Sample records for quantum double models

  1. Deformed quantum double realization of the toric code and beyond

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  2. Quantum ratchet effect in a time non-uniform double-kicked model

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  3. Haag duality for Kitaev’s quantum double model for abelian groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter

    2015-11-01

    We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.

  4. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  5. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr

    2014-11-07

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less

  6. Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.

    PubMed

    Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor

    2017-12-01

    In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.

  7. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  8. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    PubMed

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  9. Quantum Transport

    DTIC Science & Technology

    1993-05-14

    Lent 6 I We have studied transmission in quantum waveguides in the presence of resonant cavities. This work was inspired by our previous modeling of the...conductance of resonantly- coupled quantum wire systems. We expected to find qualitatively the same phenomena as in the much studied case of double...transmission peaks does not give the location of the quasi-bound3 states, like for double-barrier resonant tunneling. In current work, we study

  10. Measurement-induced decoherence and information in double-slit interference.

    PubMed

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-07-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which "path" the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels.

  11. Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp

    2015-10-07

    We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less

  12. Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.

    PubMed

    Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond

    2017-02-24

    Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.

  13. Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dancer, K. A.; Isac, P. S.; Links, J.

    2006-10-15

    Quantum doubles of finite group algebras form a class of quasitriangular Hopf algebras that algebraically solve the Yang-Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang-Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups D{sub n}. These results may be used to determine constant solutions of the Yang-Baxtermore » equation. We then discuss Baxterization ansaetze to obtain solutions of the Yang-Baxter equation with a spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group A{sub 4} and the symmetric group S{sub 4}.« less

  14. Simple way to calculate a UV-finite one-loop quantum energy in the Randall-Sundrum model

    NASA Astrophysics Data System (ADS)

    Altshuler, Boris L.

    2017-04-01

    The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calculation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of "regular" and "irregular" one-loop energies in the one-brane Randall-Sundrum model. The approach developed in the paper also allows us to get "in one line" the one-loop quantum energies in the two-brane Randall-Sundrum model. The relationship between "one-loop" expressions corresponding to the mixed Robin and to double-trace asymptotic boundary conditions is traced.

  15. Measurement-induced decoherence and information in double-slit interference

    PubMed Central

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-01-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which “path” the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels. PMID:27807373

  16. Charge carrier dynamics of GaAs/AlGaAs asymmetric double quantum wells at room temperature studied by optical pump terahertz probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke

    2017-11-01

    Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.

  17. Hydrogenic molecular transitions in double concentric quantum donuts by changing geometrical parameters

    NASA Astrophysics Data System (ADS)

    Ospina-Londoño, D. A.; Fulla, M. R.; Marín, J. H.

    2013-03-01

    In this work it is considered a versatile model to study two different ionization processes starting from a D20 homonuclear hydrogenic molecule confined in double concentric quantum donuts. Very narrow quantum donut circular cross sections are considered to separate the radial and angular variables in the D20 Hamiltonian by using the well-known adiabatic approximation D20 total energy as a function of the inter donor spacing and the outer donut center line radius is calculated. The salient features of an artificial D20 hydrogenic molecule such as the dissociation energy and the equilibrium length are strongly dependent on the quantum donut geometrical parameters. By increasing systematically the quantum donut outer center line radius, it is possible to understand a first ionization process: D20→D2++e-. A second ionization process D20→D-+D+ can be carried out by fixing the first donor position and gradually moving away the second one. The results obtained in this study are in good agreement with those previously obtained in the limiting cases of very large inter donor separation. The model proposed here is computationally economical and provides a realistic description of both ionization processes and the few-particle system confined in double concentric quantum donuts.

  18. Two-time quantum transport and quantum diffusion.

    PubMed

    Kleinert, P

    2009-05-01

    Based on the nonequilibrium Green's function technique, a unified theory is developed that covers quantum transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is applicable to transport via extended and localized states, extends previous semiphenomenological studies and puts them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the existence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.

  19. Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Yamaji, Youhei

    2018-05-01

    Temperature (T) dependence of heat capacity C (T) in the S = 1 / 2 Kitaev honeycomb model shows a double-peak structure resulting from fractionalization of spins into two kinds of Majorana fermions. Recently it has been discussed that the double-peak structure in C (T) is also observed in magnetic ordered phases of the S = 1 / 2 Kitaev-Heisenberg (KH) model on a honeycomb lattice when the system is located in the vicinity of the Kitaev's spin liquid phase. In addition to the S = 1 / 2 spin case, similar double-peak structure has been confirmed in the KH honeycomb model for classical Heisenberg spins, where spin S is regarded as S → ∞ . We investigate spin-S dependence of C (T) for the KH honeycomb models by using thermal pure quantum state. We also perform classical Monte Carlo calculations to obtain C (T) for the classical KH model. From obtained results, we find that the origin of the high-temperature peak is different between the quantum spin case with small Ss and the classical Heisenberg spin case. Furthermore, the high-temperature peak in the quantum spin case, which is one of the clues for fractionalization of spins, disappears for S > 1 .

  20. Resonant pair tunneling in double quantum dots.

    PubMed

    Sela, Eran; Affleck, Ian

    2009-08-21

    We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity Kondo model under current experimental study.

  1. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  2. Time-resolved double-slit interference pattern measurement with entangled photons

    PubMed Central

    Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas

    2014-01-01

    The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360

  3. Giant gain from spontaneously generated coherence in Y-type double quantum dot structure

    NASA Astrophysics Data System (ADS)

    Al-Nashy, B.; Razzaghi, Sonia; Al-Musawi, Muwaffaq Abdullah; Rasooli Saghai, H.; Al-Khursan, Amin H.

    A theoretical model was presented for linear susceptibility using density matrix theory for Y-configuration of double quantum dots (QDs) system including spontaneously generated coherence (SGC). Two SGC components are included for this system: V, and Λ subsystems. It is shown that at high V-component, the system have a giga gain. At low Λ-system component; it is possible to controls the light speed between superluminal and subluminal using one parameter by increasing SGC component of the V-system. This have applications in quantum information storage and spatially-varying temporal clock.

  4. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Song, Kai; Shi, Qiang

    2018-03-01

    The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.

  5. Abstract probabilistic CNOT gate model based on double encoding: study of the errors and physical realizability

    NASA Astrophysics Data System (ADS)

    Gueddana, Amor; Attia, Moez; Chatta, Rihab

    2015-03-01

    In this work, we study the error sources standing behind the non-perfect linear optical quantum components composing a non-deterministic quantum CNOT gate model, which performs the CNOT function with a success probability of 4/27 and uses a double encoding technique to represent photonic qubits at the control and the target. We generalize this model to an abstract probabilistic CNOT version and determine the realizability limits depending on a realistic range of the errors. Finally, we discuss physical constraints allowing the implementation of the Asymmetric Partially Polarizing Beam Splitter (APPBS), which is at the heart of correctly realizing the CNOT function.

  6. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com; Wang, Jie, E-mail: wangjie@iun.edu

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  7. Young's double-slit interference with two-color biphotons.

    PubMed

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  8. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  9. Magnetoelectric effect in concentric quantum rings induced by shallow donor

    NASA Astrophysics Data System (ADS)

    Escorcia, R.; García, L. F.; Mikhailov, I. D.

    2018-05-01

    We study the alteration of the magnetic and electric properties induced by the off-axis donor in a double InAs/GaAs concentric quantum ring. To this end we consider a model of an axially symmetrical ring-like nanostructure with double rim, in which the thickness of the InAs thin layer is varied smoothly in the radial direction. The energies and of contour plots of the density of charge for low-lying levels we find by using the adiabatic approximation and the double Fourier-Bessel series expansion method and the Kane model. Our results reveal a possibility of the formation of a giant dipole momentum induced by the in-plane electric field, which in addition can be altered by of the external magnetic field applied along the symmetry axis.

  10. Emergent quantum mechanics without wavefunctions

    NASA Astrophysics Data System (ADS)

    Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.

    2016-03-01

    We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.

  11. Modeling and optimization of a double-well double-barrier GaN/AlGaN/GaN/AlGaN resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying

    2017-06-01

    The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).

  12. Double-wells and double-layers in dusty Fermi-Dirac plasmas: Comparison with the semiclassical Thomas-Fermi counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Vandersypen, L. M. K.; Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  14. Tunable Kondo physics in a carbon nanotube double quantum dot.

    PubMed

    Chorley, S J; Galpin, M R; Jayatilaka, F W; Smith, C G; Logan, D E; Buitelaar, M R

    2012-10-12

    We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.

  15. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment.

    PubMed

    Blair, Enrique P; Tóth, Géza; Lent, Craig S

    2018-05-16

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunković-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  16. Observation of Mollow Triplets with Tunable Interactions in Double Lambda Systems of Individual Hole Spins

    NASA Astrophysics Data System (ADS)

    Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Müller, K.; Vučković, J.

    2017-01-01

    Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above-band and resonant excitation, we observe the formation of Mollow triplets on all optical transitions. We find that when the strong resonant drive power is used to tune the Mollow-triplet lines through each other, we observe anticrossings. We also demonstrate that the interaction that gives rise to the anticrossings can be controlled in strength by tuning the polarization of the resonant laser drive. Quantum-optical modeling of our system fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of the double lambda system.

  17. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment

    NASA Astrophysics Data System (ADS)

    Blair, Enrique P.; Tóth, Géza; Lent, Craig S.

    2018-05-01

    We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser–Horne–Shimony–Holt (CHSH) and Brukner–Paunković–Rudolph–Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.

  18. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Universal Adiabatic Quantum Computing using Double Quantum Dot Charge Qubits

    NASA Astrophysics Data System (ADS)

    Ryan-Anderson, Ciaran; Jacobson, N. Tobias; Landahl, Andrew

    Adiabatic quantum computation (AQC) provides one path to achieving universal quantum computing in experiment. Computation in the AQC model occurs by starting with an easy to prepare groundstate of some simple Hamiltonian and then adiabatically evolving the Hamiltonian to obtain the groundstate of a final, more complex Hamiltonian. It has been shown that the circuit model can be mapped to AQC Hamiltonians and, thus, AQC can be made universal. Further, these Hamiltonians can be made planar and two-local. We propose using double quantum dot charge qubits (DQDs) to implement such universal AQC Hamiltonians. However, the geometry and restricted set of interactions of DQDs make the application of even these 2-local planar Hamiltonians non-trivial. We present a construction tailored to DQDs to overcome the geometric and interaction contraints and allow for universal AQC. These constraints are dealt with in this construction by making use of perturbation gadgets, which introduce ancillary qubits to mediate interactions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS2 chain

    NASA Astrophysics Data System (ADS)

    Jian, Shao-Kai; Xian, Zhuo-Yu; Yao, Hong

    2018-05-01

    We show that the quantum critical point (QCP) between a diffusive metal and ferromagnetic (or antiferromagnetic) phases in the SYK chain has a gravitational description corresponding to the double-trace deformation in an AdS2 chain. Specifically, by studying a double-trace deformation of a Z2 scalar in an AdS2 chain where the Z2 scalar is dual to the order parameter in the SYK chain, we find that the susceptibility and renormalization group equation describing the QCP in the SYK chain can be exactly reproduced in the holographic model. Our results suggest that the infrared geometry in the gravity theory dual to the diffusive metal of the SYK chain is also an AdS2 chain. We further show that the transition in SYK model captures universal information about double-trace deformation in generic black holes with near horizon AdS2 space-time.

  1. Classical mapping for Hubbard operators: Application to the double-Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Miller, William H.; Levy, Tal J.

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to bemore » accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.« less

  2. Improved HDRG decoders for qudit and non-Abelian quantum error correction

    NASA Astrophysics Data System (ADS)

    Hutter, Adrian; Loss, Daniel; Wootton, James R.

    2015-03-01

    Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.

  3. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems.

    PubMed

    Yan, Yun-An

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today's nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.

  4. Full dyon excitation spectrum in extended Levin-Wen models

    NASA Astrophysics Data System (ADS)

    Hu, Yuting; Geer, Nathan; Wu, Yong-Shi

    2018-05-01

    In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two-dimensional topological phases, it is relatively easy to describe only single-fluxon excitations, but not the charge and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in (doubled) topological phases, an extension of the LW models is proposed in this paper. We first enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex to describe the internal charge degrees of freedom at the vertex. Then, we study the full dyon spectrum of the extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle excitations. The local operators associated with the dyonic excitations are shown to form the so-called tube algebra, whose representations (modules) form the quantum double (categoric center) of the input data (unitary fusion category). In physically relevant cases, the input data are from a finite or quantum group (with braiding R matrices), and we find that the elementary excitations (or dyon species), as well as any localized/isolated excited states, are characterized by three quantum numbers: charge, fluxon type, and twist. They provide a "complete basis" for many-body states in the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the electric-magnetic duality existing in the models is addressed.

  5. Effective theory of monolayer TMDC double quantum dots

    NASA Astrophysics Data System (ADS)

    David, Alessandro; Burkard, Guido; Kormányos, Andor

    2018-07-01

    Monolayer transition metal dichalcogenides (TMDCs) are promising candidates for quantum technologies, such as spin qubits in quantum dots, because they are truly two-dimensional semiconductors with a direct band gap. In this work, we analyse theoretically the behaviour of a double quantum dot (DQD) system created in the conduction band of these materials, with two electrons in the (1,1) charge configuration. Motivated by recent experimental progress, we consider several scenarios, including different spin–orbit splittings in the two dots and including the case when the valley degeneracy is lifted due to an insulating ferromagnetic substrate. Finally, we discuss in which cases it is possible to reduce the low energy subspace to the lowest Kramers pairs. We find that in this case the low energy model is formally identical to the Heisenberg exchange Hamiltonian, indicating that such Kramers pairs may serve as qubit implementations.

  6. Two-dimensional Electronic Double-Quantum Coherence Spectroscopy

    PubMed Central

    Kim, Jeongho; Mukamel, Shaul

    2009-01-01

    CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We compare a series of organic dye molecules and find that the energy offset for adding a second electronic excitation to the system relative to the first excitation is on the order of tens of milli-electronvolts, and it depends quite sensitively on molecular geometry. These results demonstrate the effectiveness of 2D-DQCS for elucidating quantitative information about electron-electron interactions, many-electron wavefunctions, and electron correlation in electronic excited states and excitons. PMID:19552412

  7. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model.

    PubMed

    Opatrný, Tomáš; Richterek, Lukáš; Opatrný, Martin

    2018-01-31

    We show that the classical model of Euler top (freely rotating, generally asymmetric rigid body), possibly supplemented with a rotor, corresponds to a generalized Lipkin-Meshkov-Glick (LMG) model describing phenomena of various branches of quantum physics. Classical effects such as free precession of a symmetric top, Feynman's wobbling plate, tennis-racket instability and the Dzhanibekov effect, attitude control of satellites by momentum wheels, or twisting somersault dynamics, have their counterparts in quantum effects that include spin squeezing by one-axis twisting and two-axis countertwisting, transitions between the Josephson and Rabi regimes of a Bose-Einstein condensate in a double-well potential, and other quantum critical phenomena. The parallels enable us to expand the range of explored quantum phase transitions in the generalized LMG model, as well as to present a classical analogy of the recently proposed LMG Floquet time crystal.

  8. Floquet topological phases in a spin-1 /2 double kicked rotor

    NASA Astrophysics Data System (ADS)

    Zhou, Longwen; Gong, Jiangbin

    2018-06-01

    The double kicked rotor model is a physically realizable extension of the paradigmatic kicked rotor model in the study of quantum chaos. Even before the concept of Floquet topological phases became widely known, the discovery of the Hofstadter butterfly spectrum in the double kicked rotor model [J. Wang and J. Gong, Phys. Rev. A 77, 031405 (2008), 10.1103/PhysRevA.77.031405] already suggested the importance of periodic driving to the generation of Floquet topological matter. In this work, we explore Floquet topological phases of a double kicked rotor with an extra spin-1 /2 degree of freedom. The latter has been experimentally engineered in a quantum kicked rotor recently by loading 87Rb condensates into a periodically pulsed optical lattice. Theoretically, we found that under the on-resonance condition, the spin-1 /2 double kicked rotor admits rich topological phases due to the interplay between its external and internal degrees of freedom. Each of these topological phases is characterized by a pair of winding numbers, whose combination predicts the number of topologically protected zero and π -quasienergy edge states in the system. Topological phases with arbitrarily large winding numbers can be easily found by tuning the kicking strength. We discuss an experimental proposal to realize this model in kicked 87Rb condensates, and suggest detecting its topological invariants by measuring the mean chiral displacement in momentum space.

  9. CNOT sequences for heterogeneous spin qubit architectures in a noisy environment

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco

    Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.

  10. The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation

    ERIC Educational Resources Information Center

    Jelic, V.; Marsiglio, F.

    2012-01-01

    The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…

  11. Detection of single electron spin resonance in a double quantum dota)

    NASA Astrophysics Data System (ADS)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  12. Quantum geometry of resurgent perturbative/nonperturbative relations

    NASA Astrophysics Data System (ADS)

    Basar, Gökçe; Dunne, Gerald V.; Ünsal, Mithat

    2017-05-01

    For a wide variety of quantum potentials, including the textbook `instanton' examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain \\mathcal{N} = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and `special geometry'. These systems inherit a natural modular structure corresponding to Ramanujan's theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.

  13. Electronic structures of GaAs/AlxGa1-xAs quantum double rings

    PubMed Central

    Xia, Jian-Bai

    2006-01-01

    In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

  14. Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction

    NASA Astrophysics Data System (ADS)

    Chamoli, Tanuj; Ajay

    2018-05-01

    The present work deals with the theoretical model study to analyse the tunneling conductance across a superconductor hybrid double quantum dots tunnel junction (S-DQD-S). Recently, there are many experimental works where the Josephson current across such nanoscopic junction is found to be dependent on nature of the superconducting electrodes, coupling of the hybrid double quantum dot's electronic states with the electronic states of the superconductors and nature of electronic structure of the coupled dots. For this, we have attempted a theoretical model containing contributions of BCS superconducting leads, magnetic coupled quantum dot states and coupling of superconducting leads with QDs. In order to include magnetic coupled QDs the contributions of competitive Kondo and Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction terms are also introduced through many body effects in the model Hamiltonian at low temperatures (where Kondo temperature TK < superconducting transition temperature TC). Employing non-equilibrium Green's function approach within mean field approximation, we have obtained expressions for density of states (DOS) and analysed the same using numerical computation to underline the nature of DOS close to Fermi level in S-DQD-S junctions. On the basis of numerical computation, it is pointed out that indirect exchange interaction between impurities (QD) i.e. RKKY interaction suppresses the screening of magnetic QD due to Cooper pair electrons i.e. Kondo effect in the form of reduction in the magnitude of sharp DOS peak close to Fermi level which is in qualitative agreement with the experimental observations in such tunnel junctions. Tunneling conductance is proportional to DOS, hence we can analyse it's behaviour with the help of DOS.

  15. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases

    PubMed Central

    Kurian, P.; Dunston, G.; Lindesay, J.

    2015-01-01

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme’s displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations—a possible signature of quantum entanglement—may be explained by such a mechanism. PMID:26682627

  17. Twisted quantum double model of topological order with boundaries

    NASA Astrophysics Data System (ADS)

    Bullivant, Alex; Hu, Yuting; Wan, Yidun

    2017-10-01

    We generalize the twisted quantum double model of topological orders in two dimensions to the case with boundaries by systematically constructing the boundary Hamiltonians. Given the bulk Hamiltonian defined by a gauge group G and a 3-cocycle in the third cohomology group of G over U (1 ) , a boundary Hamiltonian can be defined by a subgroup K of G and a 2-cochain in the second cochain group of K over U (1 ) . The consistency between the bulk and boundary Hamiltonians is dictated by what we call the Frobenius condition that constrains the 2-cochain given the 3-cocyle. We offer a closed-form formula computing the ground-state degeneracy of the model on a cylinder in terms of the input data only, which can be naturally generalized to surfaces with more boundaries. We also explicitly write down the ground-state wave function of the model on a disk also in terms of the input data only.

  18. Optimal control of universal quantum gates in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Castelano, Leonardo K.; de Lima, Emanuel F.; Madureira, Justino R.; Degani, Marcos H.; Maialle, Marcelo Z.

    2018-06-01

    We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a model that describes the process of loading and unloading the DQD taking into account the overlap between the electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we demonstrate the possibility of performing within high efficiency a universal set of quantum gates {cnot, H, and T } , where cnot is the controlled-not gate, H is the Hadamard gate, and T is the π /8 gate, even in the presence of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied magnetic field B , the optimized fidelity of the gates oscillates with a period inversely proportional to the gate operation time tf. This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by appropriately choosing B and tf to produce a maximum of the oscillation.

  19. Quantum Double of Yangian of strange Lie superalgebra Qn and multiplicative formula for universal R-matrix

    NASA Astrophysics Data System (ADS)

    Stukopin, Vladimir

    2018-02-01

    Main result is the multiplicative formula for universal R-matrix for Quantum Double of Yangian of strange Lie superalgebra Qn type. We introduce the Quantum Double of the Yangian of the strange Lie superalgebra Qn and define its PBW basis. We compute the Hopf pairing for the generators of the Yangian Double. From the Hopf pairing formulas we derive a factorized multiplicative formula for the universal R-matrix of the Yangian Double of the Lie superalgebra Qn . After them we obtain coefficients in this multiplicative formula for universal R-matrix.

  20. Quantum Interactive Learning Tutorial on the Double-Slit Experiment to Improve Student Understanding of Quantum Mechanics

    ERIC Educational Resources Information Center

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-01-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…

  1. Complex quantum enveloping algebras as twisted tensor products

    NASA Astrophysics Data System (ADS)

    Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno

    1994-12-01

    We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.

  2. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    NASA Astrophysics Data System (ADS)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  3. Double quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.

    2017-08-01

    Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.

  4. Understanding quantum tunneling using diffusion Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  5. Charge reconfiguration in arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.

    2017-12-01

    Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.

  6. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yun-An, E-mail: yunan@gznc.edu.cn

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a newmore » short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.« less

  7. A bilayer Double Semion model with symmetry-enriched topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, L., E-mail: lauraort@ucm.es; Martin-Delgado, M.A.

    2016-12-15

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topological Order with a global spin–flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trivial braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariantmore » under the flavour symmetry and the well-known spin flip symmetry.« less

  8. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    DTIC Science & Technology

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  9. Simultaneous multi-state stimulated emission in quantum dot lasers: experiment and analytical approach

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.; Shernyakov, Yu. M.

    2012-06-01

    The theoretical investigation of the double-state lasing phenomena in InAs/InGaAs quantum dot lasers has been carried out. The new mechanism of the ground-state lasing quenching, which takes place in quantum dot (QD) laser operating in double-state lasing regime at high pump level, was proposed. The difference between electron and hole capture rates causes the depletion of the hole levels and consequently leads to the decrease of an output lasing power via QD ground state with the growth of injection. Moreover, it was shown that the hole-to-electron capture rates ratio strongly affects both the light-current curve and the key laser parameters. The model of the simultaneous lasing through the ground and excited QD states was developed which allows to describe the observed quenching quantitatively.

  10. Fermionic topological quantum states as tensor networks

    NASA Astrophysics Data System (ADS)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  11. Quantum geometry of resurgent perturbative/nonperturbative relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basar, Gokce; Dunne, Gerald V.; Unsal, Mithat

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential.more » These are related to the Chebyshev potentials, which are in turn related to certain N = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Lastly, our approach is very elementary, using basic classical geometry combined with all-orders WKB.« less

  12. Quantum geometry of resurgent perturbative/nonperturbative relations

    DOE PAGES

    Basar, Gokce; Dunne, Gerald V.; Unsal, Mithat

    2017-05-16

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential.more » These are related to the Chebyshev potentials, which are in turn related to certain N = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Lastly, our approach is very elementary, using basic classical geometry combined with all-orders WKB.« less

  13. Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klymenko, M. V.; Klein, M.; Levine, R. D.

    2016-07-14

    A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states correspondsmore » to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.« less

  14. Study of anyon condensation and topological phase transitions from a Z4 topological phase using the projected entangled pair states approach

    NASA Astrophysics Data System (ADS)

    Iqbal, Mohsin; Duivenvoorden, Kasper; Schuch, Norbert

    2018-05-01

    We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local description of topological order in the PEPS formalism allows us to set up order parameters which measure condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4 quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits a variety of different phase transitions of both first and second order which we comprehensively characterize, including direct transitions between the toric code and the double semion phase.

  15. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.

    PubMed

    Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi

    2018-07-04

    We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.

  16. Magic angle for barrier-controlled double quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Wang, Xin

    2018-01-01

    We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.

  17. QCAD simulation and optimization of semiconductor double quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltagesmore » in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design comparison and optimization.« less

  18. Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.

    2017-03-01

    We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.

  19. Parameter estimation by decoherence in the double-slit experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, Akira; Ikeda, Taishi; Kukita, Shingo

    2018-06-01

    We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.

  20. A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector

    DTIC Science & Technology

    2002-01-01

    Proc. Vol. 692 © 2002 Materials Research Society H4.2 A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector ...on photon-assisted tunneling (PAT) between the two electron layers in a double quantum well (DQW) heterostructure, will be explained. The detector is...the frequency and strength of that radiation. The THz detector discussed in this paper makes use of photon- assisted tunnelling (PAT) between multiple

  1. Secure entanglement distillation for double-server blind quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2013-07-12

    Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.

  2. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  3. Strategy for synthesizing quantum dot-layered double hydroxide nanocomposites and their enhanced photoluminescence and photostability.

    PubMed

    Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee

    2013-01-08

    Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.

  4. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    NASA Astrophysics Data System (ADS)

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.

    2016-10-01

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.

  5. Double-quantum homonuclear correlations of spin I=5/2 nuclei.

    PubMed

    Iuga, Dinu

    2011-02-01

    The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    DTIC Science & Technology

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube

  7. High resolution study of magnetic ordering at absolute zero.

    PubMed

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  8. Precision Tests of a Quantum Hall Effect Device DC Equivalent Circuit Using Double-Series and Triple-Series Connections

    PubMed Central

    Jeffery, A.; Elmquist, R. E.; Cage, M. E.

    1995-01-01

    Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768

  9. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less

  10. Controlling dynamical quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Schuricht, D.; Karrasch, C.

    2018-05-01

    We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A →B →A ). As prototype models, we consider the (integrable) transverse Ising field as well as the (nonintegrable) ANNNI model. The return amplitude features nonanalyticities after the first quench through the equilibrium quantum critical point (A →B ), which is routinely taken as a signature of passing through a so-called dynamical quantum phase transition. We demonstrate that nonanalyticities after the second quench (B →A ) can be avoided and reestablished in a recurring manner upon increasing the time T spent in phase B. The system retains an infinite memory of its past state, and one has the intriguing opportunity to control at will whether or not dynamical quantum phase transitions appear after the second quench.

  11. Physics of Electronic Materials

    NASA Astrophysics Data System (ADS)

    Rammer, Jørgen

    2017-03-01

    1. Quantum mechanics; 2. Quantum tunneling; 3. Standard metal model; 4. Standard conductor model; 5. Electric circuit theory; 6. Quantum wells; 7. Particle in a periodic potential; 8. Bloch currents; 9. Crystalline solids; 10. Semiconductor doping; 11. Transistors; 12. Heterostructures; 13. Mesoscopic physics; 14. Arithmetic, logic and machines; Appendix A. Principles of quantum mechanics; Appendix B. Dirac's delta function; Appendix C. Fourier analysis; Appendix D. Classical mechanics; Appendix E. Wave function properties; Appendix F. Transfer matrix properties; Appendix G. Momentum; Appendix H. Confined particles; Appendix I. Spin and quantum statistics; Appendix J. Statistical mechanics; Appendix K. The Fermi-Dirac distribution; Appendix L. Thermal current fluctuations; Appendix M. Gaussian wave packets; Appendix N. Wave packet dynamics; Appendix O. Screening by symmetry method; Appendix P. Commutation and common eigenfunctions; Appendix Q. Interband coupling; Appendix R. Common crystal structures; Appendix S. Effective mass approximation; Appendix T. Integral doubling formula; Bibliography; Index.

  12. Self-assembly of concentric quantum double rings.

    PubMed

    Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki

    2005-03-01

    We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.

