Science.gov

Sample records for quantum dynamics calculations

  1. Accelerating calculations of ultrafast time-resolved electronic spectra with efficient quantum dynamics methods.

    PubMed

    Wehrle, Marius; Sulc, Miroslav; Vanícek, Jirí

    2011-01-01

    We explore three specific approaches for speeding up the calculation of quantum time correlation functions needed for time-resolved electronic spectra. The first relies on finding a minimum set of sufficiently accurate electronic surfaces. The second increases the time step required for convergence of exact quantum simulations by using different split-step algorithms to solve the time-dependent Schrödinger equation. The third approach lowers the number of trajectories needed for convergence of approximate semiclassical dynamics methods.

  2. Equation of State of Al Based on Quantum Molecular Dynamics Calculations

    NASA Astrophysics Data System (ADS)

    Minakov, Dmitry V.; Levashov, Pavel R.; Khishchenko, Konstantin V.

    2011-06-01

    In this work, we present quantum molecular dynamics calculations of the shock Hugoniots of solid and porous samples as well as release isentropes and values of isentropic sound velocity behind the shock front for aluminum. We use the VASP code with an ultrasoft pseudopotential and GGA exchange-correlation functional. Up to 108 particles have been used in calculations. For the Hugoniots of Al we solve the Hugoniot equation numerically. To calculate release isentropes, we use Zel'dovich's approach and integrate an ordinary differential equation for the temperature thus restoring all thermodynamic parameters. Isentropic sound velocity is calculated by differentiation along isentropes. The results of our calculations are in good agreement with experimental data. Thus, quantum molecular dynamics results can be effectively used for verification or calibration of semiempirical equations of state under conditions of lack of experimental information at high energy densities. This work is supported by RFBR, grants 09-08-01129 and 11-08-01225.

  3. Conformational properties of penicillins: quantum chemical calculations and molecular dynamics simulations of benzylpenicillin.

    PubMed

    Díaz, Natalia; Suárez, Dimas; Sordo, Tomás L

    2003-11-30

    Herein, we present theoretical results on the conformational properties of benzylpenicillin, which are characterized by means of quantum chemical calculations (MP2/6-31G* and B3LYP/6-31G*) and classical molecular dynamics simulations (5 ns) both in the gas phase and in aqueous solution. In the gas phase, the benzylpenicillin conformer in which the thiazolidine ring has the carboxylate group oriented axially is the most favored one. Both intramolecular CH. O and dispersion interactions contribute to stabilize the axial conformer with respect to the equatorial one. In aqueous solution, a molecular dynamics simulation predicts a relative population of the axial:equatorial conformers of 0.70:0.30 in consonance with NMR experimental data. Overall, the quantum chemical calculations as well as the simulations give insight into substituent effects, the conformational dynamics of benzylpenicillin, the frequency of ring-puckering motions, and the correlation of side chain and ring-puckering motions.

  4. Shock Hugoniot calculations of polymers using quantum mechanics and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chantawansri, Tanya L.; Sirk, Timothy W.; Byrd, Edward F. C.; Andzelm, Jan W.; Rice, Betsy M.

    2012-11-01

    Using quantum mechanics (QM) and classical force-field based molecular dynamics (FF), we have calculated the principle shock Hugoniot curves for numerous amorphous polymers including poly[methyl methacrylate] (PMMA), poly[styrene], polycarbonate, as well as both the amorphous and crystalline forms of poly[ethylene]. In the FF calculations, we considered a non-reactive force field (i.e., polymer consistent FF). The QM calculations were performed with density functional theory (DFT) using dispersion corrected atom centered pseudopotentials. Overall, results obtained by DFT show much better agreement with available experimental data than classical force fields. In particular, DFT calculated Hugoniot curves for PMMA up to 74 GPa are in very good agreement with experimental data, where a preliminary study of chain fracture and association was also performed. Structure analysis calculations of the radius of gyration and carbon-carbon radial distribution function were also carried out to elucidate contraction of the polymer chains with increasing pressure.

  5. Diffusion Rates for Hydrogen on Pd(111) from Molecular Quantum Dynamics Calculations.

    PubMed

    Firmino, Thiago; Marquardt, Roberto; Gatti, Fabien; Dong, Wei

    2014-12-18

    The van Hove formula for the dynamical structure factor (DSF) related to particle scattering at mobile adsorbates is extended to include the relaxation of the adsorbates' vibrational states. The total rate obtained from the DSF is assumed to be the sum of a diffusion and a relaxation rate. A simple kinetic model to support this assumption is presented. To illustrate its potential applicability, the formula is evaluated using wave functions, energies, and lifetimes of vibrational states obtained for H/Pd(111) from first-principle calculations. Results show that quantum effects can be expected to be important even at room temperature.

  6. Toward extending photosynthetic biosignatures: quantum dynamics calculation of light harvesting complexes

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji

    For detecting life from reflectance spectra on extrasolar planets, several indicators called surface biosignatures have been proposed. One of them is the vegetation red edge (VRE) which derives from surface vegetation. VRE is observed in 700-750 nm on the Earth, but there is no guarantee that exovegetation show the red edge in this wavelength. Therefore it is necessary to check the validity of current standards of VRE as the signatures. In facts, M stars (cooler than Sun) will be the main targets in future missions, it is significantly important to know on the fundamental mechanisms in photosynthetic organism such as purple bacteria which absorb longer wavelength radiation. We investigated light absorptions and excitation energy transfers (EETs) in light harvesting complexes in purple bacteria (LH2s) by using quantum dynamics simulations. In LH2, effective EET is accomplished by corporative electronic excitation of the pigments. In our theoretical model, a dipole-dipole approximation was used for the electronic interactions between pigment excitations. Quantum dynamics simulations were performed according to Liouville equation to examine the EET process. The calculated oscillator strength and the transfer time between LH2 were good agreement with the experimental values. As the system size increases, the absorption bands shifted longer and the transfer velocities became larger. When two pigments in a LHC were exchanged to another pigments with lower excitation energy, faster and intensive light collection were observed.

  7. Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.

    PubMed

    Strümpfer, Johan; Schulten, Klaus

    2012-08-14

    Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.

  8. Photodissociation dynamics of the pyridinyl radical: Time-dependent quantum wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Ehrmaier, Johannes; Picconi, David; Karsili, Tolga N. V.; Domcke, Wolfgang

    2017-03-01

    The H-atom photodissociation reaction from the pyridinyl radical (C5H5NH ) via the low-lying π σ* excited electronic state is investigated by nonadiabatic time-dependent quantum wave-packet dynamics calculations. A model comprising three electronic states and three nuclear coordinates has been constructed using ab initio multi-configurational self-consistent-field and multi-reference perturbation theory methods. Two conical intersections among the three lowest electronic states have been characterized in the framework of the linear vibronic-coupling model. Time-dependent wave-packet simulations have been performed using the multi-configuration time-dependent Hartree method. The population dynamics of the diabatic and adiabatic electronic states and the time-dependent dissociation behavior are analyzed for various vibrational initial conditions. The results provide detailed mechanistic insight into the photoinduced H-atom dissociation process from a hypervalent aromatic radical and show that an efficient dissociation reaction through two conical intersections is possible.

  9. Acceleration of Semiempirical Quantum Mechanical Calculations by Extended Lagrangian Molecular Dynamics Approach.

    PubMed

    Nam, Kwangho

    2013-08-13

    The implementation and performance of the atom-centered density matrix propagation (ADMP) [J. Chem. Phys. 2001, 114, 9758] and the curvy-steps (CURV) methods [J. Chem. Phys. 2004, 121, 1152] are described. These methods solve the electronic Schrödinger equation approximately by propagating the electronic degrees of freedom using the extended Lagrangian molecular dynamics (ELMD) simulation approach. The ADMP and CURV methods are implemented and parallelized to accelerate semiempirical quantum mechanical (QM) methods (such as the MNDO, AM1, PM3, MNDO/d, and AM1/d methods). Test calculations show that both the ADMP and the CURV methods are 2∼4 times faster than the Born-Oppenheimer molecular dynamics (BOMD) method and conserve the total energy well. The accuracy of the ADMP and CURV simulations is comparable to the BOMD simulations. The parallel implementation accelerates the MD simulation by up to 28 fold for the ADMP method and 25 fold for the CURV method, respectively, relative to the speed of the single core BOMD. In addition, a multiple time scale (MTS) approach is introduced to further speed up the semiempirical QM and QM/MM ELMD simulations. Since a larger integration time step is used for the propagation of the nuclear coordinates than that for the electronic degrees of freedom, the MTS approach allows the ELMD simulation to be carried out with a time step that is larger than the time step accessible by the original ADMP and CURV methods. It renders MD simulation to be carried out about 20 times faster than the BOMD simulation, and yields results that are comparable to the single time scale simulation results. The use of the methods introduced in the present work provides an efficient way to extend the length of the QM and QM/MM molecular dynamics simulations beyond the length accessible by BOMD simulation.

