI6 octahedra, as inorganic ions, surrounded by dimethylamine cations. At room temperature, we investigate the optical properties by: UV/Vis absorption, ellipsometry, diffuse reflectance and photoluminescence. A broad Gaussian-shape luminescence band with a large stokes shift is observed in the red spectral range at 2.15 eV, due to radiative recombination of confined excitons in BiI quantum dots, suggesting that excitons are self trapped. The temperature-dependence of the PL emission is investigated. The observed S-shaped emission behavior is explained by thermal escape occurring at lower temperatures for high-energy dots and carriers being recaptured by dots emitting on the low-energy side of the distribution. A rate equation model, showing agreement with the experimental results, is used to investigate the thermal redistribution of the charge carriers. Exciton binding energies of 149.125 and 295.086 meV were determined from the modified Arrhenius analysis.

  13. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  14. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong

    2013-01-01

    Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.

  15. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  16. Towards zero-threshold optical gain using charged semiconductor quantum dots

    DOE PAGES

    Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon; ...

    2017-10-16

    Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less

  17. Towards zero-threshold optical gain using charged semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kaifeng; Park, Young -Shin; Lim, Jaehoon

    Colloidal semiconductor quantum dots are attractive materials for the realization of solution-processable lasers. However, their applications as optical-gain media are complicated by a non-unity degeneracy of band-edge states, because of which multiexcitons are required to achieve the lasing regime. This increases the lasing thresholds and leads to very short optical gain lifetimes limited by nonradiative Auger recombination. Here, we show that these problems can be at least partially resolved by employing not neutral but negatively charged quantum dots. By applying photodoping to specially engineered quantum dots with impeded Auger decay, we demonstrate a considerable reduction of the optical gain thresholdmore » due to suppression of ground-state absorption by pre-existing carriers. Moreover, by injecting approximately one electron per dot on average, we achieve a more than twofold reduction in the amplified spontaneous emission threshold, bringing it to the sub-single-exciton level. Furthermore, these measurements indicate the feasibility of ‘zero-threshold’ gain achievable by completely blocking the band-edge state with two electrons.« less

  18. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on

  19. Spin-flip transitions in self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Stavrou, V. N.

    2017-12-01

    Detailed realistic calculations of the spin-flip time (T 1) for an electron in a self-assembled quantum dot (SAQD) due to emission of an acoustic phonon, using only bulk properties with no fitting parameters, are presented. Ellipsoidal lens shaped Inx Ga1-x As quantum dots, with electronic states calculated using 8-band strain dependent {k \\cdot p} theory, are considered. The phonons are treated as bulk acoustic phonons coupled to the electron by both deformation potential and piezoelectric interactions. The dependence of T 1 on the geometry of SAQD, on the applied external magnetic field and on the lattice temperature is highlighted. The theoretical results are close to the experimental measurements on the spin-flip times for a single electron in QD.

  20. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  1. Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Snider, Gregory

    2000-03-01

    Quantum-dot Cellular Automata (QCA) [1] is a promising architecture which employs quantum dots for digital computation. It is a revolutionary approach that holds the promise of high device density and low power dissipation. A basic QCA cell consists of four quantum dots coupled capacitively and by tunnel barriers. The cell is biased to contain two excess electrons within the four dots, which are forced to opposite "corners" of the four-dot cell by mutual Coulomb repulsion. These two possible polarization states of the cell will represent logic "0" and "1". Properly arranged, arrays of these basic cells can implement Boolean logic functions. Experimental results from functional QCA devices built of nanoscale metal dots defined by tunnel barriers will be presented. The experimental devices to be presented consist of Al islands, which we will call quantum dots, interconnected by tunnel junctions and lithographically defined capacitors. Aluminum/ aluminum-oxide/aluminum tunnel junctions were fabricated using a standard e-beam lithography and shadow evaporation technique. The experiments were performed in a dilution refrigerator at a temperature of 70 mK. The operation of a cell is evaluated by direct measurements of the charge state of dots within a cell as the input voltage is changed. The experimental demonstration of a functioning cell will be presented. A line of three cells demonstrates that there are no metastable switching states in a line of cells. A QCA majority gate will also be presented, which is a programmable AND/OR gate and represents the basic building block of QCA systems. The results of recent experiments will be presented. 1. C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Nanotechnology, 4, 49 (1993).

  2. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  3. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes.

    PubMed

    Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang

    2018-03-01

    The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.

  4. Making Ternary Quantum Dots From Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Banger, Kulbinder; Castro, Stephanie; Hepp, Aloysius

    2007-01-01

    A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of high-efficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.

  5. Spin-based quantum computation in multielectron quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Das Sarma, S.

    2001-10-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.

  6. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2009-09-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  7. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2010-05-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  8. Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 μ m telecom wavelength

    NASA Astrophysics Data System (ADS)

    Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F.

    2017-12-01

    Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 μ m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.

  9. Three-terminal quantum-dot thermal management devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan

    2017-04-01

    We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.

  10. Synthetic Developments of Nontoxic Quantum Dots.

    PubMed

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantum dots for GaAs-based surface emitting lasers at 1300 nm

    NASA Astrophysics Data System (ADS)

    Grundmann, M.; Ledentsov, N. N.; Hopfer, F.; Heinrichsdorff, F.; Guffarth, F.; Bimberg, D.; Ustinov, V. M.; Zhukov, A. E.; Kovsh, A. R.; Maximov, M. V.; Musikhin, Yu. G.; Alferov, Zh. I.; Lott, J. A.; Zhakharov, N. D.; Werner, P.

    InGaAs quantum dots (QD's) on GaAs substrate have been fabricated using metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) for the use in vertical cavity surface emitting laser diodes. Similar recombination spectra are obtained by employing the two different approaches of seeding and overgrowth with a quantum well. Despite the shift to larger wavelengths a large separation (=80 meV) between excited states is maintained. The introduction of such QD's into a vertical cavity leads to strong narrowing of the emission spectrum. Lasing from a 1300 nm InGaAs quantum dot VCSEL is reported.

  12. Tailoring of quantum dot emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings.

    PubMed

    Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano

    2014-01-21

    We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.

  13. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  14. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  15. Effect of a low-temperature-grown GaAs layer on InAs quantum-dot photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosarev, A. N.; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru; Preobrazhenskii, V. V.

    2016-11-15

    The photoluminescence of InAs semiconductor quantum dots overgrown by GaAs in the low-temperature mode (LT-GaAs) using various spacer layers or without them is studied. Spacer layers are thin GaAs or AlAs layers grown at temperatures normal for molecular-beam epitaxy (MBE). Direct overgrowth leads to photoluminescence disappearance. When using a thin GaAs spacer layer, the photoluminescence from InAs quantum dots is partially recovered; however, its intensity appears lower by two orders of magnitude than in the reference sample in which the quantum-dot array is overgrown at normal temperature. The use of wider-gap AlAs as a spacer-layer material leads to the enhancementmore » of photoluminescence from InAs quantum dots, but it is still more than ten times lower than that of reference-sample emission. A model taking into account carrier generation by light, diffusion and tunneling from quantum dots to the LT-GaAs layer is constructed.« less

  16. Cadmium-free quantum dot light emitting devices: energy-transfer realizing pure blue emission.

    PubMed

    Ji, Wenyu; Jing, Pengtao; Fan, Yi; Zhao, Jialong; Wang, Yunjun; Kong, Xianggui

    2013-01-01

    In this study, deep blue, pure electroluminescence (EL) at 441.5 nm from a ZnSe/ZnS quantum dot light-emitting device (QD-LED) is obtained by using poly (4-butylphenyl-diphenyl-amine) (poly-TPD) as the hole-transport layer (HTL) to open up the channel for energy transfer from poly-TPD to QDs. The emission originating from HTL is observed in the QD-LED with N,N'-bis (tolyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine functionalized with two styryl groups (2-TPD) as the HTL due to inefficient energy-transfer from 2-TPD to QDs. The poly-TPD based device exhibits color-saturated blue emission with a narrow spectral bandwidth of full width at half maximum (~17.2 nm). These results explore the operating mechanism of the QD EL and signify a remarkable progress in deep blue QD-LEDs based on environmental-friendly QD materials.

  17. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  18. Dicke states in multiple quantum dots

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  19. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.

    PubMed

    le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J

    2018-02-14

    To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.

  20. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  1. Aqueous synthesis of L-cysteine and mercaptopropionic acid co-capped ZnS quantum dots with dual emissions

    NASA Astrophysics Data System (ADS)

    Ren, Yingkun; Wang, Yongbo; Yang, Min; Liu, Enzhou; Hu, Xiaoyun; Zhang, Xu; Fan, Jun

    2018-07-01

    In this paper, L-cysteine (L-cys) and mercaptopropionic acid (MPA) co-capped ZnS quantum dots (QDs) with dual emissions have been successfully synthesized by a one-pot aqueous-phase synthesis method. The intensities of the dual emissions could be controlled by regulating the molar ratio of L-cys to MPA, and the fluorescence color also turned from blue to yellow accordingly. The relationship between the ligands and fluorescence was investigated and the results indicated that L-cys could cause two emissions and MPA improved the emission intensity. In addition, the L-cys-MPA co-capped ZnS QDs showed high photostability under UV irradiation. Therefore, the L-cys-MPA co-capped ZnS QDs, which show the dual emissions and tunable emission intensities, have great potentials for use in ratiometric fluorescence sensors and multicolor bioimaging.

  2. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics.

    PubMed

    Sanchez, Rafael S; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3-xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The "color" of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit.

  3. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-04-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.

  4. Crystal Phase Quantum Well Emission with Digital Control.

    PubMed

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-10-11

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  5. Specific features of electroluminescence in heterostructures with InSb quantum dots in an InAs matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru

    2013-11-15

    The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states ofmore » quantum dots at the type-II InSb/InAs heterointerface.« less

  6. Dislocation-induced Charges in Quantum Dots: Step Alignment and Radiative Emission

    NASA Technical Reports Server (NTRS)

    Leon, R.; Okuno, J.; Lawton, R.; Stevens-Kalceff, M.; Phillips, M.; Zou, J.; Cockayne, D.; Lobo, C.

    1999-01-01

    A transition between two types of step alignment was observed in a multilayered InGaAs/GaAs quantum-dot (QD) structure. A change to larger QD sizes in smaller concentrations occurred after formation of a dislocation array.

  7. Using of Quantum Dots in Biology and Medicine.

    PubMed

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  8. Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.

    2016-09-01

    A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

  9. Growth and optical characteristics of InAs quantum dot structures with tunnel injection quantum wells for 1.55 μ m high-speed lasers

    NASA Astrophysics Data System (ADS)

    Bauer, Sven; Sichkovskyi, Vitalii; Reithmaier, Johann Peter

    2018-06-01

    InP based lattice matched tunnel injection structures consisting of a InGaAs quantum well, InAlGaAs barrier and InAs quantum dots designed to emit at 1.55 μ m were grown by molecular beam epitaxy and investigated by photoluminescence spectroscopy and atomic force microscopy. The strong influence of quantum well and barrier thicknesses on the samples emission properties at low and room temperatures was investigated. The phenomenon of a decreased photoluminescence linewidth of tunnel injection structures compared to a reference InAs quantum dots sample could be explained by the selection of the emitting dots through the tunneling process. Morphological investigations have not revealed any effect of the injector well on the dot formation and their size distribution. The optimum TI structure design could be defined.

  10. Coupling effects in the modal emission of colloidal quantum dot microdisk lasers.

    NASA Astrophysics Data System (ADS)

    Lafalce, Evan; Zheng, Qingji; Lin, Chunhao; Smith, Marcus; Malak, Sidney; Jung, Jaehan; Yoon, Young; Lin, Zhiqun; Tsukruk, Vladimir; Vardeny, Z. Valy

    Solution-processed semiconductors such as colloidal quantum dots (CQD) are particularly suited materials for monolithic fabrication of laser microstructures because of their ease of fabrication and compatibility with conventional lithographic techniques. We use the functionality of core/alloyed-shell CQDs to fabricate microdisk lasers of variable size and study the resulting whispering-gallery mode laser emission. In particular we study the effects of near-field coupling on resonant modes of pairs of these lasers with sub-micrometer spacing. We demonstrate the occurrence of lasing modes that originate from the interaction between two such microdisks by means of varying the spatial distribution and magnitude of the gain and loss in the coupled-pair. The transition from emission of modes localized on a single disk to those of the interacting pair is accompanied by coalescence of eigen-frequencies and pump-induced turn-off of lasing, highlighting the role of parity-time symmetry and exceptional point physics. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.

  11. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices.

    PubMed

    Moyen, Eric; Kanwat, Anil; Cho, Sinyoung; Jun, Haeyeon; Aad, Roy; Jang, Jin

    2018-05-10

    Perovskite quantum dots have recently emerged as a promising light source for optoelectronic applications. However, integrating them into devices while preserving their outstanding optical properties remains challenging. Due to their ionic nature, perovskite quantum dots are extremely sensitive and degrade on applying the simplest processes. To maintain their colloidal stability, they are surrounded by organic ligands; these prevent efficient charge carrier injection in devices and have to be removed. Here we report on a simple method, where a moderate thermal process followed by exposure to UV in air can efficiently remove ligands and increase the photo-luminescence of the room temperature synthesized perovskite quantum dot thin films. Annealing is accompanied by a red shift of the emission wavelength, usually attributed to the coalescence and irreversible degradation of the quantum dots. We show that it is actually related to the relaxation of the quantum dots upon the ligand removal, without the creation of non-radiative recombining defects. The quantum dot surface, as devoid of ligands, is subsequently photo-oxidized and smoothened upon exposure to UV in air, which drastically enhances their photo-luminescence. This adequate combination of treatments improves by more than an order of magnitude the performances of perovskite quantum dot light emitting diodes.