  13. The influence of carrier dynamics on double-state lasing in quantum dot lasers at variable temperature

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-12-01

    It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences.

  14. Period doubling in period-one steady states

    NASA Astrophysics Data System (ADS)

    Wang, Reuben R. W.; Xing, Bo; Carlo, Gabriel G.; Poletti, Dario

    2018-02-01

    Nonlinear classical dissipative systems present a rich phenomenology in their "route to chaos," including period doubling, i.e., the system evolves with a period which is twice that of the driving. However, typically the attractor of a periodically driven quantum open system evolves with a period which exactly matches that of the driving. Here, we analyze a periodically driven many-body open quantum system whose classical correspondent presents period doubling. We show that by studying the dynamical correlations, it is possible to show the occurrence of period doubling in the quantum (period-one) steady state. We also discuss that such systems are natural candidates for clean and intrinsically robust Floquet time crystals.

  15. Optical manipulation of electron spin in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Villas-Boas, Jose; Ulloa, Sergio; Govorov, Alexander

    2006-03-01

    Self-assembled quantum dots (QDs) are of particular interest for fundamental physics because of their similarity with atoms. Coupling two of such dots and addressing them with polarized laser light pulses is perhaps even more interesting. In this paper we use a multi-exciton density matrix formalism to model the spin dynamics of a system with single or double layers of QDs. Our model includes the anisotropic electron-hole exchange in the dots, the presence of wetting layer states, and interdot tunneling [1]. Our results show that it is possible to switch the spin polarization of a single self-assembled quantum dot under elliptically polarized light by increasing the laser intensity. In the nonlinear mechanism described here, intense elliptically polarized light creates an effective exchange channel between the exciton spin states through biexciton states, as we demonstrate by numerical and analytical methods. We further show that the effect persists in realistic ensembles of dots, and we propose alternative ways to detect it. We also extend our study to a double layer of quantum dots, where we find a competition between Rabi frequency and tunneling oscillations. [1] J. M. Villas-Boas, S. E. Ulloa, and A. O. Govorov, Phys. Rev. Lett. 94, 057404 (2005); Phys. Rev. B 69, 125342 (2004).

  16. Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms

    NASA Astrophysics Data System (ADS)

    Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi

    2018-05-01

    Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.

  17. Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced by internal charge transfer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2018-04-01

    We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.

  18. Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms

    NASA Astrophysics Data System (ADS)

    Juo, Jz-Yuan; Lin, Jia-Kang; Cheng, Chin-Yao; Liu, Zi-Yu; Yu, Ite A.; Chen, Yong-Fan

    2018-05-01

    Long-distance quantum optical communications usually require efficient wave-mixing processes to convert the wavelengths of single photons. Many quantum applications based on electromagnetically induced transparency (EIT) have been proposed and demonstrated at the single-photon level, such as quantum memories, all-optical transistors, and cross-phase modulations. However, EIT-based four-wave mixing (FWM) in a resonant double-Λ configuration has a maximum conversion efficiency (CE) of 25% because of absorptive loss due to spontaneous emission. An improved scheme using spatially modulated intensities of two control fields has been theoretically proposed to overcome this conversion limit. In this study, we first demonstrate wavelength conversion from 780 to 795 nm with a 43% CE by using this scheme at an optical density (OD) of 19 in cold 87Rb atoms. According to the theoretical model, the CE in the proposed scheme can further increase to 96% at an OD of 240 under ideal conditions, thereby attaining an identical CE to that of the previous nonresonant double-Λ scheme at half the OD. This spatial-light-modulation-based FWM scheme can achieve a near-unity CE, thus providing an easy method of implementing an efficient quantum wavelength converter for all-optical quantum information processing.

  19. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm.

    PubMed

    Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther

    2017-07-01

    We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20  dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7  nm (full width at -20  dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100  Hz 2 /Hz and of at most 170  Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.

  20. A Portable Double-Slit Quantum Eraser with Individual Photons

    ERIC Educational Resources Information Center

    Dimitrova, T. L.; Weis, A.

    2011-01-01

    The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…

  1. A reconfigurable gate architecture for Si/SiGe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajac, D. M.; Hazard, T. M.; Mi, X.

    2015-06-01

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  2. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.

    2018-06-01

    On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.

  3. Quantum mechanics over sets

    NASA Astrophysics Data System (ADS)

    Ellerman, David

    2014-03-01

    In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.

  4. Constructing topological models by symmetrization: A projected entangled pair states study

    NASA Astrophysics Data System (ADS)

    Fernández-González, Carlos; Mong, Roger S. K.; Landon-Cardinal, Olivier; Pérez-García, David; Schuch, Norbert

    2016-10-01

    Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G ˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G ˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G ˜.

  5. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  6. FAST TRACK COMMUNICATION Quantum entanglement: the unitary 8-vertex braid matrix with imaginary rapidity

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen

    2010-12-01

    We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement.

  7. Double C-NOT attack and counterattack on `Three-step semi-quantum secure direct communication protocol'

    NASA Astrophysics Data System (ADS)

    Gu, Jun; Lin, Po-hua; Hwang, Tzonelih

    2018-07-01

    Recently, Zou and Qiu (Sci China Phys Mech Astron 57:1696-1702, 2014) proposed a three-step semi-quantum secure direct communication protocol allowing a classical participant who does not have a quantum register to securely send his/her secret message to a quantum participant. However, this study points out that an eavesdropper can use the double C-NOT attack to obtain the secret message. To solve this problem, a modification is proposed.

  8. Josephson oscillation and self-trapping in momentum space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Feng, Shiping; Yang, Shi-Jie

    2018-04-01

    The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.

  9. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    NASA Astrophysics Data System (ADS)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  10. Double-time correlation functions of two quantum operations in open systems

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2017-10-01

    A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.

  11. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  12. Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems.

    PubMed

    Flick, Johannes; Appel, Heiko; Ruggenthaler, Michael; Rubio, Angel

    2017-04-11

    In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation [ Flick et al. PNAS 2017 , 10.1073/pnas.1615509114 ] for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer between potential energy surfaces. This work at the interface of quantum chemistry and quantum optics paves the way for the full ab initio description of matter-photon systems.

  13. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    NASA Astrophysics Data System (ADS)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  14. Symmetry breaking, Josephson oscillation and self-trapping in a self-bound three-dimensional quantum ball.

    PubMed

    Adhikari, S K

    2017-11-22

    We study spontaneous symmetry breaking (SSB), Josephson oscillation, and self-trapping in a stable, mobile, three-dimensional matter-wave spherical quantum ball self-bound by attractive two-body and repulsive three-body interactions. The SSB is realized by a parity-symmetric (a) one-dimensional (1D) double-well potential or (b) a 1D Gaussian potential, both along the z axis and no potential along the x and y axes. In the presence of each of these potentials, the symmetric ground state dynamically evolves into a doubly-degenerate SSB ground state. If the SSB ground state in the double well, predominantly located in the first well (z > 0), is given a small displacement, the quantum ball oscillates with a self-trapping in the first well. For a medium displacement one encounters an asymmetric Josephson oscillation. The asymmetric oscillation is a consequence of SSB. The study is performed by a variational and a numerical solution of a non-linear mean-field model with 1D parity-symmetric perturbations.

  15. Observation of Mollow Triplets with Tunable Interactions in Double Lambda Systems of Individual Hole Spins.

    NASA Astrophysics Data System (ADS)

    Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Mueller, K. M.; Vuckovic, J.

    Although individual spins in quantum dots have been extensively used as qubits, their investigation under strong resonant driving in view of accessing Mollow physics is still an open question. We have grown high quality positively charged quantum dots (QD) embedded in a planar microcavity that enable enhanced light matter interactions. Applying a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above band and resonant excitation, we observe the formation of Mollow triplets. We investigate the regime where the Mollow sideband splittings are equal to the Zeeman splitting; we observe strong interactions between the Mollow sidebands of the inner transitions and the outer transitions in the form of very clear anticrossings. We investigated these anticrossings and we were able to modify the observed anticrossing splittings on demand by rotating the polarization of the resonant laser. We also developed a quantum-optical model of our system that fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of our positively charged quantum dot. The authors acknowledge financial support from the Army Research Office (Grant No. W911NF1310309) and support from the National Science Foundation, Division of Materials Research (Grant No. 1503759).

  16. A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems.

    PubMed

    Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J

    2015-06-28

    We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.

  17. Speakable and Unspeakable in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bell, J. S.; Aspect, Introduction by Alain

    2004-06-01

    List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.

  18. Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises

    NASA Astrophysics Data System (ADS)

    Ferraro, E.; Fanciulli, M.; De Michielis, M.

    2018-06-01

    The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.

  19. On-chip quantum interference of a superconducting microsphere

    NASA Astrophysics Data System (ADS)

    Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.

    2018-04-01

    We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.

  20. Two-leg Su-Schrieffer-Heeger chain with glide reflection symmetry

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Liang; Zhou, Qi

    2017-06-01

    The Su-Schrieffer-Heeger (SSH) model lays the foundation of many important concepts in quantum topological matters. Here, we show that a spin-dependent double-well optical lattice allows one to couple two topologically distinct SSH chains in the bulk and realize a glided-two-leg SSH model that respects the glide reflection symmetry. Such a model gives rise to intriguing quantum phenomena beyond the paradigm of a traditional SSH model. It is characterized by Wilson lines that require non-Abelian Berry connections, and the interplay between the glide symmetry and interaction automatically leads to charge fractionalization without jointing two lattice potentials at an interface. Our work demonstrates the versatility of ultracold atoms to create new theoretical models for studying topological matters.

  1. Electric dipole moment of magnetoexciton in concentric quantum rings

    NASA Astrophysics Data System (ADS)

    García, L. F.; Mikhailov, I. D.; Revinova, S. Yu

    2017-12-01

    We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.

  2. Energy levels of double triangular graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, F. X.; Jiang, Z. T., E-mail: ztjiang616@hotmail.com; Zhang, H. Y.

    2014-09-28

    We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection ismore » inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.« less

  3. Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1995-01-01

    The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.

  4. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems.

    PubMed

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-28

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  5. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems

    NASA Astrophysics Data System (ADS)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-01

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper, we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E. The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. `explore or not?'; `open new well or not?'; `contaminated by water or not?'; `double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism). This article is part of the theme issue `Hilbert's sixth problem'.

  6. Tunneling current spectroscopy of a nanostructure junction involving multiple energy levels.

    PubMed

    Kuo, David M-T; Chang, Yia-Chung

    2007-08-24

    A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and shell-filling cases, is theoretically investigated via the nonequilibrium Green's function method. We obtain a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions with neighboring quantum dots are taken into account.

  7. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  8. Multimode Bose-Hubbard model for quantum dipolar gases in confined geometries

    NASA Astrophysics Data System (ADS)

    Cartarius, Florian; Minguzzi, Anna; Morigi, Giovanna

    2017-06-01

    We theoretically consider ultracold polar molecules in a wave guide. The particles are bosons: They experience a periodic potential due to an optical lattice oriented along the wave guide and are polarized by an electric field orthogonal to the guide axis. The array is mechanically unstable by opening the transverse confinement in the direction orthogonal to the polarizing electric field and can undergo a transition to a double-chain (zigzag) structure. For this geometry we derive a multimode generalized Bose-Hubbard model for determining the quantum phases of the gas at the mechanical instability, taking into account the quantum fluctuations in all directions of space. Our model limits the dimension of the numerically relevant Hilbert subspace by means of an appropriate decomposition of the field operator, which is obtained from a field theoretical model of the linear-zigzag instability. We determine the phase diagrams of small systems using exact diagonalization and find that, even for tight transverse confinement, the aspect ratio between the two transverse trap frequencies controls not only the classical but also the quantum properties of the ground state in a nontrivial way. Convergence tests at the linear-zigzag instability demonstrate that our multimode generalized Bose-Hubbard model can catch the essential features of the quantum phases of dipolar gases in confined geometries with a limited computational effort.

  9. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  10. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less

  11. State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot

    DOE PAGES

    Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...

    2016-10-18

    Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less

  12. A controlled ac Stark echo for quantum memories.

    PubMed

    Ham, Byoung S

    2017-08-09

    A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.

  13. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn

    2014-09-15

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less

  14. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  15. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  16. Multi-bit dark state memory: Double quantum dot as an electronic quantum memory

    NASA Astrophysics Data System (ADS)

    Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2016-12-01

    Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.

  17. Self-assembled indium arsenide quantum dots: Structure, formation dynamics, optical properties

    NASA Astrophysics Data System (ADS)

    Lee, Hao

    1998-12-01

    In this dissertation, we investigate the properties of InAs/GaAs quantum dots grown by molecular beam epitaxy. The structure and formation dynamics of InAs quantum dots are studied by a variety of structural characterization techniques. Correlations among the growth conditions, the structural characteristics, and the observed optical properties are explored. The most fundamental structural characteristic of the InAs quantum dots is their shape. Through detailed study of the reflection high energy electron diffraction patterns, we determined that self-assembled InAs islands possess a pyramidal shape with 136 bounding facets. Cross-sectional transmission electron microscopy images and atomic force microscopy images strongly support this model. The 136 model we proposed is the first model that is consistent with all reported shape features determined using different methods. The dynamics of coherent island formation is also studied with the goal of establishing the factors most important in determining the size, density, and the shape of self- organized InAs quantum dots. Our studies clearly demonstrate the roles that indium diffusion and desorption play in InAs island formation. An unexpected finding (from atomic force microscopy images) was that the island size distribution bifurcated during post- growth annealing. Photoluminescence spectra of the samples subjected to in-situ annealing prior to the growth of a capping layer show a distinctive double-peak feature. The power-dependence and temperature-dependence of the photoluminescence spectra reveals that the double- peak emission is associated with the ground-state transition of islands in two different size branches. These results confirm the island size bifurcation observed from atomic force microscopy images. The island size bifurcation provides a new approach to the control and manipulation of the island size distribution. Unexpected dependence of the photoluminescence line-shape on sample temperature and pump intensity was observed for samples grown at relatively high substrate temperatures. The behavior is modeled and explained in terms of competition between two overlapping transitions. The study underscores that the growth conditions can have a dramatic impact on the optical properties of the quantum dots. This dissertation includes both my previously published and unpublished authored materials.

  18. Current rectification in a double quantum dot through fermionic reservoir engineering

    NASA Astrophysics Data System (ADS)

    Malz, Daniel; Nunnenkamp, Andreas

    2018-04-01

    Reservoir engineering is a powerful tool for the robust generation of quantum states or transport properties. Using both a weak-coupling quantum master equation and the exact solution, we show that directional transport of electrons through a double quantum dot can be achieved through an appropriately designed electronic environment. Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned with an external magnetic field, such that directionality can be reversed, as well as turned on and off dynamically. Our work introduces fermionic-reservoir engineering, paving the way to a new class of nanoelectronic devices.

  19. Journeys in The Country of The Blind: Entanglement Theory and The Effects of Blinding on Trials of Homeopathy and Homeopathic Provings

    PubMed Central

    2007-01-01

    The idea of quantum entanglement is borrowed from physics and developed into an algebraic argument to explain how double-blinding randomized controlled trials could lead to failure to provide unequivocal evidence for the efficacy of homeopathy, and inability to distinguish proving and placebo groups in homeopathic pathogenic trials. By analogy with the famous double-slit experiment of quantum physics, and more modern notions of quantum information processing, these failings are understood as blinding causing information loss resulting from a kind of quantum superposition between the remedy and placebo. PMID:17342236

  20. Double Ramification Cycles and Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Rossi, Paolo

    2016-03-01

    In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085-1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.

  1. QED in a time-dependent double cavity and creation of entanglement between noninteracting atoms via quantum eraser technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirone, Markus A.; Rzazewski, Kazimierz; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, and College of Science, Al. Lotnikow 32/46, 02-668 Warsaw

    1999-03-11

    We discuss two striking features of quantum mechanics: The concepts of vacuum and of entanglement. We first study the radiation field inside a double cavity (a cavity which contains a reflecting mirror). If the mirror is rapidly removed, peculiar quantum phenomena, such as photon creation from vacuum and squeezing, occur. We discuss then a gedanken experiment which employs the double cavity to create entanglement between two atoms. The atoms cross the double cavity and interact with its two independent radiation fields. After the atoms leave the cavity, the mirror is suddenly removed. Measurement of the radiation field inside the cavitymore » can give rise to entanglement between the atoms. The method can be extended to an arbitrary number of atoms, providing thus an N-particle GHZ state.« less

  2. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  3. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  4. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  5. Frequency-Comb Based Double-Quantum Two-Dimensional Spectrum Identifies Collective Hyperfine Resonances in Atomic Vapor Induced by Dipole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Lomsadze, Bachana; Cundiff, Steven T.

    2018-06-01

    Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.

  6. A bilayer Double Semion Model with Symmetry-Enriched Topological Order

    NASA Astrophysics Data System (ADS)

    Ortiz, Laura; Martin-Delgado, Miguel Angel

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topolgical Order with a global spin-flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trival braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariant under the flavour symmetry and the well-known spin flip symmetry. We acknowledge financial support from the Spanish MINECO Grants FIS2012-33152, FIS2015-67411, and the CAM research consortium QUITEMAD+, Grant No. S2013/ICE-2801. The research of M.A.M.-D. has been supported in part by the U.S. Army Research Office throu.

  7. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Determination of the quantum efficiency of InGaAsP/InP double heterostructures from spontaneous emission measurements

    NASA Astrophysics Data System (ADS)

    Rheinländer, B.; Anton, A.; Heilmann, R.; Oelgart, G.; Gottschalch, V.

    1988-11-01

    A method was developed for determination of the suitability of epitaxial InGaAsP/InP double heterostructures in fabrication of ridge-waveguide lasers. The method is based on determination of the quantum efficiency of electroluminescence.

  8. Theoretical Analysis About Quantum Noise Squeezing of Optical Fields From an Intracavity Frequency-Doubled Laser

    NASA Technical Reports Server (NTRS)

    Zhang, Kuanshou; Xie, Changde; Peng, Kunchi

    1996-01-01

    The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.

  9. Development of a Si/ SiO 2-based double quantum dot charge qubit with dispersive microwave readout

    NASA Astrophysics Data System (ADS)

    House, M. G.; Henry, E.; Schmidt, A.; Naaman, O.; Siddiqi, I.; Pan, H.; Xiao, M.; Jiang, H. W.

    2011-03-01

    Coupling of a high-Q microwave resonator to superconducting qubits has been successfully used to prepare, manipulate, and read out the state of a single qubit, and to mediate interactions between qubits. Our work is geared toward implementing this architecture in a semiconductor qubit. We present the design and development of a lateral quantum dot in which a superconducting microwave resonator is capacitively coupled to a double dot charge qubit. The device is a silicon MOSFET structure with a global gate which is used to accumulate electrons at a Si/ Si O2 interface. A set of smaller gates are used to deplete these electrons to define a double quantum dot and adjacent conduction channels. Two of these depletion gates connect directly to the conductors of a 6 GHz co-planar stripline resonator. We present measurements of transport and conventional charge sensing used to characterize the double quantum dot, and demonstrate that it is possible to reach the few-electron regime in this system. This work is supported by the DARPA-QuEST program.

  10. Deterministic entanglement distillation for secure double-server blind quantum computation.

    PubMed

    Sheng, Yu-Bo; Zhou, Lan

    2015-01-15

    Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol.

  11. Deterministic entanglement distillation for secure double-server blind quantum computation

    PubMed Central

    Sheng, Yu-Bo; Zhou, Lan

    2015-01-01

    Blind quantum computation (BQC) provides an efficient method for the client who does not have enough sophisticated technology and knowledge to perform universal quantum computation. The single-server BQC protocol requires the client to have some minimum quantum ability, while the double-server BQC protocol makes the client's device completely classical, resorting to the pure and clean Bell state shared by two servers. Here, we provide a deterministic entanglement distillation protocol in a practical noisy environment for the double-server BQC protocol. This protocol can get the pure maximally entangled Bell state. The success probability can reach 100% in principle. The distilled maximally entangled states can be remaind to perform the BQC protocol subsequently. The parties who perform the distillation protocol do not need to exchange the classical information and they learn nothing from the client. It makes this protocol unconditionally secure and suitable for the future BQC protocol. PMID:25588565

  12. Crossed-coil detection of two-photon excited nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Eles, Philip T.; Michal, Carl A.

    2005-08-01

    Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.

  13. Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki

    2016-06-01

    We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.

  14. Spin filtering in a double quantum dot device: Numerical renormalization group study of the internal structure of the Kondo state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.

    2014-03-31

    A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less

  15. The Influence of Geometrical Structure of AlInGaN Double Quantum Well (DQWs) UV Diode Laser on Its Performance and Operating Parameters

    NASA Astrophysics Data System (ADS)

    Ghazai, A. J.; Thahab, S. M.; Hassan, H. Abu; Hassan, Z.

    2010-07-01

    The development of efficient MQWs active regions of quaternary InAlGaN in the ultraviolet (UV) region is an engaging challenge by itself. Demonstrating lasers at such low wavelength will require resolving a number of materials, growth and device design issues. However, the quaternary AlInGaN represents a more versatile material since the bandgap and lattice constant can be independently varied. We report a quaternary AlInGaN double-quantum wells (DQWs) UV laser diode (LDs) study by using the simulation program of Integrated System Engineering-Technical Computer Aided Design (ISE TCAD). Advanced physical models of semiconductor properties were used. In this paper, the enhancement in the performance of AlInGaN laser diode can be achieved by optimizing the laser structure geometry design. The AlInGaN laser diodes operating parameters such as internal quantum efficiency ηi, internal loss αi and transparency threshold current density show effective improvements that contribute to a better performance.

  16. A Computational Model for Observation in Quantum Mechanics.

    DTIC Science & Technology

    1987-03-16

    Interferometer experiment ............. 17 2.3 The EPR Paradox experiment ................. 22 3 The Computational Model, an Overview 28 4 Implementation 34...40 4.4 Code for the EPR paradox experiment ............... 46 4.5 Code for the double slit interferometer experiment ..... .. 50 5 Conclusions 59 A...particle run counter to fact. The EPR paradox experiment (see section 2.3) is hard to resolve with this class of models, collectively called hidden

  17. Exact infinite-time statistics of the Loschmidt echo for a quantum quench.

    PubMed

    Campos Venuti, Lorenzo; Jacobson, N Tobias; Santra, Siddhartha; Zanardi, Paolo

    2011-07-01

    The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.

  18. Asymptotics of quantum weighted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Harnad, J.; Ortmann, Janosch

    2018-06-01

    This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.

  19. Origin of Quantum Ring Formation During Droplet Epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Y.; Zheng, C. X.; Tang, W. X.; Tersoff, J.; Jesson, D. E.

    2013-07-01

    Droplet epitaxy of GaAs is studied in real time using in situ surface electron microscopy. The resulting movies motivate a theoretical model for quantum ring formation which can explain the origin of nanoscale features such as double rings observed under a variety of experimental conditions. Inner rings correspond to GaAs deposition at the droplet edge, while outer rings result from the reaction of Ga and As atoms diffusing along the surface. The observed variety of morphologies primarily reflects relative changes in the outer rings with temperature and As flux.

  20. Multiconfigurational quantum propagation with trajectory-guided generalized coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigolo, Adriano, E-mail: agrigolo@ifi.unicamp.br; Aguiar, Marcus A. M. de, E-mail: aguiar@ifi.unicamp.br; Viscondi, Thiago F., E-mail: viscondi@if.usp.br

    2016-03-07

    A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.

  1. A quantum wave based compact modeling approach for the current in ultra-short DG MOSFETs suitable for rapid multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander

    2017-11-01

    Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.

  2. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    NASA Astrophysics Data System (ADS)

    Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel

    2016-11-01

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  3. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  4. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits.

    PubMed

    Strambini, E; Makarenko, K S; Abulizi, G; de Jong, M P; van der Wiel, W G

    2016-01-06

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  5. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.

    2017-03-15

    The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.

  6. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  7. Optical Studies of the Quantum Confined Stark Effect in ALUMINUM(0.3) GALLIUM(0.7) Arsenide/gallium Arsenide Coupled Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Kuroda, Roger Tokuichi

    1992-01-01

    The development of advanced epitaxical growth techniques such as molecular beam epitaxy has led to growth of high quality III-V layers with monolayer control in thickness. This permits design of new and novel heterointerface based electronic, optical and opto-electronic devices which exploit the new and tailorable electronic states in quantum wells. One such property is the Quantum Confined Stark Effect (QCSE) which, in uncoupled multiple quantum wells (MQW), has been used for the self-electro-optic effect device(SEED). Guided by a phenomenological model of the complex dielectric function for the Coupled Double Quantum Well (CDQW), we show results for the QCSE in CDQW show underlying physics differs from the uncoupled MQW in that symmetry forbidden transitions under flat band conditions become allowed under non-flat band conditions. The transfer of oscillator strength from symmetry allowed to the symmetry forbidden transitions offers potential for application as spatial light modulator (SLM). We show the CDQW lowest exciton peak Stark shifts twice as fast as the SQW with equivalent well width, which offers the SLM device a lower operating voltage than SQW. In addition we show the CDQW absorption band edge can blue shift with increasing electric field, which offers other potential for SLM. From transmission measurements, we verify these predictions and compare them with the phenomenological model. The optical device figure of merit Deltaalpha/alpha of the CDQW is comparable with the "best" SQW, but at lower electric field. From photocurrent measurements, we find that the calculated and measured Stark shifts agree. In addition, we extract a Deltaalpha/ alpha from photocurrent which agree with transmission measurements. From electroreflectance measurements, we calculated the aluminum concentration, and the built in electric field from the Franz-Keldysh oscillations due to the Al_{0.3}Ga _{0.7}As barrier regions in the CDQW. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089 -0182.).

  8. Injection Locking of a Semiconductor Double Quantum Dot Micromaser

    PubMed Central

    Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.

    2016-01-01

    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226

  9. Injection Locking of a Semiconductor Double Quantum Dot Micromaser.

    PubMed

    Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R

    2015-11-01

    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.

  10. Magnetospectroscopy of double HgTe/CdHgTe quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovkun, L. S.; Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru

    2016-11-15

    The magnetoabsorption spectra in double HgTe/CdHgTe quantum wells (QWs) with normal and inverted band structures are investigated. The Landau levels in symmetric QWs with a rectangular potential profile are calculated based on the Kane 8 × 8 model. The presence of a tunnel-transparent barrier is shown to lead to the splitting of states and “doubling” of the main magnetoabsorption lines. At a QW width close to the critical one the presence of band inversion and the emergence of a gapless band structure, similar to bilayer graphene, are shown for a structure with a single QW. The shift of magnetoabsorption linesmore » as the carrier concentration changes due to the persistent photoconductivity effect associated with a change in the potential profile because of trap charge exchange is detected. This opens up the possibility for controlling topological phase transitions in such structures.« less

  11. Photoluminescence and structural properties of unintentional single and double InGaSb/GaSb quantum wells grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.

    2018-04-01

    The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.

  12. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.

    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  13. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    PubMed

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  14. Emergent kink statistics at finite temperature

    DOE PAGES

    Lopez-Ruiz, Miguel Angel; Yepez-Martinez, Tochtli; Szczepaniak, Adam; ...

    2017-07-25

    In this paper we use 1D quantum mechanical systems with Higgs-like interaction potential to study the emergence of topological objects at finite temperature. Two different model systems are studied, the standard double-well potential model and a newly introduced discrete kink model. Using Monte-Carlo simulations as well as analytic methods, we demonstrate how kinks become abundant at low temperatures. These results may shed useful insights on how topological phenomena may occur in QCD.

  15. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  16. Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory.

    PubMed

    Walach, H

    2003-08-01

    Homeopathy is scientifically banned, both for lack of consistent empirical findings, but more so for lack of a sound theoretical model to explain its purported effects. This paper makes an attempt to introduce an explanatory idea based on a generalized version of quantum mechanics (QM), the weak quantum theory (WQT). WQT uses the algebraic formalism of QM proper, but drops some restrictions and definitions typical for QM. This results in a general axiomatic framework similar to QM, but more generalized and applicable to all possible systems. Most notably, WQT predicts entanglement, which in QM is known as Einstein-Podolsky-Rosen (EPR) correlatedness within quantum systems. According to WQT, this entanglement is not only tied to quantum systems, but is to be expected whenever a global and a local variable describing a system are complementary. This idea is used here to reconstruct homeopathy as an exemplification of generalized entanglement as predicted by WQT. It transpires that homeopathy uses two instances of generalized entanglement: one between the remedy and the original substance (potentiation principle) and one between the individual symptoms of a patient and the general symptoms of a remedy picture (similarity principle). By bringing these two elements together, double entanglement ensues, which is reminiscent of cryptographic and teleportation applications of entanglement in QM proper. Homeopathy could be a macroscopic analogue to quantum teleportation. This model is exemplified and some predictions are derived, which make it possible to test the model. Copyright 2003 S. Karger GmbH, Freiburg

  17. Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid

    2017-01-01

    Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.