  10. A general rigorous quantum dynamics algorithm to calculate vibrational energy levels of pentaatomic molecules

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2009-08-01

    An exact variational algorithm is presented for calculating vibrational energy levels of pentaatomic molecules without any dynamical approximation. The quantum mechanical Hamiltonian of the system is expressed in a set of orthogonal coordinates defined by four scattering vectors in the body-fixed frame. The eigenvalue problem is solved using a two-layer Lanczos iterative diagonalization method in a mixed grid/basis set. A direct product potential-optimized discrete variable representation (PO-DVR) basis is used for the radial coordinates while a non-direct product finite basis representation (FBR) is employed for the angular variables. The two-layer Lanczos method requires only the actions of the Hamiltonian operator on the Lanczos vectors, where the potential-vector products are accomplished via a pseudo-spectral transform technique. By using Jacobi, Radau and orthogonal satellite vectors, we have proposed 21 types of orthogonal coordinate systems so that the algorithm is capable of describing most five-atom systems with small and/or large amplitude vibrational motions. Finally, an universal program ( PetroVib) has been developed. Its applications to the molecules CH and HO2-, and the van der Waals cluster HeCl are also discussed.

  11. Quantum Chemical Calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The current methods of quantum chemical calculations will be reviewed. The accent will be on the accuracy that can be achieved with these methods. The basis set requirements and computer resources for the various methods will be discussed. The utility of the methods will be illustrated with some examples, which include the calculation of accurate bond energies for SiF$_n$ and SiF$_n^+$ and the modeling of chemical data storage.

  12. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    NASA Technical Reports Server (NTRS)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  13. FeynDyn: A MATLAB program for fast numerical Feynman integral calculations for open quantum system dynamics on GPUs

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.

    2013-12-01

    This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled either by the Feynman-Vernon model or the Caldeira-Leggett model. The user gives the program a Hamiltonian matrix that describes the open quantum system as if it were in isolation, a matrix of the same size that describes how that system couples to its environment, and a spectral distribution function and temperature describing the environment’s influence on it, in addition to the open quantum system’s initial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all moments specified by that grid of times (or just the last moment specified by the grid of times if the user makes this choice). This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate-limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup of the Feynman integral can actually become the rate-limiting step. The overhead of transferring information from the CPU to the GPU and back seems to have a negligible effect on the overall runtime of the program. When the required information cannot fit on the GPU, the user can choose to run the entire program on a CPU. Catalogue identifier: AEPX_v1_0. Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPX_v1_0.html. Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 703. No. of bytes in distributed program, including test data, etc.: 11026. Distribution format: tar.gz. Programming

  14. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  15. Quantum Mechanics and physical calculations

    NASA Astrophysics Data System (ADS)

    Karayan, H. S.

    2014-03-01

    We suggest to realize the computer simulation and calculation by the algebraic structure built on the basis of the logic inherent to processes in physical systems (called physical computing). We suggest a principle for the construction of quantum algorithms of neuroinformatics of quantum neural networks. The role of academician Sahakyan is emphasized in the development of quantum physics in Armenia.

  16. Quantum dynamics studies of gas-surface reactions and use of complex absorbing potentials in wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Ge, Jiuyuan

    1999-11-01

    In this thesis, quantum dynamics studies are conducted on gas-surface reactions and complex absorbing potentials. Through a three-dimensional model, dissociation probabilities for O2 on both (110) and (100) surfaces of copper are calculated for ground state as well as rovibrationally excited oxygen molecules. Specifically, the reason for the difference in calculated dissociation probabilities of oxygen on two surfaces is explained. Then the thermal effect of the surface on the dissociation probability is studied by a one dimensional fluctuating barrier. It is observed that the quantum mechanical tunneling probability exhibits a maximum as a function of the oscillating frequency between the low and the high frequency limits. The physical origin and process underlying this resonantlike phenomenon are proposed. In the second part of this thesis, the complex absorbing potential (CAP) is introduced and studied. Exact numerical calculation shows that use of optimized CAP significantly improves the efficiency of wavefunction absorption over that of negative imaginary potential (NIP) in scattering applications. The CAP is optimized by an efficient time-dependent propagation approach. Application to the prototype inelastic scattering of He + H2 demonstrates the accuracy and efficiency of the channel-dependent CAP for extracting state-to-state scattering information.

  17. Quantum Molecular Dynamical Calculations of PEDOT 12-Oligomer and its Selenium and Tellurium Derivatives

    NASA Astrophysics Data System (ADS)

    Mirsakiyeva, Amina; Hugosson, Håkan W.; Crispin, Xavier; Delin, Anna

    2016-12-01

    We present simulation results, computed with the Car-Parrinello molecular dynamics method, at zero and ambient temperature (300 K) for poly(3,4-ethylenedioxythiophene) [PEDOT] and its selenium and tellurium derivatives PEDOS and PEDOTe, represented as 12-oligomer chains. In particular, we focus on structural parameters such as the dihedral rotation angle distribution, as well as how the charge distribution is affected by temperature. We find that for PEDOT, the dihedral angle distribution shows two distinct local maxima whereas for PEDOS and PEDOTe, the distributions only have one clear maximum. The twisting stiffness at ambient temperature appears to be larger the lighter the heteroatom (S, Se, Te) is, in contrast to the case at 0 K. As regards point charge distributions, they suggest that aromaticity increases with temperature, and also that aromaticity becomes more pronounced the lighter the heteroatom is, both at 0 K and ambient temperature. Our results agree well with previous results, where available. The bond lengths are consistent with substantial aromatic character both at 0 K and at ambient temperature. Our calculations also reproduce the expected trend of diminishing gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital with increasing atomic number of the heteroatom.

  18. Quantum spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (1) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems. This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential-energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (2) Explicit time-dependent formulation of photoabsorption processes -- Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  19. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  20. Conformational determinants of tandem GU mismatches in RNA: insights from molecular dynamics simulations and quantum mechanical calculations.

    PubMed

    Pan, Yongping; Priyakumar, U Deva; MacKerell, Alexander D

    2005-02-08

    Structure and energetic properties of base pair mismatches in duplex RNA have been the focus of numerous investigations due to their role in many important biological functions. Such efforts have contributed to the development of models for secondary structure prediction of RNA, including the nearest-neighbor model. In RNA duplexes containing GU mismatches, 5'-GU-3' tandem mismatches have a different thermodynamic stability than 5'-UG-3' mismatches. In addition, 5'-GU-3' mismatches in some sequence contexts do not follow the nearest-neighbor model for stability. To characterize the underlying atomic forces that determine the structural and thermodynamic properties of GU tandem mismatches, molecular dynamics (MD) simulations were performed on a series of 5'-GU-3' and 5'-UG-3' duplexes in different sequence contexts. Overall, the MD-derived structural models agree well with experimental data, including local deviations in base step helicoidal parameters in the region of the GU mismatches and the model where duplex stability is associated with the pattern of GU hydrogen bonding. Further analysis of the simulations, validated by data from quantum mechanical calculations, suggests that the experimentally observed differences in thermodynamic stability are dominated by GG interstrand followed by GU intrastrand base stacking interactions that dictate the one versus two hydrogen bonding scenarios for the GU pairs. In addition, the inability of 5'-GU-3' mismatches in different sequence contexts to all fit into the nearest-neighbor model is indicated to be associated with interactions of the central four base pairs with the surrounding base pairs. The results emphasize the role of GG and GU stacking interactions on the structure and thermodynamics of GU mismatches in RNA.

  1. Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2000-12-01

    We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.

  2. Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties

    SciTech Connect

    Luo, Ye Sorella, Sandro; Zen, Andrea

    2014-11-21

    We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.

  3. Quantum path-integral molecular dynamics calculations of the dipole-bound state of the water dimer anion

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Takayanagi, Toshiyuki

    2003-09-01

    The equilibrium structure of the negatively charged water dimer (H 2O) 2- has been studied using the path-integral molecular dynamics simulation. All the atomic motions as well as the excess electron were treated quantum mechanically, employing a semi-empirical model combining a water-water interatomic potential with an electron-water pseudopotential. It is demonstrated that the molecular structure of (H 2O) 2- is more flexible than that of (H 2O) 2; both the donor switching and donor-acceptor interchange can more effectively occur in (H 2O) 2- than in (H 2O) 2. We conclude that this floppy character is a result of the breakdown of the adiabatic Born-Oppenheimer picture.