  12. Polarization of the photoluminescence of quantum dots incorporated into quantum wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platonov, A. V., E-mail: alexei.platonov@mail.ioffe.ru; Kochereshko, V. P.; Kats, V. N.

    The photoluminescence spectra of individual quantum dots incorporated into a quantum wire are studied. From the behavior of the spectra in a magnetic field, it is possible to estimate the exciton binding energy in a quantum dot incorporated into a quantum wire. It is found that the exciton photoluminescence signal emitted from a quantum dot along the direction of the nanowire axis is linearly polarized. At the same time, the photoluminescence signal propagating in the direction orthogonal to the nanowire axis is practically unpolarized. The experimentally observed effect is attributed to the nonaxial arrangement of the dot in the wiremore » under conditions of a huge increase in the exciton binding energy due to the effect of the image potential on the exciton.« less

  13. Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots

    PubMed Central

    Cao, Sheng; Li, Chengming; Wang, Lin; Shang, Minghui; Wei, Guodong; Zheng, Jinju; Yang, Weiyou

    2014-01-01

    CuInS2 (CIS) quantum dots (QDs) have tunable photoluminescence (PL) behaviors in the visible and near infrared spectral range with markedly lower toxicity than the cadmium-based counterparts, making them very promising applications in light emitting and solar harvesting. However, there still remain material- and fabrication- related obstacles in realizing the high-performance CIS-based QDs with well-resolved Mn2+ d-d emission, long emission lifetimes as well as high efficiencies. Here, we demonstrate the growth of high-quality Mn2+-doped CuInS-ZnS (CIS-ZnS) QDs based on a multi-step hot-injection strategy. The resultant QDs exhibit a well-resolved Mn2+ d-d emission with a high PL quantum yield (QY) up to 66% and an extremely long excited state lifetime up to ~3.78 ms, which is nearly two times longer than the longest one of “green” QDs ever reported. It is promising that the synthesized Mn2+-doped CIS-ZnS QDs might open new doors for their practical applications in bioimaging and opto/electronic devices. PMID:25515207

  14. Luminescent Quantum Dots as Ultrasensitive Biological Labels

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2000-03-01

    Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

  15. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, Nosoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  16. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes.

    PubMed

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-11

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  17. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiang, E-mail: jiang.wu@ucl.ac.uk; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelengthmore » infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.« less

  18. Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Moyon, F.; Houard, J.; Blum, I.; Lefebvre, W.; Vurpillot, F.; Das, A.; Monroy, E.; Rigutti, L.

    2017-12-01

    Single-dot time-resolved micro-photoluminescence spectroscopy and correlated electron tomography (ET) have been performed on self-assembled GaN/AlN quantum dots isolated within a field-emission nanoscale tip by focused ion beam (FIB). Despite the effect of the FIB, the system conserves the capability of emitting light through multi-excitonic complexes. The optical spectroscopy data have then been correlated with the electronic structure and lifetime parameters that could be extracted using the structural parameters obtained by ET via a 6 band k.p model. A biexciton-exciton cascade could be identified and thoroughly analysed. The biexciton-exciton states exhibit a non-negligible polarization component along the [0001] polar crystal axis, indicating a significant valence band mixing, while the relationship between exciton energy and biexciton binding energy is consistent with a hybrid character of the biexciton.

  19. Synthesis, Characterization, and Fabrication of All Inorganic Quantum Dot LEDs

    NASA Astrophysics Data System (ADS)

    Salman, Haider Baqer

    Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO were synthesized following sol-gel method and deposited using spin coating. The anode of the device was a commercial slide of indium tin oxide deposited on glass substrate while the cathode was a 100 nm aluminum layer that was deposited using an Auto 306T Edwards thermal evaporator. In this research, Raman spectroscopy, micro-photoluminescence spectroscopy, absorbance spectroscopy, X-ray diffraction (XRD) spectroscopy, and atomic force microscopy, were used to characterize the materials. Three sharp peaks were observed in the XRD measurements of the NiO thin film related to three planes and indicated a proper level of crystallinity. The AFM image of the same material indicated a roughness RMS value of 2 nm which was accepted for a device fabrication. The photoluminescence spectrum exhibited a peak at 515 nm for the quantum dots and a peak at 315 nm for the ZnO nanocrystals. The narrow shape of these spectra proved a limited amount of size variation. The transfer characteristics of the fabricated device indicated that the current density ramped up producing green light when the voltage was higher than 5 V to reach 160 mA cm -2 at 9 V.

  20. Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers.

    PubMed

    Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit

    2018-04-01

    Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.

  1. Optical levitation of a microdroplet containing a single quantum dot.

    PubMed

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2015-03-15

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.

  2. Blinking correlation in nanocrystal quantum dots probed with novel laser scanning confocal microscopy methods

    NASA Astrophysics Data System (ADS)

    Hefti, Ryan Alf

    Semiconductor quantum dots have a vast array of applications: as fluorescent labels in biological systems, as physical or chemical sensors, as components in photovoltaic technology, and in display devices. An attribute of nearly every quantum dot is its blinking, or fluorescence intermittency, which tends to be a disadvantage in most applications. Despite the fact that blinking has been a nearly universal phenomenon among all types of fluorescent constructs, it is more prevalent in quantum dots than in traditional fluorophores. Furthermore, no unanimously accepted model of quantum dot blinking yet exists. The work encompassed by this dissertation began with an in-depth study of molecular motor protein dynamics in a variety of environments using two specially developed techniques, both of which feature applicability to live cell systems. Parked-beam confocal microscopy was utilized to increase temporal resolution of molecular motor motion dynamics by an order of magnitude over other popular methods. The second technique, fast-scanning confocal microscopy (FSCM), was used for long range observation of motor proteins. While using FSCM on motor protein assays, we discovered an unusual phenomenon. Single quantum dots seemingly communicated with neighboring quantum dots, indicated by a distinct correlation in their blinking patterns. In order to explain this novel correlation phenomenon, the majority of blinking models developed thus far would suggest a dipole-dipole interaction or a Coulomb interaction between singly charged quantum dots. However, our results indicate that the interaction energy is higher than supported by current models, thereby prompting a renewed examination. We propose that the blinking correlation we observed is due to a Coulomb interaction on the order of 3-4 elementary charges per quantum dot and that multiple charging of individual quantum dots may be required to plunge them into a non-emissive state. As a result of charging, charge carriers are

  3. Quantum strain sensor with a topological insulator HgTe quantum dot

    PubMed Central

    Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674

  4. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  5. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    PubMed

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  6. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  7. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  8. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics

    PubMed Central

    Sanchez, Rafael S.; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3–xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The “color” of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit. PMID:26844299

  9. Semiconductor Quantum Dots with Photoresponsive Ligands.

    PubMed

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  10. Investigation of Quantum Dot Lasers

    DTIC Science & Technology

    2004-08-09

    Accomplishments: • Introduction Since the first demonstration of room-temperature operation of self-assembled quantum-dot (QD) lasers about a...regions (JGaAs), wetting layer (JWL), and Auger recombination in the dots ( JAug ). for the present 1.3µm dots, the temperature invariant measured

  11. Excitonic quantum interference in a quantum dot chain with rings.

    PubMed

    Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang

    2008-04-16

    We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.

  12. Ultralow Noise Monolithic Quantum Dot Photonic Oscillators

    DTIC Science & Technology

    2013-10-28

    HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance

  13. Measurement back-action: Listening with quantum dots

    NASA Astrophysics Data System (ADS)

    Ladd, Thaddeus D.

    2012-07-01

    Single electrons in quantum dots can be disturbed by the apparatus used to measure them. The disturbance can be mediated by incoherent phonons -- literally, noise. Engineering acoustic interference could negate these deleterious effects and bring quantum dots closer to becoming a robust quantum technology.

  14. Enhanced carrier multiplication in engineered quasi-type-II quantum dots

    PubMed Central

    Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu; Makarov, Nikolay S.; Velizhanin, Kirill A.; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  15. Zinc sulfide quantum dots for photocatalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.

    2017-09-01

    Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.

  16. Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes

    ERIC Educational Resources Information Center

    Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth

    2007-01-01

    The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.

  17. Fluorescent Quantum Dots for Biological Labeling

    NASA Technical Reports Server (NTRS)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  18. Controlling Quantum-dot Light Absorption and Emission by a Surface-plasmon Field

    DTIC Science & Technology

    2014-11-03

    as well as photon conversion by a surface-plasmon- polariton near field is explored for a quantum dot located above a metal surface. In contrast to the...2009). 7. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity polariton splitting of intersubband transitions,” Phys. Rev. Lett...S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105

  19. Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen

    2016-12-01

    Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  20. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

    PubMed Central

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-01-01

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357

  1. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    PubMed

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  2. Photon-assisted tunneling in an asymmetrically coupled triple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao

    The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less

  3. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y. F.; Cao, X. A., E-mail: xacao@mail.wvu.edu

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasinglymore » dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.« less

  4. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  5. Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Kalyuzhnyy, N. A.; Nadtochiy, A. M.

    The deposition of In{sub x}Ga{sub 1–x}As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In{sub x}Ga{sub 1–x}As thicknesses andmore » compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.« less

  6. Exciton dynamics in GaAs/(Al,Ga)As core-shell nanowires with shell quantum dots

    NASA Astrophysics Data System (ADS)

    Corfdir, Pierre; Küpers, Hanno; Lewis, Ryan B.; Flissikowski, Timur; Grahn, Holger T.; Geelhaar, Lutz; Brandt, Oliver

    2016-10-01

    We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.

  7. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  9. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  10. Dynamics of Photoexcited State of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Trivedi, Dhara J.

    In this thesis, non-adiabatic molecular dynamics (NAMD) of excited states in semiconductor quantum dots are investigated. Nanoscale systems provide important opportunities for theory and computation for research because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial in understanding what is being measured. The simulation of NAMD is an indispensable tool for understanding complex ultrafast photoinduced processes such as charge and energy transfer, thermal relaxation, and charge recombination. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the thesis presents a comprehensive discussion of the dynamical processes in quantum dots, ranging from the initial photon absorption to the final emission. We investigate the energy relaxation and transfer rates in pure and surface passivated quantum dots of different sizes. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. We develop and implement more accurate and efficient methods for NAMD. These methods are advantageous over the traditional ones when one encounters classically forbidden transitions. We also explore the effect of decoherence and non-adiabatic couplings on the dynamics. The results indicate significant influence on the accuracy and related computational cost of the simulated dynamics.

  11. Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.

    Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less

  12. Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry

    DOE PAGES

    Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.; ...

    2017-09-07

    Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less

  13. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  14. Spectroscopy of Charged Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  15. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  16. A reconfigurable gate architecture for Si/SiGe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajac, D. M.; Hazard, T. M.; Mi, X.

    2015-06-01

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  17. Excited-state relaxation in PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    An, Joonhee M.; Califano, Marco; Franceschetti, Alberto; Zunger, Alex

    2008-04-01

    In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (⩽1ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P →S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P →S intraband decay time scale without the need to

  18. Temperature-dependent photoluminescence study of InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Thuy Pham, Thi; Tran, Thi Kim Chi; Liem Nguyen, Quang

    2011-06-01

    This paper reports on the temperature-dependent photoluminescence of InP/ZnS quantum dots under 532 nm excitation, which is above the InP transition energy but well below that of ZnS. The overall photoluminescence spectra show two spectral components. The higher-energy one (named X) is assigned to originate from the excitonic transition; while the low-energy spectral component (named I) is normally interpreted as resulting from lattice imperfections in the crystalline structure of InP/ZnS quantum dots (QDs). Peak positions of both the X and I emissions vary similarly with increasing temperature and the same as the InP bandgap narrowing with temperature. In the temperature range from 15 to 80 K, the ratio of the integrated intensity from the X and the I emissions decreases gradually and then this ratio increases fast at temperatures higher than 80 K. This could result from a population of charge carriers in the lattice imperfection states at a temperature below 80 K to increase the I emission but then with these charge carriers being released to contribute to the X emission.

  19. Designing quantum dots for solotronics.

    PubMed

    Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.

  20. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  1. Freestanding silicon quantum dots: origin of red and blue luminescence.

    PubMed

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  2. Ultrafast electronic dynamics in unipolar n-doped indium gallium arsenide/gallium arsenide self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Zong-Kwei J.

    2006-12-01

    Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis. We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ˜ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results. We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure

  3. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  4. Optical Signatures of Coupled Quantum Dots

    DTIC Science & Technology

    2006-02-03

    Optical Signatures of Coupled Quantum Dots E. A. Stinaff,1 M. Scheibner,1 A. S . Bracker,1 I. V. Ponomarev,1 V. L. Korenev ,2 M. E. Ware,1 M. F. Doty,1...possibility of optically coupling quantum dots for application in quantum information processing. S emiconductor approaches to quantum information can...REPORTS 3 FEBRUARY 2006 VOL 311 SCIENCE www.sciencemag.org636 o n A ug us t 1 4, 2 00 7 w w w . s ci en ce m ag .o rg D ow nl oa de d fr om Report

  5. Computational analysis of the amplified spontaneous emission in quantum dot doped plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Wu, Pinghui; Han, Yinxia; Hu, Guoqiang

    2014-11-01

    The properties of amplified spontaneous emission (ASE) in CdSe/ZnS quantum dot (QD) doped step-index polymer optical fibers (POFs) were computationally analyzed in this paper. A theoretical model based on the rate equations between two main energy levels of CdSe/ZnS QD was built in terms of time (t), distance traveled by light (z) and wavelength (λ), which can describe the ASE successfully. Through analyzing the spectral evolution with distance of the pulses propagating along the CdSe/ZnS QD doped POFs, dependences of the ASE threshold and the slope efficiency on the numerical aperture were obtained. Compared to the ASE in common dye-doped POFs, the pump threshold was just about 1/1000, but the slope efficiency was much higher.