  18. Photoluminescence of double core/shell infrared (CdSeTe)/ZnS quantum dots conjugated to Pseudo rabies virus antibodies

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.

    2013-06-01

    Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.

  19. Sharp peaks in the conductance of a double quantum dot and a quantum-dot spin valve at high temperatures: A hierarchical quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Wenderoth, S.; Bätge, J.; Härtle, R.

    2016-09-01

    We study sharp peaks in the conductance-voltage characteristics of a double quantum dot and a quantum dot spin valve that are located around zero bias. The peaks share similarities with a Kondo peak but can be clearly distinguished, in particular as they occur at high temperatures. The underlying physical mechanism is a strong current suppression that is quenched in bias-voltage dependent ways by exchange interactions. Our theoretical results are based on the quantum master equation methodology, including the Born-Markov approximation and a numerically exact, hierarchical scheme, which we extend here to the spin-valve case. The comparison of exact and approximate results allows us to reveal the underlying physical mechanisms, the role of first-, second- and beyond-second-order processes and the robustness of the effect.

  20. Double charmonia production in exclusive Z-boson decays

    NASA Astrophysics Data System (ADS)

    Likhoded, A. K.; Luchinsky, A. V.

    2018-05-01

    This paper is devoted to systematic analysis of double charmonium production in exclusive Z-boson decays in the framework of non-relativistic quantum chromodynamics (NRQCD) and leading twist light-cone (LC) models. Theoretical predictions for branching fractions of all considered decays are presented. According to the obtained results in the case of the allowed helicity suppression rule processes, the effect of internal quark motion increases the branching fractions by a factor 1.5, while for forbidden reactions the LC predictions are strictly zero, while NRQCD ones are significantly smaller than for allowed.

  1. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  2. On the inversion of the 1 Bu and 2 Ag electronic states in α,ω-diphenylpolyenes

    NASA Astrophysics Data System (ADS)

    Catalán, J.

    2003-07-01

    An alternative model to that of the inversion of the states 1Bu and 2Ag is proposed for interpreting the photophysics of the α,ω-diphenylpolyenes. This model is based upon the existence of two chemical structures with Bu symmetry, which may be ascribed to the same excited electronic state 1Bu. One of the two chemical structures corresponds to the Franck-Condon structure with conjugated single and double bonds for the polyene chain, and another consists of a nearly equivalent series of partial double bonds along the polyene chain. The latter relaxed structure is consistent with the observation of high torsional energy barriers and low photoisomerization quantum yields for diphenylhexatriene in the singlet excited state manifold. Interestingly, such a simple quantum model as that of the particle in a one-dimensional box provides quite an accurate description of the absorption spectroscopic properties of these major compounds. This is partly the result of the most stable structures for these compounds being of the all-trans type; such structures increase in length as additional ethylene units are added, which makes them very similar to a one-dimensional box becoming increasingly longer.

  3. Double-Slit Interference Pattern for a Macroscopic Quantum System

    NASA Astrophysics Data System (ADS)

    Naeij, Hamid Reza; Shafiee, Afshin

    2016-12-01

    In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.

  4. Quantum memory node based on a semiconductor double quantum dot in a laser-controlled optical resonator

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. V.; Kateev, I. Yu

    2017-08-01

    The concept of a quantum node consisting of a memory qubit and a frequency convertor is proposed and analysed. The memory qubit is presented by a semiconductor four-level double quantum dot (DQD) placed in an optical microresonator (MR). The DQD contains an electron in the quantised part of the conduction band and the MR can be populated by a certain number of photons. The DQD and MR states are controlled be applying the laser and electrostatic fields. The difference between the telecommunication frequency of the photon (transport qubit) supplied to the system through a waveguide and the frequency of the electronic transition in the DQD is compensated for using an auxiliary element, i.e. a frequency convertor based on a single quantum dot (QD). This design allows the electron - photon state of the hybrid system to be controlled by an appropriate variation of the field parameters and the switching between resonance and nonresonance DQD and MR interaction regimes. As an example, a GaAs DQD placed in a microdisk MR is studied. A numerical technique for modelling an optical spectrum of a microdisk MR with an additional layer (AL) deposited on its surface is developed. Using this technique, the effect of the AL on the MR eigenmode properties is investigated and the possibility of tuning its frequency to the QD electronic transition frequency by depositing an AL on the disk surface is demonstrated.

  5. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong

    2017-02-01

    We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.

  6. Experimental metaphysics2 : The double standard in the quantum-information approach to the foundations of quantum theory

    NASA Astrophysics Data System (ADS)

    Hagar, Amit

    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.

  7. Suppression of Zeeman gradients by nuclear polarization in double quantum dots.

    PubMed

    Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P

    2012-12-07

    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.

  8. Self-sustaining dynamical nuclear polarization oscillations in quantum dots.

    PubMed

    Rudner, M S; Levitov, L S

    2013-02-22

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce a minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports self-sustained oscillations. Our mechanism relies on a nuclear spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods.

  9. Comparison of Quantum and Classical Monte Carlo on a Simple Model Phase Transition

    NASA Astrophysics Data System (ADS)

    Cohen, D. E.; Cohen, R. E.

    2005-12-01

    Most simulations of phase transitions in minerals use classical molecular dynamics or classical Monte Carlo. However, it is known that in some cases, quantum effects are quite large, even for perovskite oxides [1]. We have studied the simplest model of a phase transition where this can be tested, that of interacting of double wells with an infinite- range interaction. The energy is E = ∑i (-A xi2 + B xi4 + ξ xi) . We used the same parameters used in a study of vibrational spectra and soft- mode behavior [4], A=0.01902, B=0.14294, ξ=0.025 in Hartree atomic units. This gives Tc of about 400 K. We varied the oscillator mass from 18 to 100. Classical Monte Carlo and path integral Monte Carlo (PIMC) were performed on this model. The maximum effect was for the lightest mass, in which PIMC gave a 75K lower Tc than the classical simulation. This is similar to the reduction in Tc observed in PIMC simulations for BaTiO3 at zero pressure [1]. We will explore the effects of varying the well depths. Shallower wells would show a greater quantum effect, as was seen in the high pressure BaTiO3 simulations, since pressure reduces the double well depths [5]. [1] Iniguez, J. & Vanderbilt, D. First-principles study of the temperature-pressure phase diagram of BaTiO3. Phys. Rev. Lett. 89, 115503 (2002). [2] Gillis, N. S. & Koehler, T. R. Phase transitions in a simple model ferroelectric-- -comparison of exact and variational treatments of a molecular-field Hamiltonian. Phys. Rev. B 9, 3806 (1974). [3] Koehler, T. R. & Gillis, N. S. Phase Transitions in a Model of Interacting Anharmonic Oscillators. Phys. Rev. B 7, 4980 (1973). [4] Flocken, J. W., Guenther, R. A., Hardy, J. R. & Boyer, L. L. Dielectric response spectrum of a damped one-dimensional double-well oscillator. Phys. Rev. B 40, 11496-11501 (1989). [5] Cohen, R. E. Origin of ferroelectricity in oxide ferroelectrics and the difference in ferroelectric behavior of BaTiO3 and PbTiO3. Nature 358, 136-138 (1992).

  10. Capacitance of carbon-based electrical double-layer capacitors.

    PubMed

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  11. Gate tunable parallel double quantum dots in InAs double-nanowire devices

    NASA Astrophysics Data System (ADS)

    Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.

    2017-12-01

    We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.

  12. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less

  13. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  14. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures.

    PubMed

    Zhu, Rui; Lai, Maoli

    2011-11-16

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  15. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures

    NASA Astrophysics Data System (ADS)

    Zhu, Rui; Lai, Maoli

    2011-11-01

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  16. High mobility back-gated InAs/GaSb double quantum well grown on GaSb substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Binh-Minh, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com; Yi, Wei; Noah, Ramsey

    2015-01-19

    We report a backgated InAs/GaSb double quantum well device grown on GaSb substrate. The use of the native substrate allows for high materials quality with electron mobility in excess of 500 000 cm{sup 2}/Vs at sheet charge density of 8 × 10{sup 11} cm{sup −2} and approaching 100 000 cm{sup 2}/Vs near the charge neutrality point. Lattice matching between the quantum well structure and the substrate eliminates the need for a thick buffer, enabling large back gate capacitance and efficient coupling with the conduction channels in the quantum wells. As a result, quantum Hall effects are observed in both electron and hole regimes across the hybridizationmore » gap.« less

  17. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-04-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.

  18. Enol tautomers of Watson-Crick base pair models are metastable because of nuclear quantum effects.

    PubMed

    Pérez, Alejandro; Tuckerman, Mark E; Hjalmarson, Harold P; von Lilienfeld, O Anatole

    2010-08-25

    Intermolecular enol tautomers of Watson-Crick base pairs could emerge spontaneously via interbase double proton transfer. It has been hypothesized that their formation could be facilitated by thermal fluctuations and proton tunneling, and possibly be relevant to DNA damage. Theoretical and computational studies, assuming classical nuclei, have confirmed the dynamic stability of these rare tautomers. However, by accounting for nuclear quantum effects explicitly through Car-Parrinello path integral molecular dynamics calculations, we find the tautomeric enol form to be dynamically metastable, with lifetimes too insignificant to be implicated in DNA damage.

  19. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    PubMed

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  20. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.0–1.2 μm due to increased charge carrier's localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhkov, D. I., E-mail: krizh@ipmras.ru; Yablonsky, A. N.; Morozov, S. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2 μm) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiativemore » recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.« less

  1. Semiempirical modeling of Ag nanoclusters: New parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-06-03

    Quantum mechanical studies of Ag nanoclusters have shown that plasmonic behavior can be modeled in terms of excited states where collectivity among single excitations leads to strong absorption. However, new computational approaches are needed to provide understanding of plasmonic excitations beyond the single-excitation level. We show that semiempirical INDO/CI approaches with appropriately selected parameters reproduce the TD-DFT optical spectra of various closed-shell Ag clusters. The plasmon-like states with strong optical absorption comprise linear combinations of many singly excited configurations that contribute additively to the transition dipole moment, whereas all other excited states show significant cancellation among the contributions to themore » transition dipole moment. The computational efficiency of this approach allows us to investigate the role of double excitations at the INDO/SDCI level. The Ag cluster ground states are stabilized by slight mixing with doubly excited configurations, but the plasmonic states generally retain largely singly excited character. The consideration of double excitations in all cases improves the agreement of the INDO/CI absorption spectra with TD-DFT, suggesting that the SDCI calculation effectively captures some of the ground-state correlation implicit in DFT. Furthermore, these results provide the first evidence to support the commonly used assumption that single excitations are in many cases sufficient to describe the optical spectra of plasmonic excitations quantum mechanically.« less

  2. Entropic Barriers for Two-Dimensional Quantum Memories

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  3. Fast summation of divergent series and resurgent transseries from Meijer-G approximants

    NASA Astrophysics Data System (ADS)

    Mera, Héctor; Pedersen, Thomas G.; Nikolić, Branislav K.

    2018-05-01

    We develop a resummation approach based on Meijer-G functions and apply it to approximate the Borel sum of divergent series and the Borel-Écalle sum of resurgent transseries in quantum mechanics and quantum field theory (QFT). The proposed method is shown to vastly outperform the conventional Borel-Padé and Borel-Padé-Écalle summation methods. The resulting Meijer-G approximants are easily parametrized by means of a hypergeometric ansatz and can be thought of as a generalization to arbitrary order of the Borel-hypergeometric method [Mera et al., Phys. Rev. Lett. 115, 143001 (2015), 10.1103/PhysRevLett.115.143001]. Here we demonstrate the accuracy of this technique in various examples from quantum mechanics and QFT, traditionally employed as benchmark models for resummation, such as zero-dimensional ϕ4 theory; the quartic anharmonic oscillator; the calculation of critical exponents for the N -vector model; ϕ4 with degenerate minima; self-interacting QFT in zero dimensions; and the summation of one- and two-instanton contributions in the quantum-mechanical double-well problem.

  4. Double layers and double wells in arbitrary degenerate plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less

  5. Magnetoresistance engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates

    NASA Astrophysics Data System (ADS)

    Fábián, G.; Makk, P.; Madsen, M. H.; Nygârd, J.; Schönenberger, C.; Baumgartner, A.

    2016-11-01

    We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find two sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transitions between singlet and triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin based Bell inequalities.

  6. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  7. Strange and non-strange particle production in antiproton-nucleus collisions in the UrQMD model

    NASA Astrophysics Data System (ADS)

    Limphirat, Ayut; Kobdaj, Chinorat; Bleicher, Marcus; Yan, Yupeng; Stöcker, Horst

    2009-06-01

    The capabilities of the ultra-relativistic quantum molecular dynamics (UrQMD) model in describing antiproton-nucleus collisions are presented. The model provides a good description of the experimental data on multiplicities, transverse momentum distributions and rapidity distributions in antiproton-nucleus collisions. Special emphasis is put on the comparison of strange particles in reactions with nuclear targets ranging from 7Li, 12C, 32S, 64Cu to 131Xe because of the important role of strangeness for the exploration of hypernuclei at PANDA-FAIR. The productions of the double strange baryons Ξ- and \\bar{\\Xi}^+ , which may be used to produce double Λ hypernuclei, are predicted in this work for the reactions \\skew2\\bar{p} + 24Mg, 64Cu and 197Au.

  8. More on quantum groups from the quantization point of view

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1994-12-01

    Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.

  9. RKKY interaction in a chirally coupled double quantum dot system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heine, A. W.; Tutuc, D.; Haug, R. J.

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less

  10. Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities.

    PubMed

    Heo, Jino; Hong, Chang-Ho; Kang, Min-Sung; Yang, Hyeon; Yang, Hyung-Jin; Hong, Jong-Phil; Choi, Seong-Gon

    2017-11-02

    We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.

  11. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  12. Exponential quantum spreading in a class of kicked rotor systems near high-order resonances

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Wang, Jiao; Guarneri, Italo; Casati, Giulio; Gong, Jiangbin

    2013-11-01

    Long-lasting exponential quantum spreading was recently found in a simple but very rich dynamical model, namely, an on-resonance double-kicked rotor model [J. Wang, I. Guarneri, G. Casati, and J. B. Gong, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.234104 107, 234104 (2011)]. The underlying mechanism, unrelated to the chaotic motion in the classical limit but resting on quasi-integrable motion in a pseudoclassical limit, is identified for one special case. By presenting a detailed study of the same model, this work offers a framework to explain long-lasting exponential quantum spreading under much more general conditions. In particular, we adopt the so-called “spinor” representation to treat the kicked-rotor dynamics under high-order resonance conditions and then exploit the Born-Oppenheimer approximation to understand the dynamical evolution. It is found that the existence of a flat band (or an effectively flat band) is one important feature behind why and how the exponential dynamics emerges. It is also found that a quantitative prediction of the exponential spreading rate based on an interesting and simple pseudoclassical map may be inaccurate. In addition to general interests regarding the question of how exponential behavior in quantum systems may persist for a long time scale, our results should motivate further studies toward a better understanding of high-order resonance behavior in δ-kicked quantum systems.

  13. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  14. Spectral features of the tunneling-induced transparency and the Autler-Townes doublet and triplet in a triple quantum dot.

    PubMed

    Luo, Xiao-Qing; Li, Zeng-Zhao; Jing, Jun; Xiong, Wei; Li, Tie-Fu; Yu, Ting

    2018-02-15

    We theoretically investigate the spectral features of tunneling-induced transparency (TIT) and Autler-Townes (AT) doublet and triplet in a triple-quantum-dot system. By analyzing the eigenenergy spectrum of the system Hamiltonian, we can discriminate TIT and double TIT from AT doublet and triplet, respectively. For the resonant case, the presence of the TIT does not exhibit distinguishable anticrossing in the eigenenergy spectrum in the weak-tunneling regime, while the occurrence of double anticrossings in the strong-tunneling regime shows that the TIT evolves to the AT doublet. For the off-resonance case, the appearance of a new detuning-dependent dip in the absorption spectrum leads to double TIT behavior in the weak-tunneling regime due to no distinguished anticrossing occurring in the eigenenergy spectrum. However, in the strong-tunneling regime, a new detuning-dependent dip in the absorption spectrum results in AT triplet owing to the presence of triple anticrossings in the eigenenergy spectrum. Our results can be applied to quantum measurement and quantum-optics devices in solid systems.

  15. Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basset, J.; Stockklauser, A.; Jarausch, D.-D.

    2014-08-11

    We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope ofmore » the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.« less

  16. Strong spin-photon coupling in silicon

    NASA Astrophysics Data System (ADS)

    Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.

    2018-03-01

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

  17. Coherent inflation for large quantum superpositions of levitated microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  18. Quantum confinement of a hydrogenic donor in a double quantum well: Through diamagnetic susceptibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignesh, G.; Nithiananthi, P., E-mail: nithyauniq@gmail.com

    2015-06-24

    Diamagnetic susceptibility of a randomly distributed donor in a GaAs/Al{sub 0.3}Ga{sub 0.7}As Double Quantum Well has been calculated in its ground state as a function of barrier and well width. It is shown that the modification in the barrier and well dimension significantly influences the dimensional character of the donor through modulating the subband distribution and in turn the localization of the donor. The effect of barrier and well thickness on the interparticle distance has also been observed. Interestingly it opens up the possibility of tuning the susceptibility and monitoring the tunnel coupling among the wells.

  19. Quantum confinement of a hydrogenic donor in a double quantum well: Through diamagnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Vignesh, G.; Nithiananthi, P.

    2015-06-01

    Diamagnetic susceptibility of a randomly distributed donor in a GaAs/Al0.3Ga0.7As Double Quantum Well has been calculated in its ground state as a function of barrier and well width. It is shown that the modification in the barrier and well dimension significantly influences the dimensional character of the donor through modulating the subband distribution and in turn the localization of the donor. The effect of barrier and well thickness on the interparticle distance has also been observed. Interestingly it opens up the possibility of tuning the susceptibility and monitoring the tunnel coupling among the wells.

  20. The temperature dependence of the conductivity peak values in the single and the double quantum well nanostructures n-InGaAs/GaAs after IR-illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arapov, Yu. G.; Gudina, S. V.; Klepikova, A. S., E-mail: klepikova@imp.uran.ru

    2017-02-15

    The dependences of the longitudinal and Hall resistances on a magnetic field in n-InGaAs/GaAs heterostructures with a single and double quantum wells after infrared illumination are measured in the range of magnetic fields Ð’ = 0–16 T and temperatures T = 0.05–4.2 K. Analysis of the experimental results was carried out on a base of two-parameter scaling hypothesis for the integer quantum Hall effect. The value of the second (irrelevant) critical exponent of the theory of two-parameter scaling was estimated.

  1. Closed form solution for a double quantum well using Gröbner basis

    NASA Astrophysics Data System (ADS)

    Acus, A.; Dargys, A.

    2011-07-01

    Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Gröbner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.

  2. Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew

    2011-03-01

    We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.

  3. A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques

    NASA Astrophysics Data System (ADS)

    Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.

    1998-05-01

    A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.

  4. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    NASA Astrophysics Data System (ADS)

    Halim, N. Syafira Abdul; Wahid, M. Halim A.; Hambali, N. Azura M. Ahmad; Rashid, Shanise; Shahimin, Mukhzeer M.

    2017-11-01

    Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V.

  5. "Turn-off" fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides.

    PubMed

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang

    2016-04-15

    As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej

    2017-05-01

    High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).

  7. Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-05-01

    Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.

  8. Born’s rule as signature of a superclassical current algebra

    NASA Astrophysics Data System (ADS)

    Fussy, S.; Mesa Pascasio, J.; Schwabl, H.; Grössing, G.

    2014-04-01

    We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with the application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie-Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool.

  9. Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory.

    PubMed

    Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2016-12-21

    Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10 -1 cm 2 V -1 s -1 which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.

  10. Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2016-12-01

    Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10-1 cm2 V-1 s-1 which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.

  11. Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Świderski, M.; Zieliński, M.

    2017-03-01

    Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.

  12. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  13. Double-Paddle Oscillators as Probes of Quantum Turbulence in the Zero Temperature Limit

    NASA Astrophysics Data System (ADS)

    Schmoranzer, David; Jackson, Martin; Zemma, Elisa; Luzuriaga, Javier

    2017-06-01

    We present a technical report on our tests of a double-paddle oscillator as a detector of quantum turbulence in superfluid 4He at low temperatures ranging from 20 to 1100 mK. The device, known to operate well in the two-fluid regime (Zemma and Luzuriaga in J Low Temp Phys 166:171-181, 2012), is also capable of detecting quantum turbulence in the zero temperature limit. The oscillator demonstrated Lorentzian responses with quality factors of order 10^5 in vacuum, and displayed negative-Duffing resonances in liquid, even at moderate drives. In superfluid He-II at low temperatures, its sensitivity was adversely affected by acoustic damping at higher harmonics. While it successfully created and detected the quantum turbulence, its overall performance does not compare favourably with other oscillators such as tuning forks.

  14. Machine learning bandgaps of double perovskites

    PubMed Central

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-01

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance. PMID:26783247

  15. Waves, particles, and interactions in reduced dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming

    This thesis presents a set of experiments that study the interplay between the wave-particle duality of electrons and the interaction effects in systems of reduced dimensions. Both dc transport and measurements of current noise have been employed in the studies; in particular, techniques for efficiently measuring current noise have been developed specifically for these experiments. The first four experiments study current noise auto- and cross correlations in various mesoscopic devices, including quantum point contacts, single and double quantum dots, and graphene devices. In quantum point contacts, shot noise at zero magnetic field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus where shot noise vanishes, agrees with a model of bias-dependent electron heating. In a three-lead single quantum dot and a capacitively coupled double quantum dot, sign reversal of noise cross correlations have been observed in the Coulomb blockade regime, and found to be tunable by gate voltages and source-drain bias. In the limit of weak output tunneling, cross correlations in the three-lead dot are found to be proportional to the two-lead noise in excess of the Poissonian value. These results can be reproduced with master equation calculations that include multi-level transport in the single dot, and inter-dot charging energy in the double dot. Shot noise measurements in single-layer graphene devices reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, suggesting that the transport is disorder dominated. The next two experiments study magnetoresistance oscillations in electronic Fabry-Perot interferometers in the integer quantum Hall regime. Two types of resistance oscillations, as a function of perpendicular magnetic field and gate voltages, in two interferometers of different sizes can be distinguished by three experimental signatures. The oscillations observed in the small (2.0 mum2) device are understood to arise from Coulomb blockade, and those observed in the big (18 mum2) device from Aharonov-Bohm interference. Nonlinear transport in the big device reveals a checkerboard-like pattern of conductance oscillations as a function of dc bias and magnetic field. Edge-state velocities extracted from the checkerboard data are compared to model calculations and found to be consistent with a crossover from skipping orbits at low fields to E⃗ x B⃗ drift at high fields. Suppression of visibility as a function of bias and magnetic field is accounted for by including energy- and field-dependent dephasing of edge electrons.

  16. Triple-server blind quantum computation using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua

    2014-04-01

    Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.

  17. Teaching Quantum Nonlocality

    ERIC Educational Resources Information Center

    Hobson, Art

    2012-01-01

    Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less

  19. Optimization of edge state velocity in the integer quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.

    2018-02-01

    Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.

  20. Electric-field control of conductance in metal quantum point contacts by electric-double-layer gating

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.

    2017-10-01

    An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.

  1. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less

  2. Our (Represented) World: A Quantum-Like Object

    NASA Astrophysics Data System (ADS)

    Lambert-Mogiliansky, Ariane; Dubois, François

    It has been suggested that observed cognitive limitations may be an expression of the quantum-like structure of the mind. In this chapter we explore some implications of this hypothesis for learning i.e., for the construction of a representation of the world. For a quantum-like individual, there exists a multiplicity of mentally incompatible (Bohr complementary) but equally valid and complete representations (mental pictures) of the world. The process of learning i.e., of constructing a representation, involves two kinds of operations on the mental picture. The acquisition of new data which is modelled as a preparation procedure and the processing of data which is modelled as an introspective measurement operation. This process is shown not to converge to a single mental picture. Rather, it can evolve forever. We define a concept of entropy to capture relative intrinsic uncertainty. The analysis suggests a new perspective on learning. First, it implies that we must turn to double objectification as in Quantum Mechanics: the cognitive process is the primary object of learning. Second, it suggests that a representation of the world arises as the result of creative interplay between the mind and the environment.

  3. Out-of-time-ordered measurements as a probe of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Bordia, Pranjal; Alet, Fabien; Hosur, Pavan

    2018-03-01

    Probing the out-of-equilibrium dynamics of quantum matter has gained renewed interest owing to immense experimental progress in artificial quantum systems. Dynamical quantum measures such as the growth of entanglement entropy and out-of-time-ordered correlators (OTOCs) have been shown to provide great insight by exposing subtle quantum features invisible to traditional measures such as mass transport. However, measuring them in experiments requires either identical copies of the system, an ancilla qubit coupled to the whole system, or many measurements on a single copy, thereby making scalability extremely complex and hence, severely limiting their potential. Here, we introduce an alternative quantity, the out-of-time-ordered measurement (OTOM), which involves measuring a single observable on a single copy of the system, while retaining the distinctive features of the OTOCs. We show, theoretically, that OTOMs are closely related to OTOCs in a doubled system with the same quantum statistical properties as the original system. Using exact diagonalization, we numerically simulate classical mass transport, as well as quantum dynamics through computations of the OTOC, the OTOM, and the entanglement entropy in quantum spin chain models in various interesting regimes (including chaotic and many-body localized systems). Our results demonstrate that an OTOM can successfully reveal subtle aspects of quantum dynamics hidden to classical measures and, crucially, provide experimental access to them.

  4. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  5. Quantum mechanical tunneling in the automerization of cyclobutadiene

    NASA Astrophysics Data System (ADS)

    Schoonmaker, R.; Lancaster, T.; Clark, S. J.

    2018-03-01

    Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.

  6. Understanding the Double Quantum Muonium RF Resonance

    NASA Astrophysics Data System (ADS)

    Kreitzman, S. R.; Cottrell, S. P.; Fleming, D. G.; Sun-Mack, S.

    A physically intuitive analytical solution to the Mu + RF Hamiltonian and lineshape is developed. The method is based on reformulating the problem in a basis set that explicitly accounts for the 1q RF transitions and identifying an isolated upper 1q quasi-eigenstate within that basis. Subsequently the double quantum resonance explicitly manifests itself via the non-zero interaction term between the pair of lower ortho-normalized 1q basis states, which in this field region are substantially the | \\uparrow \\uparrow > and | \\downarrow \\downarrow > Mu states.

  7. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    NASA Astrophysics Data System (ADS)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  8. Double valley Dirac fermions for 3D and 2D Hg1-x Cd x Te with strong asymmetry

    NASA Astrophysics Data System (ADS)

    Marchewka, M.

    2017-04-01

    In this paper the possibility to bring about the double-valley Dirac fermions in some quantum structures is predicted. These quantum structures are: strained 3D Hg1-x Cd x Te topological insulator (TI) with strong interface inversion asymmetry and the asymmetric Hg1-x Cd x Te double quantum wells (DQW). The numerical analysis of the dispersion relation for 3D TI Hg1-x Cd x Te for the proper Cd (x)-content of the Hg1-x Cd x Te compound clearly shows that the inversion symmetry breaking together with the unaxial tensile strain causes the splitting of each of the Dirac nodes (two belonging to two interfaces) into two in the proximity of the Γ-point. Similar effects can be obtained for asymmetric Hg1-x Cd x Te DQW with the proper content of Cd and proper width of the quantum wells. The aim of this work is to explore the inversion symmetry breaking in 3D TI and 2D DQW mixed HgCdTe systems. It is shown that this symmetry breaking leads to the dependence of carriers energy on quasi-momentum similar to that of Weyl fermions.