  4. Quantum transport calculations using periodic boundaryconditions

    SciTech Connect

    Wang, Lin-Wang

    2004-06-15

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.

  5. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.

    PubMed

    Lazar, Petr; Zhang, Shuai; Safářová, Klára; Li, Qiang; Froning, Jens Peter; Granatier, Jaroslav; Hobza, Pavel; Zbořil, Radek; Besenbacher, Flemming; Dong, Mingdong; Otyepka, Michal

    2013-02-26

    The two-dimensional material graphene has numerous potential applications in nano(opto)electronics, which inevitably involve metal graphene interfaces.Theoretical approaches have been employed to examine metal graphene interfaces, but experimental evidence is currently lacking. Here, we combine atomic force microscopy (AFM) based dynamic force measurements and density functional theory calculations to quantify the interaction between metal-coated AFM tips and graphene under ambient conditions. The results show that copper has the strongest affinity to graphene among the studied metals (Cu, Ag, Au, Pt, Si), which has important implications for the construction of a new generation of electronic devices. Observed differences in the nature of the metal-graphene bonding are well reproduced by the calculations, which included nonlocal Hartree-Fock exchange and van der Waals effects.

  6. Excited state structures and decay dynamics of 1,3-dimethyluracils in solutions: resonance Raman and quantum mechanical calculation study.

    PubMed

    Li, Ming-Juan; Liu, Ming-Xia; Zhao, Yan-Ying; Pei, Ke-Mei; Wang, Hui-Gang; Zheng, Xuming; Fang, Wei Hai

    2013-10-03

    The resonance Raman spectroscopic study of the excited state structural dynamics of 1,3-dimethyluracil (DMU), 5-bromo-1,3-dimethyluracil (5BrDMU), uracil, and thymine in water and acetonitrile were reported. Density functional theory calculations were carried out to help elucidate the ultraviolet electronic transitions associated with the A-, and B-band absorptions and the vibrational assignments of the resonance Raman spectra. The effect of the methylation at N1, N3 and C5 sites of pyrimidine ring on the structural dynamics of uracils in different solvents were explored on the basis of the resonance Raman intensity patterns. The relative resonance Raman intensities of DMU and 5BrDMU are computed at the B3LYP-TD level. Huge discrepancies between the experimental resonance Raman intensities and the B3LYP-TD predicted ones were observed. The underlying mechanism was briefly discussed. The decay channel through the S1((1)nπ*)/S2((1)ππ*) conical intersection and the S1((1)nπ*)/T1((3)ππ*) intersystem crossing were revealed by using the CASSCF(8,7)/6-31G(d) level of theory calculations.

  7. Molecular Dynamics Calculations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  8. Quantum Tunneling in Testosterone 6β-Hydroxylation by Cytochrome P450: Reaction Dynamics Calculations Employing Multiconfiguration Molecular-Mechanical Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Lin, Hai

    2009-05-01

    Testosterone hydroxylation is a prototypical reaction of human cytochrome P450 3A4, which metabolizes about 50% of oral drugs on the market. Reaction dynamics calculations were carried out for the testosterone 6β-hydrogen abstraction and the 6β-d1-testosterone 6β-duterium abstraction employing a model that consists of the substrate and the active oxidant compound I. The calculations were performed at the level of canonical variational transition state theory with multidimensional tunneling and were based on a semiglobal full-dimensional potential energy surface generated by the multiconfiguration molecular mechanics technique. The tunneling coefficients were found to be around 3, indicating substantial contributions by quantum tunneling. However, the tunneling made only modest contributions to the kinetic isotope effects. The kinetic isotope effects were computed to be about 2 in the doublet spin state and about 5 in the quartet spin state.

  9. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  10. Cold and ultracold dynamics of the barrierless D(+) + H2 reaction: Quantum reactive calculations for ∼R(-4) long range interaction potentials.

    PubMed

    Lara, Manuel; Jambrina, P G; Aoiz, F J; Launay, J-M

    2015-11-28

    Quantum reactive and elastic cross sections and rate coefficients have been calculated for D(+) + H2 (v = 0, j = 0) collisions in the energy range from 10(-8) K (deep ultracold regime), where only one partial wave is open, to 150 K (Langevin regime) where many of them contribute. In systems involving ions, the ∼R(-4) behavior extends the interaction up to extremely long distances, requiring a special treatment. To this purpose, we have used a modified version of the hyperspherical quantum reactive scattering method, which allows the propagations up to distances of 10(5) a0 needed to converge the elastic cross sections. Interpolation procedures are also proposed which may reduce the cost of exact dynamical calculations at such low energies. Calculations have been carried out on the PES by Velilla et al. [J. Chem. Phys. 129, 084307 (2008)] which accurately reproduces the long range interactions. Results on its prequel, the PES by Aguado et al. [J. Chem. Phys. 112, 1240 (2000)], are also shown in order to emphasize the significance of the inclusion of the long range interactions. The calculated reaction rate coefficient changes less than one order of magnitude in a collision energy range of ten orders of magnitude, and it is found in very good agreement with the available experimental data in the region where they exist (10-100 K). State-to-state reaction probabilities are also provided which show that for each partial wave, the distribution of HD final states remains essentially constant below 1 K.

  11. Understanding the structure and dynamic of odorants in the gas phase using a combination of microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Mouhib, Halima

    2014-07-01

    This tutorial is an introduction for PhD students and researchers who intend to start their future work in the field of microwave spectroscopy to investigate structural and dynamical aspects of isolated molecular systems in the gas phase. Although the presented case studies are related to odorants, i.e., volatile molecules that possess a noticeable scent, the background and applications of the method can be transferred to any other resembling molecular system. In the early days, microwave spectroscopy was mainly related to the structure determination of very small systems such as OCS or ammonia, where the bond lengths could be determined with high accuracy by measuring the different isotopic species of the molecules. Nowadays, the method is far more advanced and is also used to tackle various fundamental molecular problems in different fields such as physical chemistry and molecular physics. Interesting questions that can be investigated concern, e.g., the molecular structure, i.e., the different conformations, not only of the isolated molecule but also of van der Waals complexes with water, noble gases or other molecules. The dynamical and intra- or intermolecular effects can be straightforwardly observed without the influence of the environment as in the condensed phase. This evolution was only achieved by using quantum chemical methods as a complementary tool to elude the necessity of isotopologues for structure determination, which cannot be realized for large systems (>5 atoms). The combination of microwave spectroscopy and quantum chemical calculations is the method of choice when it comes to sampling the conformational space of molecules. This is particularly the case when small energy differences make it difficult to determine the conformers of the lowest energy using computational methods alone. Although quantum chemical calculations are important for the validation of microwave spectra, the focus of the tutorial is set on the experimental part of the

  12. Structure, dynamical stability, and electronic properties of phases in TaS2 from a high-level quantum mechanical calculation

    NASA Astrophysics Data System (ADS)

    Lazar, Petr; Martincová, Jana; Otyepka, Michal

    2015-12-01

    TaS2 is a transition-metal dichalcogenide having an exceptionally rich phase diagram, which includes exotic phenomena such as a charge density wave. We analyzed the structure, bonding, ground state, and dynamical stability of 1 T , 2 H , and 3 R phases of TaS2, and a commensurate charge density wave phase from the first principles. Van der Waals interaction among layers and strong electron-electron interactions were included by using the exact exchange plus random phase approximation, a high-level quantum mechanical approach. The calculated structural parameters agree well with the available experimental data. The individual sheets of TaS2 are bound by dispersive forces, which are stronger than dispersive forces in graphite and fluorographite. 1 T -TaS2 is dynamically unstable at low temperature, which leads to the formation of charge density wave and opening of the in-plane band gap. Anharmonic phonon-phonon interactions stabilize the 1 T structure at elevated temperatures. The calculated phase diagram of TaS2 reveals that the 1 T phase is the ground state at temperatures above 1300 K, 2 H below this point, and the charge density wave phase becomes more stable than the perfect 1 T structure below 480 K.

  13. Quantum Biological Channel Modeling and Capacity Calculation

    PubMed Central

    Djordjevic, Ivan B.

    2012-01-01

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general. PMID:25371271

  14. Zeno dynamics in quantum open systems

    PubMed Central

    Zhang, Yu-Ran; Fan, Heng

    2015-01-01

    Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840

  15. First principle thousand atom quantum dot calculations

    SciTech Connect

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  16. Quantum Noise from Reduced Dynamics

    NASA Astrophysics Data System (ADS)

    Vacchini, Bassano

    2016-07-01

    We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting. Averaging over the environmental degrees of freedom leads to a stochastic quantum dynamics, described by equations complying with the constraints arising from the statistical structure of quantum mechanics. Simple examples are considered in the framework of open system dynamics described within a master equation approach, pointing in particular to the appearance of the phenomenon of decoherence and to the relevance of quantum correlation functions of the environment in the determination of the action of quantum noise.