  6. Core-shell quantum dots tailor the fluorescence of dental resin composites.

    PubMed

    Alves, Leandro P; Pilla, Viviane; Murgo, Dírian O A; Munin, Egberto

    2010-02-01

    We characterized the optical properties, such as absorbance and fluorescence, of dental resins containing quantum dots (QD). We also determined the doping level needed to obtain a broad and nearly flat emission spectrum that provides the perception of white color. The samples studied were resin composites from Charisma (Heraeus Kulzer) prepared with CdSe/ZnS core-shell QD (0.05-0.77 mass%). The results showed that the fluorescence of dental resin composites can be tailored by using CdSe/ZnS core-shell quantum dots. QD core incorporation into dental resins allows the fabrication of restorative materials with fluorescence properties that closely match those of natural human teeth. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    PubMed Central

    Ciotta, Erica; Paoloni, Stefano; Richetta, Maria; Tagliatesta, Pietro; Lorecchio, Chiara; Casciardi, Stefano

    2017-01-01

    A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs) is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III) was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM) images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III) and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor. PMID:29135946

  8. Sexithiophenes as efficient luminescence quenchers of quantum dots

    PubMed Central

    Mason, Christopher R; Li, Yang; O’Brien, Paul; Findlay, Neil J

    2011-01-01

    Summary Sexithiophenes 1a and 1b, in which a 4-(dimethylamino)phenyl unit is incorporated as an end-capping group, were synthesised and characterised by cyclic voltammetry, absorption spectroscopy and UV–vis spectroelectrochemistry. Additionally, their ability to function as effective luminescence quenchers for quantum dot emission was studied by photoluminescence spectroscopy and compared with the performance of alkyl end-capped sexithiophenes 2a and 2b. PMID:22238551

  9. Polarization control of spontaneous emission for rapid quantum-state initialization

    NASA Astrophysics Data System (ADS)

    DiLoreto, C. S.; Rangan, C.

    2017-04-01

    We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.

  10. Coulomb-coupled quantum-dot thermal transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Yang, Zhimin; Zhang, Xin; Lin, Bihong; Lin, Guoxing; Chen, Jincan

    2018-04-01

    A quantum-dot thermal transistor consisting of three Coulomb-coupled quantum dots coupled to the respective electronic reservoirs by tunnel contacts is established. The heat flows through the collector and emitter can be controlled by the temperature of the base. It is found that a small change in the base heat flow can induce a large heat flow change in the collector and emitter. The huge amplification factor can be obtained by optimizing the Coulomb interaction between the collector and the emitter or by decreasing the tunneling rate at the base. The proposed quantum-dot thermal transistor may open up potential applications in low-temperature solid-state thermal circuits at the nanoscale.

  11. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  12. Luminescence of CdSe/ZnS quantum dots infiltrated into an opal matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruzintsev, A. N.; Emelchenko, G. A.; Masalov, V. M.

    The effect of the photonic band gap in the photonic crystal, the synthesized SiO{sub 2} opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and themore » luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.« less

  13. Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng-Jiao; Zhuo, Ning; Liu, Shu-Man, E-mail: liusm@semi.ac.cn

    2016-06-20

    We demonstrate a quantum dot quantum cascade photodetector with a hybrid active region of InAs quantum dots and an InGaAs quantum well, which exhibited a temperature independent response at 4.5 μm. The normal incident responsivity reached 10.3 mA/W at 120 K and maintained a value of 9 mA/W up to 260 K. It exhibited a specific detectivity above 10{sup 11} cm Hz{sup 1/2} W{sup −1} at 77 K, which remained at 10{sup 8} cm Hz{sup 1/2} W{sup −1} at 260 K. We ascribe the device's good thermal stability of infrared response to the three-dimensional quantum confinement of the InAs quantum dots incorporated in the active region.

  14. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    PubMed

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  15. Pushing indium phosphide quantum dot emission deeper into the near infrared

    NASA Astrophysics Data System (ADS)

    Saeboe, A. M.; Kays, J.; Mahler, A. H.; Dennis, A. M.

    2018-02-01

    Cadmium-free near infrared (NIR) emitting quantum dots (QDs) have significant potential for multiplexed tissue-depth imaging applications in the first optical tissue window (i.e., 650 - 900 nm). Indium phosphide (InP) chemistry provides one of the more promising cadmium-free options for biomedical imaging, but the full tunability of this material has not yet been achieved. Specifically, InP QD emission has been tuned from 480 - 730 nm in previous literature reports, but examples of samples emitting from 730 nm to the InP bulk bandgap limit of 925 nm are lacking. We hypothesize that by generating inverted structures comprising ZnSe/InP/ZnS in a core/shell/shell heterostructure, optical emission from the InP shell can be tuned by changing the InP shell thickness, including pushing deeper into the NIR than current InP QDs. Colloidal synthesis methods including hot injection precipitation of the ZnSe core and a modified successive ion layer adsorption and reaction (SILAR) method for stepwise shell deposition were used to promote growth of core/shell/shell materials with varying thicknesses of the InP shell. By controlling the number of injections of indium and phosphorous precursor material, the emission peak was tuned from 515 nm to 845 nm (2.41 - 1.47 eV) with consistent full width half maximum (FWHM) values of the emission peak 0.32 eV. To confer water solubility, the nanoparticles were encapsulated in PEGylated phospholipid micelles, and multiplexing of NIR-emitting InP QDs was demonstrated using an IVIS imaging system. These materials show potential for multiplexed imaging of targeted QD contrast agents in the first optical tissue window.

  16. Spin interactions in InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  17. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    NASA Astrophysics Data System (ADS)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  18. Tunable Emission Wavelength Stacked InAs/GaAs Quantum Dots by Chemical Beam Epitaxy for Optical Coherence Tomography

    PubMed Central

    Ilahi, Bouraoui; Zribi, Jihene; Guillotte, Maxime; Arès, Richard; Aimez, Vincent; Morris, Denis

    2016-01-01

    We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode’s active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots’ height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging. PMID:28773633

  19. Design of cadmium-free colloidal II-VI semiconductor quantum dots exhibiting RGB emission

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi; Omata, Takahisa

    2017-04-01

    The size and composition dependence of the optical gap of colloidal alloyed quantum dots (QDs) of Zn(Te1-xSex) and Zn(Te1-xSx) were calculated by the finite-depth-well effective mass approximation method. QDs that exhibited red, green and blue emission were explored to develop cadmium-free II-VI chalcogenide-based QD-phosphors. We considered that highly monodisperse colloidal QDs with diameters of 3-6 nm are easy to synthesize and II-VI semiconductor QDs usually exhibit a Stokes shift ranging between 50 and 150 meV. We showed that Zn(Te1-xSex) QDs with 0.02≤x≤0.68, and 0≤x≤0.06, and 0.66≤x≤0.9 may be expected to exhibit green, and blue emission, respectively. Zn(Te1-xSx) QDs with 0.26≤x≤0.37, 0.01≤x≤0.2 and 0.45≤x≤0.61, 0≤x≤0.02, and 0.63≤x≤0.72, should give red, green and blue emission respectively. On the basis of our calculations, we showed that Zn(Te,Se) and Zn(Te,S) QDs are very promising cadmium-free II-VI chalcogenide semiconductor QD phosphors.

  20. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.

    PubMed

    Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L

    2016-04-26

    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.

  1. Quantum Dots in Diagnostics and Detection: Principles and Paradigms

    PubMed Central

    Pisanic, T. R.; Zhang, Y.; Wang, T. H.

    2014-01-01

    Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716

  2. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    NASA Astrophysics Data System (ADS)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  3. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  4. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  5. Simultaneous multi-state stimulated emission in quantum dot lasers: experiment and analytical approach

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.; Shernyakov, Yu. M.

    2012-06-01

    The theoretical investigation of the double-state lasing phenomena in InAs/InGaAs quantum dot lasers has been carried out. The new mechanism of the ground-state lasing quenching, which takes place in quantum dot (QD) laser operating in double-state lasing regime at high pump level, was proposed. The difference between electron and hole capture rates causes the depletion of the hole levels and consequently leads to the decrease of an output lasing power via QD ground state with the growth of injection. Moreover, it was shown that the hole-to-electron capture rates ratio strongly affects both the light-current curve and the key laser parameters. The model of the simultaneous lasing through the ground and excited QD states was developed which allows to describe the observed quenching quantitatively.

  6. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less

  7. Optical Spectroscopy Of Charged Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  8. Development of transition metal dichalcogenide based quantum dots for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seth, Subhashree; Sharma, S. K.

    2018-05-01

    Photoluminescent quantum dots (QDs) were synthesized by facile colloidal chemical route. Its properties were characterized and analysed by utilizing Fluorescence, FTIR and UV-Vis spectrophotometers. The resultant MoS2 QD exhibits fluorescence at 470 nm for excitation wavelength 400 nm. The as prepared sample exhibits excitation dependent emission due to polydispersion of MoS2 in the dispersive medium which is the characteristics of colloidal synthesis. It is also observed that resultant MoS2 QDs show size tunable emission in the visible region. The FTIR spectrum confirms the attachment of oleic acid on the surface of MoS2. Absorption spectrum shows a band at 346 nm and a shoulder band at 400 nm. The band gap of quantum dots was obtained as 3.5 eV. CIE diagram indicates the shifting of colour coordinates towards green region with increasing excitation wavelength.

  9. The Application of Fluorescent Quantum Dots to Confocal, Multiphoton, and Electron Microscopic Imaging

    PubMed Central

    Deerinck, Thomas J.

    2009-01-01

    Fluorescent quantum dots are emerging as an important tool for imaging cells and tissues, and their unique optical and physical properties have captured the attention of the research community. The most common types of commercially available quantum dots consist of a nanocrystalline semiconductor core composed of cadmium selenide with a zinc sulfide capping layer and an outer polymer layer to facilitate conjugation to targeting biomolecules such as immunoglobulins. They exhibit high fluorescent quantum yields and have large absorption cross-sections, possess excellent photostability, and can be synthesized so that their narrow-band fluorescence emission can occur in a wide spectrum of colors. These properties make them excellent candidates for serving as multiplexing molecular beacons using a variety of imaging modalities including highly correlated microscopies. Whereas much attention has been focused on quantum-dot applications for live-cell imaging, we have sought to characterize and exploit their utility for enabling simultaneous multiprotein immunolabeling in fixed cells and tissues. Considerations for their application to immunolabeling for correlated light and electron microscopic analysis are discussed. PMID:18337229

  10. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    PubMed Central

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  11. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  12. Carbon quantum dots and a method of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  13. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection.

    PubMed

    Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet

    2016-07-15

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser

    PubMed Central

    Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel

    2017-01-01

    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863

  15. A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.

    PubMed

    Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel

    2017-01-30

    Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.

  16. Semiconductor quantum dot scintillation under gamma-ray irradiation.

    PubMed

    Létant, S E; Wang, T-F

    2006-12-01

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.

  17. Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors

    NASA Astrophysics Data System (ADS)

    Bicanic, Kristopher T.

    This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.

  18. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  19. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  20. `Giant' nanocrystal quantum dots (gNQDs) as FRET donors

    NASA Astrophysics Data System (ADS)

    Chern, Margaret; Nguyen, Thuy; Dennis, Allison

    2017-02-01

    High-quality core/shell CdSe/xCdS quantum dots (QDs) ranging from 3 to 20 nm in diameter were synthesized for use as Förster Resonance Energy Transfer (FRET) donors. gNQDs are carefully characterized for size, emission, absorption, QY, and brightness in both organic and aqueous solution. FRET has been verified in optimally designed systems that use short capping ligands and donor-acceptor pairs that have well-matched emission and absorption spectra. The interplay between shell thickness, donor-acceptor distance, and particle brightness is systematically analyzed to optimize our biosensor design.

  1. Quantum dots in imaging, drug delivery and sensor applications.

    PubMed

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian

    2017-01-01

    Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.

  2. Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae.

    PubMed

    Brooks, Jordan; Lefebvre, Daniel D

    2017-04-01

    The biosynthesis of quantum dots has been explored as an alternative to traditional physicochemical methods; however, relatively few studies have determined optimal synthesis parameters. Saccharomyces cerevisiae sequentially treated with sodium selenite and cadmium chloride synthesized CdSe quantum dots in the cytoplasm. These nanoparticles displayed a prominent yellow fluorescence, with an emission maximum of approximately 540 nm. The requirement for glutathione in the biosynthetic mechanism was explored by depleting its intracellular content through cellular treatments with 1-chloro-2,4-dinitrobenzene and buthionine sulfoximine. Synthesis was significantly inhibited by both of these reagents when they were applied after selenite treatment prior to the addition of cadmium, thereby indicating that glutathione contributes to the biosynthetic process. Determining the optimum conditions for biosynthesis revealed that quantum dots were produced most efficiently at entry into stationary phase followed by direct addition of 1 mM selenite for only 6 h and then immediately incubating these cells in fresh growth medium containing 3 mM Cd (II). Synthesis of quantum dots reached a maximum at 84 h of reaction time. Biosynthesis of 800-μg g -1 fresh weight cells was achieved. For the first time, significant efforts have been undertaken to optimize each aspect of the CdSe biosynthetic procedure in S. cerevisiae, resulting in a 70% increased production.