  9. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  10. Solvent Dependence of Double Proton Transfer in the Formic Acid-Formamidine Complex: Path Integral Molecular Dynamics Investigation.

    PubMed

    Kungwan, Nawee; Ngaojampa, Chanisorn; Ogata, Yudai; Kawatsu, Tsutomu; Oba, Yuki; Kawashima, Yukio; Tachikawa, Masanori

    2017-10-05

    Solvent dependence of double proton transfer in the formic acid-formamidine (FA-FN) complex at room temperature was investigated by means of ab initio path integral molecular dynamics (AIPIMD) simulation with taking nuclear quantum and thermal effects into account. The conductor-like screening model (COSMO) was applied for solvent effect. In comparison with gas phase, double proton delocalization between two heavy atoms (O and N) in FA-FN were observed with reduced proton transfer barrier height in low dielectric constant medium (<4.8). For dielectric constant medium at 4.8, the chance of finding these two protons are more pronounced due to the solvent effect which completely washes out the proton transfer barrier. In the case of higher dielectric constant medium (>4.8), the ionic species becomes more stable than the neutral ones and the formate anion and formamidium cation are thermodynamically stable. For ab initio molecular dynamics simulation, in low dielectric constant medium (<4.8) a reduction of proton transfer barrier with solvent effect is found to be less pronounced than the AIPIMD due to the absence of nuclear quantum effect. Moreover, the motions of FA-FN complex are significantly different with increasing dielectric constant medium. Such a difference is revealed in detail by the principal component analysis.

  11. Quantum treatment of the capture of an atom by a fast nucleus incident on a molecule

    NASA Astrophysics Data System (ADS)

    Shakeshaft, Robin; Spruch, Larry

    1980-04-01

    The classical double-scattering model of Thomas for the capture of electrons from atoms by fast ions yields a cross section σ which dominates over the single scattering contribution for sufficiently fast ions. The magnitude of the classical double-scattering σ differs, however, from its quantum-mechanical (second-Born) analog by an order of magnitude. Further, a "fast ion" means an ion of some MeV, and at those energies the cross sections are very low. On the other hand, as noted by Bates, Cook, and Smith, the double-scattering cross section for the capture of atoms from molecules by fast ions dominates over the single-scattering contribution for incident ions of very much lower energy; roughly, one must have the velocity of the incident projectile much larger than a characteristic internal velocity of the particles in the target. It follows that we are in the asymptotic domain not at about 10 MeV but at about 100 eV. For the reaction H+ + CH4-->H+2 + CH3 with incident proton energies of 70 to 150 eV, the peak in the angular distribution as determined experimentally is at almost precisely the value predicted by the classical model, but the theoretical total cross section is about 30 times too large. Using a quantum version of the classical model, which involves the same kinematics and therefore preserves the agreement with the angular distribution, we obtain somewhat better agreement with the experimental total cross section, by a factor of about 5. (To obtain very good agreement, one may have to perform a really accurate calculation of large-angle elastic scattering of protons and H atoms by CH3, and take into account interference effects.) In the center-of-mass frame, for sufficiently high incident energy, the first of the two scatterings involves the scattering of H+ by H through an angle of very close to 90°, and it follows that the nuclei of the emergent H+2 ion will almost all be in the singlet state. We have also calculated the cross section for the reaction D+ + CH4-->(HD)+ + CH3.

  12. Interlayer tunneling in double-layer quantum hall pseudoferromagnets.

    PubMed

    Balents, L; Radzihovsky, L

    2001-02-26

    We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.

  13. Recent theoretical advances on superradiant phase transitions

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-03-01

    The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.

  14. Quantum memory on a charge qubit in an optical microresonator

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. V.

    2017-10-01

    A quantum-memory unit scheme on the base of a semiconductor structure with quantum dots is proposed. The unit includes a microresonator with single and double quantum dots performing frequencyconverter and charge-qubit functions, respectively. The writing process is carried out in several stages and it is controlled by optical fields of the resonator and laser. It is shown that, to achieve high writing probability, it is necessary to use high-Q resonators and to be able to suppress relaxation processes in quantum dots.

  15. "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells.

    PubMed

    Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei

    2017-12-27

    A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.

  16. Controlled Photon Switch Assisted by Coupled Quantum Dots

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  17. Electrotunable artificial molecules based on van der Waals heterostructures

    PubMed Central

    Zhang, Zhuo-Zhi; Song, Xiang-Xiang; Luo, Gang; Deng, Guang-Wei; Mosallanejad, Vahid; Taniguchi, Takashi; Watanabe, Kenji; Li, Hai-Ou; Cao, Gang; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-01-01

    Quantum confinement has made it possible to detect and manipulate single-electron charge and spin states. The recent focus on two-dimensional (2D) materials has attracted significant interests on possible applications to quantum devices, including detecting and manipulating either single-electron charging behavior or spin and valley degrees of freedom. However, the most popular model systems, consisting of tunable double-quantum-dot molecules, are still extremely difficult to realize in these materials. We show that an artificial molecule can be reversibly formed in atomically thin MoS2 sandwiched in hexagonal boron nitride, with each artificial atom controlled separately by electrostatic gating. The extracted values for coupling energies at different regimes indicate a single-electron transport behavior, with the coupling strength between the quantum dots tuned monotonically. Moreover, in the low-density regime, we observe a decrease of the conductance with magnetic field, suggesting the observation of Coulomb blockade weak anti-localization. Our experiments demonstrate for the first time the realization of an artificial quantum-dot molecule in a gated MoS2 van der Waals heterostructure, which could be used to investigate spin-valley physics. The compatibility with large-scale production, gate controllability, electron-hole bipolarity, and new quantum degrees of freedom in the family of 2D materials opens new possibilities for quantum electronics and its applications. PMID:29062893

  18. A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⨁ so(n) ⨁ so(N-n)

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2015-11-01

    We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.

  19. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp; Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198; Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp

    Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integralsmore » on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.« less

  20. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    PubMed

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.

  1. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states

    NASA Astrophysics Data System (ADS)

    Chan, GuoXuan; Wang, Xin

    2018-04-01

    We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.

  2. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    PubMed

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  3. Input-output theory for spin-photon coupling in Si double quantum dots

    NASA Astrophysics Data System (ADS)

    Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido

    2017-12-01

    The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.

  4. Quantum dressing orbits on compact groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Šťovíček, Pavel

    1993-02-01

    The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.

  5. Theoretical Investigation of Light Transmission in a Slab Cavity via Kerr Nonlinearity of Carbon Nanotube Quantum Dot Nanostructure

    NASA Astrophysics Data System (ADS)

    Solookinejad, Gh.; Jabbari, M.; Sangachin, E. Ahmadi; Asadpour, S. H.

    2018-01-01

    In this paper, we discuss the transmission properties of weak probe laser field propagate through slab cavity with defect layer of carbon-nanotube quantum dot (CNT-QD) nanostructure. We show that due to spin-orbit coupling, the double electromagnetically induced transparency (EIT) windows appear and the giant Kerr nonlinearity of the intracavity medium can lead to manipulating of transmission coefficient of weak probe light. The thickness effect of defect layer medium has also been analyzed on transmission properties of probe laser field. Our proposed model may be useful for integrated photonics devices based on CNT-QD for applications in all-optical systems which require multiple EIT effect.

  6. Design considerations for multielectron double quantum dot qubits in silicon

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Barnes, Edwin; Kestner, Jason

    2014-03-01

    Solid state double quantum dot (DQD) spin qubits can be created by confining two electrons to a DQD potential. We present results showing the viability and potential advantages of creating a DQD spin qubit with greater than two electrons, and which suggest that silicon devices which could realize these advantages are experimentally possible. Our analysis of a six-electron DQD uses full configuration interaction methods and shows an isolated qubit space in regimes which 3D quantum device simulations indicate are accessible experimentally. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Negative tunnel magnetoresistance and differential conductance in transport through double quantum dots

    NASA Astrophysics Data System (ADS)

    Trocha, Piotr; Weymann, Ireneusz; Barnaś, Józef

    2009-10-01

    Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.

  8. A Pearson Effective Potential for Monte Carlo Simulation of Quantum Confinement Effects in nMOSFETs

    NASA Astrophysics Data System (ADS)

    Jaud, Marie-Anne; Barraud, Sylvain; Saint-Martin, Jérôme; Bournel, Arnaud; Dollfus, Philippe; Jaouen, Hervé

    2008-12-01

    A Pearson Effective Potential model for including quantization effects in the simulation of nanoscale nMOSFETs has been developed. This model, based on a realistic description of the function representing the non zero-size of the electron wave packet, has been used in a Monte-Carlo simulator for bulk, single gate SOI and double-gate SOI devices. In the case of SOI capacitors, the electron density has been computed for a large range of effective field (between 0.1 MV/cm and 1 MV/cm) and for various silicon film thicknesses (between 5 nm and 20 nm). A good agreement with the Schroedinger-Poisson results is obtained both on the total inversion charge and on the electron density profiles. The ability of an Effective Potential approach to accurately reproduce electrostatic quantum confinement effects is clearly demonstrated.

  9. Excitation basis for (3+1)d topological phases

    NASA Astrophysics Data System (ADS)

    Delcamp, Clement

    2017-12-01

    We consider an exactly solvable model in 3+1 dimensions, based on a finite group, which is a natural generalization of Kitaev's quantum double model. The corresponding lattice Hamiltonian yields excitations located at torus-boundaries. By cutting open the three-torus, we obtain a manifold bounded by two tori which supports states satisfying a higher-dimensional version of Ocneanu's tube algebra. This defines an algebraic structure extending the Drinfel'd double. Its irreducible representations, labeled by two fluxes and one charge, characterize the torus-excitations. The tensor product of such representations is introduced in order to construct a basis for (3+1)d gauge models which relies upon the fusion of the defect excitations. This basis is defined on manifolds of the form Σ × S_1 , with Σ a two-dimensional Riemann surface. As such, our construction is closely related to dimensional reduction from (3+1)d to (2+1)d topological orders.

  10. Photon mirror acceleration in the quantum regime

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Fedele, R.

    2014-12-01

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  11. Strong field control of the interatomic Coulombic decay process in quantum dots

    NASA Astrophysics Data System (ADS)

    Haller, Anika; Chiang, Ying-Chih; Menger, Maximilian; Aziz, Emad F.; Bande, Annika

    2017-01-01

    In recent years the laser-induced interatomic Coulombic decay (ICD) process in paired quantum dots has been predicted (Bande, 2013). In this work we target the enhancement of ICD by scanning over a range of strong-field laser intensities. The GaAs quantum dots are modeled by a one-dimensional double-well potential in which simulations are done with the space-resolved multi-configuration time-dependent Hartree method including antisymmetrization to account for the fermions. As a novelty a complementary state-resolved ansatz is developed to consolidate the interpretation of transient state populations, widths obtained for the ICD and the competing direct ionization channel, and Fano peak profiles in the photoelectron spectra. The major results are that multi-photon processes are unimportant even for the strongest fields. Further, below- π to π pulses display the highest ICD efficiency while the direct ionization becomes less dominant.

  12. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    NASA Astrophysics Data System (ADS)

    Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-01

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  13. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density,more » particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.« less

  14. Machine learning bandgaps of double perovskites

    DOE PAGES

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; ...

    2016-01-19

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less

  15. Tunnel magnetoresistance and linear conductance of double quantum dots strongly coupled to ferromagnetic leads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weymann, Ireneusz, E-mail: weymann@amu.edu.pl

    2015-05-07

    We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition frommore » the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.« less

  16. Simulation of electron transport in quantum well devices

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Gullapalli, K. K.; Reddy, V. R.; Neikirk, D. P.

    1992-01-01

    Double barrier resonant tunneling diodes (DBRTD) have received much attention as possible terahertz devices. Despite impressive experimental results, the specifics of the device physics (i.e., how the electrons propagate through the structure) are only qualitatively understood. Therefore, better transport models are warranted if this technology is to mature. In this paper, the Lattice Wigner function is used to explain the important transport issues associated with DBRTD device behavior.

  17. Magneto-transport studies of a few hole GaAs double quantum dot in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Studenikin, Sergei; Bogan, Alex; Tracy, Lisa; Gaudreau, Louis; Sachrajda, Andy; Korkusinski, Marek; Reno, John; Hargett, Terry

    Compared to equivalent electron devices, single-hole spins interact weakly with lattice nuclear spins leading to extended quantum coherence times. This makes p-type Quantum Dots (QD) particularly attractive for practical quantum devices such as qubit circuits, quantum repeaters, quantum sensors etc. where long coherence time is required. Another property of holes is the possibility to tune their g-factor as a result of the strong anisotropy of the valance band. Hole g-factors can be conveniently tuned in situ from a large value to almost zero by tilting the magnetic field relative to the 2D hole gas surface normal. In this work we explore high-bias magneto-transport properties of a p-type double quantum dot (DQD) device fabricated from a GaAs/AlGaAs heterostructures using lateral split-gate technology. A charge detection technique is used to monitor number of holes and tune the p-DQD in a single hole regime around (1,1) and (2,0) occupation states where Pauli spin-blockaded transport is expected. Four states are identified in quantizing magnetic fields within the high-bias current stripe - three-fold triplet and a singlet which allows determining effective heavy hole g-factor as a function of the tilt angle from 90 to 0 degrees.

  18. Quantum cluster algebras and quantum nilpotent algebras.

    PubMed

    Goodearl, Kenneth R; Yakimov, Milen T

    2014-07-08

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.

  19. Quantum cluster algebras and quantum nilpotent algebras

    PubMed Central

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  20. Electric and magnetic field modulated energy dispersion, conductivity and optical response in double quantum wire with spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-02-01

    We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.

  1. The double copy: gravity from gluons

    NASA Astrophysics Data System (ADS)

    White, C. D.

    2018-04-01

    Three of the four fundamental forces in nature are described by so-called gauge theories, which include the effects of both relativity and quantum mechanics. Gravity, on the other hand, is described by General Relativity, and the lack of a well-behaved quantum theory - believed to be relevant at the centre of black holes, and at the Big Bang itself - remains a notorious unsolved problem. Recently a new correspondence, the double copy, has been discovered between scattering amplitudes (quantities related to the probability for particles to interact) in gravity, and their gauge theory counterparts. This has subsequently been extended to other quantities, providing gauge theory analogues of e.g. black holes. We here review current research on the double copy, and describe some possible applications.

  2. Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.

    2014-09-01

    We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.

  3. Magnetophonon resonance in double quantum wells

    NASA Astrophysics Data System (ADS)

    Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.

    2009-05-01

    The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.

  4. Controlling chaos-assisted directed transport via quantum resonance.

    PubMed

    Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua

    2016-06-01

    We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

  5. Controlling chaos-assisted directed transport via quantum resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jintao; Zou, Mingliang; Luo, Yunrong

    2016-06-15

    We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

  6. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  7. Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings.

    PubMed

    Huang, S M; Tokura, Y; Akimoto, H; Kono, K; Lin, J J; Tarucha, S; Ono, K

    2010-04-02

    We investigated the electron transport property of the InGaAs/GaAs double quantum dots, the electron g factors of which are different from each other. We found that in a magnetic field, the resonant tunneling is suppressed even if one of the Zeeman sublevels is aligned. This is because the other misaligned Zeeman sublevels limit the total current. A finite broadening of the misaligned sublevel partially relieves this bottleneck effect, and the maximum current is reached when interdot detuning is half the Zeeman energy difference.

  8. Interplay of coupling and superradiant emission in the optical response of a double quantum dot

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2009-09-01

    We study theoretically the optical response of a double quantum dot structure to an ultrafast optical excitation. We show that the interplay of a specific type of coupling between the dots and their collective interaction with the radiative environment leads to very characteristic features in the time-resolved luminescence as well as in the absorption spectrum of the system. For a sufficiently strong coupling, these effects survive even if the transition energy mismatch between the two dots exceeds by far the emission linewidth.

  9. Fast Single-Shot Hold Spin Readout in Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry

    Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.

  10. Oxide double quantum dot - an answer to the qubit problem?

    NASA Astrophysics Data System (ADS)

    Yarlagadda, Sudhakar; Dey, Amit

    We propose that oxide-based double quantum dots with only one electron (tunnelling between the dots) can be regarded as a qubit with little decoherence; these dots can possibly meet future challenges of miniaturization. The tunnelling of the eg electron between the dots and the attraction between the electron and the hole on adjacent dots can be modelled as an anisotropic Heisenberg interaction between two spins with the total z-component of the spins being zero. We study two anisotropically interacting spins coupled to optical phonons; we restrict our analysis to the regime of strong coupling to the environment, to the antiadiabatic region, and to the subspace with zero value for SzT (the z-component of the total spin). In the case where each spin is coupled to a different phonon bath, we assume that the system and the environment are initially uncorrelated (and form a simply separable state) in the polaronic frame of reference. By analyzing the polaron dynamics through a non-Markovian quantum master equation, we find that the system manifests a small amount of decoherence that decreases both with increasing nonadiabaticity and with enhancing strength of coupling g. Recently I got an invitation to visit Argonne National Lab from Jan./2106 to end of March/2016. I thought I would give a talk at APS March meeting. Please accept the submission.

  11. Quantum properties of double kicked systems with classical translational invariance in momentum

    NASA Astrophysics Data System (ADS)

    Dana, Itzhack

    2015-01-01

    Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .

  12. Electron Dynamics in Finite Quantum Systems

    NASA Astrophysics Data System (ADS)

    McDonald, Christopher R.

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.

  13. Double-beta decay processes from lattice quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Davoudi, Zohreh; Tiburzi, Brian; Wagman, Michael; Winter, Frank; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Savage, Martin; Shanahan, Phiala; Nplqcd Collaboration

    2017-09-01

    While an observation of neutrinoless double-beta decay in upcoming experiments will establish that the neutrinos are Majorana particles, the underlying new physics responsible for this decay can only be constrained if the theoretical predictions of the rate are substantially refined. This talk demonstrates the roadmap in connecting the underlying high-scale theory to the corresponding nuclear matrix elements, focusing mainly on the nucleonic matrix elements in the simplest extension of Standard Model in which a light Majorana neutrino is mediating the process. The role of lattice QCD and effective field theory in this program, in particular, the prospect of a direct matching of the nn to pp amplitude to lattice QCD will be discussed. As a first step towards this goal, the results of the first lattice QCD calculation of the relevant matrix element for neutrinofull double-beta decay will be presented, albeit with unphysical quark masses, along with important lessons that could impact the calculations of nuclear matrix elements involved in double-beta decays of realistic nuclei.

  14. Late Quaternary to Holocene Geology, Geomorphology and Glacial History of Dawson Creek and Surrounding area, Northeast British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Henry, Edward Trowbridge

    Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.

  15. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  16. Optimized pulses for the control of uncertain qubits

    DOE PAGES

    Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...

    2012-05-18

    The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less

  17. Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyo, S. K., E-mail: sklyo@uci.edu; Pan, W.

    2015-11-21

    We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by themore » electric and magnetic fields.« less

  18. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides.

    PubMed

    Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A

    2015-10-05

    The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.

  19. Field Effect Transistor in Nanoscale

    DTIC Science & Technology

    2017-04-26

    analogues) and BxCyNz (Napathalene analogues with x+y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations...analogues with x +y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations. Interestingly, various types of non-linear...Small molecules (such as benzene), double quantum dots (like GaAs-based QDs) which are coupled weakly to metallic electrodes have shown their

  20. Effect of subband mixing on the energy levels of a hydrogenic impurity in a GaAs/Ga1-xAlxAs double quantum well in a magnetic field

    NASA Astrophysics Data System (ADS)

    Nguyen, N.; Ranganathan, R.; McCombe, B. D.; Rustgi, M. L.

    1992-05-01

    In view of the recent evidence found in favor of subband mixing in coupling of confined impurity states in doped double-quantum-well structures, a variational approach employing Gaussian trial wave functions has been used to calculate the binding energies of the ground, (1s, m=0) and first excited, (2p-, m=-1) states of a hydrogenic donor associated with the mixture of subbands of a double-GaAs quantum well coupled by a layer of Ga1-xA1xAs in the presence of a magnetic field. Two different well sizes and three different locations of the impurity, (A) at the outer edge, (B) at the center, and (C) at the inner edge of the well, are considered, and the barrier width is allowed to vary. It is found that for the structures considered here the results from the calculations using the mixture of only first (symmetric) and second (asymmetric) subbands are significantly different from those using only the lowest (symmetric) subband, especially for the intermediate barrier widths, and depend strongly on the location of the impurity in the well. These results demonstrate that subband mixing should be included in double-quantum-well structure calculations. The effect of varying the magnetic field on the binding energies is also studied. A comparison with the measurements of Ranganathan et al. [Phys. Rev. B 44, 1423 (1991)] demonstrates that the agreement is not improved when mixing of subbands higher than the lowest two is included in the calculation.

  1. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  2. Traceable quantum sensing and metrology relied up a quantum electrical triangle principle

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Wang, Hengliang; Yang, Xinju; Wei, Jingsong

    2016-11-01

    Hybrid quantum state engineering in quantum communication and imaging1-2 needs traceable quantum sensing and metrology, which are especially critical to quantum internet3 and precision measurements4 that are important across all fields of science and technology-. We aim to set up a mode of traceable quantum sensing and metrology. We developed a method by specially transforming an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) into a conducting atomic force microscopy (C-AFM) with a feedback control loop, wherein quantum entanglement enabling higher precision was relied upon a set-point, a visible light laser beam-controlled an interferometer with a surface standard at z axis, diffractometers with lateral standards at x-y axes, four-quadrant photodiode detectors, a scanner and its image software, a phase-locked pre-amplifier, a cantilever with a kHz Pt/Au conducting tip, a double barrier tunneling junction model, a STM circuit by frequency modulation and a quantum electrical triangle principle involving single electron tunneling effect, quantum Hall effect and Josephson effect5. The average and standard deviation result of repeated measurements on a 1 nm height local micro-region of nanomedicine crystal hybrid quantum state engineering surface and its differential pA level current and voltage (dI/dV) in time domains by using C-AFM was converted into an international system of units: Siemens (S), an indicated value 0.86×10-12 S (n=6) of a relative standard uncertainty was superior over a relative standard uncertainty reference value 2.3×10-10 S of 2012 CODADA quantized conductance6. It is concluded that traceable quantum sensing and metrology is emerging.

  3. Entanglement entropy at infinite-randomness fixed points in higher dimensions.

    PubMed

    Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko

    2007-10-05

    The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.

  4. Electron-electron correlation in two-photon double ionization of He-like ions [Counterintuitive electron correlation in two-photon double ionization of He-like ions

    DOE PAGES

    Hu, S. X.

    2018-01-18

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less

  5. Electron-electron correlation in two-photon double ionization of He-like ions [Counterintuitive electron correlation in two-photon double ionization of He-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less

  6. Structure solution of network materials by solid-state NMR without knowledge of the crystallographic space group.

    PubMed

    Brouwer, Darren H

    2013-01-01

    An algorithm is presented for solving the structures of silicate network materials such as zeolites or layered silicates from solid-state (29)Si double-quantum NMR data for situations in which the crystallographic space group is not known. The algorithm is explained and illustrated in detail using a hypothetical two-dimensional network structure as a working example. The algorithm involves an atom-by-atom structure building process in which candidate partial structures are evaluated according to their agreement with Si-O-Si connectivity information, symmetry restraints, and fits to (29)Si double quantum NMR curves followed by minimization of a cost function that incorporates connectivity, symmetry, and quality of fit to the double quantum curves. The two-dimensional network material is successfully reconstructed from hypothetical NMR data that can be reasonably expected to be obtained for real samples. This advance in "NMR crystallography" is expected to be important for structure determination of partially ordered silicate materials for which diffraction provides very limited structural information. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Interaction quantum quenches in the one-dimensional Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano

    2016-05-01

    We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.

  8. Carrier states and optical response in core-shell-like semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Mora-Ramos, M. E.; Duque, C. A.

    2017-02-01

    The charge carrier states in a GaAs/Al?Ga?As axially symmetric core-shell quantum wire are calculated in the effective mass approximation via a spectral method. The possible presence of externally applied electric and magnetic fields is taken into account, together with the variation in the characteristic in-plane dimensions of the structure. The obtained energy spectrum is used to evaluate the optical response through the coefficients of intersubband optical absorption and relative refractive index change. The particular geometry of the system also allows to use the same theoretical model in order to determine the photoluminescence peak energies associated to correlated electron-hole states in double GaAs/Al?Ga?As quantum rings, showing a good agreement when they are compared with recent experimental reports. This agreement may validate the use of both the calculation process and the approximate model of abrupt, circularly shaped cross section geometry for the system.

  9. Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu

    2016-02-01

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

  10. Magneto-transport of an electron bilayer system in an undoped Si/SiGe double-quantum-well heterostructure

    DOE PAGES

    Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; ...

    2015-04-08

    We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 10 10 cm -2 to 2.7 × 10 11 cm -2 were achieved, yielding a maximal combined Hall mobility (μ Hall ) of 7.7 × 10 5 cm 2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to n Hall > 3.3 × 10 10 cm -2,more » consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantum Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.« less

  11. Hybrid Circuit QED with Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Petta, Jason

    2014-03-01

    Cavity quantum electrodynamics explores quantum optics at the most basic level of a single photon interacting with a single atom. We have been able to explore cavity QED in a condensed matter system by placing a double quantum dot (DQD) inside of a high quality factor microwave cavity. Our results show that measurements of the cavity field are sensitive to charge and spin dynamics in the DQD.[2,3] We can explore non-equilibrium physics by applying a finite source-drain bias across the DQD, which results in sequential tunneling. Remarkably, we observe a gain as large as 15 in the cavity transmission when the DQD energy level detuning is matched to the cavity frequency. These results will be discussed in the context of single atom lasing.[4] I will also describe recent progress towards reaching the strong-coupling limit in cavity-coupled Si DQDs. In collaboration with Manas Kulkarni, Yinyu Liu, Karl Petersson, George Stehlik, Jacob Taylor, and Hakan Tureci. We acknowledge support from the Sloan and Packard Foundations, ARO, DARPA, and NSF.

  12. Optical Studies of Semiconductor Heterostructures: Measurements of Tunneling Times, and Studies of Strained Superlattices.

    NASA Astrophysics Data System (ADS)

    Jackson, Michael Kevin

    1991-05-01

    This thesis describes experimental optical studies of semiconductor heterostructures. The topic is introduced in Chapter 1. In Chapter 2 we describe measurements of tunneling escape times for carriers photoexcited in the quantum well of an undoped GaAs/AlAs/GaAs/AlAs/GaAs double -barrier heterostructure. The first experimental measurements of the tunneling escape times for both electrons and heavy holes were made using the two-beam technique of photoluminescence excitation correlation spectroscopy (PECS). Heavy holes were observed to escape much more rapidly than expected from a simple one-band calculation of the heavy-hold tunneling escape time. This can be explained by considering a four -band model for holes. Calculations indicate that mixing of the quantum well heavy- and light-hole levels, due to dispersion in the plane of the quantum well, can lead to significantly faster heavy hole escape at the experimental carrier densities and temperatures. Chapter 3 describes a study of the effect of indirect (X-point) levels in the AlAs barriers on the tunneling escape of electrons in undoped double-barrier heterostructures. The X-point levels affect the escape of photoexcited electrons in devices where the energy of the electron state confined in the GaAs quantum well is nearly equal to, or higher than, that of the X-point levels in the AlAs barriers. In Chapter 4, we present time-resolved photoluminescence and photocurrent studies of electrically biased double -barrier heterostructures. Studies of the photoluminescence indicate that transport of photoexcited carriers from the electrodes into the quantum well occurs. The PECS technique has been extended to a study of photocurrents in these devices; results indicate that this technique may be useful for the study of devices that cannot be studied with photoluminescence. Chapter 5 describes a study of the accomodation of lattice mismatch in CdTe/ZnTe strained layer superlattices. Using resonance Raman scattering, the energies of the ZnTe-like phonons were determined in a series of superlattices. The ZnTe-like phonon energies decrease with increasing average CdTe content, indicative of the increasing strain of the ZnTe layers, and in agreement with calculations assuming a free-standing superlattice.