  17. Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies

    NASA Astrophysics Data System (ADS)

    Ghatee, Mohammad Hadi; Sedghamiz, Tahereh

    2014-12-01

    Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree-Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics.

  18. Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations.

    PubMed

    McMillan, Andrew W; Kier, Brandon L; Shu, Irene; Byrne, Aimee; Andersen, Niels H; Parson, William W

    2013-02-14

    The quantum yield of tryptophan (Trp) fluorescence was measured in 30 designed miniproteins (17 β-hairpins and 13 Trp-cage peptides), each containing a single Trp residue. Measurements were made in D(2)O and H(2)O to distinguish between fluorescence quenching mechanisms involving electron and proton transfer in the hairpin peptides, and at two temperatures to check for effects of partial unfolding of the Trp-cage peptides. The extent of folding of all the peptides also was measured by NMR. The fluorescence yields ranged from 0.01 in some of the Trp-cage peptides to 0.27 in some hairpins. Fluorescence quenching was found to occur by electron transfer from the excited indole ring of the Trp to a backbone amide group or the protonated side chain of a nearby histidine, glutamate, aspartate, tyrosine, or cysteine residue. Ionized tyrosine side chains quenched strongly by resonance energy transfer or electron transfer to the excited indole ring. Hybrid classical/quantum mechanical molecular dynamics simulations were performed by a method that optimized induced electric dipoles separately for the ground and excited states in multiple π-π* and charge-transfer (CT) excitations. Twenty 0.5 ns trajectories in the tryptophan's lowest excited singlet π-π* state were run for each peptide, beginning by projections from trajectories in the ground state. Fluorescence quenching was correlated with the availability of a CT or exciton state that was strongly coupled to the π-π* state and that matched or fell below the π-π* state in energy. The fluorescence yields predicted by summing the calculated rates of charge and energy transfer are in good accord with the measured yields.

  19. Communication: Ro-vibrational control of chemical reactivity in H+CH{sub 4}→ H{sub 2}+CH{sub 3} : Full-dimensional quantum dynamics calculations and a sudden model

    SciTech Connect

    Welsch, Ralph Manthe, Uwe

    2014-08-07

    The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.

  20. The quantum dynamics of interfacial hydrogen: Path integral maximum entropy calculation of adsorbate vibrational line shapes for the H/Ni(111) system

    NASA Astrophysics Data System (ADS)

    Kim, Dongsup; Doll, J. D.; Gubernatis, J. E.

    1997-01-01

    Vibrational line shapes for a hydrogen atom on an embedded atom model (EAM) of the Ni(111) surface are extracted from path integral Monte Carlo data. Maximum entropy methods are utilized to stabilize this inversion. Our results indicate that anharmonic effects are significant, particularly for vibrational motion parallel to the surface. Unlike their normal mode analogs, calculated quantum line shapes for the EAM potential predict the correct ordering of vibrational features corresponding to parallel and perpendicular adsorbate motion.

  1. Quantum Monte Carlo calculations for light nuclei

    SciTech Connect

    Wiringa, R.B.

    1998-08-01

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 30 different (j{sup {prime}}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  2. Fractal dynamics in chaotic quantum transport.

    PubMed

    Kotimäki, V; Räsänen, E; Hennig, H; Heller, E J

    2013-08-01

    Despite several experiments on chaotic quantum transport in two-dimensional systems such as semiconductor quantum dots, corresponding quantum simulations within a real-space model have been out of reach so far. Here we carry out quantum transport calculations in real space and real time for a two-dimensional stadium cavity that shows chaotic dynamics. By applying a large set of magnetic fields we obtain a complete picture of magnetoconductance that indicates fractal scaling. In the calculations of the fractality we use detrended fluctuation analysis-a widely used method in time-series analysis-and show its usefulness in the interpretation of the conductance curves. Comparison with a standard method to extract the fractal dimension leads to consistent results that in turn qualitatively agree with the previous experimental data.

  3. On quantum potential dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Sheldon; Struyve, Ward

    2015-01-01

    Non-relativistic de Broglie-Bohm theory describes particles moving under the guidance of the wave function. In de Broglie's original formulation, the particle dynamics is given by a first-order differential equation. In Bohm's reformulation, it is given by Newton's law of motion with an extra potential that depends on the wave function—the quantum potential—together with a constraint on the possible velocities. It was recently argued, mainly by numerical simulations, that relaxing this velocity constraint leads to a physically untenable theory. We provide further evidence for this by showing that for various wave functions the particles tend to escape the wave packet. In particular, we show that for a central classical potential and bound energy eigenstates the particle motion is often unbounded. This work seems particularly relevant for ways of simulating wave function evolution based on Bohm's formulation of the de Broglie-Bohm theory. Namely, the simulations may become unstable due to deviations from the velocity constraint.

  4. Quantum dynamics of the parametric oscillator

    NASA Astrophysics Data System (ADS)

    Kinsler, P.; Drummond, P. D.

    1991-06-01

    We present dynamical calculations for the quantum parametric oscillator using both number-state and coherent-state bases. The coherent-state methods use the positive-P representation, which has a nonclassical phase space-an essential requirement in obtaining an exact stochastic representation of this nonlinear problem. This also provides a way to directly simulate quantum tunneling between the two above-threshold stable states of the oscillator. The coherent-state methods provide both analytic results at large photon numbers, and numerical results for any photon number, while our number-state calculations are restricted to numerical results in the low-photon-number regime. The number-state and coherent-state methods give precise agreement within the accuracy of the numerical calculations. We also compare our results with methods based on a truncated Wigner representation equivalent to stochastic electrodynamics, and find that these are unable to correctly predict the tunneling rate given by the other methods. An interesting feature of the results is the much faster tunneling predicted by the exact quantum-theory methods compared with earlier semiclassical calculations using an approximate potential barrier. This is similar to the faster tunneling found when comparing quantum penetration of a barrier to classical thermal activation. The quantum parametric oscillator, which has an exact steady-state solution, therefore provides a useful and accessible system in which nonlinear quantum effects can be studied far from thermal equilibrium.

  5. Dynamics of nonrelativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Efthimiades, Spyros

    2017-01-01

    We show that the wavefunction of an electron interacting with an electric potential is accurately represented by the superposition of plane waves that fulfills the total energy relation. As a result, we explicitly derive the Schrödinger, Pauli, Klein-Gordon, and Dirac equations. While the traditional nonrelativistic quantum dynamics is based on postulates, the dynamics we introduce is theoretically justified, in agreement with experimental measurements, and consistent with the fundamental theory of quantum electrodynamics.

  6. Dynamics of Super Quantum Correlations and Quantum Correlations for a System of Three Qubits

    NASA Astrophysics Data System (ADS)

    Siyouri, F.; El Baz, M.; Rfifi, S.; Hassouni, Y.

    2016-04-01

    The dynamics of quantum discord for two qubits independently interacting with dephasing reservoirs have been studied recently. The authors [Phys. Rev. A 88 (2013) 034304] found that for some Bell-diagonal states (BDS) which interact with their environments the calculation of quantum discord could experience a sudden transition in its dynamics, this phenomenon is known as the sudden change. Here in the present paper, we analyze the dynamics of normal quantum discord and super quantum discord for tripartite Bell-diagonal states independently interacting with dephasing reservoirs. Then, we find that basis change does not necessary mean sudden change of quantum correlations.

  7. Quantum wave packet ab initio molecular dynamics: an approach to study quantum dynamics in large systems.

    PubMed

    Iyengar, Srinivasan S; Jakowski, Jacek

    2005-03-15

    A methodology to efficiently conduct simultaneous dynamics of electrons and nuclei is presented. The approach involves quantum wave packet dynamics using an accurate banded, sparse and Toeplitz representation for the discrete free propagator, in conjunction with ab initio molecular dynamics treatment of the electronic and classical nuclear degree of freedom. The latter may be achieved either by using atom-centered density-matrix propagation or by using Born-Oppenheimer dynamics. The two components of the methodology, namely, quantum dynamics and ab initio molecular dynamics, are harnessed together using a time-dependent self-consistent field-like coupling procedure. The quantum wave packet dynamics is made computationally robust by using adaptive grids to achieve optimized sampling. One notable feature of the approach is that important quantum dynamical effects including zero-point effects, tunneling, as well as over-barrier reflections are treated accurately. The electronic degrees of freedom are simultaneously handled at accurate levels of density functional theory, including hybrid or gradient corrected approximations. Benchmark calculations are provided for proton transfer systems and the dynamics results are compared with exact calculations to determine the accuracy of the approach.