  3. Electrostatically confined trilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Peeters, F. M.

    2017-04-01

    Electrically gating of trilayer graphene (TLG) opens a band gap offering the possibility to electrically engineer TLG quantum dots. We study the energy levels of such quantum dots and investigate their dependence on a perpendicular magnetic field B and different types of stacking of the graphene layers. The dots are modeled as circular and confined by a truncated parabolic potential which can be realized by nanostructured gates or position-dependent doping. The energy spectra exhibit the intervalley symmetry EKe(m ) =-EK'h(m ) for the electron (e ) and hole (h ) states, where m is the angular momentum quantum number and K and K ' label the two valleys. The electron and hole spectra for B =0 are twofold degenerate due to the intervalley symmetry EK(m ) =EK'[-(m +1 ) ] . For both ABC [α =1.5 (1.2) for large (small) R ] and ABA (α =1 ) stackings, the lowest-energy levels show approximately a R-α dependence on the dot radius R in contrast with the 1 /R3 one for ABC-stacked dots with infinite-mass boundary. As functions of the field B , the oscillator strengths for dipole-allowed transitions differ drastically for the two types of stackings.

  4. Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing

    2017-07-01

    We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.

  5. Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas

    DOE PAGES

    Akselrod, Gleb M.; Weidman, Mark C.; Li, Ying; ...

    2016-09-13

    Infrared (IR) light sources with high modulation rates are critical components for on-chip optical communications. Lead-based colloidal quantum dots are promising nonepitaxial materials for use in IR light-emitting diodes, but their slow photoluminescence lifetime is a serious limitation. Here we demonstrate coupling of PbS quantum dots to colloidal plasmonic nanoantennas based on film-coupled metal nanocubes, resulting in a dramatic 1300-fold reduction in the emission lifetime from the microsecond to the nanosecond regime. This lifetime reduction is primarily due to a 1100-fold increase in the radiative decay rate owing to the high quantum yield (65%) of the antenna. The short emissionmore » lifetime is accompanied by high antenna quantum efficiency and directionality. Lastly, this nonepitaxial platform points toward GHz frequency, electrically modulated, telecommunication wavelength light-emitting diodes and single-photon sources.« less

  6. Fermionic entanglement via quantum walks in quantum dots

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2018-02-01

    Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.

  7. Quantum interference of electrically generated single photons from a quantum dot.

    PubMed

    Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2010-07-09

    Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

  8. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    PubMed

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  9. Coexistence of strongly and weakly confined energy levels in (Cd,Zn)Se quantum dots: Tailoring the near-band-edge and defect-levels for white light emission

    NASA Astrophysics Data System (ADS)

    Das, Tapan Kumar; Ilaiyaraja, P.; Sudakar, C.

    2017-05-01

    We demonstrate white light emission (WLE) from (Cd,Zn)Se system, which is a composite of Zn alloyed CdSe quantum dot and ZnSe-amorphous (ZnSe-a) phase. Detailed structural and photoluminescence emission studies on pure CdSe and (Cd,Zn)Se show cubic zinc blende structure in the size range of 2.5 to 5 nm. (Cd,Zn)Se quantum dots (QDs) also have a significant fraction of ZnSe-a phase. The near-band-edge green-emission in crystalline CdSe and (Cd,Zn)Se is tunable between 500 to 600 nm. The (Cd,Zn)Se system also exhibits a broad, deep defect level (DL) red-emission in the range 600 to 750 nm and a sharp ZnSe near-band-edge blue-emission (ZS-NBE) between 445 to 465 nm. While DL and CdSe near-band-edge (CS-NBE) emissions significantly shift with the size of QD due to strong confinement effect, the ZS-NBE show minimal change in peak position indicating a weak confinement effect. The intensities of ZS-NBE and DL emissions also exhibit a strong dependence on the QD size. A gamut of emission colors is obtained by combining the CS-NBE with the ZS-NBE emission and broad DL emission in (Cd,Zn)Se system. Interestingly, we find the convergence of Commission Internationale de l'Eclairage (CIE) coordinates towards the white light with increasing Zn concentration in CdSe. We demonstrate by combining these three emissions in a proper weight ratio WLE can be achieved. Cd1-yZnySe (y = 0. 5; QD size ˜4.9 nm) alloy with a maximum quantum yield of 57% exhibits CIE coordinates of (0.39, 0.4), color rendering index (CRI) of 82, correlated color temperature (CCT) of 3922 K, and Duv of 0.0078 which is very promising for white light applications.

  10. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    PubMed

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  11. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tang, Ping-ping; Cai, Ji-bao; Su, Qing-de

    2010-04-01

    A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step. The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.

  12. Nanowire–quantum-dot lasers on flexible membranes

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-06-01

    We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.

  13. 3D super-resolution imaging with blinking quantum dots

    PubMed Central

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R.

    2013-01-01

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots, and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (FWHM) of 8–17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells. PMID:24093439

  14. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreinberg, Sören; Chow, Weng W.; Wolters, Janik

    Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less

  15. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    DOE PAGES

    Kreinberg, Sören; Chow, Weng W.; Wolters, Janik; ...

    2017-02-28

    Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less

  16. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.

    PubMed

    Han, M; Gao, X; Su, J Z; Nie, S

    2001-07-01

    Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.

  17. The effect of precursor on the optical properties of carbon quantum dots synthesized by hydrothermal/solvothermal method

    NASA Astrophysics Data System (ADS)

    Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh

    2018-01-01

    In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.

  18. Computation of energy states of hydrogenic quantum dot with two-electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakar, Y., E-mail: yuyakar@yahoo.com; Özmen, A., E-mail: aozmen@selcuk.edu.tr; Çakır, B., E-mail: bcakir@selcuk.edu.tr

    2016-03-25

    In this study we have investigated the electronic structure of the hydrogenic quantum dot with two electrons inside an impenetrable potential surface. The energy eigenvalues and wavefunctions of the ground and excited states of spherical quantum dot have been calculated by using the Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method, and the energies are investigated as a function of dot radius. The results show that as dot radius increases, the energy of quantum dot decreases.

  19. In situ electron-beam polymerization stabilized quantum dot micelles.

    PubMed

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  20. Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming

    2006-01-01

    The figure depicts a proposed semiconductor laser, based on In(As)Sb quantum dots on a (001) InP substrate, that would operate in the wavelength range between 1.8 and 2.3 m. InSb and InAsSb are the smallest-bandgap conventional III-V semiconductor materials, and the present proposal is an attempt to exploit the small bandgaps by using InSb and InAsSb nanostructures as midinfrared emitters. The most closely related prior III-V semiconductor lasers are based, variously, on strained InGaAs quantum wells and InAs quantum dots on InP substrates. The emission wavelengths of these prior devices are limited to about 2.1 m because of critical quantum-well thickness limitations for these lattice mismatched material systems. The major obstacle to realizing the proposed laser is the difficulty of fabricating InSb quantum dots in sufficient density on an InP substrate. This difficulty arises partly because of the weakness of the bond between In and Sb and partly because of the high temperature needed to crack metalorganic precursor compounds during the vapor-phase epitaxy used to grow quantum dots: The mobility of the weakly bound In at the high growth temperature is so high that In adatoms migrate easily on the growth surface, resulting in the formation of large InSb islands at a density, usually less than 5 x 10(exp 9) cm(exp -2), that is too low for laser operation. The mobility of the In adatoms could be reduced by introducing As atoms to the growth surface because the In-As bond is about 30 percent stronger than is the In-Sb bond. The fabrication of the proposed laser would include a recently demonstrated process that involves the use of alternative supplies of precursors to separate group-III and group-V species to establish local non-equilibrium process conditions, so that In(As)Sb quantum dots assemble themselves on a (001) InP substrate at a density as high as 4 x 10(exp 10) cm(exp -2). Room-temperature photoluminescence spectra of quantum dots formed by this process

  1. Polarized emission from CsPbX3 perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wu, Dan; Dong, Di; Chen, Wei; Hao, Junjie; Qin, Jing; Xu, Bing; Wang, Kai; Sun, Xiaowei

    2016-06-01

    Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption.Compared to organic/inorganic hybrid perovskites, full inorganic perovskite quantum dots (QDs) exhibit higher stability. In this study, full inorganic CsPbX3 (X = Br, I and mixed halide systems Br/I) perovskite QDs have been synthesized and interestingly, these QDs showed highly polarized photoluminescence which is systematically studied for the first time. Furthermore, the polarization of CsPbI3 was as high as 0.36 in hexane and 0.40 as a film. The CsPbX3 perovskite QDs with high polarization properties indicate that they possess great potential for application in new generation displays with wide colour gamut and low power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01915c

  2. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.

    PubMed

    Kotresh, M G; Adarsh, K S; Shivkumar, M A; Mulimani, B G; Savadatti, M I; Inamdar, S R

    2016-05-01

    Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Calculation of metamorphic two-dimensional quantum energy system: Application to wetting layer states in InAs/InGaAs metamorphic quantum dot nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Trevisi, G.; Frigeri, P.

    In this work, we calculate the two-dimensional quantum energy system of the In(Ga)As wetting layer that arises in InAs/InGaAs/GaAs metamorphic quantum dot structures. Model calculations were carried on the basis of realistic material parameters taking in consideration their dependence on the strain relaxation of the metamorphic buffer; results of the calculations were validated against available literature data. Model results confirmed previous hypothesis on the extrinsic nature of the disappearance of wetting layer emission in metamorphic structures with high In composition. We also show how, by adjusting InGaAs metamorphic buffer parameters, it could be possible: (i) to spatially separate carriers confinedmore » in quantum dots from wetting layer carriers, (ii) to create an hybrid 0D-2D system, by tuning quantum dot and wetting layer levels. These results are interesting not only for the engineering of quantum dot structures but also for other applications of metamorphic structures, as the two design parameters of the metamorphic InGaAs buffer (thickness and composition) provide additional degrees of freedom to control properties of interest.« less

  4. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  5. Synthesis of Cesium Lead Halide Perovskite Quantum Dots

    ERIC Educational Resources Information Center

    Shekhirev, Mikhail; Goza, John; Teeter, Jacob D.; Lipatov, Alexey; Sinitskii, Alexander

    2017-01-01

    Synthesis of quantum dots is a valuable experiment for demonstration and discussion of quantum phenomena in undergraduate chemistry curricula. Recently, a new class of all-inorganic perovskite quantum dots (QDs) with a formula of CsPbX[subscript 3] (X = Cl, Br, I) was presented and attracted tremendous attention. Here we adapt the synthesis of…

  6. Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires.

    PubMed

    Anufriev, Roman; Barakat, Jean-Baptiste; Patriarche, Gilles; Letartre, Xavier; Bru-Chevallier, Catherine; Harmand, Jean-Christophe; Gendry, Michel; Chauvin, Nicolas

    2015-10-02

    The emission polarization of single InAs/InP quantum dot (QD) and quantum rod (QR) nanowires is investigated at room temperature. Whereas the emission of the QRs is mainly polarized parallel to the nanowire axis, the opposite behavior is observed for the QDs. These optical properties can be explained by a combination of dielectric effects related to the nanowire geometry and to the configuration of the valence band in the nanostructure. A theoretical model and finite difference in time domain calculations are presented to describe the impact of the nanowire and the surroundings on the optical properties of the emitter. Using this model, the intrinsic degree of linear polarization of the two types of emitters is extracted. The strong polarization anisotropies indicate a valence band mixing in the QRs but not in the QDs.

  7. Polarization spectroscopy of positive and negative trions in an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Ware, Morgan E.; Bracker, Allan S.; Stinaff, Eric; Gammon, Daniel; Gershoni, David; Korenev, Vladimir L.

    2005-02-01

    Using polarization-sensitive photoluminescence and photoluminescence excitation spectroscopy, we study single InAs/GaAs self-assembled quantum dots. The dots were embedded in an n-type, Schottky diode structure allowing for control of the charge state. We present here the exciton, singly charged exciton (positive and negative trions), and the twice negatively charged exciton. For non-resonant excitation below the wetting layer, we observed a large degree of polarization memory from the radiative recombination of both the positive and negative trions. In excitation spectra, through the p-shell, we have found several sharp resonances in the emission from the s-shell recombination of the dot in all charged states. Some of these excitation resonances exhibit strong coulomb shifts upon addition of charges into the quantum dot. One particular resonance of the negatively charged trion was found to exhibit a fine structure doublet under circular polarization. This observation is explained in terms of resonant absorption into the triplet states of the negative trion.

  8. Design strategy for terahertz quantum dot cascade lasers.

    PubMed

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  9. Lighting up micromotors with quantum dots for smart chemical sensing.

    PubMed

    Jurado-Sánchez, B; Escarpa, A; Wang, J

    2015-09-25

    A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.

  10. Cavity-Mediated Coherent Coupling between Distant Quantum Dots

    NASA Astrophysics Data System (ADS)

    Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded

    2018-06-01

    Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.

  11. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    NASA Astrophysics Data System (ADS)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  12. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    PubMed

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  13. Growth patterns of self-assembled InAs quantum dots near the two-dimensional to three-dimensional transition

    NASA Astrophysics Data System (ADS)

    Colocci, M.; Bogani, F.; Carraresi, L.; Mattolini, R.; Bosacchi, A.; Franchi, S.; Frigeri, P.; Rosa-Clot, M.; Taddei, S.