  13. A 30% bandwidth tunerless SIS mixer of quantum-limited sensitivity for Herschel / HIFI Band 1

    NASA Astrophysics Data System (ADS)

    Salez, Morvan; Delorme, Yan; Peron, I.; Lecomte, Benoit; Dauplay, Frederic; Boussaha, Faouzi; Spatazza, J.; Feret, A.; Krieg, J. M.; Schuster, Karl-Friedrich

    2003-02-01

    We report on the status of the development of a 30% bandwidth tunerless SIS double-sideband mixer for the "Band 1" (480 GHz-630 GHz) channel of the heterodyne instrument (HIFI) of ESA"s Herschel Space Observatory, scheduled for launch in 2007. After exposing the main features of our mixer design, we present the performance achieved by the demonstration mixer, measured via Fourier Transform Spectroscopy and heterodyne Y factor calibrations. We infer from a preliminary mixer analysis that the mixer has very low, quantum-limited noise and low conversion loss. We also report on some pre-qualification tests, as we currently start to manufacture the qualification models and design the last iteration of masks for SIS junction production.

  14. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds.

    PubMed

    Ryan, Robert G; Stacey, Alastair; O'Donnell, Kane M; Ohshima, Takeshi; Johnson, Brett C; Hollenberg, Lloyd C L; Mulvaney, Paul; Simpson, David A

    2018-04-18

    Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp 2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.

  15. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning.

    PubMed

    Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2017-06-22

    Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.

  16. Stability of excitons in double quantum well: Through electron and holes transmission probabilities

    NASA Astrophysics Data System (ADS)

    Vignesh, G.; Nithiananthi, P.

    2017-05-01

    Stability of excitons has been analyzed using the transmission probability of its constituent particles in GaAs/Al0.3Ga0.7As Double Quantum Well (DQW) structure by varying well and barrier layer thickness. The effective mass approximation is used and anisotropy in material properties are also considered to get realistic situations. It is observed that tuning barrier layer avails many resonance peaks for the transmission and tuning well width admits maximum transmission at narrow well widths. Every saddle point of the observed transmission coefficients decides the formation, strength and transportation of excitons in DQW.

  17. Rotational fluxons of Bose-Einstein condensates in coplanar double-ring traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, J.; Institute of Natural Sciences, Massey University; Haigh, T. J.

    Rotational analogs to magnetic fluxons in conventional Josephson junctions are predicted to emerge in the ground state of rotating tunnel-coupled annular Bose-Einstein condensates (BECs). Such topological condensate-phase structures can be manipulated by external potentials. We determine conditions for observing macroscopic quantum tunneling of a fluxon. Rotational fluxons in double-ring BECs can be created, manipulated, and controlled by external potentials in different ways than is possible in the solid-state system, thus rendering them a promising candidate system for studying and utilizing quantum properties of collective many-particle degrees of freedom.

  18. Electron Raman scattering in a strained ZnO/MgZnO double quantum well

    NASA Astrophysics Data System (ADS)

    Mojab-abpardeh, M.; Karimi, M. J.

    2018-02-01

    In this work, the electron Raman scattering in a strained ZnO / MgZnO double quantum wells is studied. The energy eigenvalues and the wave functions are obtained using the transfer matrix method. The effects of Mg composition, well width and barrier width on the internal electric field in well and barrier layers are investigated. Then, the influences of these parameters on the differential cross-section of electron Raman scattering are studied. Results indicate that the position, magnitude and the number of the peaks depend on the Mg composition, well width and barrier width.

  19. Study on spin filtering and switching action in a double-triangular network chain

    NASA Astrophysics Data System (ADS)

    Zhang, Yongmei

    2018-04-01

    Spin transport properties of a double-triangular quantum network with local magnetic moment on backbones and magnetic flux penetrating the network plane are studied. Numerical simulation results show that such a quantum network will be a good candidate for spin filter and spin switch. Local dispersion and density of states are considered in the framework of tight-binding approximation. Transmission coefficients are calculated by the method of transfer matrix. Spin transmission is regulated by substrate magnetic moment and magnetic flux piercing those triangles. Experimental realization of such theoretical research will be conducive to designing of new spintronic devices.

  20. Synchronous optical pumping of quantum revival beats for atomic magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S. J.; Meares, P. J.; Romalis, M. V.

    2007-05-15

    We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.

  1. Terahertz detection using double quantum well devices

    NASA Astrophysics Data System (ADS)

    Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.

    2001-12-01

    This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.

  2. Quasiclassical treatment of the Auger effect in slow ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Frémont, F.

    2017-09-01

    A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.

  3. Double differential cross sections for proton induced electron emission from molecular analogues of DNA constituents for energies in the Bragg peak region

    NASA Astrophysics Data System (ADS)

    Rudek, Benedikt; Bennett, Daniel; Bug, Marion U.; Wang, Mingjie; Baek, Woon Yong; Buhr, Ticia; Hilgers, Gerhard; Champion, Christophe; Rabus, Hans

    2016-09-01

    For track structure simulations in the Bragg peak region, measured electron emission cross sections of DNA constituents are required as input for developing parameterized model functions representing the scattering probabilities. In the present work, double differential cross sections were measured for the electron emission from vapor-phase pyrimidine, tetrahydrofuran, and trimethyl phosphate that are structural analogues to the base, the sugar, and the phosphate residue of the DNA, respectively. The range of proton energies was from 75 keV to 135 keV, the angles ranged from 15° to 135°, and the electron energies were measured from 10 eV to 200 eV. Single differential and total electron emission cross sections are derived by integration over angle and electron energy and compared to the semi-empirical Hansen-Kocbach-Stolterfoht (HKS) model and a quantum mechanical calculation employing the first Born approximation with corrected boundary conditions (CB1). The CB1 provides the best prediction of double and single differential cross section, while total cross sections can be fitted with semi-empirical models. The cross sections of the three samples are proportional to their total number of valence electrons.

  4. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    PubMed

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  5. Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sobhani, H.; Chung, W. S.; Hassanabadi, H.

    2018-04-01

    In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.

  6. OSA Proceedings on Picosecond Electronics and Optoelectronics. Volume 4

    DTIC Science & Technology

    1989-01-01

    Weisbuch, and G. A. Mourou vi Optical Phonon-Assisted Tunneling in Double Quantum - Well Structures ........ 111 Y Oberli, Jagdeep Shah, T. C. Damen, R. F...GaAs Quantum Wells During Photoexcitation .......................................... 158 Stephen M. Goodnick and Paolo Lugli Phonons and Phonon...246 R. A. Buhnnan Optical Detection of Resonant Tunneling of Electrons in Quantum Wells ........ 247 G. Livescu, A. M, Fox, T. Sizer, W. H. Knox, and

  7. Probabilities for time-dependent properties in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Vanni, Leonardo; Laura, Roberto

    2013-05-01

    We present a formalism which allows one to define probabilities for expressions that involve properties at different times for classical and quantum systems and we study its lattice structure. The formalism is based on the notion of time translation of properties. In the quantum case, the properties involved should satisfy compatibility conditions in order to obtain well-defined probabilities. The formalism is applied to describe the double-slit experiment.

  8. Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane

    NASA Astrophysics Data System (ADS)

    Knapp, T. J.; Mohr, R. T.; Li, Yize Stephanie; Thorgrimsson, Brandur; Foote, Ryan H.; Wu, Xian; Ward, Daniel R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    We report the characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. Previously, all heterostructures used to form quantum dots were created using the strain-grading method of strain relaxation, a method that necessarily introduces misfit dislocations into a heterostructure and thereby degrades the reproducibility of quantum devices. Using a SiGe nanomembrane as a virtual substrate eliminates the need for misfit dislocations but requires a wet-transfer process that results in a non-epitaxial interface in close proximity to the quantum dots. We show that this interface does not prevent the formation of quantum dots, and is compatible with a tunable inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of the applied magnetic field. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915, PHY-1104660), and the United States Department of Defense. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. T.J. Knapp et al. (2015). arXiv:1510.08888 [cond-mat.mes-hall].

  9. "Quantum Interference with Slits" Revisited

    ERIC Educational Resources Information Center

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…

  10. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE PAGES

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul; ...

    2017-05-08

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  11. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Blancon, J.-C.; Arenal, R.; Parret, R.; Zahab, A. A.; Ayari, A.; Vallée, F.; Del Fatti, N.; Sauvajol, J.-L.; Paillet, M.

    2017-05-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett. 108, 117404 (2012), 10.1103/PhysRevLett.108.117404]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permits us to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiyin; Huang, Shaoyun, E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn; Lei, Zijin

    We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO{sub 2} substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of Δ{sub ST} ∼ 2.3 meV, a strong spin-orbit interaction of Δ{sub SO} ∼ 140 μeV, and a large and strongly level-dependent Landé g factor of ∼12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductormore » nanostructures for applications in quantum information technologies.« less

  13. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  14. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.

    PubMed

    Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas

    2012-04-10

    The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.

  15. Double channel emission from a redox active single component quantum dot complex.

    PubMed

    Bhandari, Satyapriya; Roy, Shilaj; Pramanik, Sabyasachi; Chattopadhyay, Arun

    2015-01-13

    Herein we report the generation and control of double channel emission from a single component system following a facile complexation reaction between a Mn(2+) doped ZnS colloidal quantum dot (Qdot) and an organic ligand (8-hydroxy quinoline; HQ). The double channel emission of the complexed quantum dot-called the quantum dot complex (QDC)-originates from two independent pathways: one from the complex (ZnQ2) formed on the surface of the Qdot and the other from the dopant Mn(2+) ions of the Qdot. Importantly, reaction of ZnQ2·2H2O with the Qdot resulted in the same QDC formation. The emission at 500 nm with an excitation maximum at 364 nm is assigned to the surface complex involving ZnQ2 and a dangling sulfide bond. On the other hand, the emission at 588 nm-with an excitation maximum at 330 nm-which is redox tunable, is ascribed to Mn(2+) dopant. The ZnQ2 complex while present in QDC has superior thermal stability in comparison to the bare complex. Interestingly, while the emission of Mn(2+) was quenched by an electron quencher (benzoquinone), that due to the surface complex remained unaffected. Further, excitation wavelength dependent tunability in chromaticity color coordinates makes the QDC a potential candidate for fabricating a light emitting device of desired color output.

  16. Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical.

    PubMed

    Haeri, Haleh Hashemi; Spindler, Philipp; Plackmeyer, Jörn; Prisner, Thomas

    2016-10-26

    Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ 1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ 2 ) does not significantly influence the dipolar coupling strength when compared to the allylic dihedral angle θ 1 . A good agreement between the experimental and calculated dipolar coupling was found for θ 1 = 30°.

  17. Topological Quantum Buses: Coherent Quantum Information Transfer between Topological and Conventional Qubits

    NASA Astrophysics Data System (ADS)

    Bonderson, Parsa; Lutchyn, Roman M.

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  18. Atomistic analysis of valley-orbit hybrid states and inter-dot tunnel rates in a Si double quantum dot

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Rahman, Rajib; Klimeck, Gerhard

    2014-03-01

    Silicon quantum dots are promising candidates for solid-state quantum computing due to the long spin coherence times in silicon, arising from small spin-orbit interaction and a nearly spin free host lattice. However, the conduction band valley degeneracy adds an additional degree of freedom to the electronic structure, complicating the encoding and operation of qubits. Although the valley and the orbital indices can be uniquely identified in an ideal silicon quantum dot, atomic-scale disorder mixes valley and orbital states in realistic dots. Such valley-orbit hybridization, strongly influences the inter-dot tunnel rates.Using a full-band atomistic tight-binding method, we analyze the effect of atomic-scale interface disorder in a silicon double quantum dot. Fourier transform of the tight-binding wavefunctions helps to analyze the effect of disorder on valley-orbit hybridization. We also calculate and compare inter-dot inter-valley and intra-valley tunneling, in the presence of realistic disorder, such as interface tilt, surface roughness, alloy disorder, and interface charges. The method provides a useful way to compute electronic states in realistically disordered systems without any posteriori fitting parameters.

  19. Measurements of undoped accumulation-mode SiGe quantum dot devices

    NASA Astrophysics Data System (ADS)

    Eng, Kevin; Borselli, Mathew; Holabird, Kevin; Milosavljevic, Ivan; Schmitz, Adele; Deelman, Peter; Huang, Biqin; Sokolich, Marko; Warren, Leslie; Hazard, Thomas; Kiselev, Andrey; Ross, Richard; Gyure, Mark; Hunter, Andrew

    2012-02-01

    We report transport measurements of undoped single-well accumulation-mode SiGe quantum dot devices with an integrated dot charge sensor. The device is designed so that individual forward-biased circular gates have dominant control of dot charge occupancy, and separate intervening gates have dominant control of tunnel rates and exchange coupling. We have demonstrated controlled loading of the first electron in single and double quantum dots. We used magneto-spectroscopy to measure singlet-triplet splittings in our quantum dots: values are typically ˜0.1 meV. Tunnel rates of single electrons to the baths can be controlled from less than 1 Hz to greater than 10 MHz. We are able to control the (0,2) to (1,1) coupling in a double quantum dot from under-coupled (tc < kT˜ 5μeV) to over-coupled (tc ˜ 0.1 meV) with a bias control of one exchange gate. Sponsored by the United States Department of Defense. Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  20. Intrinsic errors in transporting a single-spin qubit through a double quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.

    2017-07-01

    Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.

  1. Teaching Quantum Uncertainty

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…

  2. Topological view of quantum tunneling coherent destruction

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Chinaglia, Mariana

    2017-08-01

    Quantum tunneling of the ground and first excited states in a quantum superposition driven by a novel analytical configuration of a double-well (DW) potential is investigated. Symmetric and asymmetric potentials are considered as to support quantum mechanical zero mode and first excited state analytical solutions. Reporting about a symmetry breaking that supports the quantum conversion of a zero-mode stable vacuum into an unstable tachyonic quantum state, two inequivalent topological scenarios are supposed to drive stable tunneling and coherent tunneling destruction respectively. A complete prospect of the Wigner function dynamics, vector field fluxes and the time dependence of stagnation points is obtained for the analytical potentials that support stable and tachyonic modes.

  3. Born’s rule as signature of a superclassical current algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fussy, S.; Mesa Pascasio, J.; Institute for Atomic and Subatomic Physics, Vienna University of Technology, Operng. 9, 1040 Vienna

    2014-04-15

    We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with themore » application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie–Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool. -- Highlights: •Calculating the interference patterns and particle trajectories of a double-, three- and N-slit system. •Deriving a new formulation of the guiding equation equivalent to the de Broglie–Bohm one. •Proving the absence of third order interferences and thus explaining Born’s rule. •Explaining the violation of Sorkin’s order sum rules. •Classical simulation of Talbot patterns and exact reproduction of Talbot distance for N slits.« less

  4. Quantized Detector Networks

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2017-12-01

    Preface; Acronyms; 1. Introduction; 2. Questions and answers; 3. Classical bits; 4. Quantum bits; 5. Classical and quantum registers; 6. Classical register mechanics; 7. Quantum register dynamics; 8. Partial observations; 9. Mixed states and POVMs; 10. Double-slit experiments; 11. Modules; 12. Computerization and computer algebra; 13. Interferometers; 14. Quantum eraser experiments; 15. Particle decays; 16. Non-locality; 17. Bell inequalities; 18. Change and persistence; 19. Temporal correlations; 20. The Franson experiment; 21. Self-intervening networks; 22. Separability and entanglement; 23. Causal sets; 24. Oscillators; 25. Dynamical theory of observation; 26. Conclusions; Appendix; Index.

  5. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  6. Effect of boundary treatments on quantum transport current in the Green's function and Wigner distribution methods for a nano-scale DG-MOSFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Haiyan; Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223-0001; Cai Wei

    2010-06-20

    In this paper, we conduct a study of quantum transport models for a two-dimensional nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green's function (NEGF) and Wigner distribution. Both methods are implemented in the framework of the mode space methodology where the electron confinements below the gates are pre-calculated to produce subbands along the vertical direction of the device while the transport along the horizontal channel direction is described by either approach. Each approach handles the open quantum system along the transport direction in a different manner. The NEGF treats the open boundaries with boundary self-energy defined by amore » Dirichlet to Neumann mapping, which ensures non-reflection at the device boundaries for electron waves leaving the quantum device active region. On the other hand, the Wigner equation method imposes an inflow boundary treatment for the Wigner distribution, which in contrast ensures non-reflection at the boundaries for free electron waves entering the device active region. In both cases the space-charge effect is accounted for by a self-consistent coupling with a Poisson equation. Our goals are to study how the device boundaries are treated in both transport models affects the current calculations, and to investigate the performance of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent quantum transport characteristics of the DG-MOSFET using both methods, though with higher transport current for the Wigner equation method, and also provide the current-voltage (I-V) curve dependence on various physical parameters such as the gate voltage and the oxide thickness.« less

  7. Ab initio modeling of CW-ESR spectra of the double spin labeled peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe in acetonitrile.

    PubMed

    Zerbetto, Mirco; Carlotto, Silvia; Polimeno, Antonino; Corvaja, Carlo; Franco, Lorenzo; Toniolo, Claudio; Formaggio, Fernando; Barone, Vincenzo; Cimino, Paola

    2007-03-15

    In this work we address the interpretation, via an ab initio integrated computational approach, of the CW-ESR spectra of the double spin labeled, 310-helical, peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe dissolved in acetonitrile. Our approach is based on the determination of geometric and local magnetic parameters of the heptapeptide by quantum mechanical density functional calculations taking into account solvent and, when needed, vibrational averaging contributions. The system is then described by a stochastic Liouville equation for the two electron spins interacting with each other and with two 14N nuclear spins, in the presence of diffusive rotational dynamics. Parametrization of the diffusion rotational tensor is provided by a hydrodynamic model. CW-ESR spectra are simulated with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing 3D structural and dynamic information on molecular systems.

  8. Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potentialmore » composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.« less

  9. Transport properties of silicon complementary-metal-oxide semiconductor quantum well field-effect transistors

    NASA Astrophysics Data System (ADS)

    Naquin, Clint Alan

    Introducing explicit quantum transport into silicon (Si) transistors in a manner compatible with industrial fabrication has proven challenging, yet has the potential to transform the performance horizons of large scale integrated Si devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors fabricated using industrial silicon complementary MOS processing. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (VG) spacing between NDTCs. The VG spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background. A folding amplifier frequency multiplier circuit using a single QW NMOS transistor to generate a folded current-voltage transfer function via a NDTC was demonstrated. Time domain data shows frequency doubling in the kHz range at room temperature, and Fourier analysis confirms that the output is dominated by the second harmonic of the input. De-embedding the circuit response characteristics from parasitic cable and contact impedances suggests that in the absence of parasitics the doubling bandwidth could be as high as 10 GHz in a monolithic integrated circuit, limited by the transresistance magnitude of the QW NMOS. This is the first example of a QW device fabricated by mainstream Si CMOS technology being used in a circuit application and establishes the feasibility of scalable CMOS circuits that exploit explicit quantum transport. Ongoing quantum transport simulations based off of the spatial dopant distribution suggests a quasi-parabolic potential profile. Energy spacings between resonant transmission states are not consistent with experimental data, suggesting that either the assumed transport model is incomplete, or scattering mechanisms significantly mix the quasi-bound states and broaden the energy spacings.

  10. Localized end states in density modulated quantum wires and rings.

    PubMed

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  11. Effects of bias and temperature on the intersubband absorption in very long wavelength GaAs/AlGaAs quantum well infrared photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. H.; Zhou, X. H., E-mail: xhzhou@mail.sitp.ac.cn; Li, N.

    2014-03-28

    The temperature- and bias-dependent photocurrent spectra of very long wavelength GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are studied using spectroscopic measurements and corresponding theoretical calculations. It is found that the peak response wavelength will shift as the bias and temperature change. Aided by band structure calculations, we propose a model of the double excited states and explain the experimental observations very well. In addition, the working mechanisms of the quasi-bound state confined in the quantum well, including the processes of tunneling and thermionic emission, are also investigated in detail. We confirm that the first excited state, which belongs to themore » quasi-bound state, can be converted into a quasi-continuum state induced by bias and temperature. These obtained results provide a full understanding of the bound-to-quasi-bound state and the bound-to-quasi-continuum state transition, and thus allow for a better optimization of QWIPs performance.« less

  12. Semiclassical propagation of Wigner functions.

    PubMed

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  13. Engineering drag currents in Coulomb coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2018-02-01

    The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.

  14. Quantum entanglement in inhomogeneous 1D systems

    NASA Astrophysics Data System (ADS)

    Ramírez, Giovanni

    2018-04-01

    The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.

  15. Continuous quantum measurement with independent detector cross correlations.

    PubMed

    Jordan, Andrew N; Büttiker, Markus

    2005-11-25

    We investigate the advantages of using two independent, linear detectors for continuous quantum measurement. For single-shot measurement, the detection process may be quantum limited if the detectors are twins. For weak continuous measurement, cross correlations allow a violation of the Korotkov-Averin bound for the detector's signal-to-noise ratio. The joint weak measurement of noncommuting observables is also investigated, and we find the cross correlation changes sign as a function of frequency, reflecting a crossover from incoherent relaxation to coherent, out of phase oscillations. Our results are applied to a double quantum-dot charge qubit, simultaneously measured by two quantum point contacts.

  16. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    PubMed

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  17. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  18. Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems

    NASA Astrophysics Data System (ADS)

    Lehner, Ch. A.; Tschirky, T.; Ihn, T.; Dietsche, W.; Keller, J.; Fält, S.; Wegscheider, W.

    2018-05-01

    We present molecular beam epitaxial grown single- and double-side δ -doped InAlSb/InSb quantum wells with varying distances down to 50 nm to the surface on GaSb metamorphic buffers. We analyze the surface morphology as well as the impact of the crystalline quality on the electron transport. Comparing growth on GaSb and GaAs substrates indicates that the structural integrity of our InSb quantum wells is solely determined by the growth conditions at the GaSb/InAlSb transition and the InAlSb barrier growth. The two-dimensional electron gas samples show high mobilities of up to 349 000 cm2/Vs at cryogenic temperatures and 58 000 cm2/Vs at room temperature. With the calculated Dingle ratio and a transport lifetime model, ionized impurities predominantly remote from the quantum well are identified as the dominant source of scattering events. The analysis of the well-pronounced Shubnikov-de Haas oscillations reveals a high spin-orbit coupling with an effective g -factor of -38.4 in our samples. Along with the smooth surfaces and long mean free paths demonstrated, our InSb quantum wells are increasingly competitive for nanoscale implementations of Majorana mode devices.

  19. Proceedings of the 9th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology

    NASA Astrophysics Data System (ADS)

    Ishioka, Sachio; Fujikawa, Kazuo

    2009-06-01

    Committee -- Obituary: Professor Sadao Nakajima -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Cold atoms and molecules. Pseudopotential method in cold atom research / C. N. Yang. Symmetry breaking in Bose-Einstein condensates / M. Ueda. Quantized vortices in atomic Bose-Einstein condensates / M. Tsubota. Quantum degenerate gases of Ytterbium atoms / S. Uetake ... [et al.]. Superfluid properties of an ultracold fermi gas in the BCS-BEC crossover region / Y. Ohashi, N. Fukushima. Fermionic superfluidity and the BEC-BCS crossover in ultracold atomic fermi gases / M. W. Zwierlein. Kibble-Zurek mechanism in magnetization of a spinor Bose-Einstein condensate / H. Saito, Y. Kawaguchi, M. Ueda. Quasiparticle inducing Josephson effect in a Bose-Einstein condensate / S. Tsuchiya, Y. Ohashi. Stability of superfluid fermi gases in optical lattices / Y. Yunomae ... [et al.]. Z[symbol] symmetry breaking in multi-band bosonic atoms confined by a two-dimensional harmonic potential / M. Sato, A. Tokuno -- Spin hall effect and anomalous hall effect. Recent advances in anomalous hall effect and spin hall effect / N. Nagaosa. Topological insulators and the quantum spin hall effect / C. L. Kane. Application of direct and inverse spin-hall effects: electric manipulation of spin relaxation and electric detection of spin currents / K. Ando, E. Saitoh. Novel current pumping mechanism by spin dynamics / A. Takeuchi, K. Hosono, G. Tatara. Quantum spin hall phase in bismuth ultrathin film / S. Murakami. Anomalous hall effect due to the vector chirality / K. Taguchi, G. Tatara. Spin current distributions and spin hall effect in nonlocal magnetic nanostructures / R. Sugano ... [et al.]. New boundary critical phenomenon at the metal-quantum spin hall insulator transition / H. Obuse. On scaling behaviors of anomalous hall conductivity in disordered ferromagnets studied with the coherent potential approximation / S. Onoda -- Magnetic domain wall dynamics and spin related phenomena. Dynamical magnetoelectric effects in multiferroics / Y. Tokura. Exchange-stabilization of spin accumulation in the two-dimensional electron gas with Rashba-type of spin-orbit interaction / H. M. Saarikoski, G. E. W. Bauer. Electronic Aharonov-Casher effect in InGaAs ring arrays / J. Nitta, M. Kohda, T. Bergsten. Microscopic theory of current-spin interaction in ferromagnets / H. Kohno ... [et al.]. Spin-polarized carrier injection effect in ferromagnetic semiconductor / diffusive semiconductor / superconductor junctions / H. Takayanagi ... [et al.]. Low voltage control of ferromagnetism in a semiconductor P-N junction / J. Wunderlich ... [et al.].Measurement of nanosecond-scale spin-transfer torque magnetization switching / K. Ito ... [et al.]. Current-induced domain wall creep in magnetic wires / J. Ieda, S. Maekawa, S. E. Barnes. Pure spin current injection into superconducting niobium wire / K. Ohnishi, T. Kimura, Y. Otani. Switching of a single atomic spin induced by spin injection: a model calculation / S. Kokado, K. Harigaya, A. Sakuma. Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers / M. Ichimura ... [et al.]. Gapless chirality excitations in one-dimensional spin-1/2 frustrated magnets / S. Furukawa ... [et al.] -- Dirac fermions in condensed matter. Electronic states of graphene and its multi-layers / T. Ando, M. Koshino. Inter-layer magnetoresistance in multilayer massless dirac fermions system [symbol]-(BEDT-TTF)[symbol]I[symbol] / N. Tajima ... [et al.]. Theory on electronic properties of gapless states in molecular solids [symbol]-(BEDT-TTF)[symbol]I[symbol] / A. Kobayashi, Y. Suzumura, H. Fukuyama. Hall effect and diamagnetism of bismuth / Y. Fuseya, M. Ogata, H. Fukuyama. Quantum Nernst effect in a bismuth single crystal / M. Matsuo ... [et al.] -- Quantum dot systems. Kondo effect and superconductivity in single InAs quantum dots contacted with superconducting leads / S. Tarucha ... [et al.]. Electron transport through a laterally coupled triple quantum dot forming Aharonov-Bohm interferometer / T. Kubo ... [et al.]. Aharonov-Bohm oscillations in parallel coupled vertical double quantum dot / T. Hatano ... [et al.]. Laterally coupled triple self-assembled quantum dots / S. Amaha ... [et al.]. Spectroscopy of charge states of a superconducting single-electron transistor in an engineered electromagnetic environment / E. Abe ... [et al.]. Numerical study of the coulomb blockade in an open quantum dot / Y. Hamamoto, T. Kato. Symmetry in the full counting statistics, the fluctuation theorem and an extension of the Onsager theorem in nonlinear transport regime / Y. Utsumi, K. Saito. Single-artificial-atom lasing and its suppression by strong pumping / J. R. Johansson ... [et al.] -- Entanglement and quantum information processing, qubit manipulations. Photonic entanglement in quantum communication and quantum computation / A. Zeilinger. Quantum non-demolition measurement of a superconducting flux qubit / J. E. Mooij. Atomic physics and quantum information processing with superconducting circuits / F. Nori. Theory of macroscopic quantum dynamics in high-T[symbol] Josephson junctions / S. Kawabata. Silicon isolated double quantum-dot qubit architectures / D. A. Williams ... [et al.]. Controlled polarisation of silicon isolated double quantum dots with remote charge sensing for qubit use / M. G. Tanner ... [et al.].Modelling of charge qubits based on Si/SiO[symbol] double quantum dots / P. Howard, A. D. Andreev, D. A. Williams. InAs based quantum dots for quantum information processing: from fundamental physics to 'plug and play' devices / X. Xu ... [et al.]. Quantum aspects in superconducting qubit readout with Josephson bifurcation amplifier / H. Nakano ... [et al.]. Double-loop Josephson-junction flux qubit with controllable energy gap / Y. Shimazu, Y. Saito, Z. Wada. Noise characteristics of the Fano effect and Fano-Kondo effect in triple quantum dots, aiming at charge qubit detection / T. Tanamoto, Y. Nishi, S. Fujita. Geometric universal single qubit operation of cold two-level atoms / H. Imai, A. Morinaga. Entanglement dynamics in quantum Brownian motion / K. Shiokawa. Coupling superconducting flux qubits using AC magnetic flxues / Y. Liu, F. Nori. Entanglement purification using natural spin chain dynamics and single spin measurements / K. Maruyama, F. Nori. Experimental analysis of spatial qutrit entanglement of down-converted photon pairs / G. Taguchi ... [et al.]. On the phase sensitivity of two path interferometry using path-symmetric N-photon states / H. F. Hofmann. Control of multi-photon coherence using the mixing ratio of down-converted photons and weak coherent light / T. Ono, H. F. Hofmann -- Mechanical properties of confined geometry. Rattling as a novel anharmonic vibration in a solid / Z. Hiroi, J. Yamaura. Micro/nanomechanical systems for information processing / H. Yamaguchi, I. Mahboob -- Precise measurements. Electron phase microscopy for observing superconductivity and magnetism / A. Tonomura. Ratio of the Al[symbol] and Hg[symbol] optical clock frequencies to 17 decimal places / W. M. Itano ... [et al.]. STM and STS observation on titanium-carbide metallofullerenes: [symbol] / N. Fukui ... [et al.]. Single shot measurement of a silicon single electron transistor / T. Ferrus ... [et al.]. Derivation of sensitivity of a Geiger mode APDs detector from a given efficiency to estimate total photon counts / K. Hammura, D. A. Williams -- Novel properties in nano-systems. First principles study of electroluminescence in ultra-thin silicon film / Y. Suwa, S. Saito. First principles nonlinear optical spectroscopy / T. Hamada, T. Ohno. Field-induced disorder and carrier localization in molecular organic transistors / M. Ando ... [et al.]. Switching dynamics in strongly coupled Josephson junctions / H. Kashiwaya ... [et al.]. Towards quantum simulation with planar coulomb crystals / I. M. Buluta, S. Hasegawa -- Fundamental problems in quantum physics. The negative binomial distribution in quantum physics / J. Söderholm, S. Inoue. On the elementary decay process / D. Kouznetsov -- List of participants.