  8. Quantum mechanical calculations to chemical accuracy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  9. Trotter-based simulation of quantum-classical dynamics.

    PubMed

    Kernan, Dónal Mac; Ciccotti, Giovanni; Kapral, Raymond

    2008-01-17

    Quantum rate processes in condensed phase systems are often computed by combining quantum and classical descriptions of the dynamics. An algorithm for simulating the quantum-classical Liouville equation, which describes the dynamics of a quantum subsystem coupled to a classical bath, is presented in this paper. The algorithm is based on a Trotter decomposition of the quantum-classical propagator, in conjunction with Monte Carlo sampling of quantum transitions, to yield a surface-hopping representation of the dynamics. An expression for the nonadiabatic propagator that is responsible for quantum transitions and associated bath momentum changes is derived in a form that is convenient for Monte Carlo sampling and exactly conserves the total energy of the system in individual trajectories. The expectation values of operators or quantum correlation functions can be evaluated by initial sampling of quantum states and use of quantum-classical Liouville dynamics for the time evolution. The algorithm is tested by calculations on the spin-boson model, for which exact quantum results are available, and is shown to reproduce the exact results for stronger nonadiabatic coupling and much longer times using fewer trajectories than other schemes for simulating quantum-classical Liouville dynamics.

  10. Dynamical quantum phase transitions (Review Article)

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2016-11-01

    During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many body systems out of equilibrium often manifest behavior, different from the one predicted by standard statistical mechanics and thermodynamics in equilibrium. Since the dynamics of a many-body quantum system typically involve many excited eigenstates, with a non-thermal distribution, the time evolution of such a system provides an unique way for investigation of non-equilibrium quantum statistical mechanics. Last decade such new subjects like quantum quenches, thermalization, pre-thermalization, equilibration, generalized Gibbs ensemble, etc. are among the most attractive topics of investigation in modern quantum physics. One of the most interesting themes in the study of dynamics of quantum many-body systems out of equilibrium is connected with the recently proposed important concept of dynamical quantum phase transitions. During the last few years a great progress has been achieved in studying of those singularities in the time dependence of characteristics of quantum mechanical systems, in particular, in understanding how the quantum critical points of equilibrium thermodynamics affect their dynamical properties. Dynamical quantum phase transitions reveal universality, scaling, connection to the topology, and many other interesting features. Here we review the recent achievements of this quickly developing part of low-temperature quantum physics. The study of dynamical quantum phase transitions is especially important in context of their connection to the problem of the modern theory of quantum information, where namely non-equilibrium dynamics of many-body quantum system plays the major role.

  11. Experimental realization of quantum zeno dynamics

    PubMed Central

    Schäfer, F.; Herrera, I.; Cherukattil, S.; Lovecchio, C.; Cataliotti, F.S.; Caruso, F.; Smerzi, A.

    2014-01-01

    It is generally impossible to probe a quantum system without disturbing it. However, it is possible to exploit the back action of quantum measurements and strong couplings to tailor and protect the coherent evolution of a quantum system. This is a profound and counterintuitive phenomenon known as quantum Zeno dynamics. Here we demonstrate quantum Zeno dynamics with a rubidium Bose–Einstein condensate in a five-level Hilbert space. We harness measurements and strong couplings to dynamically disconnect different groups of quantum states and constrain the atoms to coherently evolve inside a two-level subregion. In parallel to the foundational importance due to the realization of a dynamical superselection rule and the theory of quantum measurements, this is an important step forward in protecting and controlling quantum dynamics and, broadly speaking, quantum information processing. PMID:24476716

  12. Fractional-time quantum dynamics.

    PubMed

    Iomin, Alexander

    2009-08-01

    Application of the fractional calculus to quantum processes is presented. In particular, the quantum dynamics is considered in the framework of the fractional time Schrödinger equation (SE), which differs from the standard SE by the fractional time derivative: partial differential/partial differentialt --> partial differential(alpha)/partial differentialt(alpha). It is shown that for alpha=1/2 the fractional SE is isospectral to a comb model. An analytical expression for the Green's functions of the systems are obtained. The semiclassical limit is discussed.

  13. Excited state proton transfer dynamics of thioacetamide in S2(ππ*) state: resonance Raman spectroscopic and quantum mechanical calculations study.

    PubMed

    Chen, Xiao; Zhao, Yanying; Zhang, Haibo; Xue, Jiadan; Zheng, Xuming

    2015-02-05

    The photophysics and photochemistry of thioacetamide (CH3CSNH2) after excitation to the S2 electronic state were investigated by using resonance Raman spectroscopy in conjunction with the complete active space self-consistent field (CASSCF) method and density functional theory (DFT) calculations. The A-band resonance Raman spectra in acetonitrile, methanol, and water were obtained at 299.1, 282.4, 266.0, 252.7, and 245.9 nm excitation wavelengths to probe the structural dynamics of thioacetamide in the S2 state. CASSCF calculations were done to determine the transition energies and structures of the lower-lying excited states, the conical intersection points CI(S2/S1) and CI(S1/S0), and intersystem crossing points. The structural dynamics of thioacetamide in the S2 state was revealed to be along eight Franck-Condon active vibrational modes ν15, ν11, ν14, ν10, ν8, ν12, ν18, and ν19, mostly in the CC/CS/CN stretches and the CNH8,9/CCH5,6,7/CCN/CCS in-plane bends as indicated by the corresponding normal mode descriptions. The S2 → S1 decay process via the S2/S1 conical intersection point as the major channel were excluded. The thione-thiol photoisomerization reaction mechanism of thioacetamide via the S2,FC → S'1,min excited state proton transfer (ESPT) reaction channel was proposed.

  14. Quantum dynamics in open quantum-classical systems.

    PubMed

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  15. Interchain impacts on electronic structures of heterocyclic oligomers and polymers containing group 14, 15, and 16 heteroatoms: quantum chemical calculations in combination with molecular dynamics simulations.

    PubMed

    Zhang, Guiling; Ma, Jing; Wen, Jin

    2007-10-11

    The packing structures and packing effects on excitation energies of oligomers of polyfuran (PFu), polypyrrole (PPy), polycyclopentidene (PCp), polythiophene (PTh), polyphosphole (PPh), and polysilole (PSi) are comparatively studied by employing molecular dynamics (MD) simulations and time-dependent density functional theory (TDDFT) calculations. The dependence of packing structures on the main group of heteroatoms in the five-membered heterocyclic oligomers is exhibited from MD simulations. The planarity of backbones and the population of pi-stacked structures increase with the heteroatoms going from group 14 to group 16; i.e., PCp < PPy < PFu; PSi < PPh < PTh. The polymers with the third row elements, PSi and PPh, tend to have larger chain flexibilities in the packing systems than those with the second row elements, PCp and PPy, respectively. On the basis of the second-order Møller-Plesset perturbation (MP2) and natural bond orbital (NBO) calculations of the pi-stacked pairs, the difference in pi-stack orientations, head-to-tail vs head-to-head, between various packing systems is rationalized by individual interchain bond orbital interactions involved with heteroatoms. The packing systems with higher row elements tend to have narrower band gaps. The band gaps are closely related to the chain torsions driven by interchain interactions. The noticeable chain distortions in the packing systems of PCp, PSi, and PPh lead to the significant increase of band gaps in comparison with those appraised from periodic boundary conditions (PBC) calculations on their planar isolated chains.

  16. Quantum dynamics of two-photon quantum Rabi model

    NASA Astrophysics Data System (ADS)

    Lü, Zhiguo; Zhao, Chunjian; Zheng, Hang

    2017-02-01

    We apply a simple analytical method based on a unitary transformation to calculate the ground state, its excitation spectrum and quantum dynamic evolution of physical quantities for the double-photon quantum Rabi Hamiltonian over the wide coupling-strength range. The concise analytical method possesses the same mathematical simplicity as the approach of the rotating wave approximation (RWA). By quantitative comparison with the numerically exact result obtained by matrix diagonalization, we confirm that our calculated results obtained by transformed rotating-wave method are not only accurate in the weak coupling regime but also correct in intermediate strong-coupling case. In the intermediate ultrastrong-coupling regime, the calculated values of the ground state and lower lying excited states are nearly the same as the exact ones. It turns out that our calculation for the energy spectrum is beyond the ordinary-RWA. Meanwhile, we demonstrate the signatures resulting from the counter-rotating wave terms by monitoring the population, the coherence, the squeezing of the photon under the ultra-strong conditions. In particular, we find that when the frequency of the photon is much larger than the transition frequency of the system, the lineshape of the time evolution becomes complicated with the increase of the coupling strength, which may be verified experimentally.