    1997-06-01

    Self-assembled InAs quantum dots have been grown by molecular beam epitaxy in such a way as to obtain a continuous variation of InAs coverages across the wafer. Structured photoluminescence spectra are observed after excitation of a large number of dots; deconvolution into Gaussian components yields narrow emission bands (full width at half-maximum 20-30 meV) separated in energy by an average spacing of 30-40 meV. We ascribe the individual bands of the photoluminescence spectra after low excitation to families of dots with similar shapes and with heights differing by one monolayer, as strongly supported by numerical calculations of the fundamental electronic transitions in quantum dot structures.

  14. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots

    NASA Astrophysics Data System (ADS)

    Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando

    2015-12-01

    We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.

  15. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.

    PubMed

    Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi

    2017-09-05

    An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Isotopically enhanced triple-quantum-dot qubit

    PubMed Central

    Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.

    2015-01-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  17. Growing High-Quality InAs Quantum Dots for Infrared Lasers

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David

    2004-01-01

    An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.

  18. Different valence Sn doping - A simple way to detect oxygen concentration variation of ZnO quantum dots synthesized under ultrasonic irradiation.

    PubMed

    Yang, Weimin; Zhang, Bing; Zhang, Qitu; Wang, Lixi; Song, Bo; Wu, Fan; Wong, C P

    2017-09-01

    An ultrasonic method is employed to synthesize the Sn doped Zn 0.95 Sn 0.05 O quantum dots with green light emission. Sn 2+ and Sn 4+ ions are used to create different optical defects inside Zn 0.95 Sn 0.05 O quantum dots and the changing trend of oxygen concentration under different ultrasonic irradiation power are investigated. The photoluminescence spectra are employed to characterize the optical defects of Zn 0.95 Sn 0.05 O quantum dots. The UV-vis spectra are used to study the band gap of Zn 0.95 Sn 0.05 O quantum dots, which is influenced by their sizes. The results indicate that ultrasonic power would influence the size of Zn 0.95 Sn 0.05 O quantum dots as well as the type and quantity of defects in ZnO quantum dots. Changing trends in size of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are quite similar with each other, while the changing trends in optical defects types and concentration of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are different. The difference of the optical defects concentration changing between Sn 2+ doped Zn 0.95 Sn 0.05 O quantum dots (V O defects) and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots (O Zn and O i defects) shows that the formation process of ZnO under ultrasonic irradiation wiped oxygen out. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A triple quantum dot based nano-electromechanical memory device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozner, R.; Lifshitz, E.; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Consideringmore » realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.« less

  20. Vacuum-induced coherence in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  1. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    DTIC Science & Technology

    2015-12-15

    quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of

  2. Transport properties of a quantum dot and a quantum ring in series

    NASA Astrophysics Data System (ADS)

    Seo, Minky; Chung, Yunchul

    2018-01-01

    The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.

  3. Quantum dots in imaging, drug delivery and sensor applications

    PubMed Central

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian

    2017-01-01

    Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications. PMID:28814860

  4. Diffusion doping in quantum dots: bond strength and diffusivity.

    PubMed

    Saha, Avijit; Makkar, Mahima; Shetty, Amitha; Gahlot, Kushagra; A R, Pavan; Viswanatha, Ranjani

    2017-02-23

    Semiconducting materials uniformly doped with optical or magnetic impurities have been useful in a number of potential applications. However, clustering or phase separation during synthesis has made this job challenging. Recently the "inside out" diffusion doping was proposed to be successful in obtaining large sized quantum dots (QDs) uniformly doped with a dilute percentage of dopant atoms. Herein, we demonstrate the use of basic physical chemistry of diffusion to control the size and concentration of the dopants within the QDs for a given transition metal ion. We have studied three parameters; the bond strength of the core molecules and the diffusion coefficient of the diffusing metal ion are found to be important while the ease of cation exchange was not highly influential in the control of size and concentration of the single domain dilute magnetic semiconductor quantum dots (DMSQDs) with diverse dopant ions M 2+ (Fe 2+ , Ni 2+ , Co 2+ , Mn 2+ ). Steady state optical emission spectra reveal that the dopants are incorporated inside the semiconducting CdS and the emission can be tuned during shell growth. We have shown that this method enables control over doping percentage and the QDs show a superior ferromagnetic response at room temperature as compared to previously reported systems.

  5. Tunability and Stability of Lead Sulfide Quantum Dots in Ferritin

    NASA Astrophysics Data System (ADS)

    Peterson, J. Ryan; Hansen, Kameron

    Quantum dot solar cells have become one of the fastest growing solar cell technologies to date, and lead sulfide has proven to be an efficient absorber. However, one of the primary concerns in dye-sensitized quantum dot solar cell development is core degradation. We have synthesized lead sulfide quantum dots inside of the spherical protein ferritin in order to protect them from photocorrosion. We have studied the band gaps of these quantum dots and found them to be widely tunable inside ferritin just as they are outside the protein shell. In addition, we have examined their stability by measuring changes in photoluminescence as they are exposed to light over minutes and hours and found that the ferritin-enclosed PbS quantum dots have significantly better resistance to photocorrosion. Brigham Young University, National Science Foundation.

  6. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    PubMed

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  7. Optically programmable electron spin memory using semiconductor quantum dots.

    PubMed

    Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J

    2004-11-04

    The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

  8. On-chip electrically controlled routing of photons from a single quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentham, C.; Coles, R. J.; Royall, B.

    2015-06-01

    Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integratedmore » quantum photonic circuits.« less

  9. Preliminary Study of ZnS:Mn2+ Quantum Dots Response Under UV and X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    Saatsakis, G.; Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Koukou, V.; Martini, N.; Kalyvas, N.; Bakas, A.; Sianoudis, I.; Kandarakis, I.; Panayiotakis, G. S.

    2017-11-01

    Quantum Dots are semiconductor nanocrystals, with their optical properties controlled by their size, shape and material composition. The aim of the present study is to examine the scintillation properties of Manganese Doped Zinc Sulfide (ZnS:Mn 2+) Quantum Dot (QDs) nanocrystals under UV and X-ray irradiation. ZnS:Mn 2+ Quantum Dots, with typical diameter of ZnS dots of 13-20nm (also called scintillation QDs, stQDs), were developed and acquired by Mesolight Inc. The initial stQD sample was a solution of 75mg of ZnS:Mn 2+ dissolved in 100μL of Toluene, having a concentration of 75% w/v. Emission characteristics under UV and X-Ray excitation were examined. Two ultraviolet sources were incorporated (315 nm and 365 nm) as well as a medical X-ray tube with tube voltage from 50 to 130 kVp. Parameters such as Energy Quantum Efficiency under UV excitation and Luminescence Efficiency-LE (light energy flux over exposure rate) under X-ray excitation were examined. Luminescence Efficiency (LE) of ZnS:Mn 2+ was higher than that exhibited by previously examined QDs, (ZnCdSeS:ZnS and ZnCuInS:ZnS). The ability of ZnS:Mn 2+ to transform UV photons energy into optical photons energy, tends to increase while the incident UV wavelength decreases. Energy Quantum Efficiency of the sample exhibited a 6% increase when exposed to 315nm UV light compared to 365 nm. The emission spectrum of the stQDs, exhibited a narrow peak (~585nm) in the yellow range.

  10. Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.

    PubMed

    Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W

    2015-01-01

    Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. In vivo cation exchange in quantum dots for tumor-specific imaging.

    PubMed

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  12. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.

    PubMed

    Che, Dongchen; Zhu, Xiaoxu; Wang, Hongzhi; Duan, Yourong; Zhang, Qinghong; Li, Yaogang

    2016-02-01

    Efficient synthetic methods for near-infrared quantum dots with good biophysical properties as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared AgInSe2-ZnSe quantum dots (QDs) with tunable emissions in aqueous media is reported. This method avoids high temperature and pressure and organic solvents to directly generate water-dispersible AgInSe2-ZnSe QDs. The photoluminescence emission peak of the AgInSe2-ZnSe QDs ranged from 625 to 940nm, with quantum yields up to 31%. The AgInSe2-ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.

    PubMed

    Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard

    2017-10-11

    Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.

  14. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    PubMed

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.

  15. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    NASA Astrophysics Data System (ADS)

    Szuchmacher Blum, Amy; Soto, Carissa M.; Wilson, Charmaine D.; Whitley, Jessica L.; Moore, Martin H.; Sapsford, Kim E.; Lin, Tianwei; Chatterji, Anju; Johnson, John E.; Ratna, Banahalli R.

    2006-10-01

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot protein assemblies were studied in detail. The IgG QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV QD complexes have a local concentration of quantum dots greater than 3000 nmol ml-1, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  16. Selecting the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots for a hybrid remote phosphor white LED for general lighting applications.

    PubMed

    Ryckaert, Jana; Correia, António; Tessier, Mickael D; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-11-27

    Quantum dots can be used in white LEDs for lighting applications to fill the spectral gaps in the combined emission spectrum of the blue pumping LED and a broad band phosphor, in order to improve the source color rendering properties. Because quantum dots are low scattering materials, their use can also reduce the amount of backscattered light which can increase the overall efficiency of the white LED. The absorption spectrum and narrow emission spectrum of quantum dots can be easily tuned by altering their synthesis parameters. Due to the re-absorption events between the different luminescent materials and the light interaction with the LED package, determining the optimal quantum dot properties is a highly non-trivial task. In this paper we propose a methodology to select the optimal quantum dot to be combined with a broad band phosphor in order to realize a white LED with optimal luminous efficacy and CRI. The methodology is based on accurate and efficient simulations using the extended adding-doubling approach that take into account all the optical interactions. The method is elaborated for the specific case of a hybrid, remote phosphor white LED with YAG:Ce phosphor in combination with InP/CdxZn 1-x Se type quantum dots. The absorption and emission spectrum of the quantum dots are generated in function of three synthesis parameters (core size, shell size and cadmium fraction) by a semi-empirical 'quantum dot model' to include the continuous tunability of these spectra. The sufficiently fast simulations allow to scan the full parameter space consisting of these synthesis parameters and luminescent material concentrations in terms of CRI and efficacy. A conclusive visualization of the final performance allows to make a well-considered trade-off between these performance parameters. For the hybrid white remote phosphor LED with YAG:Ce and InP/CdxZn 1-x Se quantum dots a CRI Ra = 90 (with R9>50) and an overall efficacy of 110 lm/W is found.

  17. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    NASA Astrophysics Data System (ADS)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  18. Characterization of the Dynamics of Photoluminescence Degradation in Aqueous CdTe/CdS Core-Shell Quantum Dots.

    PubMed

    Pankiewicz, C G; de Assis, P-L; Filho, P E Cabral; Chaves, C R; de Araújo, E N D; Paniago, R; Guimarães, P S S

    2015-09-01

    We investigate the effects of the excitation power on the photoluminescence spectra of aqueous CdTe/CdS core-shell quantum dots. We have focused our efforts on nanoparticles that are drop-cast on a silicon nitride substrate and dried out. Under such conditions, the emission intensity of these nanocrystals decreases exponentially and the emission center wavelength shifts with the time under laser excitation, displaying a behavior that depends on the excitation power. In the low-power regime a blueshift occurs, which we attribute to photo-oxidation of the quantum dot core. The blueshift can be suppressed by performing the measurements in a nitrogen atmosphere. Under high-power excitation the nanoparticles thermally expand and aggregate, and a transition to a redshift regime is then observed in the photoluminescence spectra. No spectral changes are observed for nanocrystals dispersed in the solvent. Our results show a procedure that can be used to determine the optimal conditions for the use of a given set of colloidal quantum dots as light emitters for photonic crystal optical cavities.

  19. Bit-Serial Adder Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  20. Quantum dot bioconjugates for ultrasensitive nonisotopic detection.

    PubMed

    Chan, W C; Nie, S

    1998-09-25

    Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

  1. Two-electrons quantum dot in plasmas under the external fields

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-02-01

    In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.

  2. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belykh, V. V., E-mail: vasilii.belykh@tu-dortmund.de; P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991; Yakovlev, D. R.

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, frommore » 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.« less

  3. Lateral excitonic switching in vertically stacked quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Galbraith, Ian

    2016-06-14

    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are alsomore » discussed.« less

  4. D-Glucosamine Conjugation Accelerates the Labeling Efficiency of Quantum Dots in Osteoblastic Cells

    PubMed Central

    Xie, Ming-Fang

    2014-01-01

    Quantum dots (QDs) are useful imaging tools in the medical and biological fields due to their optical properties, such as a high fluorescence intensity, remarkable resistance to photobleaching, broad absorption spectra, and narrow emission spectra. This is the first study to investigate the uptake of carboxylated QDs conjugated with D-glucosamine (core size: approximately 3 nm, final modified size: 20–30 nm) into cultured osteoblastic cells. The QDs attached to the cell surface and were transported into the cytoplasm within approximately three hours of culture, whose process was clearly demonstrated using specific fluorescent staining of the cell membrane. Although the intranuclear distribution was not observed, a dramatic decrease in the transfer of quantum dots into the cytoplasm was recognized after approximately seven days of culture. Other interesting phenomena include the escape of the quantum dots from lysosomes in the cytoplasm, as confirmed by the merging of both QD fluorescence and specific fluorescent staining of lysosomes in the cytoplasm. These findings suggest that D-glucosamine conjugation enhances proton absorption in acid organelles and promotes the lysosomal escape of QDs. PMID:24818156

  5. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorptionmore » in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  6. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    PubMed

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  7. Autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Ptaszyński, Krzysztof

    2018-01-01

    I study an autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots attached to the spin-polarized leads. The principle of operation of the demon is based on the coherent oscillations between the spin states of the system which act as a quantum iSWAP gate. Due to the operation of the iSWAP gate, one of the dots acts as a feedback controller which blocks the transport with the bias in the other dot, thus inducing the electron pumping against the bias; this leads to the locally negative entropy production. Operation of the demon is associated with the information transfer between the dots, which is studied quantitatively by mapping the analyzed setup onto the thermodynamically equivalent auxiliary system. The calculated entropy production in a single subsystem and information flow between the subsystems are shown to obey a local form of the second law of thermodynamics, similar to the one previously derived for classical bipartite systems.