  20. Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.

    PubMed

    Accardi, A; Borowski, A; Kühn, O

    2009-07-02

    A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.

  1. Floquet Supersymmetry

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Hsieh, Timothy H.

    2018-05-01

    We show that time-reflection symmetry in periodically driven (Floquet) quantum systems enables an inherently nonequilibrium phenomenon structurally similar to quantum-mechanical supersymmetry. In particular, we find Floquet analogs of the Witten index that place lower bounds on the degeneracies of states with quasienergies 0 and π . Moreover, we show that in some cases time-reflection symmetry can also interchange fermions and bosons, leading to fermion-boson pairs with opposite quasienergy. We provide a simple class of disordered, interacting, and ergodic Floquet models with an exponentially large number of states at quasienergies 0 and π , which are robust as long as the time-reflection symmetry is preserved. Floquet supersymmetry manifests itself in the evolution of certain local observables as a period-doubling effect with dramatic finite-size scaling, providing a clear signature for experiments.

  2. Lasing in circuit quantum electrodynamics with strong noise

    NASA Astrophysics Data System (ADS)

    Marthaler, M.; Utsumi, Y.; Golubev, D. S.

    2015-05-01

    We study a model which can describe a superconducting single-electron transistor or a double quantum dot coupled to a transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cutoff frequency, a structured environment peaked at a specific frequency, and 1 /f noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear.

  3. Harmonic mode-locking using the double interval technique in quantum dot lasers.

    PubMed

    Li, Yan; Chiragh, Furqan L; Xin, Yong-Chun; Lin, Chang-Yi; Kim, Junghoon; Christodoulou, Christos G; Lester, Luke F

    2010-07-05

    Passive harmonic mode-locking in a quantum dot laser is realized using the double interval technique, which uses two separate absorbers to stimulate a specific higher-order repetition rate compared to the fundamental. Operating alone these absorbers would otherwise reinforce lower harmonic frequencies, but by operating together they produce the harmonic corresponding to their least common multiple. Mode-locking at a nominal 60 GHz repetition rate, which is the 10(th) harmonic of the fundamental frequency of the device, is achieved unambiguously despite the constraint of a uniformly-segmented, multi-section device layout. The diversity of repetition rates available with this method is also discussed.

  4. Double Charge Ordering States and Spin Ordering State Observed in a RFe2O4 System

    PubMed Central

    Sun, Fei; Wang, Rui; Aku-Leh, C.; Yang, H. X.; He, Rui; Zhao, Jimin

    2014-01-01

    Charge, spin, and lattice degrees of orderings are of great interest in the layered quantum material RFe2O4 (R = Y, Er, Yb, Tm, and Lu) system. Recently many unique properties have been found using various experimental methods. However so far the nature of the two-dimensional (2D) charge ordering (CO) state is not clear and no observation of its fine structure in energy has been reported. Here we report unambiguous observation of double 2D CO states at relatively high temperature in a polycrystalline Er0.1Yb0.9Fe2O4 using Raman scattering. The energy gaps between the 3D and the double 2D states are 170 meV (41.2 THz) and 193 meV (46.6 THz), respectively. We also observed a spin ordering (SO) state at below 210 K with characteristic energy of 45 meV (10.7 THz). Our investigation experimentally identified new fine structures of quantum orders in the system, which also extends the capability of optical methods in investigating other layered quantum materials. PMID:25234133

  5. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  6. Generating functions for weighted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Guay-Paquet, Mathieu; Harnad, J.

    2017-08-01

    Double Hurwitz numbers enumerating weighted n-sheeted branched coverings of the Riemann sphere or, equivalently, weighted paths in the Cayley graph of Sn generated by transpositions are determined by an associated weight generating function. A uniquely determined 1-parameter family of 2D Toda τ -functions of hypergeometric type is shown to consist of generating functions for such weighted Hurwitz numbers. Four classical cases are detailed, in which the weighting is uniform: Okounkov's double Hurwitz numbers for which the ramification is simple at all but two specified branch points; the case of Belyi curves, with three branch points, two with specified profiles; the general case, with a specified number of branch points, two with fixed profiles, the rest constrained only by the genus; and the signed enumeration case, with sign determined by the parity of the number of branch points. Using the exponentiated quantum dilogarithm function as a weight generator, three new types of weighted enumerations are introduced. These determine quantum Hurwitz numbers depending on a deformation parameter q. By suitable interpretation of q, the statistical mechanics of quantum weighted branched covers may be related to that of Bosonic gases. The standard double Hurwitz numbers are recovered in the classical limit.

  7. Two-Photon Quantum Entanglement from Type-II Spontaneous Parametric Down-Conversion

    NASA Astrophysics Data System (ADS)

    Pittman, Todd Butler

    The concept of two (or more) particle entanglement lies at the heart of many fascinating questions concerning the foundations of quantum mechanics. The counterintuitive nonlocal behavior of entangled states led Einstein, Podolsky, and Rosen (EPR) to ask their famous 1935 question, "Can quantum mechanical description of reality be considered complete?". Although the debate has been raging on for more than 60 years, there is still no absolutely conclusive answer to this question. For if entangled states exist and can be observed, then accepting quantum mechanics as a complete theory requires a drastic overhaul of one's physical intuition with regards to the common sense notions of locality and reality put forth by EPR. Contained herein are the results of research investigating various non-classical features of the two-photon entangled states produced in Type-II Spontaneous Parametric Down -Conversion (SPDC). Through a series of experiments we have manifest the nonlocal nature of the quantum mechanical "two-photon effective wavefunction" (or Biphoton) realized by certain photon-counting coincidence measurements performed on these states. In particular, we examine a special double entanglement, in which the states are seen to be simultaneously entangled in both spin and space-time variables. The observed phenomena based on this double entanglement lead to many interesting results which defy classical explanation, but are well described within the framework of quantum mechanics. The implications provide a unique perspective concerning the nature of the photon, and the concept of quantum entanglement.

  8. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Zhenyi; Wu, X.; Ward, D. R.

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  9. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE PAGES

    Qi, Zhenyi; Wu, X.; Ward, D. R.; ...

    2017-09-11

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  10. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  11. Long-distance quantum key distribution with imperfect devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Piparo, Nicoló; Razavi, Mohsen

    2014-12-04

    Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R{sub QKD}. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels.more » We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.« less

  12. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  13. Implementation of generalized quantum measurements: Superadditive quantum coding, accessible information extraction, and classical capacity limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun

    2004-05-01

    Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decodingmore » in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques.« less

  14. Sequential double photodetachment of He- in elliptically polarized laser fields

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier

    2018-02-01

    Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.

  15. Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk

    NASA Astrophysics Data System (ADS)

    Yang, YuGuang; Zhang, YuChen; Xu, Gang; Chen, XiuBo; Zhou, Yi-Hua; Shi, WeiMin

    2018-03-01

    Li et al. first proposed a quantum hash function (QHF) in a quantum-walk architecture. In their scheme, two two-particle interactions, i.e., I interaction and π-phase interaction are introduced and the choice of I or π-phase interactions at each iteration depends on a message bit. In this paper, we propose an efficient QHF by dense coding of coin operators in discrete-time quantum walk. Compared with existing QHFs, our protocol has the following advantages: the efficiency of the QHF can be doubled and even more; only one particle is enough and two-particle interactions are unnecessary so that quantum resources are saved. It is a clue to apply the dense coding technique to quantum cryptographic protocols, especially to the applications with restricted quantum resources.

  16. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    NASA Astrophysics Data System (ADS)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  17. On integrable boundaries in the 2 dimensional O(N) σ-models

    NASA Astrophysics Data System (ADS)

    Aniceto, Inês; Bajnok, Zoltán; Gombor, Tamás; Kim, Minkyoo; Palla, László

    2017-09-01

    We make an attempt to map the integrable boundary conditions for 2 dimensional non-linear O(N) σ-models. We do it at various levels: classically, by demanding the existence of infinitely many conserved local charges and also by constructing the double row transfer matrix from the Lax connection, which leads to the spectral curve formulation of the problem; at the quantum level, we describe the solutions of the boundary Yang-Baxter equation and derive the Bethe-Yang equations. We then show how to connect the thermodynamic limit of the boundary Bethe-Yang equations to the spectral curve.

  18. Inorganic SnIP-Type Double Helices in Main-Group Chemistry.

    PubMed

    Baumgartner, Maximilian; Weihrich, Richard; Nilges, Tom

    2017-05-05

    Inspired by the synthesis of the first atomic-scale double-helix semiconductor SnIP, this study deals with the question of whether more atomistic, inorganic double-helix compounds are accessible. With the aid of quantum chemical calculations, we have identified 31 candidates by a homoatomic substitution in MXPn, varying the Group 14 M-element from Si to Pb, the Group 17 X-element from F to I and replacing the pnictide (Pn) phosphorus by arsenic. The double-helical structure of SnIP has been used as the starting model for all candidates and the electronic structure and vibrational spectra were determined within the framework of density functional theory (DFT). Varying the outer MX or the inner Pn helix led to the conclusion that iodide- and bromide-containing MXPn compounds show similar structures to SnIP. Here, the calculations indicate interesting effects for electronic band-gap tuning. For the highly polarized fluorides, a segregation of the helices to more complex MX substructures is predicted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Experimental triple-slit interference in a strongly driven V-type artificial atom

    NASA Astrophysics Data System (ADS)

    Dada, Adetunmise C.; Santana, Ted S.; Koutroumanis, Antonios; Ma, Yong; Park, Suk-In; Song, Jindong; Gerardot, Brian D.

    2017-08-01

    Rabi oscillations of a two-level atom appear as a quantum interference effect between the amplitudes associated with atomic superpositions, in analogy with the classic double-slit experiment which manifests a sinusoidal interference pattern. By extension, through direct detection of time-resolved resonance fluorescence from a quantum-dot neutral exciton driven in the Rabi regime, we experimentally demonstrate triple-slit-type quantum interference via quantum erasure in a V-type three-level artificial atom. This result is of fundamental interest in the experimental studies of the properties of V-type three-level systems and may pave the way for further insight into their coherence properties as well as applications for quantum information schemes. It also suggests quantum dots as candidates for multipath-interference experiments for probing foundational concepts in quantum physics.

  20. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits.

    PubMed

    Bonderson, Parsa; Lutchyn, Roman M

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems. © 2011 American Physical Society

  1. A self-consistency check for unitary propagation of Hawking quanta

    NASA Astrophysics Data System (ADS)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  2. Indication for quantum Darwinism in electron billiards

    NASA Astrophysics Data System (ADS)

    Brunner, R.; Akis, R.; Meisels, R.; Kuchar, F.; Ferry, D. K.

    2010-02-01

    In this paper, we investigate the dynamics in electron billiards by using classical and quantum mechanical calculations. We report on the existence of pointer states in single-dot and double-dot electron billiards. Additionally, we show that the two types of pointer states have the propensity to create offspring, i.e. they can be observed in the individual modes propagating between the external reservoirs. This can be understood as an indication that quantum Darwinism is present in the electron billiards.

  3. Efficient single photon detection by quantum dot resonant tunneling diodes.

    PubMed

    Blakesley, J C; See, P; Shields, A J; Kardynał, B E; Atkinson, P; Farrer, I; Ritchie, D A

    2005-02-18

    We demonstrate that the resonant tunnel current through a double-barrier structure is sensitive to the capture of single photoexcited holes by an adjacent layer of quantum dots. This phenomenon could allow the detection of single photons with low dark count rates and high quantum efficiencies. The magnitude of the sensing current may be controlled via the thickness of the tunnel barriers. Larger currents give improved signal to noise and allow sub-mus photon time resolution.

  4. Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.

    PubMed

    Takahashi, R; Kono, K; Tarucha, S; Ono, K

    2011-07-08

    We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.

  5. A note on tilted Bianchi type VIh models: the type III bifurcation

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Hervik, S.

    2008-10-01

    In this note we complete the analysis of Hervik, van den Hoogen, Lim and Coley (2007 Class. Quantum Grav. 24 3859) of the late-time behaviour of tilted perfect fluid Bianchi type III models. We consider models with dust, and perfect fluids stiffer than dust, and eludicate the late-time behaviour by studying the centre manifold which dominates the behaviour of the model at late times. In the dust case, this centre manifold is three-dimensional and can be considered a double bifurcation as the two parameters (h and γ) of the type VIh model are varied. We therefore complete the analysis of the late-time behaviour of tilted ever-expanding Bianchi models of types I VIII.

  6. Entanglement renormalization and topological order.

    PubMed

    Aguado, Miguel; Vidal, Guifré

    2008-02-22

    The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.

  7. Distillation of bose-einstein condensates in a double-well potential.

    PubMed

    Shin, Y; Saba, M; Schirotzek, A; Pasquini, T A; Leanhardt, A E; Pritchard, D E; Ketterle, W

    2004-04-16

    Bose-Einstein condensates of sodium atoms, prepared in an optical dipole trap, were distilled into a second empty dipole trap adjacent to the first one. The distillation was driven by thermal atoms spilling over the potential barrier separating the two wells and then forming a new condensate. This process serves as a model system for metastability in condensates, provides a test for quantum kinetic theories of condensate formation, and also represents a novel technique for creating or replenishing condensates in new locations.

  8. A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.

  9. Spin measurement in an undoped Si/SiGe double quantum dot incorporating a micromagnet

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Ward, Daniel; Prance, Jonathan; Kim, Dohun; Shi, Zhan; Mohr, Robert; Gamble, John; Savage, Donald; Lagally, Max; Friesen, Mark; Coppersmith, Susan; Eriksson, Mark

    2014-03-01

    We present measurements on a double dot formed in an accumulation-mode undoped Si/SiGe heterostructure. The double dot incorporates a proximal micromagnet to generate a stable magnetic field difference between the quantum dots. The gate design incorporates two layers of gates, and the upper layer of gates is split into five different sections to decrease crosstalk between different gates. A novel pattern of the lower layer gates enhances the tunability of tunnel rates. We will describe our attempts to create a singlet-triplet qubit in this device. This work was supported in part by ARO(W911NF-12-0607), NSF(DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. Now works at Lancaster University, UK.

  10. Model of biological quantum logic in DNA.

    PubMed

    Mihelic, F Matthew

    2013-08-02

    The DNA molecule has properties that allow it to act as a quantum logic processor. It has been demonstrated that there is coherent conduction of electrons longitudinally along the DNA molecule through pi stacking interactions of the aromatic nucleotide bases, and it has also been demonstrated that electrons moving longitudinally along the DNA molecule are subject to a very efficient electron spin filtering effect as the helicity of the DNA molecule interacts with the spin of the electron. This means that, in DNA, electrons are coherently conducted along a very efficient spin filter. Coherent electron spin is held in a logically and thermodynamically reversible chiral symmetry between the C2-endo and C3-endo enantiomers of the deoxyribose moiety in each nucleotide, which enables each nucleotide to function as a quantum gate. The symmetry break that provides for quantum decision in the system is determined by the spin direction of an electron that has an orbital angular momentum that is sufficient to overcome the energy barrier of the double well potential separating the C2-endo and C3-endo enantiomers, and that enantiomeric energy barrier is appropriate to the Landauer limit of the energy necessary to randomize one bit of information.

  11. Electrically protected resonant exchange qubits in triple quantum dots.

    PubMed

    Taylor, J M; Srinivasa, V; Medford, J

    2013-08-02

    We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates.

  12. Optical investigation of carrier tunneling in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Emiliani, V.; Ceccherini, S.; Bogani, F.; Colocci, M.; Frova, A.; Shi, Song Stone

    1997-08-01

    The tunneling dynamics of excitons and free carriers in AlxGa1-xAs/GaAs asymmetric double quantum well and near-surface quantum well structures has been investigated by means of time-resolved optical techniques. The competing processes of carrier tunneling out of the quantum well and exciton formation and recombination inside the quantum well have been thoroughly studied in the range of the excitation densities relevant to device applications. A consistent picture capable of fully describing the carrier and exciton-tunneling mechanisms in both types of structures has been obtained and apparently contrasting results in the recent literature are clarified.

  13. Magnetism in S = 1 / 2 Double Perovskites with Strong Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Balents, Leon

    2015-03-01

    Motivated by recent studies on heavy-element double-perovskite (DP) compounds, we theoretically studied spin models on a FCC lattice with anisotropic interactions. In these systems, competition/cooperation of spin, orbital, and the lattice degrees of freedoms in the presence of the strong-spin orbit coupling is of particular interest. In a previous theoretical study, the magnetic phase diagrams of DP compounds with 5d1 electron configuration was studied using a model with four-fold degenerated single-ion state. On the other hand, a recent experiment on a DP material, Ba2Na2OsO6, reported that the compound is likely to be an effective S = 1 / 2 magnet. Inspired by the experimental observation, we considered spin models with symmetry-allowed anisotropic nearest-neighbor interactions. By a combination of various analytical and numerical techniques, we present the magnetic phase diagram of the model and the effect of thermal and quantum fluctuations. In particular, we show that fluctuations induce < 110 > anisotropy of magnetic moments. We also discuss a possible ``nematic'' phase driven by spin-phonon couplings.

  14. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  15. Strong coupling of a single electron in silicon to a microwave photon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  16. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  17. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyuan; Shi, Ronghua; Zeng, Guihua; Guo, Ying

    2018-06-01

    We suggest an approach on the coherent attack of continuous-variable quantum key distribution (CVQKD) with an untrusted entangled source in the middle. The coherent attack strategy can be performed on the double links of quantum system, enabling the eavesdropper to steal more information from the proposed scheme using the entanglement correlation. Numeric simulation results show the improved performance of the attacked CVQKD system in terms of the derived secret key rate with the controllable parameters maximizing the stolen information.

  18. Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2014-10-01

    The existing distributed quantum gates required physical particles to be transmitted between two distant nodes in the quantum network. We here demonstrate the possibility to implement distributed quantum computation without transmitting any particles. We propose a scheme for a distributed controlled-phase gate between two distant quantum-dot electron-spin qubits in optical microcavities. The two quantum-dot-microcavity systems are linked by a nested Michelson-type interferometer. A single photon acting as ancillary resource is sent in the interferometer to complete the distributed controlled-phase gate, but it never enters the transmission channel between the two nodes. Moreover, we numerically analyze the effect of experimental imperfections and show that the present scheme can be implemented with high fidelity in the ideal asymptotic limit. The scheme provides further evidence of quantum counterfactuality and opens promising possibilities for distributed quantum computation.

  19. [Imaging of surface cell antigens on the tumor sections of lymph nodes using fluorescence quantum dots].

    PubMed

    Rafalovskaia-Orlovskaia, E P; Gorgidze, L A; Gladkikh, A A; Tauger, S M; Vorob'ev, I A

    2012-01-01

    The usefulness of quantum dots for the immunofluorescent detection of surface antigens on the lymphoid cells has been studied. To optimize quantum dots detection we have upgraded fluorescent microscope that allows obtaining multiple images from different quantum dots from one section. Specimens stained with quantum dots remained stable over two weeks and practically did not bleach under mercury lamp illumination during tens of minutes. Direct conjugates of primary mouse monoclonal antibodies with quantum dots demonstrated high specificity and sufficient sensitivity in the case of double staining on the frozen sections. Because of the high stability of quantum dots' fluorescence, this method allows to analyze antigen coexpression on the lymphoid tissue sections for diagnostic purposes. The spillover of fluorescent signals from quantum dots into adjacent fluorescent channels, with maxima differing by 40 nm, did not exceed 8%, which makes the spectral compensation is practically unnecessary.

  20. Phase-locked bifrequency Raman lasing in a double-Λ system

    NASA Astrophysics Data System (ADS)

    Alaeian, Hadiseh; Shahriar, M. S.

    2018-05-01

    We show that it is possible to realize simultaneous Raman lasing at two different frequencies using a double-Λ system pumped by a bifrequency field. The bifrequency Raman lasers are phase-locked to one another and the beat-frequency matches the energy difference between the two metastable ground states. Akin to a conventional Raman laser, the bifrequency Raman lasers are expected to be subluminal. As such, these are expected to be highly stable against perturbations in cavity length and have quantum noise limited linewidths that are far below that of a conventional laser. Because of these properties, the bifrequency Raman lasers may find important applications in precision metrology, including atomic interferometry and magnetometry. The phase-locked Raman laser pair also represent a manifestation of lasing without inversion, albeit in a configuration that produces a pair of nondegenerate lasers simultaneously. This feature may enable lasing without inversion in frequency regimes not accessible using previous techniques of lasing without inversion. To elucidate the behavior of this laser pair, we develop an analytical model that describes the stimulated Raman interaction in a double-Λ system using an effective two-level transition. The approximation is valid as long as the excited states adiabatically follow the ground states, as verified by numerical simulations. The effective model is used to identify the optimal operating conditions for the bifrequency Raman lasing process. This model may also prove useful in other potential applications of the double-Λ system, including generation of squeezed light and spatial solitons.

  1. Laterally-Biased Quantum IR Detectors

    DTIC Science & Technology

    2013-10-23

    Rocío San-Román, Adrián Hierro , Journal of Crystal Growth 323, (2011), 496-500. [3] Semiconductor Devices: Physics and Technology 2nd Ed., S.M. Sze...6] “Laterally biased double quantum well IR detector fabricated by MBE regrowth”, Álvaro Guzmán, Rocío San-Román, Adrián Hierro , 16th

  2. Quantum Computing

    DTIC Science & Technology

    1998-04-01

    information representation and processing technology, although faster than the wheels and gears of the Charles Babbage computation machine, is still in...the same computational complexity class as the Babbage machine, with bits of information represented by entities which obey classical (non-quantum...nuclear double resonances Charles M Bowden and Jonathan P. Dowling Weapons Sciences Directorate, AMSMI-RD-WS-ST Missile Research, Development, and

  3. Multiple Quantum Phase Transitions in a two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Bergeal, Nicolas; Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Lesueur, J.; Budhani, R. C.; Rastogi, A.; Caprara, S.; Grilli, M.

    2013-03-01

    We studied the magnetic field driven Quantum Phase Transition (QPT) in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through finite size scaling analysis, we showed that it belongs to the (2 +1)D XY model universality class. The system can be described as a disordered array of superconducting islands coupled by a two dimensional electron gas (2DEG). Depending on the 2DEG conductance tuned by the gate voltage, the QPT is single (corresponding to the long range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). By retrieving the coherence length critical exponent ν, we showed that the QPT can be ``clean'' or ``dirty'' according to the Harris criteria, depending on whether the phase coherence length is smaller or larger than the island size. The overall behaviour is well described by a model of coupled superconducting puddles in the framework of the fermionic scenario of 2D superconducting QPT.

  4. Results from phase 1 of the HAYSTAC microwave cavity axion experiment

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Al Kenany, S.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Maruyama, R. H.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Speller, D. H.; Urdinaran, I.; van Bibber, K. A.

    2018-05-01

    We report on the results from a search for dark matter axions with the HAYSTAC experiment using a microwave cavity detector at frequencies between 5.6 and 5.8 GHz. We exclude axion models with two photon coupling ga γ γ≳2 ×10-14 GeV-1 , a factor of 2.7 above the benchmark KSVZ model over the mass range 23.15

  5. Matrix quantum mechanics on S1 /Z2

    NASA Astrophysics Data System (ADS)

    Betzios, P.; Gürsoy, U.; Papadoulaki, O.

    2018-03-01

    We study Matrix Quantum Mechanics on the Euclidean time orbifold S1 /Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling limit this theory provides a toy model for a big-bang/big crunch universe in two dimensional non-critical string theory where the orbifold fixed points become cosmological singularities. We derive the MQM partition function both in the canonical and grand canonical ensemble in two different formulations and demonstrate agreement between them. We pinpoint the contribution of twisted states in both of these formulations either in terms of bi-local operators acting at the end-points of time or branch-cuts on the complex plane. We calculate, in the matrix model, the contribution of the twisted states to the torus level partition function explicitly and show that it precisely matches the world-sheet result, providing a non-trivial test of the proposed duality. Finally we discuss some interesting features of the partition function and the possibility of realising it as a τ-function of an integrable hierarchy.

  6. Singlet-paired coupled cluster theory for open shells

    NASA Astrophysics Data System (ADS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  7. Dewar Lesion Formation in Single- and Double-Stranded DNA is Quenched by Neighboring Bases.

    PubMed

    Bucher, Dominik B; Pilles, Bert M; Carell, Thomas; Zinth, Wolfgang

    2015-07-16

    UV-induced Dewar lesion formation is investigated in single- and double-stranded oligonucleotides with ultrafast vibrational spectroscopy. The quantum yield for the conversion of the (6-4) lesion to the Dewar isomer in DNA strands is reduced by a factor of 4 in comparison to model dinucleotides. Time resolved spectroscopy reveals a fast process in the excited state with spectral characteristics of bases which are adjacent to the excited (6-4) lesion. These kinetic components have large amplitudes and indicate that an additional quenching channel acts in the stranded DNA systems and reduces the Dewar formation yield. Presumably relaxation evolves via a charge transfer to the neighboring guanine and the paired cytosine participates in a double-stranded oligomer. Changes in the decay of the relaxed excited electronic state of the (6-4) chromophore point to modifications in the excited state energy landscape which may lead to an additional reduction of the Dewar formation yield.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior formore » strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.« less

  9. Characterization of Sodium Mobility and Binding by 23 Na NMR Spectroscopy in a Model Lipoproteic Emulsion Gel for Sodium Reduction.

    PubMed

    Okada, Kyle S; Lee, Youngsoo

    2017-07-01

    The effects of formulation and processing parameters on sodium availability in a model lipid/protein-based emulsion gel were studied for purposes of sodium reduction. Heat-set model gels were prepared with varying levels of protein, lipid, and NaCl contents and high pressure homogenization treatments. Single quantum and double quantum-filtered 23 Na NMR spectroscopy experiments were used to characterize sodium mobility, structural order around "bound" (restricted mobility) sodium, and sodium binding, which have been correlated to saltiness perception in food systems previously. Total sodium mobility was lower in gels with higher protein or fat content, and was not affected by changes in homogenization pressure. The gels with increased protein, fat, or homogenization pressure had increased structure surrounding "bound" sodium and more relative "bound" sodium due to increased interfacial protein interactions. The data obtained in this study provide information on factors affecting sodium availability, which can be applied towards sodium reduction in lipid/protein-based foods. © 2017 Institute of Food Technologists®.