  17. New methods for quantum mechanical reaction dynamics

    SciTech Connect

    Thompson, Ward Hugh

    1996-12-01

    Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L2) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC- can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC- geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H3O- system, providing information about the potential energy surface for the OH + H2 reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the

  18. Quantum effects in unimolecular reaction dynamics

    SciTech Connect

    Gezelter, Joshua Daniel

    1995-12-01

    This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form 3B1 CH2 + 1σ+ CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH3COCl → CH3CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

  19. Cluster dynamical mean-field calculations for TiOCl

    NASA Astrophysics Data System (ADS)

    Saha-Dasgupta, T.; Lichtenstein, A.; Hoinkis, M.; Glawion, S.; Sing, M.; Claessen, R.; Valentí, R.

    2007-10-01

    Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge x-ray absorption spectroscopy experiments is found to be good. The improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.

  20. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    PubMed

    Pranzetti, Daniele

    2012-07-06

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.

  1. Quantum pattern formation dynamics of photoinduced nucleation

    NASA Astrophysics Data System (ADS)

    Ishida, Kunio; Nasu, Keiichiro

    2008-06-01

    We study the dynamics of quantum pattern formation processes in molecular crystals which is concomitant with photoinduced nucleation. Since the nucleation process in coherent regime is driven by the nonadiabatic transition in each molecule followed by the propagation of phonons, it is necessary to take into account the quantum nature of both electrons and phonons in order to pursue the dynamics of the system. Therefore, we employ a model of localized electrons coupled with a quantized phonon mode and solve the time-dependent Schrödinger equation numerically. We found that there is a minimal size of clusters of excited molecules which triggers the photoinduced nucleation process; i.e., nucleation does not take place unless sufficient photoexcitation energy is concentrated within a narrow area of the system. We show that this result means that the spatial distribution of photoexcited molecules plays an important role in the nonlinearity of the dynamics and also in the optical properties observed in experiments. We calculate the conversion ratio, the rate of cluster formation, and correlation functions to reveal the dynamical properties of the pattern formation process; the initial dynamics of the photoinduced structural change is discussed from the viewpoint of pattern formation.

  2. Non-Markovian dynamics of quantum discord

    SciTech Connect

    Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.

    2010-05-15

    We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.

  3. Cold and ultracold dynamics of the barrierless D{sup +} + H{sub 2} reaction: Quantum reactive calculations for ∼R{sup −4} long range interaction potentials

    SciTech Connect

    Lara, Manuel; Jambrina, P. G.; Aoiz, F. J.; Launay, J.-M.

    2015-11-28

    Quantum reactive and elastic cross sections and rate coefficients have been calculated for D{sup +} + H{sub 2} (v = 0, j = 0) collisions in the energy range from 10{sup −8} K (deep ultracold regime), where only one partial wave is open, to 150 K (Langevin regime) where many of them contribute. In systems involving ions, the ∼R{sup −4} behavior extends the interaction up to extremely long distances, requiring a special treatment. To this purpose, we have used a modified version of the hyperspherical quantum reactive scattering method, which allows the propagations up to distances of 10{sup 5} a{sub 0} needed to converge the elastic cross sections. Interpolation procedures are also proposed which may reduce the cost of exact dynamical calculations at such low energies. Calculations have been carried out on the PES by Velilla et al. [J. Chem. Phys. 129, 084307 (2008)] which accurately reproduces the long range interactions. Results on its prequel, the PES by Aguado et al. [J. Chem. Phys. 112, 1240 (2000)], are also shown in order to emphasize the significance of the inclusion of the long range interactions. The calculated reaction rate coefficient changes less than one order of magnitude in a collision energy range of ten orders of magnitude, and it is found in very good agreement with the available experimental data in the region where they exist (10-100 K). State-to-state reaction probabilities are also provided which show that for each partial wave, the distribution of HD final states remains essentially constant below 1 K.

  4. Stochastic description of quantum Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yun-An; Shao, Jiushu

    2016-08-01

    Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems

  5. Why quantum dynamics is linear

    NASA Astrophysics Data System (ADS)

    Jordan, Thomas F.

    2009-11-01

    A seed George planted 45 years ago is still producing fruit now. In 1961, George set out the fundamental proposition that quantum dynamics is described most generally by linear maps of density matrices. Since the first sprout from George's seed appeared in 1962, we have known that George's fundamental proposition can be used to derive the linear Schrodinger equation in cases where it can be expected to apply. Now we have a proof of George's proposition that density matrices are mapped linearly to density matrices, that there can be no nonlinear generalization of this. That completes the derivation of the linear Schrodinger equation. The proof of George's proposition replaces Wigner's theorem that a symmetry transformation is represented by a linear or antilinear operator. The assumption needed to prove George's proposition is just that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. This replaces the physically less compelling assumption of Wigner's theorem that absolute values of inner products are preserved. The history of this question is reviewed. Nonlinear generalizations of quantum mechanics have been proposed. They predict small but clear nonlinear effects, which very accurate experiments have not seen. This begs the question. Is there a reason in principle why nonlinearity is not found? Is it impossible? Does quantum dynamics have to be linear? Attempts to prove this have not been decisive, because either their assumptions are not compelling or their arguments are not conclusive. The question has been left unsettled. The simple answer, based on a simple assumption, was found in two steps separated by 44 years.

  6. Quantum coherence in the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Samos-Sáenz de Buruaga, D. N.; Sabín, Carlos

    2017-02-01

    We propose to use quantum coherence as the ultimate proof of the quantum nature of the radiation that appears by means of the dynamical Casimir effect in experiments with superconducting microwave waveguides. We show that, unlike previously considered measurements such as entanglement and discord, quantum coherence does not require a threshold value of the external pump amplitude and is highly robust to thermal noise.

  7. Quantum emitters dynamically coupled to a quantum field

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2013-12-01

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  8. Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations.

    PubMed

    Lange, Adrian W; Voth, Gregory A

    2013-09-10

    We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.

  9. Quantum nuclear dynamics in the photophysics of diamondoids

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Giustino, Feliciano

    2013-06-01

    The unusual electronic properties of diamondoids, the nanoscale relatives of diamond, make them attractive for applications ranging from drug delivery to field emission displays. Identifying the fundamental origin of these properties has proven highly challenging, with even the most advanced quantum many-body calculations unable to reproduce measurements of a quantity as ubiquitous as the optical gap. Here, by combining first-principles calculations and Importance Sampling Monte Carlo methods, we show that the quantum dynamics of carbon nuclei is key to understanding the electronic and optical properties of diamondoids. Quantum nuclear effects dramatically modify the absorption lineshapes and renormalize the optical gaps. These findings allow us to formulate a complete theory of optical absorption in diamondoids, and establish the universal role of quantum nuclear dynamics in nanodiamond across the length scales.

  10. Quantum chemical calculations of glycine glutaric acid

    NASA Astrophysics Data System (ADS)

    Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf

    2017-02-01

    Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.

  11. Dynamical symmetries in Kondo tunneling through complex quantum dots.

    PubMed

    Kuzmenko, T; Kikoin, K; Avishai, Y

    2002-10-07

    Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4).

  12. Quantum speed limits in open system dynamics.

    PubMed

    del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F

    2013-02-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

  13. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  14. Dynamics of a Quantum Phase Transition

    SciTech Connect

    Zurek, Wojciech H.; Dorner, Uwe; Zoller, Peter

    2005-09-02

    We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.

  15. Fast and accurate calculation of dilute quantum gas using Uehling-Uhlenbeck model equation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2017-02-01

    The Uehling-Uhlenbeck (U-U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U-U model equation. DSMC analysis based on the U-U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U-U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green-Kubo expression and the shock layer of a dilute Bose gas around a cylinder.

  16. Quantum mechanical calculations and mineral spectroscopy

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.

    2006-05-01

    Interpretation of spectra in systems of environmental interest is not generally straightforward due to the lack of close analogs and a clear structure of some components of the system. Computational chemistry can be used as an objective method to test interpretations of spectra. This talk will focus on applying ab initio methods to complement vibrational, NMR, and EXAFS spectroscopic information. Examples of systems studied include phosphate/Fe-hydroxides, arsenate/Al- and Fe-hydroxide, fractured silica surfaces. Phosphate interactions with Fe-hydroxides are important in controlling nutrient availability in soils and transport within streams. In addition, organo-phosphate bonding may be a key attachment mechanism for bacteria at Fe-oxide surfaces. Interpretation of IR spectra is enhanced by model predictions of vibrational frequencies for various surface complexes. Ab initio calculations were used to help explain As(V) and As(III) adsorption behavior onto amorphous Al- and Fe-hydroxides in conjunction with EXAFS measurements. Fractured silica surfaces have been implicated in silicosis. These calculations test structures that could give rise to radical formation on silica surfaces. Calculations to simulate the creation of Si and SiO radical species on sufaces and their subsequent production of OH radicals will be discussed.