  8. Magnon cotunneling through a quantum dot

    NASA Astrophysics Data System (ADS)

    Karwacki, Łukasz

    2017-11-01

    I consider a single-level quantum dot coupled to two reservoirs of spin waves (magnons). Such systems have been studied recently from the point of view of possible coupling between electronic and magnonic spin currents. However, usually weakly coupled systems were investigated. When coupling between the dot and reservoirs is not weak, then higher order processes play a role and have to be included. Here I consider cotunneling of magnons through a spin-occupied quantum dot, which can be understood as a magnon (spin) leakage current in analogy to leakage currents in charge-based electronics. Particular emphasis has been put on investigating the effect of magnetic field and temperature difference between the magnonic reservoirs.

  9. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  10. Nanoheterostructures with CdTe/ZnMgSeTe Quantum Dots for Single-Photon Emitters Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sorokin, S. V.; Sedova, I. V.; Belyaev, K. G.; Rakhlin, M. V.; Yagovkina, M. A.; Toropov, A. A.; Ivanov, S. V.

    2018-03-01

    Data on the molecular beam epitaxy (MBE) technology, design, and luminescent properties of heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots on InAs(001) substrates are presented. X-ray diffraction has been used to study short-period ZnTe/MgTe/MgSe superlattices used as wide-bandgap barriers in structures with CdTe/ZnTe quantum dots for the effective confinement of holes. It is shown that the design of these superlattices must take into account the replacement of Te atoms by selenium on MgSe/ZnTe and MgTe/MgSe heterointerfaces. Heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots exhibit photoluminescence at temperatures up to 300 K. The spectra of microphotoluminescence at T = 10 K display a set of emission lines from separate CdTe/ZnTe quantum dots, the surface density of which is estimated at 1010 cm-2.

  11. Heparin conjugated quantum dots for in vitro imaging applications.

    PubMed

    Maguire, Ciaran Manus; Mahfoud, Omar Kazem; Rakovich, Tatsiana; Gerard, Valerie Anne; Prina-Mello, Adriele; Gun'ko, Yurii; Volkov, Yuri

    2014-11-01

    In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated quantum dots (QDgel) for utilisation in in vitro imaging experiments on live and fixed permeabilised THP-1, A549 and Caco-2 cell lines. Exposure of live THP-1 cells to QDgel/hep resulted in localisation of the QDs to the nucleus of the cells. QDgel/hep show affinity for the nuclear compartment of fixed permeabilised THP-1 and A549 cells but remain confined to cytoplasm of fixed permeabilised Caco-2 cells. It is postulated that heparin binding to the CD11b receptor facilitates the internalisation of the QDs into the nucleus of THP-1 cells. In addition, the heparin layer may reduce the unfavourable thrombogenic nature of quantum dots observed in vivo. In this study, heparin conjugated quantum dots were found to have superior imaging properties compared to its native counterparts. The authors postulate that heparin binding to the CD11b receptor facilitates QD internalization to the nucleus, and the heparin layer may reduce the in vivo thrombogenic properties of quantum dots. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  13. Controlling the Properties of Matter with Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, Victor

    2017-03-22

    Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes. Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of “solar fuels”). The appeal of quantum dots comes from the unmatchedmore » tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots. At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.« less

  14. Impact of the wetting layer thickness on the emission wavelength of direct band gap GeSn/Ge quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, Bouraoui; Al-Saigh, Reem; Salem, Bassem

    2017-07-01

    The effects of the wetting layer thickness (t WL) on the electronic properties of direct band gap type-I strained dome shaped Ge(1-x)Sn x quantum dot (QD) embedded in Ge matrix is numerically studied. The emission wavelength and the energy difference between S and P electron levels have been evaluated as a function of t WL for different QD size and composition with constant height to diameter ratio. The emission wavelength is found to be red shifted by increasing the wetting layer thickness, with smaller size QD being more sensitive to the variation of t WL. Furthermore, the minimum Sn composition required to fit the directness criteria is found to reduce by increasing the wetting layer thickness.

  15. Photoluminescent (PL) or electroluminescent (EL) quantum dots for display, lighting, and photomedicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Yajie

    2017-02-01

    Quantum dots (QDs) have gone through a long journey before finding their ways into the display field. This talk will briefly touch on the history before trying to answer several key questions related to QDs applications in display: What are QDs? How are they made? What properties do they have and Why? How can these properties be used to improve color and efficiency of display, in either photoluminescence (PL) or electroluminescence (EL) mode? And what are the remaining challenges for QDs wide adoption in display industry? Lastly, some most recent progresses in our UCF lab at both PL and EL fronts will be highlighted. For PL, a cadmium-free perovskite-polymer composite films with exceptionally narrow emission green peaks (FWHM 20 nm) and good water and thermal stability will be reported. Together with red quantum dots or PFS/KSF phosphors as down-converters for blue LEDs, a white-light source with 95% Rec. 2020 color gamut was demonstrated [1]. For EL, red quantum dot light emitting devices (QLEDs) with record luminance of 165,000 Cd/m2 has been obtained at a current density of 1000 mA/cm2 with a low driving voltage of 5.8 V and CIE coordinates of (0.69, 0.31). [2] The potential of using these QLEDs for light sources for integrated sensing platform [3] or high efficiency, high color quality hybrid white OLED [4] will be discussed. [1] Y. N. Wang, J. He, H. Chen, J. S. Chen, R. D. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, Y. J. Dong. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite - Polymer Composite Films, Advanced Materials, accepted, (2016). [2] Y. J. Dong, J.M. Caruge, Z. Q. Zhou, C. Hamilton, Z. Popovic, J. Ho, M. Stevenson, G. Liu, V. Bulovic, M. Bawendi, P. T. Kazlas, S. Coe-Sullivan, and J. Steckel Ultra-bright, Highly Efficient, Low Roll-off Inverted Quantum-Dot Light Emitting Devices (QLEDs). SID Symp. Dig. Tech. Pap. 46, 270-273 (2015). [3] J. He, H. Chen, S. T. Wu, and Y. J. Dong, Integrated Sensing Platform Based on Quantum

  16. Entanglement of Electron Spins in Two Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhen; Webb, Richard

    2004-03-01

    We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).

  17. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  18. Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking.

    PubMed

    Houel, Julien; Doan, Quang T; Cajgfinger, Thomas; Ledoux, Gilles; Amans, David; Aubret, Antoine; Dominjon, Agnès; Ferriol, Sylvain; Barbier, Rémi; Nasilowski, Michel; Lhuillier, Emmanuel; Dubertret, Benoît; Dujardin, Christophe; Kulzer, Florian

    2015-01-27

    We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nanoemitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the microsecond time scale.

  19. Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.

    PubMed

    Feng, Hui; Qian, Zhaosheng

    2018-05-01

    Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  1. A fabrication guide for planar silicon quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2018-04-01

    We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.

  2. Quantum Dots in the Therapy: Current Trends and Perspectives.

    PubMed

    Pohanka, Miroslav

    2017-01-01

    Quantum dots are an emerging nanomaterial with broad use in technical disciplines; however, their application in the field of biomedicine becomes also relevant and significant possibilities have appeared since the discovery in 1980s. The current review is focused on the therapeutic applications of quantum dots which become an emerging use of the particles. They are introduced as potent carriers of drugs and as a material well suited for the diagnosis of disparate pathologies like visualization of cancer cells or pathogenic microorganisms. Quantum dots toxicity and modifications for the toxicity reduction are discussed here as well. Survey of actual papers and patents in the field of quantum dots use in the biomedicine is provided. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Towards a feasible implementation of quantum neural networks using quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altaisky, Mikhail V., E-mail: altaisky@mx.iki.rssi.ru, E-mail: nzolnik@iki.rssi.ru; Zolnikova, Nadezhda N., E-mail: altaisky@mx.iki.rssi.ru, E-mail: nzolnik@iki.rssi.ru; Kaputkina, Natalia E., E-mail: nataly@misis.ru

    2016-03-07

    We propose an implementation of quantum neural networks using an array of quantum dots with dipole-dipole interactions. We demonstrate that this implementation is both feasible and versatile by studying it within the framework of GaAs based quantum dot qubits coupled to a reservoir of acoustic phonons. Using numerically exact Feynman integral calculations, we have found that the quantum coherence in our neural networks survive for over a hundred ps even at liquid nitrogen temperatures (77 K), which is three orders of magnitude higher than current implementations, which are based on SQUID-based systems operating at temperatures in the mK range.

  4. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOEpatents

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  5. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.

    PubMed

    Lim, Sungoh; Kim, Yohan; Lee, Jeongno; Han, Chul Jong; Kang, Jungwon; Kim, Jiwan

    2014-12-01

    Colloidal quantum dots (QD)-based solar cells with near infrared (NIR) emission have been investigated. Lead sulfide (PbS) QDs, which have narrow band-gap and maximize the absorption of NIR spectrum, were chosen as active materials for efficient solar cells. The inverted structure of indium tin oxide/titanium dioxide/PbS QDs/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/silver (ITO/TiO2/PbS QDs/ PSS/Ag) was applied for favorable electron and hole seperation from the PbS QD. Through the ligand exchange by 1,2-Ethanedithiol (EDT), the interparticle distance of the PbS QDs in thin film became closer and the performance of the PbS QD-based solar cells was improved. Our PbS QD-based inverted solar cells showed open circuit voltages (V(oc)) of 0.33 V, short circuit current density (J(sc)) of 10.89 mA/cm2, fill factor (FF) of 30%, and power conversion efficiency (PCE) of 1.11%. In our PbS QD-based multifunctional solar cell, the NIR light emission intensity was simply detected with photodiode system, which implies the potential of multi-functional diode device for various applications.

  6. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

    PubMed

    Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A

    2017-02-08

    Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σ hom 2 :σ inh 2 > 19:1, σ inh /k B T < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.

  7. Quantum confinement effect in 6H-SiC quantum dots observed via plasmon-exciton coupling-induced defect-luminescence quenching

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxiao; Zhang, Yumeng; Fan, Baolu; Fan, Jiyang

    2017-03-01

    The quantum confinement effect is one of the crucial physical effects that discriminate a quantum material from its bulk material. It remains a mystery why the 6H-SiC quantum dots (QDs) do not exhibit an obvious quantum confinement effect. We study the photoluminescence of the coupled colloidal system of SiC QDs and Ag nanoparticles. The experimental result in conjunction with the theoretical calculation reveals that there is strong coupling between the localized electron-hole pair in the SiC QD and the localized surface plasmon in the Ag nanoparticle. It results in resonance energy transfer between them and resultant quenching of the blue surface-defect luminescence of the SiC QDs, leading to uncovering of a hidden near-UV emission band. This study shows that this emission band originates from the interband transition of the 6H-SiC QDs and it exhibits a remarkable quantum confinement effect.

  8. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  9. Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.

    PubMed

    Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A

    2013-12-27

    The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.

  10. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.

    PubMed

    Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  11. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    NASA Astrophysics Data System (ADS)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  12. Periodic scarred States in open quantum dots as evidence of quantum Darwinism.

    PubMed

    Burke, A M; Akis, R; Day, T E; Speyer, Gil; Ferry, D K; Bennett, B R

    2010-04-30

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  13. Periodic Scarred States in Open Quantum Dots as Evidence of Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Burke, A. M.; Akis, R.; Day, T. E.; Speyer, Gil; Ferry, D. K.; Bennett, B. R.

    2010-04-01

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  14. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.

    PubMed

    Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

    2013-07-19

    Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Gate-controlled electromechanical backaction induced by a quantum dot

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  16. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  17. Electrostatically defined silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  18. Growth of room temperature ferromagnetic Ge1-xMnx quantum dots on hydrogen passivated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo

    2018-05-01

    A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.

  19. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    DTIC Science & Technology

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube

  20. A real-time spectrum acquisition system design based on quantum dots-quantum well detector

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Guo, F. M.

    2016-01-01

    In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.

  1. Lead selenide quantum dot polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

    2015-02-01

    Optical absorption and fluorescence properties of PbSe quantum dots (QDs) in an Angstrom Bond AB9093 epoxy polymer matrix to form a nanocomposite were investigated. To the authors’ knowledge, this is the first reported use of AB9093 as a QD matrix material and it was shown to out-perform the more common poly(methyl methacrylate) matrix in terms of preserving the optical properties of the QD, resulting in the first reported quantum yield (QY) for PbSe QDs in a polymer matrix, 26%. The 1-s first excitonic absorption peak of the QDs in a polymer matrix red shifted 65 nm in wavelength compared to QDs in a hexane solution, while the emission peak in the polymer matrix red shifted by 38 nm. The fluorescence QY dropped from 55% in hexane to 26% in the polymer matrix. A time resolved fluorescence study of the QDs showed single exponential lifetimes of 2.34 and 1.34 μs in toluene solution and the polymer matrix respectively.

  2. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    PubMed

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. © The Author(s) 2015.

  3. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2015-01-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  4. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Jie; Li, Hai-Ou, E-mail: haiouli@ustc.edu.cn, E-mail: gpguo@ustc.edu.cn; Wang, Ke

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal ofmore » the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.« less

  5. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit

    NASA Astrophysics Data System (ADS)

    Mendoza, Michel; Ujevic, Sebastian

    2012-06-01

    We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.

  6. Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.

    2015-03-01

    We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.