  10. Rashba quantum wire: exact solution and ballistic transport.

    PubMed

    Perroni, C A; Bercioux, D; Ramaglia, V Marigliano; Cataudella, V

    2007-05-08

    The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wavefunction and eigenvalue equation are worked out, pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is made with the results of a simple model, the two-band model, that takes account only of the first two sub-bands of the wire. Finally, the transport properties within the ballistic regime are analytically calculated for the two-band model and through a tight-binding Green function for the entire system. Single and double interfaces separating regions with different strengths of spin-orbit interaction are analysed by injecting carriers into the first and the second sub-band. It is shown that in the case of a single interface the spin polarization in the Rashba region is different from zero, and in the case of two interfaces the spin polarization shows oscillations due to spin-selective bound states.

  11. Double-bosonization and Majid's conjecture, (I): Rank-inductions of ABCD

    NASA Astrophysics Data System (ADS)

    Hu, Hongmei; Hu, Naihong

    2015-11-01

    Majid developed in [S. Majid, Math. Proc. Cambridge Philos. Soc. 125, 151-192 (1999)] the double-bosonization theory to construct Uq(𝔤) and expected to generate inductively not just a line but a tree of quantum groups starting from a node. In this paper, the authors confirm Majid's first expectation (see p. 178 [S. Majid, Math. Proc. Cambridge Philos. Soc. 125, 151-192 (1999)]) through giving and verifying the full details of the inductive constructions of Uq(𝔤) for the classical types, i.e., the ABCD series. Some examples in low ranks are given to elucidate that any quantum group of classical type can be constructed from the node corresponding to Uq(𝔰𝔩2).

  12. Flux-dependent anti-crossing of resonances in parallel non-coupled double quantum dots

    NASA Astrophysics Data System (ADS)

    Joe, Yong S.; Hedin, Eric R.; Kim, Jiseok

    2008-08-01

    We present novel resonant phenomena through parallel non-coupled double quantum dots (QDs) embedded in each arm of an Aharonov-Bohm (AB) ring with magnetic flux passing through its center. The electron transmission through this AB ring with each QD formed by two short-range potential barriers is calculated using a scattering matrix at each junction and a transfer matrix in each arm. We show that as the magnetic flux modulates, a distortion of the grid-like square transmission occurs and an anti-crossing of the resonances appears. Hence, the modulation of magnetic flux in this system can have an equivalent effect to the control of inter-dot coupling between the two QDs.

  13. Phonon effects on the radiative recombination of excitons in double quantum dots

    NASA Astrophysics Data System (ADS)

    Karwat, Paweł; Sitek, Anna; Machnikowski, Paweł

    2011-11-01

    We study theoretically the radiative recombination of excitons in double quantum dots in the presence of carrier-phonon coupling. We show that the phonon-induced pure dephasing effects and transitions between the exciton states strongly modify the spontaneous emission process and make it sensitive to temperature, which may lead to nonmonotonic temperature dependence of the time-resolved luminescence. We show also that, under specific resonance conditions, the biexcitonic interband polarization can be coherently transferred to the excitonic one, leading to an extended lifetime of the total coherent polarization, which is reflected in the nonlinear optical spectrum of the system. We study the stability of this effect against phonon-induced decoherence.

  14. Field tuning the g factor in InAs nanowire double quantum dots.

    PubMed

    Schroer, M D; Petersson, K D; Jung, M; Petta, J R

    2011-10-21

    We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society

  15. Irreducible Green's functions method for a quantum dot coupled to metallic and superconducting leads

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Kucab, Krzysztof

    2017-05-01

    Using irreducible Green's functions (IGF) method we analyse the Coulomb interaction dependence of the spectral functions and the transport properties of a quantum dot coupled to isotropic superconductor and metallic leads (SC-QD-N). The irreducible Green's functions method is the modification of classical equation of motion technique. The IGF scheme is based on differentiation of double-time Green's functions, both over the primary and secondary times. The IGF method allows to obtain the spectral functions for equilibrium and non-equilibrium impurity Anderson model used for SC-QD-N system. By the numerical computations, we show the change of spectral and the anomalous densities under the influence of the Coulomb interactions. The observed sign change of the anomalous spectral density can be used as the criterion of the SC singlet-Kondo singlet transition.

  16. Treating Leick with like: response to criticisms of the use of entanglement to illustrate homeopathy.

    PubMed

    Milgrom, Lionel R

    2008-04-01

    In criticising papers which recently appeared in Homeopathy, Leick claims that no double blind randomised clinical trials (DBRCTs) show that homeopathy is efficacious, and that specific effects of substances diluted beyond Avogadro's limit are implausible. He states that generalised entanglement models should be able to improve the design of experiments to test ultra-high dilutions, and disparages the authors' understandings of quantum physics. The paper responds to those criticisms. Several DBRCTs have shown that homeopathy has effects which are not due to placebo and these are now supported by preclinical work. This area of theory is in its infancy and it is unreasonable to expect it to have generated experiments at this stage. The authors have used accepted interpretations of quantum theory: Leick's view is coloured by skepticism concerning homeopathy.

  17. Light-ion Production from O, Si, Fe and Bi Induced by 175 MeV Quasi-monoenergetic Neutrons

    NASA Astrophysics Data System (ADS)

    Bevilacqua, R.; Pomp, S.; Jansson, K.; Gustavsson, C.; Österlund, M.; Simutkin, V.; Hayashi, M.; Hirayama, S.; Naitou, Y.; Watanabe, Y.; Hjalmarsson, A.; Prokofiev, A.; Tippawan, U.; Lecolley, F.-R.; Marie, N.; Leray, S.; David, J.-C.; Mashnik, S.

    2014-05-01

    We have measured double-differential cross sections in the interaction of 175 MeV quasi-monoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compared our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.

  18. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  19. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  20. Embedded random matrix ensembles from nuclear structure and their recent applications

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.; Chavda, N. D.

    Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.

  1. Multichannel-quantum-defect-theory treatment of preionized and predissociated triplet gerade levels of H2

    NASA Astrophysics Data System (ADS)

    Matzkin, A.; Jungen, Ch.; Ross, S. C.

    2000-12-01

    Multichannel quantum defect theory (MQDT) is used to calculate highly excited predissociated and preionized triplet gerade states of H2. The treatment is ab initio and is based on the clamped-nuclei quantum-defect matrices and dipole transition moments derived from quantum-chemical potential energy curves by Ross et al. [Can. J. Phys. (to be published)]. Level positions, predissociation or preionization widths and relative intensities are found to be in good agreement with those observed by Lembo et al. [Phys. Rev. A 38, 3447 (1988); J. Chem. Phys. 92, 2219 (1990)] by an optical-optical double resonance photoionization or depletion technique.

  2. Entanglement and asymmetric steering over two octaves of frequency difference

    NASA Astrophysics Data System (ADS)

    Olsen, M. K.

    2017-12-01

    The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for entangled states spanning wide frequency ranges. In this work we analyze a parametric scheme of cascaded harmonic generation which promises to deliver bipartite entangled states in which the two modes are separated by two octaves in frequency. This scheme is potentially very useful for applications in quantum communication and computation networks as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable. It doubles the frequency range over which entanglement is presently available.

  3. EDITORIAL: Quantum science and technology at the nanoscale Quantum science and technology at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-07-01

    The development of quantum theory was an archetypal scientific revolution in early twentieth-century physics. In many ways, the probabilities and uncertainties that replaced the ubiquitous application of classical mechanics may have seemed a violent assault on logic and reason. 'Something unknown is doing we don't know what-that is what our theory amounts to,' Sir Arthur Eddington famously remarked, adding, 'It does not sound a particularly illuminating theory. I have read something like it elsewhere: the slithy toves, did gyre and gimble in the wabe' [1]. Today, quantum mechanics no longer seems a dark art best confined to the boundaries of physics and philosophy. Scanning probe micrographs have captured actual images of quantum-mechanical interference patterns [2], and familiarity has made the claims of quantum theory more palatable. An understanding of quantum effects is essential for nanoscale science and technology research. This special issue on quantum science and technology at the nanoscale collates some of the latest research that is extending the boundaries of our knowledge and understanding in the field. Quantum phenomena have become particularly significant in attempts to further reduce the size of electronic devices, the trend widely referred to as Moore's law. In this issue, researchers in Switzerland report results from transport studies on graphene. The researchers investigate the conductance variance in systems with superconducting contacts [3]. Also in this issue, researchers in Germany calculate the effects of spin-orbit coupling in a molecular dimer and predict nonlinear transport. They also explain how ferromagnetic electrodes can be used to probe these interactions [4]. Our understanding of spin and the ability to manipulate it has advanced greatly since the notion of spin was first proposed. However, it remains the case that little is known about local coherent fluctuations of spin polarizations, the scale on which they occur, how they are correlated, and how they influence spin currents and their fluctuations, as well as the mechanisms behind current-induced spin polarizations in chaotic ballistic systems. In a theoretical report on current-induced spin polarization from the University of Arizona, progress is made in filling in some of these gaps, and a 'spin-probe' model is proposed [5]. Spin is also an important element in quantum information research. With electron spin coherence lifetimes exceeding 1 ms at room temperature, as well as the added benefit of being optically addressable, nitrogen-vacancy defects in diamond have been identified as having considerable potential for quantum information applications. Now researchers in the US describe the fabrication and low-temperature characterization of silica microdisk cavities coupled to diamond nanoparticles, and present theoretical and experimental studies of gallium phosphide structures coupled to nitrogen-vacancy centers in bulk diamond [6]. Double quantum dots have been considered as prospective candidates for charge qubits for quantum information processors. The application of a bias voltage can be used to control tunnelling between the double quantum dots, allowing the energy states to be tuned. Researchers in Switzerland investigate experimentally the effect of ohmic heating of the phonon bath on decoherence, and find that the system can be considered as a thermoelectric generator [7]. This progress has only been made possible by advances in our understanding of the fundamental science behind quantum mechanics, and work exploring this territory is still a hotbed of activity and progress. Increasingly sophisticated tools, both numerical and experimental, have facilitated engagement with quantum phenomena in nanoscale systems. Molecular spin clusters represent an ideal setting within solid-state systems to test concepts in quantum mechanics, as highlighted in this issue by researchers in Italy, who report their work on controlling entanglement between molecular spins [8]. Nanofabrication techniques have seen tremendous advances that have enabled scientists to realise new experimental electronics architectures. Using photolithography, chemical etching and electrodeposition, a collaboration of researchers in China, France and the US has fabricated mechanically controllable break junctions with finely adjustable nanogaps between two gold electrodes on solid state chips [9]. The structures can be used to characterize the electron transport properties of single molecules. In many ways, experimental realization of quantum phenomena has invigorated theoretical endeavours; experiments on the Kondo effect, for example, have renewed interest in finding new approximate solutions for the single impurity Anderson model. Researchers in Brazil present work on finding solutions to the Anderson Hamiltonian based on the atomic approach, which is simple to implement and has a low computational cost [10]. Theoretical descriptions have developed into powerful and sophisticated tools for explaining, understanding and even predicting the behaviour of quantum systems. Recent progress in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires is provided in a topical review by researchers in Germany [11]. While a claim to a complete understanding of quantum phenomena may be premature, certainly vast progress has been made in learning how to navigate new territory in the quantum world. And what is more, in exploring novel systems and the continued efforts to develop devices with capabilities enhanced due to quantum effects, we are learning to exploit it. References [1] Eddington A S 1929 The Nature of the Physical World (New York: The University Press) [2] Crommie M F, Lutz C P and Eigler D M 1993 Science 262 218-20 [3] Trbovic J, Minder N, Freitag F and Schönenberger C 2010 Superconductivity-enhanced conductance fluctuations in few-layer graphene Nanotechnology 21 274005 [4] Herzog S and Wegewijs M R 2010 Dzyaloshinskii-Moriya interaction in transport through single-molecule transistors Nanotechnology 21 274010 [5] Jacquod Ph 2010 Scattering theory of current-induced spin polarization Nanotechnology 21 274006 [6] Santori C, Barclay P E, Fu K-M C, Beausoleil R G, Spillane S and Fisch M 2010 Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond Nanotechnology 21 274008 [7] Gasser U, Gustavsson S, Küng B, Ensslin K and Ihn T 2010 Phonon-mediated back-action of a charge readout on a double quantum dot Nanotechnology 21 274003 [8] Troiani F, Bellini V, Candini A, Lorusso G and Affronte M 2010 Spin entanglement in supramolecular structures Nanotechnology 21 274009 [9] Tian J-H et al 2010 The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules Nanotechnology 21 274012 [10] Tian J-H et al Lobo T, Figueira M S and Foglio M E 2010 The atomic approach of the Anderson model for the U finite case: application to a quantum dot Nanotechnology 21 274007 [11] Andergassen S, Meden V, Schoeller H, Splettstoesser J and Wegewijs M R 2010 Charge transport through single molecules, quantum dots and quantum wires Nanotechnology 21 272001

  4. Lifting of Spin Blockade by Charged Impurities in Si-MOS Double Quantum Dot Devices

    NASA Astrophysics Data System (ADS)

    King, Cameron; Schoenfield, Joshua; Calderón, M. J.; Koiller, Belita; Saraiva, André; Hu, Xuedong; Jiang, Hong-Wen; Friesen, Mark; Coppersmith, S. N.

    Fabricating quantum dots in silicon metal-oxide-semiconductor (MOS) for quantum information processing applications is attractive because of the long spin coherence times in silicon and the potential for leveraging the massive investments that have been made for scaling of the technology for classical electronics. One obstacle that has impeded the development of electrically gated MOS singlet-triplet qubits is the lack of observed spin blockade, where the tunneling of a second electron into a dot is fast when the two-electron state is a singlet and slow when the two-electron state is a triplet, even in samples with large singlet-triplet energy splittings. We show that this is a commonly exhibited problem in MOS double quantum dots, and present evidence that the cause is stray positive charges in the oxide layer inducing accidental dots near the device's active region that allow spin blockade lifting. This work was supported by ARO (W911NF-12-1-0607), NSF (IIA-1132804), the Department of Defense under Contract No. H98230-15-C 0453, ARO (W911NF-14-1-0346), NSF (OISE-1132804), ONR (N00014-15-1-0029), and ARO (W911NF-12-R-0012).

  5. Suppression of Pauli Spin Blockade in Few Hole Laterally Gated Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry; National Research Council Team; Sandia Labs Team

    Hole spins have attracted increasing attention as candidates for qubits in quantum information applications. The p-type character of their wavefunction leads to smaller hyperfine interaction with the nuclei resulting in longer coherence times. Additionally, strong spin-orbit interaction allows for enhanced all-electrical manipulation of spin qubit states. Single hole spins have been electrically studied in InSb and Si nanowire quantum dots, however, electrostatically confined hole spins in a 2D hole gas have thus far been limited to the many hole regime. In this talk we will present a full description of the two-hole spin spectrum in a lateral GaAs/AlGaAs double quantum. High-bias magneto-transport spectroscopy reveals all four states of the spectrum (singlet and triplets) in both the (1,1) and (2,0) configurations, essential for spin readout based on Pauli spin blockade. We show that spin-flip tunneling between dots is as strong as spin conserving tunneling, a consequence of the strong spin-orbit interaction. This suppresses the Pauli spin blockade. Our results suggest that alternate techniques for single hole spin qubit readout need to be explored.

  6. Strong coupling of a single electron in silicon to a microwave photon.

    PubMed

    Mi, X; Cady, J V; Zajac, D M; Deelman, P W; Petta, J R

    2017-01-13

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots. Copyright © 2017, American Association for the Advancement of Science.

  7. A hybrid plasmonic waveguide terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Degl'Innocenti, Riccardo; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A.

    2015-02-01

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.

  8. Coupling a single electron spin to a microwave resonator: Part I: controlling transverse and longitudinal couplings

    NASA Astrophysics Data System (ADS)

    Lachance-Quirion, Dany; Beaudoin, Félix; Camirand Lemyre, Julien; Coish, William A.; Pioro-Ladrière, Michel

    Novel quantum technologies can be combined within hybrid systems to benefit from the complementary capabilities of individual components. For example, microwave-frequency superconducting resonators are ideally suited to perform qubit readout and to mediate two-qubit gates, while spin qubits offer long coherence times and high-fidelity single-qubit gates. In this talk, we consider strong coupling between a microwave resonator and an electron-spin qubit in a double quantum dot due to an inhomogeneous magnetic field generated by a nearby nanomagnet.. Considering realistic parameters, we estimate spin-resonator couplings of order 1 MHz. Further, we show that the position of the double dot relative to the nanomagnet allows us to select between purely longitudinal and transverse couplings. While the transverse coupling may be used for quantum state transfer between the spin qubit and the resonator, the longitudinal coupling could be used in a new qubit readout scheme recently introduced for superconducting qubits.

  9. Two-axis control of a singlet-triplet qubit with an integrated micromagnet.

    DOE PAGES

    Wu, Xian; Ward, D. R.; Prance, J. R.; ...

    2014-08-04

    The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit’s Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T*2 is determined. By measuringmore » T*2 at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T*2 arising from charge noise and from coupling to nuclear spins.« less

  10. Double slit experiment with quantum detectors: mysteries, meanings, misinterpretations and measurement

    NASA Astrophysics Data System (ADS)

    Rameez-ul-Islam; Ikram, Manzoor; Hasan Mujtaba, Abid; Abbas, Tasawar

    2018-01-01

    We propose an idea for symmetric measurements through the famous double slit experiment (DSE) in a new detection scenario. The interferometric setup is complemented here with quantum detectors that switch to an arbitrary superposition after interaction with the arms of the DSE. The envisioned schematics cover the full measurement range, i.e. from the weak to the strong projective situation with selectivity being a smoothly tunable open option, and suggests an alternative methodology for weak measurements based on information overlap from DSE paths. The results, though generally in agreement with the quantum paradigm, raise many questions over the nature of probabilities, the absurdity of the common language for phenomena’s description in the theory and the boundary separating the projective/non-projective measurements, and the related misconceived interpretations. Further, the results impose certain constraints over the hidden variable theories as well as on the repercussions of the weak measurements. Although described as a thought experiment, the proposal can equally be implemented experimentally under a prevailing research scenario.

  11. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si 0.8Ge 0.2 quantum well hetero-structure

    DOE PAGES

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.; ...

    2018-06-04

    Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less

  12. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si 0.8Ge 0.2 quantum well hetero-structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.

    Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less

  13. A hybrid plasmonic waveguide terahertz quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degl'Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert

    2015-02-23

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of thesemore » waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.« less

  14. Electron-electron correlation in two-photon double ionization of He-like ions

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  15. Spin qubit transport in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Hu, Xuedong

    Long distance spin communication is a crucial ingredient to scalable quantum computer architectures based on electron spin qubits. One way to transfer spin information over a long distance on chip is via electron transport. Here we study the transport of an electron spin qubit in a double quantum dot by tuning the interdot detuning voltage. We identify a parameter regime where spin relaxation hot-spots can be avoided and high-fidelity spin transport is possible. Within this parameter space, the spin transfer fidelity is determined by the operation speed and the applied magnetic field. In particular, near zero detuning, a proper choice of operation speed is essential to high fidelity. In addition, we also investigate the modification of the effective g-factor by the interdot detuning, which could lead to a phase error between spin up and down states. The results presented in this work could be a useful guidance for experimentally achieving high-fidelity spin qubit transport. We thank financial support by US ARO via Grant W911NF1210609.

  16. Effect of pumping delay on the modulation bandwidth in double tunneling-injection quantum dot lasers.

    PubMed

    Asryan, Levon V

    2017-01-01

    The modulation bandwidth of double tunneling-injection (DTI) quantum dot (QD) lasers is studied, taking into account noninstantaneous pumping of QDs. In this advanced type of semiconductor lasers, carriers are first captured from the bulk waveguide region into two-dimensional regions (quantum wells [QWs]); then they tunnel from the QWs into zero-dimensional regions (QDs). The two processes are noninstantaneous and, thus, could delay the delivery of the carriers to the QDs. Here, the modulation bandwidth of DTI QD lasers is calculated as a function of two characteristic times (the capture time from the waveguide region into the QW and the tunneling time from the QW into the QD ensemble) and is shown to increase as either of these times is reduced. The capture and tunneling times of 1 and 0.1 ps, respectively, are shown to characterize fast capture and tunneling processes; as the capture and tunneling times are brought below 1 and 0.1 ps, the bandwidth remains almost unchanged and close to its upper limit.

  17. Bound magnetic polaron in a semimagnetic double quantum well

    NASA Astrophysics Data System (ADS)

    Kalpana, P.; Jayakumar, K.

    2017-09-01

    The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).

  18. Computational Insights into Materials and Interfaces for Capacitive Energy Storage

    DOE PAGES

    Zhan, Cheng; Lian, Cheng; Zhang, Yu; ...

    2017-04-24

    Supercapacitors such as electric double-layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double-layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte-Carlo (MC) methods. In recent years, combining first-principles and classical simulations to investigate the carbon-based EDLCs has shed light on the importance of quantum capacitance in graphene-like 2D systems. More recently, the development of joint density functional theorymore » (JDFT) enables self-consistent electronic-structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO 2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage.« less

  19. Analysis of geometric phase effects in the quantum-classical Liouville formalism.

    PubMed

    Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  20. Analysis of geometric phase effects in the quantum-classical Liouville formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic statesmore » in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.« less

  1. Keldysh meets Lindblad: Correlated Gain and Loss in Higher Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Stace, Tom; Mueller, Clemens

    Motivated by correlated decay processes driving gain, loss and lasing in driven artificial quantum systems, we develop a theoretical technique using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behaviour at the same order of perturbation theory. We then apply these results to analyse the phonon-assisted steady-state gain of a microwave field driving a double quantum-dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing- assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.

  2. Quantum finance Hamiltonian for coupon bond European and barrier options.

    PubMed

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  3. Canadian Semiconductor Technology Conference, 6th, Ottawa, Canada, Aug. 11-13, 1992, Proceedings

    NASA Astrophysics Data System (ADS)

    Baribeau, Jean-Marc

    1992-11-01

    This volume contains papers on the growth efficiency and distribution coefficient of GaInP-InP epilayers and heterostructures, X-ray photoelectron spectroscopy studies of Ge epilayers on Si(100), and mechanical properties of silicon carbide films for X-ray lithography application. Attention is also given to fine structure in Raman spectroscopy and X-ray reflectometry and its uses for the characterization of superlattices, phase formation in Fe-Si thin-film diffusion couples, process optimization for a micromachined silicon nonreverse valve, and a numerical study of heat transport in thermally isolated flow-rate microsensors. Particular consideration is given to a versatile 2D model for InGaAsP quantum-well semiconductor lasers, gallium arsenide electronics in the marketplace, and optical channel grading in p-type Si/SiGe MOSFETs. Other papers are on ultrafast electron tunneling in a reverse-biased high-efficiency quantum well laser structure, excess currents as a result of trap-assisted tunneling in double-barrier resonant tunneling diodes, and carrier lifetimes in strained InGaAsP multiple quantum-well laser structures.

  4. Enhancing the performance of exchange-only qubits in triple-quantum-dots

    NASA Astrophysics Data System (ADS)

    Fei, Jianjia; Hung, Jo-Tzu; Koh, Teck Seng; Shim, Yun-Pil; Coppersmith, Susan; Hu, Xuedong; Friesen, Mark

    2014-03-01

    The exchange-only qubit has several potential advantages for quantum computation: all-electrical control, fast gate operations, and robustness against global magnetic noise. Such a device has recently been implemented in a GaAs triple-quantum-dot. In this talk, we discuss theoretical simulations of the fidelity of pulsed gate operations of the exchange-only qubit, based on a master equation approach. Our model accounts for several different dephasing mechanisms, including hyperfine interactions and charge noise arising from double-occupation errors and fluctuations of the detuning parameter. Our investigations indicate the optimal working regimes and maximum gate fidelities for these devices, in terms of experimentally tunable parameters. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense.

  5. Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes

    PubMed Central

    Abramavicius, Darius; Voronine, Dmitri V.; Mukamel, Shaul

    2008-01-01

    A simulation study demonstrates how the nonlinear optical response of the Fenna–Matthews–Olson photosynthetic light-harvesting complex may be explored by a sequence of laser pulses specifically designed to probe the correlated dynamics of double excitations. Cross peaks in the 2D correlation plots of the spectra reveal projections of the double-exciton wavefunctions onto a basis of direct products of single excitons. An alternative physical interpretation of these signals in terms of quasiparticle scattering is developed. PMID:18562293

  6. Quantum particles in general spacetimes: A tangent bundle formalism

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Mattias N. R.

    2018-06-01

    Using tangent bundle geometry we construct an equivalent reformulation of classical field theory on flat spacetimes which simultaneously encodes the perspectives of multiple observers. Its generalization to curved spacetimes realizes a new type of nonminimal coupling of the fields and is shown to admit a canonical quantization procedure. For the resulting quantum theory we demonstrate the emergence of a particle interpretation, fully consistent with general relativistic geometry. The path dependency of parallel transport forces each observer to carry their own quantum state; we find that the communication of the corresponding quantum information may generate extra particles on curved spacetimes. A speculative link between quantum information and spacetime curvature is discussed which might lead to novel explanations for quantum decoherence and vanishing interference in double-slit or interaction-free measurement scenarios, in the mere presence of additional observers.

  7. Observation of an anomalous decoherence effect in a quantum bath at room temperature

    PubMed Central

    Huang, Pu; Kong, Xi; Zhao, Nan; Shi, Fazhan; Wang, Pengfei; Rong, Xing; Liu, Ren-Bao; Du, Jiangfeng

    2011-01-01

    The decoherence of quantum objects is a critical issue in quantum science and technology. It is generally believed that stronger noise causes faster decoherence. Strikingly, recent theoretical work suggests that under certain conditions, the opposite is true for spins in quantum baths. Here we report an experimental observation of an anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that, under dynamical decoupling, the double-transition can have longer coherence time than the single-transition even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology. PMID:22146389

  8. Semiconducting Nanocrystals in Mesostructured Thin Films for Optical and Opto-Electronic Device Applications

    DTIC Science & Technology

    2007-03-01

    with HF in methanol. For example, for 4.5 nm In0.91Ga0.09P nanoparticles in toluene, there is a dramatic increase in PL quantum efficiency from 8...opto-electronic device applications, for which quantum efficiencies above 50% are typically required for commercial cost-effectiveness. For the...InGaP nanocrystals……… 14 Figure 4: 2D double- quantum 31P NMR spectrum, 4.5 nm InGaP nanocrystals………….…… 15 Figure 5: TEM of of 10 nm, 5 nm

  9. Free-energy landscapes from adaptively biased methods: Application to quantum systems

    NASA Astrophysics Data System (ADS)

    Calvo, F.

    2010-10-01

    Several parallel adaptive biasing methods are applied to the calculation of free-energy pathways along reaction coordinates, choosing as a difficult example the double-funnel landscape of the 38-atom Lennard-Jones cluster. In the case of classical statistics, the Wang-Landau and adaptively biased molecular-dynamics (ABMD) methods are both found efficient if multiple walkers and replication and deletion schemes are used. An extension of the ABMD technique to quantum systems, implemented through the path-integral MD framework, is presented and tested on Ne38 against the quantum superposition method.

  10. 'Quantum interference with slits' revisited

    NASA Astrophysics Data System (ADS)

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.

  11. High-efficiency frequency doubling of continuous-wave laser light.

    PubMed

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  12. Multi-electron double quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Kestner, Jason; Barnes, Edwin; Das Sarma, Sankar

    2013-03-01

    Double quantum dot (DQD) spin quits in a solid state environment typically consist of two electron spins confined to a DQD potential. We analyze the viability and potential advantages of DQD qubits which use greater then two electrons, and present results for six-electron qubits using full configuration interaction methods. The principal results of this work are that such six electron DQDs can retain an isolated low-energy qubit space that is more robust to charge noise due to screening. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Anomalous Coulomb oscillation in crossed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baek, Seung Jae; Lee, Dongsu; Park, Seung Joo; Park, Yung Woo; Svensson, Johannes; Jonson, Mats; Campbell, Eleanor E. B.