  17. Dynamics of Quenched Ultracold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Corson, John P.

    Recent advances in the tunability of ultracold atomic gases have created opportunities for studying interesting quantum many-body systems. Fano-Feshbach resonances, in particular, allow experimenters to freely adjust the scattering of atoms by controlling an external magnetic field. By rapidly changing this field near a resonance, it is possible to drive systems out of equilibrium towards novel quantum states where correlations between atoms change dynamically. In this thesis, we take a wave-function-based approach to theoretically examine the response of several interesting systems to suddenly-switched, or "quenched", interactions. We first calculate the time evolution of a Bose-Einstein condensate that is quenched to the unitarity regime, where the scattering length a diverges. Working within the time-dependent variational formalism, we find that the condensate does not deplete as quickly as the usual Bogoliubov theory would suggest. We also make a quantitative prediction for the dynamics of short-range pair correlations, encoded in Tan's contact. We then consider the dynamics of these correlations for quenches to small a, and we find that bound states can cause high-contrast oscillations of the contact. These dynamics can be modeled quantitatively at short times by using a properly-chosen two-body model. Finally, we characterize the nonlocal correlation waves that are generated by an interaction quench in arbitrary dimensionality. Our analysis demonstrates that the large-momentum limit of the post-quench momentum distribution can sometimes include contributions from both the short range and the long range, depending on the quench protocol.

  18. Mapping quantum state dynamics in spontaneous emission

    PubMed Central

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  19. Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?

    SciTech Connect

    Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.

    2014-04-21

    The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The

  20. Quantum Molecular Dynamics Simulations of Nanotube Tip Assisted Reactions

    NASA Technical Reports Server (NTRS)

    Menon, Madhu

    1998-01-01

    In this report we detail the development and application of an efficient quantum molecular dynamics computational algorithm and its application to the nanotube-tip assisted reactions on silicon and diamond surfaces. The calculations shed interesting insights into the microscopic picture of tip surface interactions.

  1. Exact geometries from quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; He, Yuan

    2001-06-01

    For seventeen molecules, complete basis set (CBS) geometries are obtained for Møller-Plesset perturbation methods at second (MP2), fourth (MP4), and sixth order (MP6) as well as for the Coupled Cluster methods CCD, CCSD, and CCSD( T). The correlation consistent basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ were systematically applied and calculated geometries extrapolated to the limit of an infinitely large basis set. MP6 equilibrium geometries are more accurate than MP2 or MP4 geometries at the CBS limit and provide AH bond lengths with an accuracy of 0.001 Å. However, AB bonds are always predicted too long because of the lack of sufficient coupling effects between p-electron correlation at MP6. CCSD( T) provides reasonable AB bond lengths although these are in general too short by 0.003 Å. Due to error cancellation very accurate geometries are obtained at the CCSD( T)/cc-pVTZ and CCSD( T)/cc-pVQZ level of theory. With the help of the accurate equilibrium geometries obtained in this work, several experimentally based geometries could be corrected. The effects of HF-optimized basis sets, diffuse functions or the frozen core approximation on geometry optimizations are discussed. It is emphasized that the use of the cc-pVDZ or any other VDZ+P basis set should be avoided in correlation corrected ab initio calculations.

  2. Quantum regression theorem and non-Markovianity of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Guarnieri, Giacomo; Smirne, Andrea; Vacchini, Bassano

    2014-08-01

    We explore the connection between two recently introduced notions of non-Markovian quantum dynamics and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics has been defined looking at the behavior in time of the statistical operator, which determines the evolution of mean values, the quantum regression theorem makes statements about the behavior of system correlation functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression hypothesis, which can be obtained exactly evaluating two-point correlation functions. To this aim we consider a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities. We further study a photonic dephasing model, recently exploited for the experimental measurement of non-Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.

  3. Detailed discussions and calculations of quantum Regge calculus of Einstein-Cartan theory

    SciTech Connect

    Xue Shesheng

    2010-09-15

    This article presents detailed discussions and calculations of the recent paper 'Quantum Regge calculus of Einstein-Cartan theory' in [9]. The Euclidean space-time is discretized by a four-dimensional simplicial complex. We adopt basic tetrad and spin-connection fields to describe the simplicial complex. By introducing diffeomorphism and local Lorentz invariant holonomy fields, we construct a regularized Einstein-Cartan theory for studying the quantum dynamics of the simplicial complex and fermion fields. This regularized Einstein-Cartan action is shown to properly approach to its continuum counterpart in the continuum limit. Based on the local Lorentz invariance, we derive the dynamical equations satisfied by invariant holonomy fields. In the mean-field approximation, we show that the averaged size of 4-simplex, the element of the simplicial complex, is larger than the Planck length. This formulation provides a theoretical framework for analytical calculations and numerical simulations to study the quantum Einstein-Cartan theory.

  4. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  5. Quantum Dynamics Simulations for Modeling Experimental Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Pearson, Brett; Nayyar, Sahil; Liss, Kyle; Weinacht, Thomas

    2016-05-01

    Time-resolved studies of quantum dynamics have benefited greatly from developments in ultrafast table-top and free electron lasers. Advances in computer software and hardware have lowered the barrier for performing calculations such that relatively simple simulations allow for direct comparison with experimental results. We describe here a set of quantum dynamics calculations in low-dimensional molecular systems. The calculations incorporate coupled electronic-nuclear dynamics, including two interactions with an applied field and nuclear wave packet propagation. The simulations were written and carried out by undergraduates as part of a senior research project, with the specific goal of allowing for detailed interpretation of experimental pump-probe data (in additional to the pedagogical value).

  6. Conditional measurements as probes of quantum dynamics

    SciTech Connect

    Siddiqui, Shabnam; Erenso, Daniel; Vyas, Reeta; Singh, Surendra

    2003-06-01

    We discuss conditional measurements as probes of quantum dynamics and show that they provide different ways to characterize quantum fluctuations. We illustrate this by considering the light from a subthreshold degenerate parametric oscillator. Analytic results and curves are presented to illustrate the behavior.

  7. Nonadiabatic quantum dynamics of C(1D)+H2→CH+H: coupled-channel calculations including Renner-Teller and Coriolis terms.

    PubMed

    Defazio, Paolo; Bussery-Honvault, Béatrice; Honvault, Pascal; Petrongolo, Carlo

    2011-09-21

    The Renner-Teller (RT) coupled-channel dynamics for the C((1)D)+H(2)(X(1)Σ(g) (+))→CH(X(2)Π)+H((2)S) reaction has been investigated for the first time, considering the first two singlet states ã̃(1)A' and b(1)A'' of CH(2) dissociating into the products and RT couplings, evaluated through the ab initio matrix elements of the electronic angular momentum. We have obtained initial-state-resolved probabilities, cross sections and thermal rate constants via the real wavepacket method for both coupled electronic states. In contrast to the N((2)D)+H(2)(X(1)Σ(g)(+)) system, RT effects tend to reduce probabilities, cross sections, and rate constants in the low energy range compared to Born-Oppenheimer (BO) ones, due to the presence of a repulsive RT barrier in the effective potentials and to long-lived resonances. Furthermore, contrary to BO results, the rate constants have a positive temperature dependence in the 100-400 K range. The two-state RT rate constant at 300 K, lower than the BO one, remains inside the error bars of the experimental value.

  8. Semiclassical description of hyperfine interaction in calculating chemically induced dynamic nuclear polarization in weak magnetic fields

    SciTech Connect

    Purtov, P.A.; Salikhov, K.M.

    1987-09-01

    Semiclassical HFI description is applicable to calculating the integral CIDNP effect in weak fields. The HFI has been calculated for radicals with sufficiently numerous magnetically equivalent nuclei (n greater than or equal to 5) in satisfactory agreement with CIDNP calculations based on quantum-mechanical description of radical-pair spin dynamics.

  9. Quantum dynamics of the abstraction reaction of H with cyclopropane.

    PubMed

    Shan, Xiao; Clary, David C

    2014-10-30

    The dynamics of the abstraction reaction of H atoms with the cyclopropane molecule is studied using quantum mechanical scattering theory. The quantum scattering calculations are performed in hyperspherical coordinates with a two-dimensional (2D) potential energy surface. The ab initio energy calculations are carried out with CCSD(T)-F12a/cc-pVTZ-F12 level of theory with the geometry and frequency calculations at the MP2/cc-pVTZ level. The contribution to the potential energy surface from the spectator modes is included as the projected zero-point energy correction to the ab initio energy. The 2D surface is fitted with a 29-parameter double Morse potential. An R-matrix propagation scheme is carried out to solve the close-coupled equations. The adiabatic energy barrier and reaction enthalpy are compared with high level computational calculations as well as experimental data. The calculated reaction rate constants shows very good agreement when compared with the experimental data, especially at lower temperature highlighting the importance of quantum tunnelling. The reaction probabilities are also presented and discussed. The special features of performing quantum dynamics calculation on the chemical reaction of a cyclic molecule are discussed.