  7. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  8. The photosensitivity of carbon quantum dots/CuAlO2 films composites.

    PubMed

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-31

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  9. The photosensitivity of carbon quantum dots/CuAlO2 films composites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-01

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  10. RKKY interaction in a chirally coupled double quantum dot system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heine, A. W.; Tutuc, D.; Haug, R. J.

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less

  11. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  12. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  13. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  14. Magneto-exciton transitions in laterally coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  15. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Cota, Ernesto; Ramírez, Felipe; Ulloa, Sergio E.

    1997-08-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  16. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Ramirez, Felipe; Cota, Ernesto; Ulloa, Sergio E.

    1997-03-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  17. The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Hoffmann, Eric A.

    State of the art semiconductor materials engineering provides the possibility to fabricate devices on the lower end of the mesoscopic scale and confine only a handful of electrons to a region of space. When the thermal energy is reduced below the energetic quantum level spacing, the confined electrons assume energy levels akin to the core-shell structure of natural atoms. Such "artificial atoms", also known as quantum dots, can be loaded with electrons, one-by-one, and subsequently unloaded using source and drain electrical contacts. As such, quantum dots are uniquely tunable platforms for performing quantum transport and quantum control experiments. Voltage-biased electron transport through quantum dots has been studied extensively. Far less attention has been given to thermoelectric effects in quantum dots, that is, electron transport induced by a temperature gradient. This dissertation focuses on the efficiency of direct thermal-to-electric energy conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of thermoelectric heat engines is bounded by the same maximum efficiency as cyclic heat engines; namely, by Carnot efficiency. The efficiency of bulk thermoelectric materials suffers from their inability to transport charge carriers selectively based on energy. Owing to their three-dimensional momentum quantization, quantum dots operate as electron energy filters---a property which can be harnessed to minimize entropy production and therefore maximize efficiency. This research was motivated by the possibility to realize experimentally a thermodynamic heat engine operating with near-Carnot efficiency using the unique behavior of quantum dots. To this end, a microscopic heating scheme for the application of a temperature difference across a quantum dot was developed in conjunction with a novel quantum-dot thermometry technique used for quantifying the magnitude of the applied temperature difference. While pursuing high-efficiency thermoelectric

  18. Multi-bit dark state memory: Double quantum dot as an electronic quantum memory

    NASA Astrophysics Data System (ADS)

    Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2016-12-01

    Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.

  19. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    PubMed Central

    Birowosuto, Muhammad Danang; Sumikura, Hisashi; Matsuo, Shinji; Taniyama, Hideaki; van Veldhoven, Peter J.; Nötzel, Richard; Notomi, Masaya

    2012-01-01

    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres. PMID:22432053

  20. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling.

    PubMed

    Birowosuto, Muhammad Danang; Sumikura, Hisashi; Matsuo, Shinji; Taniyama, Hideaki; van Veldhoven, Peter J; Nötzel, Richard; Notomi, Masaya

    2012-01-01

    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.

  1. Cesium lead halide perovskite quantum dot-based warm white light-emitting diodes with high color rendering index

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Wang, Dan; Wang, Peng; Duan, Bin; Zhang, Tieqiang; Wang, Yinghui; Zhang, Hanzhuang; Zhang, Yu

    2017-05-01

    White light-emitting diodes (WLEDs) were fabricated by employing a combination of a commercial yellow emission Ce3+-doped Y3Al5O12 (YAG:Ce)-based phosphor and all-inorganic perovskite quantum dots pumped with blue LED chip. Perovskite quantum dot solution was used as the color conversion layer with liquid-type structure. Red-emitting materials based on cesium lead halide (CsPb(X)3) perovskite quantum dots were introduced to generate WLEDs with high efficacy and high color rendering index through compensating the red emission of the YAG:Ce phosphor-based commercialized WLEDs. The experimental results suggested that the luminous efficiency and color rendering index of the as-prepared WLED device could reach up to 84.7 lm/W and 89, respectively. The characteristics of those devices including correlated color temperature (CCT), color rendering index (CRI), and color coordinates were observed under different forward currents. The as-fabricated warm WLEDs showed excellent color stability against the increasing current, while the color coordinates shifted slightly from (0.3837, 0.3635) at 20 mA to (0.3772, 0.3592) at 120 mA and color temperature tuned from 3803 to 3953 K.

  2. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.

    PubMed

    Park, Suk In; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-18

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  3. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications

    NASA Astrophysics Data System (ADS)

    In Park, Suk; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-01

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  4. Electrostatically defined silicon quantum dots with counted antimony donor implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  5. Improvement in luminance of light-emitting diode using InP/ZnS quantum dot with 1-dodecanethiol ligand

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi; Sasaki, Hironao

    2018-03-01

    We present the synthesis protocol of a red emissive InP/ZnS quantum dot with a 1-dodecanthiol ligand and its application to a quantum dot light-emitting diode. The ligand change from oleylamine to 1-dodecanthiol, which were connected around the InP/ZnS quantum dot, was confirmed by Fourier-transform infrared spectroscopy and thermal analysis. The absorption peak was blue-shifted by changing 1-dodecanthiol ligands from oleylamine ligands to prevent the unexpected nucleation of the InP core. In addition, the luminance of the light-emitting device was improved by using the InP/ZnS quantum dot with 1-dodecanthiol ligands, and the maximum current efficiency of 7.2 × 10-3 cd/A was achieved. The 1-dodecanthiol ligand is often used for capping to reduce the number of surface defects and/or prevent unexpected core growth, resulting in reduced Auger recombination. This result indicates that 1-dodecanthiol ligands prevent the deactivation of excitons while injecting carriers by applying a voltage, resulting in a high luminance efficiency.

  6. Coal as an abundant source of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P.; Samuel, Errol L. G.; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O.; Martí, Angel A.; Tour, James M.

    2013-12-01

    Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites.

  7. Coal as an abundant source of graphene quantum dots.

    PubMed

    Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P; Samuel, Errol L G; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O; Martí, Angel A; Tour, James M

    2013-01-01

    Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites.

  8. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    PubMed

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  9. Study of CdTe quantum dots grown using a two-step annealing method

    NASA Astrophysics Data System (ADS)

    Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2006-02-01

    High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.

  10. Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel Martin

    The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of attention with regards to finding appropriate applications for these materials. This dissertation is divided into multiple sections grouped by the type of application explored. The first sectoin investigates the energetic interactions of physically-coupled quantum dots and DNA, with the goal of gaining insight into how self-assembled molecular wires can bridge the energetic states of physically separated nanocrystals. Chapter 1 begins with an introduction to the properties of quantum dots, the conductive properties of DNA, and the common characterization methods used to characterize materials on the nanoscale. In Chapter 2 scanning tunneling measurements of QD-DNA constructs on the single particle level are presented which show the tunable coupling between the two materials and their resulting hybrid electronic structure. This is expanded upon in Chapter 3 where the conduction of photogenerated charges in QD-DNA hybrid thin films are characterized, which exhibit different charge transfer pathways through the constituent nucleobases depending on the energy of the incident light and resulting electrons. Complementary investigations of energy transfer mediated through DNA are presented in Chapter 4, with confirmation of Dexter-like transfer being facilitated through the oligonucleotides. The second section quantifies the

  11. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, S. V.; Tikhodeev, S. G.; Gippius, N. A.; Maksimov, A. A.; Filatov, E. V.; Tartakovskii, I. I.; Kulakovskii, V. D.; Weiss, T.; Schneider, C.; Geßler, J.; Kamp, M.; Höfling, S.

    2015-11-01

    We study the polarization properties of light emitted by quantum dots that are embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the waveguide layer has been shown to result in a high circular polarization degree ρc of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of | ρc| is predicted to exceed 98%. The experimentally achieved value of | ρc|=81 % is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretical prediction.

  12. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  13. 1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Y.; Oehler, A. E. H.; Resan, B.; Kurmulis, S.; Zhou, K. J.; Wang, Q.; Mangold, M.; Süedmeyer, T.; Keller, U.; Weingarten, K. J.; Hogg, R. A.

    2012-06-01

    High pulse repetition rate (>=10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ~2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices.

  14. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.

    PubMed

    Yu, William W

    2008-10-01

    Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.

  15. Green, Rapid, and Universal Preparation Approach of Graphene Quantum Dots under Ultraviolet Irradiation.

    PubMed

    Zhu, Jinli; Tang, Yanfeng; Wang, Gang; Mao, Jiarong; Liu, Zhiduo; Sun, Tongming; Wang, Miao; Chen, Da; Yang, Yucheng; Li, Jipeng; Deng, Yuan; Yang, Siwei

    2017-04-26

    It is of great significance and importance to explore a mild, clean, and highly efficient universal approach for the synthesis of graphene quantum dots. Herein, we introduced a new green, rapid, and universal preparation approach for graphene quantum dots via the free-radical polymerization of oxygen-containing aromatic compounds under ultraviolet irradiation. This approach had a high yield (86%), and the byproducts are only H 2 O and CO 2 . The obtained graphene quantum dots were well-crystallized and showed remarkable optical and biological properties. The colorful, different-sized graphene quantum dots can be used in fluorescent bioimaging in vitro and in vivo. This approach is suitable not only for the preparation of graphene quantum dots but also for heteroatom-doped graphene quantum dots.

  16. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  17. Nuclear spin nanomagnet in an optically excited quantum dot.

    PubMed

    Korenev, V L

    2007-12-21

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.

  18. Effects of Shape and Strain Distribution of Quantum Dots on Optical Transition in the Quantum Dot Infrared Photodetectors

    PubMed Central

    2008-01-01

    We present a systemic theoretical study of the electronic properties of the quantum dots inserted in quantum dot infrared photodetectors (QDIPs). The strain distribution of three different shaped quantum dots (QDs) with a same ratio of the base to the vertical aspect is calculated by using the short-range valence-force-field (VFF) approach. The calculated results show that the hydrostatic strain ɛHvaries little with change of the shape, while the biaxial strain ɛBchanges a lot for different shapes of QDs. The recursion method is used to calculate the energy levels of the bound states in QDs. Compared with the strain, the shape plays a key role in the difference of electronic bound energy levels. The numerical results show that the deference of bound energy levels of lenslike InAs QD matches well with the experimental results. Moreover, the pyramid-shaped QD has the greatest difference from the measured experimental data. PMID:20596318

  19. Chemiluminescence of nitrogen-rich quantum dots in diperiodatoargentate(III) solution and its application in ferulic acid analysis.

    PubMed

    Fu, Zhaofu; Li, Gongke; Hu, Yufei

    2016-12-01

    A novel chemiluminescence (CL) system based on the reaction of fluorescent water-soluble nitrogen-rich quantum dots (N-dots) and diperiodatoargentate(III) (DPA) was developed. The prepared N-dots have a small size (≤10 nm) and high percentage of nitrogen (39.9 %), which exceeds the content of carbon in the same N-dots. The N-dots exhibit characteristic blue fluorescence under UV light and up-conversion luminescence. The relatively intense CL emission is based on the direct oxidation of N-dots by DPA. The CL emission may be attributed to the high nitrogen content and the special structure of the N-dots. The CL mechanism of N-dots and DPA was investigated by using CL, UV-Vis absorption, IR, fluorescence, and radical scavenging experiments. This investigation provides a way to study the optical properties of N-dots. The analytical applicability of the N-dots and DPA CL system in the determination of ferulic acid (FA) was explored. The CL intensity was linearly proportional to the concentration of ferulic acid from 3.0 × 10 -7 to 1.0 × 10 -5 g mL -1 with a detection limit of 8.0 × 10 -8 g mL -1 (3σ); the relative standard deviation was 2.4 % for 4.0 × 10 -7 g mL -1 FA (n = 9). The proposed method was successfully applied to the determination of ferulic acid in Angelica sinensis. The study provides valuable insight into the role of nitrogen-rich quantum dots in CL.

  20. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

    PubMed Central

    2015-01-01

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847

  1. Cadmium-containing quantum dots: properties, applications, and toxicity.

    PubMed

    Mo, Dan; Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Yu, Zhigang; Huang, Zhenzhen; He, Kai; Zhang, Chen; Cheng, Min

    2017-04-01

    The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.

  2. Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.

    PubMed

    Dai, Shu-Wen; Hsu, Bo-Wei; Chen, Chien-Yu; Lee, Chia-An; Liu, Hsiao-Yun; Wang, Hsiao-Fang; Huang, Yu-Ching; Wu, Tien-Lin; Manikandan, Arumugam; Ho, Rong-Ming; Tsao, Cheng-Si; Cheng, Chien-Hong; Chueh, Yu-Lun; Lin, Hao-Wu

    2018-02-01

    In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W -1 , and extraordinary forward-direction luminescence of 8 500 000 cd m -2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.

    PubMed

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-07-26

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices.

  4. Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.

    PubMed

    Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín

    2016-04-05

    In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection.

  5. Helical quantum states in HgTe quantum dots with inverted band structures.

    PubMed

    Chang, Kai; Lou, Wen-Kai

    2011-05-20

    We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.

  6. Toward the in vivo study of captopril-conjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji

    2005-04-01

    Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.

  7. Quantum Dots: Proteomics characterization of the impact on biological systems

    NASA Astrophysics Data System (ADS)

    Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.

    2009-05-01

    Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a

  8. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  9. Current Application of Quantum Dots (QD) in Cancer Therapy: A Review.