    2008-03-01

    Single-walled carbon nanotube (SWCNT) crossed junctions separated by an insulating layer were fabricated to investigate the double quantum dot modulated by a single gate (DQD-sG). Anomalous Coulomb oscillations were observed on the lower CNT at low temperature, where the behavior was interpreted by the concept of a double quantum dot (DQD) system http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id =APPLAB000089000023233107000001&idtype=cvips&gifs=yes [1]. To understand it more clearly, we have intentionally fabricated crossed CNTs without oxide layer in between. The observed anomalous Coulomb oscillations indicate that the contact resistance between the two tubes becomes a potential barrier splitting the initial single QD into the DQD, and the back-gate modulates the energy levels of the DQD.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khoi T.; Lilly, Michael P.; Nielsen, Erik

    We report Pauli blockade in a multielectron silicon metal–oxide–semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet–triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing andmore » shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.« less

  15. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    PubMed

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    ALAM,TODD M.

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  17. Multiple quantum criticality in a two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Biscaras, J.; Bergeal, N.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Grilli, M.; Caprara, S.; Lesueur, J.

    2013-06-01

    The diverse phenomena associated with the two-dimensional electron gas (2DEG) that occurs at oxide interfaces include, among others, exceptional carrier mobilities, magnetism and superconductivity. Although these have mostly been the focus of interest for potential future applications, they also offer an opportunity for studying more fundamental quantum many-body effects. Here, we examine the magnetic-field-driven quantum phase transition that occurs in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through a finite-size scaling analysis, we show that it belongs to the (2+1)D XY model universality class. The system can be described as a disordered array of superconducting puddles coupled by a 2DEG and, depending on its conductance, the observed critical behaviour is single (corresponding to the long-range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). A phase diagram illustrating the dependence of the critical field on the 2DEG conductance is constructed, and shown to agree with theoretical proposals. Moreover, by retrieving the coherence-length critical exponent ν, we show that the quantum critical behaviour can be clean or dirty according to the Harris criterion, depending on whether the phase-coherence length is smaller or larger than the size of the puddles.

  18. Multiple quantum criticality in a two-dimensional superconductor.

    PubMed

    Biscaras, J; Bergeal, N; Hurand, S; Feuillet-Palma, C; Rastogi, A; Budhani, R C; Grilli, M; Caprara, S; Lesueur, J

    2013-06-01

    The diverse phenomena associated with the two-dimensional electron gas (2DEG) that occurs at oxide interfaces include, among others, exceptional carrier mobilities, magnetism and superconductivity. Although these have mostly been the focus of interest for potential future applications, they also offer an opportunity for studying more fundamental quantum many-body effects. Here, we examine the magnetic-field-driven quantum phase transition that occurs in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through a finite-size scaling analysis, we show that it belongs to the (2+1)D XY model universality class. The system can be described as a disordered array of superconducting puddles coupled by a 2DEG and, depending on its conductance, the observed critical behaviour is single (corresponding to the long-range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). A phase diagram illustrating the dependence of the critical field on the 2DEG conductance is constructed, and shown to agree with theoretical proposals. Moreover, by retrieving the coherence-length critical exponent ν, we show that the quantum critical behaviour can be clean or dirty according to the Harris criterion, depending on whether the phase-coherence length is smaller or larger than the size of the puddles.

  19. Coherent manipulation of a Si/SiGe-based singlet-triplet qubit

    NASA Astrophysics Data System (ADS)

    Gyure, Mark

    2012-02-01

    Electrically defined silicon-based qubits are expected to show improved quantum memory characteristics in comparison to GaAs-based devices due to reduced hyperfine interactions with nuclear spins. Silicon-based qubit devices have proved more challenging to build than their GaAs-based counterparts, but recently several groups have reported substantial progress in single-qubit initialization, measurement, and coherent operation. We report [1] coherent control of electron spins in two coupled quantum dots in an undoped Si/SiGe heterostructure, forming two levels of a singlet-triplet qubit. We measure a nuclei-induced T2^* of 360 ns, an increase over similar measurements in GaAs-based quantum dots by nearly two orders of magnitude. We also describe the results from detailed modeling of our materials and devices that show this value for T2^* is consistent with theoretical expectations for our estimated dot sizes and a natural abundance of ^29Si. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government. Approved for public release, distribution unlimited.[4pt] [1] B. M. Maune et al., ``Coherent Singlet-Triplet Oscillations in a Silicon-based Double Quantum Dot,'' accepted by Nature.

  20. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  1. A universal model for nanoporous carbon supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    Supercapacitors based on nanoporous carbon materials, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. Nanoporous carbon supercapacitors are generally viewed as a parallel-plate capacitor since supercapacitors store energy by charge separation in an electric double layer formed at the electrode/electrolyte interface. The EDLC model has been used to characterize the energy storage of supercapacitors for decades. We comment in this chapter on the shortcomings of the EDLC model when applied to nanoporous carbon supercapacitors. In response to the latest experimentalmore » breakthrough in nanoporous carbon supercapacitors, we have proposed a heuristic model that takes pore curvature into account as a replacement for the EDLC model. When the pore size is in the mesopore regime (2 50 nm), electrolyte counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm), where pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced to the EDLC model. With the backing of experimental data and quantum density functional theory calculations, we have shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials and electrolytes. The strengths and limitations of this new model are discussed. The new model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration, dielectric constant, and solute ion size, and may lend support to the systematic optimization of the properties of carbon supercapacitors through experiments.« less

  2. Hot electron light emission in gallium arsenide/aluminium(x) gallium(1-x) arsenic heterostructures

    NASA Astrophysics Data System (ADS)

    Teke, Ali

    In this thesis we have demonstrated the operation of a novel tunable wavelength surface light emitting device. The device is based on a p-GaAs, and n-Ga1- xAlxAs heterojunction containing an inversion layer on the p- side, and GaAs quantum wells on the n- side, and, is referred to as HELLISH-2 (Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure-Type 2). The devices utilise hot electron longitudinal transport and, therefore, light emission is independent of the polarity of the applied voltage. The wavelength of the emitted light can be tuned with the applied bias from GaAs band-to-band transition in the inversion layer to e1-hh1 transition in the quantum wells. In this work tunable means that the device can be operated at either single or multiple wavelength emission. The operation of the device requires only two diffused in point contacts. In this project four HELLISH-2 samples coded as ES1, ES2, ES6 and QT919 have been studied. First three samples were grown by MBE and the last one was grown by MOVPE techniques. ES1 was designed for single and double wavelength operation. ES2 was a control sample used to compare our results with previous work on HELLISH-2 and ES6 was designed for single, double and triple wavelength operation. Theoretical modelling of the device operation was carried out and compared with the experimental results. HELLISH-2 structure was optimised for low threshold and high efficiency operation as based on our model calculations. The last sample QT919 has been designed as an optimised device for single and double wavelength operation like ES1. HELLISH-2 has a number of advantages over the conventional light emitters, resulting in some possible applications, such as light logic gates and wavelength division multiplexing in optoelectronic.

  3. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    NASA Astrophysics Data System (ADS)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  4. Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling

    NASA Astrophysics Data System (ADS)

    Tiira, Jonna; Radevici, Ivan; Haggren, Tuomas; Hakkarainen, Teemu; Kivisaari, Pyry; Lyytikäinen, Jari; Aho, Arto; Tukiainen, Antti; Guina, Mircea; Oksanen, Jani

    2017-02-01

    Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.

  5. Local Response of Topological Order to an External Perturbation

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Cincio, Lukasz; Santra, Siddhartha; Zanardi, Paolo; Amico, Luigi

    2013-05-01

    We study the behavior of the Rényi entropies for the toric code subject to a variety of different perturbations, by means of 2D density matrix renormalization group and analytical methods. We find that Rényi entropies of different index α display derivatives with opposite sign, as opposed to typical symmetry breaking states, and can be detected on a very small subsystem regardless of the correlation length. This phenomenon is due to the presence in the phase of a point with flat entanglement spectrum, zero correlation length, and area law for the entanglement entropy. We argue that this kind of splitting is common to all the phases with a certain group theoretic structure, including quantum double models, cluster states, and other quantum spin liquids. The fact that the size of the subsystem does not need to scale with the correlation length makes it possible for this effect to be accessed experimentally.

  6. Structural studies on serum albumins under green light irradiation.

    PubMed

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.

  7. Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors

    DOE PAGES

    Tam, Yu -T.; Ku, W.; Yao, D. -X.

    2015-09-10

    We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor couplingmore » reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.« less

  8. Dynamics of DNA breathing: weak noise analysis, finite time singularity, and mapping onto the quantum Coulomb problem.

    PubMed

    Fogedby, Hans C; Metzler, Ralf

    2007-12-01

    We study the dynamics of denaturation bubbles in double-stranded DNA on the basis of the Poland-Scheraga model. We show that long time distributions for the survival of DNA bubbles and the size autocorrelation function can be derived from an asymptotic weak noise approach. In particular, below the melting temperature the bubble closure corresponds to a noisy finite time singularity. We demonstrate that the associated Fokker-Planck equation is equivalent to a quantum Coulomb problem. Below the melting temperature, the bubble lifetime is associated with the continuum of scattering states of the repulsive Coulomb potential; at the melting temperature, the Coulomb potential vanishes and the underlying first exit dynamics exhibits a long time power law tail; above the melting temperature, corresponding to an attractive Coulomb potential, the long time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.

  9. Exciton localization and ultralow onset ultraviolet emission in ZnO nanopencils-based heterojunction diodes.

    PubMed

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Long, Yan; Han, Xu; Wu, Bin; Zhang, Baolin; Du, Guotong

    2016-09-05

    n-GaN/i-ZnO/p-GaN double heterojunction diodes were constructed by vertically binding p-GaN wafer on the tip of ZnO nanopencil arrays grown on n-GaN/sapphire substrates. An increased quantum confinement in the tip of ZnO nanopencils has been verified by photoluminescence measurements combined with quantitative analyses. Under forward bias, a sharp ultraviolet emission at ~375 nm due to localized excitons recombination can be observed in ZnO. The electroluminescence mechanism of the studied diode is tentatively elucidated using a simplified quantum confinement model. Additionally, the improved performance of the studied diode featuring an ultralow emission onset, a good operation stability and an enhanced ultraviolet emission shows the potential of our approach. This work provides a new route for the design and development of ZnO-based excitonic optoelectronic devices.

  10. Quantum Hall signatures of dipolar Mahan excitons

    NASA Astrophysics Data System (ADS)

    Schinner, G. J.; Repp, J.; Kowalik-Seidl, K.; Schubert, E.; Stallhofer, M. P.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Govorov, A. O.; Holleitner, A. W.; Kotthaus, J. P.

    2013-01-01

    We explore the photoluminescence of spatially indirect, dipolar Mahan excitons in a gated double quantum well diode containing a mesoscopic electrostatic trap for neutral dipolar excitons at low temperatures down to 250 mK and in quantizing magnetic fields. Mahan excitons in the surrounding of the trap, consisting of individual holes interacting with a degenerate two-dimensional electron system confined in one of the quantum wells, exhibit strong quantum Hall signatures at integer filling factors and related anomalies around filling factor ν=(2)/(3),(3)/(5), and (1)/(2), reflecting the formation of composite fermions. Interactions across the trap perimeter are found to influence the energy of the confined neutral dipolar excitons by the presence of the quantum Hall effects in the two-dimensional electron system surrounding the trap.

  11. Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Yamato, Ichiro

    2013-07-01

    There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.

  12. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Stehlik, J.; Edge, L. F.; Petta, J. R.

    2017-01-01

    We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g c / 2 π = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon.

  13. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.

    PubMed

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2011-01-21

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  14. Reviving Complementarity: John Wheeler's efforts to apply complementarity toward a quantum description of gravitation

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    2017-01-01

    In 1978, John Wheeler proposed the delayed-choice thought experiment as a generalization of the classic double slit experiment intended to help elucidate the nature of decision making in quantum measurement. In particular, he wished to illustrate how a decision made after a quantum system was prepared might retrospectively affect the outcome. He extended his methods to the universe itself, raising the question of whether the universe is a ``self-excited circuit'' in which scientific measurements in the present affect the quantum dynamics in the past. In this talk we'll show how Wheeler's approach revived the notion of Bohr's complementarity, which had by then faded from the prevailing discourse of quantum measurement theory. Wheeler's advocacy reflected, in part, his wish to eliminate the divide in quantum theory between measurer and what was being measured, bringing greater consistency to the ideas of Bohr, a mentor whom he deeply respected.

  15. Asymmetrical quantum well degradation of InGaN/GaN blue laser diodes characterized by photoluminescence

    NASA Astrophysics Data System (ADS)

    Wen, Pengyan; Liu, Jianping; Zhang, Shuming; Zhang, Liqun; Ikeda, Masao; Li, Deyao; Tian, Aiqin; Zhang, Feng; Cheng, Yang; Zhou, Wei; Yang, Hui

    2017-11-01

    The temperature, power, and voltage dependent photoluminescence spectra are studied in InGaN/GaN double quantum well blue laser diodes. Emissions from the two quantum wells can be distinguished at low temperature at low excitation power density due to the different built-in electric field in the two quantum wells. This finding is utilized to study the degradation of InGaN/GaN blue laser diodes. Two peaks are observed for the non-aged laser diode (LD), while one peak for the aged LD which performed 3200 h until no laser output is detected. The disappearance of the high energy peak in the photoluminescence spectra indicates a heavier degradation of the quantum well on the p-side, which agrees with our previous observation that both the linewidth and the potential fluctuation of InGaN quantum wells (QWs) reduced for the aged LDs.

  16. Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects

    NASA Astrophysics Data System (ADS)

    Smith, Brendan; Akimov, Alexey V.

    2018-04-01

    A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.

  17. Ultraclean single, double, and triple carbon nanotube quantum dots with recessed Re bottom gates

    NASA Astrophysics Data System (ADS)

    Jung, Minkyung; Schindele, Jens; Nau, Stefan; Weiss, Markus; Baumgartner, Andreas; Schoenenberger, Christian

    2014-03-01

    Ultraclean carbon nanotubes (CNTs) that are free from disorder provide a promising platform to manipulate single electron or hole spins for quantum information. Here, we demonstrate that ultraclean single, double, and triple quantum dots (QDs) can be formed reliably in a CNT by a straightforward fabrication technique. The QDs are electrostatically defined in the CNT by closely spaced metallic bottom gates deposited in trenches in Silicon dioxide by sputter deposition of Re. The carbon nanotubes are then grown by chemical vapor deposition (CVD) across the trenches and contacted using conventional electron beam lithography. The devices exhibit reproducibly the characteristics of ultraclean QDs behavior even after the subsequent electron beam lithography and chemical processing steps. We demonstrate the high quality using CNT devices with two narrow bottom gates and one global back gate. Tunable by the gate voltages, the device can be operated in four different regimes: i) fully p-type with ballistic transport between the outermost contacts (over a length of 700 nm), ii) clean n-type single QD behavior where a QD can be induced by either the left or the right bottom gate, iii) n-type double QD and iv) triple bipolar QD where the middle QD has opposite doping (p-type). Research at Basel is supported by the NCCR-Nano, NCCR-QIST, ERC project QUEST, and FP7 project SE2ND.

  18. Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study

    NASA Astrophysics Data System (ADS)

    Zhang, Chengxian; Yang, Xu-Chen; Wang, Xin

    2018-04-01

    A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120∘ from z ̂ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is three to five orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double sweet spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage, that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double sweet spot point should be optimal both for reducing charge noise and suppressing leakage.

  19. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  20. Molecular Quantum Mechanics: Analytic Gradients and Beyond - Program and Abstracts

    DTIC Science & Technology

    2007-06-03

    Kutzelnigg (Bochum, Germany) Chair: Pekka Pyykko (Helsinki, Finland) Which Masses are Vibrating or Rotating in a Molecule? 15:40-16:15 O30...Krylov (Los Angeles, CA, U.S.A.) Multiconfigurational Quantum Chemistry for Actinide Containing Systems: From Isolated Molecules to Condensed...the genetic algorithm will be critically assessed. For B4n, the double rings are notably stable. The DFT calculations provide strong indications of

  1. Efficiencies of induction of DNA double strand breaks in solution by photoabsorption at phosphorus and platinum.

    PubMed

    Maeda, Munetoshi; Kobayashi, Katsumi; Hieda, Kotaro

    2004-01-01

    This paper aims at determining and comparing the cross sections and quantum yields for DNA strand break induction by the Auger effect at the K-shell of phosphorus and at the LIII-shell of platinum. Using synchrotron radiation, free and Pt-bound pBR322 plasmid DNA were irradiated in solution with monochromatic X-rays, the energies of which were 2.153 and 2.147 keV, corresponding to "on" and "below" the phosphorus K-shell photoabsorption, and 11.566 and 11.542 keV for "above" and "below" the L(III)-shell photoabsorption of platinum, respectively. To suppress indirect effects by hydroxyl radicals, DMSO (1M) was used as a scavenger. The inner-shell photoabsorption of phosphorus and of platinum significantly increased the induction of DNA double strand breaks (DSB), whereas it had little effect on single strand break (SSB) induction. The quantum yields for the induction of DSB were calculated to be 0.017 and 1.13, in the case of phosphorus and platinum, respectively. CONCLSIONS: The value of the quantum yield for the DSB induction of platinum was about 66-fold larger than that for the phosphorus. These results clearly demonstrate that the quantum yield of DSB depends upon the magnitude of the Auger cascade.

  2. Simulation and optimization of deep violet InGaN double quantum well laser

    NASA Astrophysics Data System (ADS)

    Alahyarizadeh, Gh.; Ghazai, A. J.; Rahmani, R.; Mahmodi, H.; Hassan, Z.

    2012-03-01

    The performance characteristics of a deep violet InGaN double quantum well laser diode (LD) such as threshold current ( Ith), external differential quantum efficiency (DQE) and output power have been investigated using the Integrated System Engineering Technical Computer Aided Design (ISE-TCAD) software. As well as its operating parameters such as internal quantum efficiency ( ηi), internal loss ( αi) and transparency threshold current density ( J0) have been studied. Since, we are interested to investigate the mentioned characteristics and parameters independent of well and barrier thickness, therefore to reach a desired output wavelength, the indium mole fraction of wells and barriers has been varied consequently. The indium mole fractions of well and barrier layers have been considered 0.08 and 0.0, respectively. Some important parameters such as Al mole fraction of the electronic blocking layer (EBL) and cavity length which affect performance characteristics were also investigated. The optimum values of the Al mole fraction and cavity length in this study are 0.15 and 400 μm, respectively. The lowest threshold current, the highest DQE and output power which obtained at the emission wavelength of 391.5 nm are 43.199 mA, 44.99% and 10.334 mW, respectively.

  3. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingfei; Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn

    2014-04-21

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (Z{sub s}T ≈ 4.5) accompanying with a small charge figure of merit (Z{sub c}T ≈ 0) can be generated due to the remarkable bipolar effect. Further, whenmore » the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that Z{sub s}T is enhanced while Z{sub c}T is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results.« less

  4. Quantum interference in laser-induced nonsequential double ionization

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing

    2017-09-01

    Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.

  5. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dakhlaoui, Hassen

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values formore » carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)« less

  6. Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency.

    PubMed

    Ezzedini, Maher; Hidouri, Tarek; Alouane, Mohamed Helmi Hadj; Sayari, Amor; Shalaan, Elsayed; Chauvin, Nicolas; Sfaxi, Larbi; Saidi, Faouzi; Al-Ghamdi, Ahmed; Bru-Chevallier, Catherine; Maaref, Hassen

    2017-12-01

    This paper reports on experimental and theoretical investigations of atypical temperature-dependent photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam epitaxy (SS-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample. From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are associated with the ground-state transition from InAs QDs with two different size populations. Luminescence measurements were carried out as function of temperature in the range of 10-300 K by the PL technique. The low temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the localized-state ensemble model to explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum states act as a transit channel for the redistribution of thermally activated carriers. We have determined the localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the theoretical calculations.

  7. NMR dipolar constants of motion in liquid crystals: Jeener-Broekaert, double quantum coherence experiments and numerical calculation on a 10-spin cluster.

    PubMed

    Segnorile, H H; Bonin, C J; González, C E; Acosta, R H; Zamar, R C

    2009-10-01

    Two proton quasi-equilibrium states were previously observed in nematic liquid crystals, namely the S and W quasi-invariants. Even though the experimental evidence suggested that they originate in a partition of the spin dipolar energy into a strong and a weak part, respectively, from a theoretical viewpoint, the existence of an appropriate energy scale which allows such energy separation remains to be confirmed and a representation of the quasi-invariants is still to be given. We compare the dipolar NMR signals yielded both by the Jeener-Broekaert (JB) experiment as a function of the preparation time and the free evolution of the double quantum coherence (DQC) spectra excited from the S state, with numerical calculations carried out from first principles under different models for the dipolar quasi-invariants, in a 10-spin cluster which represents the 5CB (4(')-pentyl-4-biphenyl-carbonitrile) molecule. The calculated signals qualitatively agree with the experiments and the DQC spectra as a function of the single-quantum detection time are sensible enough to the different models to allow both to probe the physical nature of the initial dipolar-ordered state and to assign a subset of dipolar interactions to each constant of motion, which are compatible with the experiments. As a criterion for selecting a suitable quasi-equilibrium model of the 5CB molecule, we impose on the time evolution operator consistency with the occurrence of two dipolar quasi-invariants, that is, the calculated spectra must be unaffected by truncation of non-secular terms of the weaker dipolar energy. We find that defining the S quasi-invariant as the subset of the dipolar interactions of each proton with its two nearest neighbours yields a realistic characterization of the dipolar constants of motion in 5CB. We conclude that the proton-spin system of the 5CB molecule admits a partition of the dipolar energy into a bilinear strong and a multiple-spin weak contributions therefore providing two orthogonal constants of motion, which can be prepared and observed by means of the JB experiment. This feature, which implies the existence of two timescales of very different nature in the proton-spin dynamics, is ultimately dictated by the topology of the spin distribution in the dipole network and can be expected in other liquid crystals. Knowledge of the nature of the dipolar quasi-invariants will be useful in studies of dipolar-order relaxation, decoherence and multiple quantum NMR experiments where the initial state is a dipolar-ordered one.

  8. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  9. Highly strained InAlP/InGaAs-based coupled double quantum wells on InP substrates

    NASA Astrophysics Data System (ADS)

    Gozu, Shin-ichiro; Mozume, Teruo

    2018-05-01

    InAlP/InGaAs based coupled double quantum wells (CDQWs) are proposed for optelectronic devices utilizing intersubband transitions. The aim of the proposed CDQW structure was to reduce the Al volume as compared with that in InGaAs/AlAsSb(AlAs/InAlAs) based CDQWs. By careful consideration of the band gap energy as well as conduction band offset and lattice constants for III–V materials, highly strained InAlP was chosen as the barrier material. With the appropriate CDQW structure and under the optimized growth conditions, proposed CDQWs exhibited clear X-ray diffraction satellite peaks, and almost identical optical absorption spectrum as compared with the InGaAs/AlAs/InAlAs CDQWs.

  10. Diamagnetic susceptibility: An indicator of pressure induced donor localization in a double quantum well

    NASA Astrophysics Data System (ADS)

    Vignesh, G.; Nithiananthi, P.

    2016-04-01

    The influence of pressure along the growth axis on carrier localization in GaAs/Al0.3Ga0.7As Double Quantum Well (DQW) is studied under strongly coupled regime and isolated regimes of the well. The effective mass approximation combined with variation technique is adopted with the inclusion of mismatches in effective mass and dielectric constants of the well and barrier material. Effect of the barrier and well on carrier localization is investigated by observing the diamagnetic susceptibility (χdia) for various impurity locations (zi) and the critical limit of the barrier (Lb ≈ 50 Å) for tunneling has also been estimated. The effect of Γ-Χ crossover due to the application of pressure on the donor localization is picturized through diamagnetic susceptibility.

  11. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-27

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  12. Generation of Crystal-Structure Transverse Patterns via a Self-Frequency-Doubling Laser

    PubMed Central

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V.

    2013-01-01

    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories. PMID:23336067

  13. Generation of crystal-structure transverse patterns via a self-frequency-doubling laser.

    PubMed

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V

    2013-01-01

    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.

  14. Kicked-Harper model versus on-resonance double-kicked rotor model: From spectral difference to topological equivalence

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Ho, Derek Y. H.; Lawton, Wayne; Wang, Jiao; Gong, Jiangbin

    2013-11-01

    Recent studies have established that, in addition to the well-known kicked-Harper model (KHM), an on-resonance double-kicked rotor (ORDKR) model also has Hofstadter's butterfly Floquet spectrum, with strong resemblance to the standard Hofstadter spectrum that is a paradigm in studies of the integer quantum Hall effect. Earlier it was shown that the quasienergy spectra of these two dynamical models (i) can exactly overlap with each other if an effective Planck constant takes irrational multiples of 2π and (ii) will be different if the same parameter takes rational multiples of 2π. This work makes detailed comparisons between these two models, with an effective Planck constant given by 2πM/N, where M and N are coprime and odd integers. It is found that the ORDKR spectrum (with two periodic kicking sequences having the same kick strength) has one flat band and N-1 nonflat bands with the largest bandwidth decaying in a power law as ˜KN+2, where K is a kick strength parameter. The existence of a flat band is strictly proven and the power-law scaling, numerically checked for a number of cases, is also analytically proven for a three-band case. By contrast, the KHM does not have any flat band and its bandwidths scale linearly with K. This is shown to result in dramatic differences in dynamical behavior, such as transient (but extremely long) dynamical localization in ORDKR, which is absent in the KHM. Finally, we show that despite these differences, there exist simple extensions of the KHM and ORDKR model (upon introducing an additional periodic phase parameter) such that the resulting extended KHM and ORDKR model are actually topologically equivalent, i.e., they yield exactly the same Floquet-band Chern numbers and display topological phase transitions at the same kick strengths. A theoretical derivation of this topological equivalence is provided. These results are also of interest to our current understanding of quantum-classical correspondence considering that the KHM and ORDKR model have exactly the same classical limit after a simple canonical transformation.

  15. Ultrafast electric phase control of a single exciton qubit

    NASA Astrophysics Data System (ADS)

    Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

    2018-03-01

    We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

  16. Spin relaxation in quantum dots due to electron exchange with leads.

    PubMed

    Vorontsov, A B; Vavilov, M G

    2008-11-28

    We calculate spin relaxation rates in lateral quantum dot systems due to electron exchange between dots and leads. Using rate equations, we develop a theoretical description of the experimentally observed electric current in the spin blockade regime of double quantum dots. A single expression fits the entire current profile and describes the structure of both the conduction peaks and the suppressed ("valley") region. Extrinsic rates calculated here have to be taken into account for accurate extraction of intrinsic relaxation rates due to the spin-orbit and hyperfine spin scattering mechanisms from spin blockade measurements.

  17. Conical intersection in a bilirubin model A possible pathway for phototherapy of neonatal jaundice

    NASA Astrophysics Data System (ADS)

    Zietz, Burkhard; Blomgren, Fredrik

    2006-03-01

    Phototherapy of neonatal jaundice involves Z- E-isomerisation around an exocyclic double bond in bilirubin. Our results of a CASSCF study on dipyrrinone, a bilirubin model, show a conical intersection between the ground and first excited singlet states associated with the Z- E-isomerisation. The conical intersection, located ca. 50 kJ/mol below the Franck-Condon-point, together with the S 1 minimum, ca. 50 kJ/mol below the conical intersection, are able to explain the available time-resolved spectroscopic data (the very short lifetime of the initially excited state and transient 'dark state' intermediate) as well as bilirubin's very low fluorescence quantum yield and the medium-efficient photoisomerisation reaction.

  18. Equivalence of Szegedy's and coined quantum walks

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2017-09-01

    Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.

  19. Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation

    NASA Astrophysics Data System (ADS)

    Liu, Shengshuai; Wang, Hailong; Jing, Jietai

    2018-04-01

    We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.

  20. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, R. K.; Das, S.; Panda, A. K.

    We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip inmore » mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.« less

Top