    PubMed

    Babu, Lavanya Thilak; Paira, Priyankar

    2017-01-01

    Semiconductor quantum dots proved themselves as efficient fluorescent probes in cancer detection and treatment. Their size, high stability, non-photobleaching and water solubility made them a unique fluorophore in place of conventional organic dyes. Newly emerged theranostic drug delivery system using quantum dots helped us in better understanding of the drug delivery mechanism inside the cells. Surface modified Quantum dots and their applications became wide in bioimaging, immunohistochemistry, tracking intracellular drug and intracellular molecules target. We have highlighted various applications of quantum dots in cancer treatment, drug delivery, flow cytometry, and theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.

    PubMed

    Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke

    2016-12-01

    It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.

  11. Slow Auger Relaxation in HgTe Colloidal Quantum Dots.

    PubMed

    Melnychuk, Christopher; Guyot-Sionnest, Philippe

    2018-05-03

    The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.

  12. Evaporation-Induced Assembly of Quantum Dots into Nanorings

    PubMed Central

    Chen, Jixin; Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Wark, Stacey E.; Son, Dong Hee; Batteas, James D.; Cremer, Paul S.

    2011-01-01

    Herein, we demonstrate the controlled formation of two-dimensional periodic arrays of ring-shaped nanostructures assembled from CdSe semiconductor quantum dots (QDs). The patterns were fabricated by using an evaporative templating method. This involves the introduction of an aqueous solution containing both quantum dots and polystyrene microspheres onto the surface of a planar hydrophilic glass substrate. The quantum dots became confined to the meniscus of the microspheres during evaporation, which drove ring assembly via capillary forces at the polystyrene sphere/glass substrate interface. The geometric parameters for nanoring formation could be controlled by tuning the size of the microspheres and the concentration of the QDs employed. This allowed hexagonal arrays of nanorings to be formed with thicknesses ranging from single dot necklaces to thick multilayer structures over surface areas of many square millimeters. Moreover, the diameter of the ring structures could be simultaneously controlled. A simple model was employed to explain the forces involved in the formation of nanoparticle nanorings. PMID:19206264

  13. Self-assembled indium arsenide quantum dots: Structure, formation dynamics, optical properties

    NASA Astrophysics Data System (ADS)

    Lee, Hao

    1998-12-01

    In this dissertation, we investigate the properties of InAs/GaAs quantum dots grown by molecular beam epitaxy. The structure and formation dynamics of InAs quantum dots are studied by a variety of structural characterization techniques. Correlations among the growth conditions, the structural characteristics, and the observed optical properties are explored. The most fundamental structural characteristic of the InAs quantum dots is their shape. Through detailed study of the reflection high energy electron diffraction patterns, we determined that self-assembled InAs islands possess a pyramidal shape with 136 bounding facets. Cross-sectional transmission electron microscopy images and atomic force microscopy images strongly support this model. The 136 model we proposed is the first model that is consistent with all reported shape features determined using different methods. The dynamics of coherent island formation is also studied with the goal of establishing the factors most important in determining the size, density, and the shape of self- organized InAs quantum dots. Our studies clearly demonstrate the roles that indium diffusion and desorption play in InAs island formation. An unexpected finding (from atomic force microscopy images) was that the island size distribution bifurcated during post- growth annealing. Photoluminescence spectra of the samples subjected to in-situ annealing prior to the growth of a capping layer show a distinctive double-peak feature. The power-dependence and temperature-dependence of the photoluminescence spectra reveals that the double- peak emission is associated with the ground-state transition of islands in two different size branches. These results confirm the island size bifurcation observed from atomic force microscopy images. The island size bifurcation provides a new approach to the control and manipulation of the island size distribution. Unexpected dependence of the photoluminescence line-shape on sample temperature and pump

  14. Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots

    PubMed Central

    Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel

    2013-01-01

    A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe. PMID:24300661

  15. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  16. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions.

    PubMed

    Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr

    2017-10-01

    The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. White light emitting diode based on InGaN chip with core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Hong, Yan; Ma, Jiandong; Ming, Jiangzhou

    2009-08-01

    Quantum dots have many applications in optoelectronic device such as LEDs for its many superior properties resulting from the three-dimensional confinement effect of its carrier. In this paper, single chip white light-emitting diodes (WLEDs) were fabricated by combining blue InGaN chip with luminescent colloidal quantum dots (QDs). Two kinds of QDs of core/shell CdSe /ZnS and core/shell/shell CdSe /ZnS /CdS nanocrystals were synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. This two kinds of QDs exhibited high photoluminescence efficiency with a quantum yield more than 41%, and size-tunable emission wavelengths from 500 to 620 nm. The QDs LED mainly consists of flip luminescent InGaN chip, glass ceramic protective coating, glisten cup, QDs using as the photoluminescence material, pyroceram, gold line, electric layer, dielectric layer, silicon gel and bottom layer for welding. The WLEDs had the CIE coordinates of (0.319, 0.32). The InGaN chip white-light-emitting diodes with quantum dots as the emitting layer are potentially useful in illumination and display applications.

  18. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.

    PubMed

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2012-09-07

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum.

  19. PREFACE: Quantum dots as probes in biology

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2013-05-01

    The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated

  20. Searching for the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots when combined with a broad band phosphor to optimize color rendering and efficacy of a hybrid remote phosphor white LED

    NASA Astrophysics Data System (ADS)

    Ryckaert, Jana; Correia, António; Smet, Kevin; Tessier, Mickael D.; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-09-01

    Combining traditional phosphors with a broad emission spectrum and non-scattering quantum dots with a narrow emission spectrum can have multiple advantages for white LEDs. It allows to reduce the amount of scattering in the wavelength conversion element, increasing the efficiency of the complete system. Furthermore, the unique possibility to tune the emission spectrum of quantum dots allows to optimize the resulting LED spectrum in order to achieve optimal color rendering properties for the light source. However, finding the optimal quantum dot properties to achieve optimal efficacy and color rendering is a non-trivial task. Instead of simply summing up the emission spectra of the blue LED, phosphor and quantum dots, we propose a complete simulation tool that allows an accurate analysis of the final performance for a range of different quantum dot synthesis parameters. The recycling of the reflected light from the wavelength conversion element by the LED package is taken into account, as well as the re-absorption and the associated red-shift. This simulation tool is used to vary two synthesis parameters (core size and cadmium fraction) of InP/CdxZn1-xSe quantum dots. We find general trends for the ideal quantum dot that should be combined with a specific YAG:Ce broad band phosphor to obtain optimal efficiency and color rendering for a white LED with a specific pumping LED and recycling cavity, with a desired CCT of 3500K.

  1. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  2. Modeling and studying of white light emitting diodes based on CdS/ZnS spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Hasanirokh, K.; Asgari, A.

    2018-07-01

    In this paper, we propose a quantum dot (QD) based white light emitting diode (WLED) structure to study theoretically the material gain and quantum efficiency of the system. We consider the spherical QDs with a II-VI semiconductor core (CdS) that covered with a wider band gap semiconductor acting as a shell (ZnS). In order to generate white light spectrum, we use layers with different dot size that can emit blue, green and red colors. The blue emission originating from CdS core combines to green/orange components originating from ZnS shell and creates an efficiency white light emission. To model this device, at first, we solve Schrödinger and Poisson equations self consistently and obtain eigen energies and wave functions. Then, we calculate the optical gain and internal quantum efficiency (IQE) of a CdS/ZnS LED sample. We investigate the structural parameter effects on the optical properties of the WLED. The numerical results show that the gain profile and IQE curves depend strongly on the structural parameters such as dot size, carrier density and volume scaling parameter. The gain profile becomes higher and wider with increasing the core radius while it becomes less and narrower with increasing the shell thickness. Furthermore, it is found that the volume scaling parameter can manage the system quantum efficiency.

  3. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quantum-dot cellular automata: Review and recent experiments (invited)

    NASA Astrophysics Data System (ADS)

    Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.

    1999-04-01

    An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.

  5. Single-Photon Emission from InAs/AlGaAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Rakhlin, M. V.; Belyaev, K. G.; Klimko, G. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.

    2018-04-01

    The results of investigation of the radiative characteristics of heterostructures with InAs/AlGaAs quantum dots (QDs) grown by molecular beam epitaxy have been presented. The properties of single QDs were determined by spectroscopy of micro-photoluminescence in cylindrical mesa-structures with a diameter of 200-1000 nm or columnar microresonators with distributed Bragg mirrors. The single-photon nature of the radiation is confirmed by measurements and analysis of the second-order correlation function g 2(τ) in a wide spectral range from 630 to 730 nm.

  6. Transcending binary logic by gating three coupled quantum dots.

    PubMed

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  7. Designing artificial 2D crystals with site and size controlled quantum dots.

    PubMed

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  8. Three-Dimensional Control of Self-Assembled Quantum Dot Configurations

    DTIC Science & Technology

    2010-06-17

    Lateral Quantum Dot Molecules Around Self-Assembled Nanoholes . Appl. Phys. Lett. 2003, 82, 2892–2894. 7. Alonso-Gonzalez, P.; Martin-Sanchez, J.; Gonzalez...Y.; Alen, B.; Fuster, D.; Gonzalez, L. Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes . Cryst. Growth Des. 2009, 9

  9. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  10. Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2018-06-19

    We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.

  11. Quantum Phase Transitions in Cavity Coupled Dot systems

    NASA Astrophysics Data System (ADS)

    Kasisomayajula, Vijay; Russo, Onofrio

    2011-03-01

    We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)

  12. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  13. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    PubMed

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  14. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.

    PubMed

    Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S

    2007-06-01

    We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.

  15. 6.5% efficient perovskite quantum-dot-sensitized solar cell.

    PubMed

    Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu

    2011-10-05

    Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH(3)NH(3))PbI(3) nanocrystal. Spin-coating of the equimolar mixture of CH(3)NH(3)I and PbI(2) in γ-butyrolactone solution (perovskite precursor solution) leads to (CH(3)NH(3))PbI(3) quantum dots (QDs) on nanocrystalline TiO(2) surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.

  16. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.

    2017-12-01

    A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.

  17. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  18. One-Pot Large-Scale Synthesis of Carbon Quantum Dots: Efficient Cathode Interlayers for Polymer Solar Cells.

    PubMed

    Yang, Yuzhao; Lin, Xiaofeng; Li, Wenlang; Ou, Jiemei; Yuan, Zhongke; Xie, Fangyan; Hong, Wei; Yu, Dingshan; Ma, Yuguang; Chi, Zhenguo; Chen, Xudong

    2017-05-03

    Cathode interlayers (CILs) with low-cost, low-toxicity, and excellent cathode modification ability are necessary for the large-scale industrialization of polymer solar cells (PSCs). In this contribution, we demonstrated one-pot synthesized carbon quantum dots (C-dots) with high production to serve as efficient CIL for inverted PSCs. The C-dots were synthesized by a facile, economical microwave pyrolysis in a household microwave oven within 7 min. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the C-dots possessed the ability to form a dipole at the interface, resulting in the decrease of the work function (WF) of cathode. External quantum efficiency (EQE) measurements and 2D excitation-emission topographical maps revealed that the C-dots down-shifted the high energy near-ultraviolet light to low energy visible light to generate more photocurrent. Remarkably improvement of power conversion efficiency (PCE) was attained by incorporation of C-dots as CIL. The PCE was boosted up from 4.14% to 8.13% with C-dots as CIL, which is one of the best efficiency for i-PSCs used carbon based materials as interlayers. These results demonstrated that C-dots can be a potential candidate for future low cost and large area PSCs producing.

  19. Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rzigalinski, Beverly A.; Strobl, Jeannine S.

    2009-08-01

    The field of nanotechnology is rapidly expanding with the development of novel nanopharmaceuticals that have potential for revolutionizing medical treatment. The rapid pace of expansion in this field has exceeded the pace of pharmacological and toxicological research on the effects of nanoparticles in the biological environment. The development of cadmium-containing nanoparticles, known as quantum dots, show great promise for treatment and diagnosis of cancer and targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. However, information on pharmacology and toxicology of quantum dots needs much further development, making it difficult to assess the risksmore » associated with this new nanotechnology. Further, nanotechnology poses yet another risk for toxic cadmium, which will now enter the biological realm in nano-form. In this review, we discuss cadmium-containing quantum dots and their physicochemical properties at the nano-scale. We summarize the existing work on pharmacology and toxicology of cadmium-containing quantum dots and discuss perspectives in their utility in disease treatment. Finally, we identify critical gaps in our knowledge of cadmium quantum dot toxicity, and how these gaps need to be assessed to enable quantum dot nanotechnology to transit safely from bench to bedside.« less

  20. Measurements of undoped accumulation-mode SiGe quantum dot devices

    NASA Astrophysics Data System (ADS)

    Eng, Kevin; Borselli, Mathew; Holabird, Kevin; Milosavljevic, Ivan; Schmitz, Adele; Deelman, Peter; Huang, Biqin; Sokolich, Marko; Warren, Leslie; Hazard, Thomas; Kiselev, Andrey; Ross, Richard; Gyure, Mark; Hunter, Andrew

    2012-02-01

    We report transport measurements of undoped single-well accumulation-mode SiGe quantum dot devices with an integrated dot charge sensor. The device is designed so that individual forward-biased circular gates have dominant control of dot charge occupancy, and separate intervening gates have dominant control of tunnel rates and exchange coupling. We have demonstrated controlled loading of the first electron in single and double quantum dots. We used magneto-spectroscopy to measure singlet-triplet splittings in our quantum dots: values are typically ˜0.1 meV. Tunnel rates of single electrons to the baths can be controlled from less than 1 Hz to greater than 10 MHz. We are able to control the (0,2) to (1,1) coupling in a double quantum dot from under-coupled (tc < kT˜ 5μeV) to over-coupled (tc ˜ 0.1 meV) with a bias control of one exchange gate. Sponsored by the United States Department of Defense. Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.