  10. Looking into DNA breathing dynamics via quantum physics.

    PubMed

    Wu, Lian-Ao; Wu, Stephen S; Segal, Dvira

    2009-06-01

    We study generic aspects of bubble dynamics in DNA under time-dependent perturbations, for example, temperature change, by mapping the associated Fokker-Planck equation to a quantum time-dependent Schrödinger equation with imaginary time. In the static case we show that the eigenequation is exactly the same as that of the beta-deformed nuclear liquid drop model, without the issue of noninteger angular momentum. A universal breathing dynamics is demonstrated by using an approximate method in quantum mechanics. The calculated bubble autocorrelation function qualitatively agrees with experimental data. Under time-dependent modulations, utilizing the adiabatic approximation, bubble properties reveal memory effects.

  11. Efficient free energy calculations of quantum systems through computer simulations

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo

    2009-03-01

    In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)

  12. Robust dynamical decoupling for quantum computing and quantum memory.

    PubMed

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  13. Comparison of calculated with measured dynamic aperture

    SciTech Connect

    Zimmermann, F.

    1994-06-01

    The measured dynamic aperture of the HERA proton ring and the value expected from simulation studies agree within a factor of 2. A better agreement is achieved if a realistic tune modulation is included in the simulation. The approximate threshold of tune-modulation induced diffusion can be calculated analytically. Its value is in remarkable agreement with the dynamic aperture measured. The calculation is based on parameters of resonances through order 11 which are computed using differential-algebra methods and normal-form algorithms. Modulational diffusion in conjunction with drifting machine parameters appears to be the most important transverse diffusion process.

  14. The quantum Rabi model: solution and dynamics

    NASA Astrophysics Data System (ADS)

    Xie, Qiongtao; Zhong, Honghua; Batchelor, Murray T.; Lee, Chaohong

    2017-03-01

    This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given.

  15. Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers.

    PubMed

    Greck, Peter; Birner, Stefan; Huber, Bernhard; Vogl, Peter

    2015-03-09

    We present a novel and very efficient method for calculating quantum transport in quantum cascade lasers (QCLs). It follows the nonequilibrium Green's function (NEGF) framework but sidesteps the calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. This method generalizes the phenomenological Büttiker probe model by taking into account individual scattering mechanisms. It is orders of magnitude more efficient than a fully self-consistent NEGF calculation for realistic devices. We apply this method to a new THz QCL design which works up to 250 K - according to our calculations.

  16. Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    SciTech Connect

    Giorgi, G.L.; Roncaglia, M.; Raffa, F.A.; Genovese, M.

    2015-10-15

    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.

  17. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  18. Computational approach for calculating bound states in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-09-01

    We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.

  19. Quantum mechanical calculation of Rydberg-Rydberg autoionization rates

    NASA Astrophysics Data System (ADS)

    Kiffner, Martin; Ceresoli, Davide; Li, Wenhui; Jaksch, Dieter

    2016-10-01

    We present quantum mechanical calculations of autoionization rates for two rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis of the two-electron state space. We consider large sets of two-atom states with randomly chosen quantum numbers and find that the charge overlap between the two Rydberg electrons allows one to characterise the magnitude of the autoionization rates. If the electron clouds overlap by more than one percent, the autoionization rates increase approximately exponentially with the charge overlap. This finding is independent of the energy of the initial state.

  20. Dynamical Correspondence in a Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2015-05-01

    In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.

  1. Calculation of Cross Sections in Electron-Nuclear Dynamics

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Sabin, John R.; Deumens, E.; Öhrn, Y.

    In this work, we present an overview of the study of total and differential cross section calculations within the electron-nuclear dynamics (END). END is a method to solve the time-dependent Schrödinger equation in a non-adiabatic approach to direct dynamics. The method takes advantage of a coherent state representation of the molecular wave function. A quantum-mechanical Lagrangian formulation is employed to approximate the Schrödinger equation, via the time-dependent variational principle, to a set of coupled first-order differential equations in time for the END. We obtain the final wave function for the system allowing the determination of collisional properties of interest, as for example, deflection functions, charge exchange probabilities and amplitudes, and differential cross sections. We discuss the use and selection of basis sets for both the electronic description of the colliding systems as well as for their importance in the description of electron capture. As quantum effects are important in many cases and lacking for classical nuclei, we discuss the Schiff methodology and its advantages over other traditional methods for including semiclassical corrections. Time-lapse rendering of the dynamics of the participating electrons and atomic nuclei provides for a detailed view of dynamical and reactive processes. Comparison to experimental and other theoretical results is provided where appropriate data are available.

  2. Infinite variance in fermion quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  3. Infinite variance in fermion quantum Monte Carlo calculations.

    PubMed

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  4. Quantum Monte Carlo calculations with chiral effective field theory interactions.

    PubMed

    Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A

    2013-07-19

    We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

  5. Path integral calculation of free energies: quantum effects on the melting temperature of neon.

    PubMed

    Ramírez, R; Herrero, C P; Antonelli, A; Hernández, E R

    2008-08-14

    The path integral formulation has been combined with several methods to determine free energies of quantum many-body systems, such as adiabatic switching and reversible scaling. These techniques are alternatives to the standard thermodynamic integration method. A quantum Einstein crystal is used as a model to demonstrate the accuracy and reliability of these free energy methods in quantum simulations. Our main interest focuses on the calculation of the melting temperature of Ne at ambient pressure, taking into account quantum effects in the atomic dynamics. The free energy of the solid was calculated by considering a quantum Einstein crystal as reference state, while for the liquid, the reference state was defined by the classical limit of the fluid. Our findings indicate that, while quantum effects in the melting temperature of this system are small, they still amount to about 6% of the melting temperature, and are therefore not negligible. The particle density as well as the melting enthalpy and entropy of the solid and liquid phases at coexistence is compared to results obtained in the classical limit and also to available experimental data.

  6. Quantum dynamics of nonlinear cavity systems

    NASA Astrophysics Data System (ADS)

    Nation, Paul David

    In this work we investigate the quantum dynamics of three different configurations of nonlinear cavity systems. We begin by carrying out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprising a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing an external flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we consider the use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. We will show that biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. As a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process. Finally, we investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviation occurs once the pump mode (black hole) has released nearly half of its initial energy in the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum

  7. Bias in Dynamic Monte Carlo Alpha Calculations

    SciTech Connect

    Sweezy, Jeremy Ed; Nolen, Steven Douglas; Adams, Terry R.; Trahan, Travis John

    2015-02-06

    A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.

  8. PT-Symmetric Quantum Liouvillean Dynamics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2012-08-01

    We discuss a combination of unitary and antiunitary symmetry of quantum Liouvillean dynamics, in the context of open quantum systems, which implies a D2 symmetry of the complex Liouvillean spectrum. For sufficiently weak system-bath coupling, it implies a uniform decay rate for all coherences, i.e., off-diagonal elements of the system’s density matrix taken in the eigenbasis of the Hamiltonian. As an example, we discuss symmetrically boundary driven open XXZ spin 1/2 chains.

  9. Efficient quantum computing of complex dynamics.

    PubMed

    Benenti, G; Casati, G; Montangero, S; Shepelyansky, D L

    2001-11-26

    We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more significant than the errors of random noise in gate operations.

  10. Quantum model for the price dynamics

    NASA Astrophysics Data System (ADS)

    Choustova, Olga

    2008-10-01

    We apply methods of quantum mechanics to mathematical modelling of price dynamics in a financial market. We propose to describe behavioral financial factors (e.g., expectations of traders) by using the pilot wave (Bohmian) model of quantum mechanics. Our model is a quantum-like model of the financial market, cf. with works of W. Segal, I.E. Segal, E. Haven. In this paper we study the problem of smoothness of price-trajectories in the Bohmian financial model. We show that even the smooth evolution of the financial pilot wave [psi](t,x) (representing expectations of traders) can induce jumps of prices of shares.

  11. Quantum Simulation for Open-System Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry

    2013-03-01

    Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.

  12. Origin of Dynamical Quantum Non-locality

    NASA Astrophysics Data System (ADS)

    Pachon, Cesar E.; Pachon, Leonardo A.

    2014-03-01

    Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.

  13. The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials.

    SciTech Connect

    Tucker, Jon R.; Magyar, Rudolph J.

    2012-02-01

    High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.

  14. Quantum Monte Carlo Calculations of Nanostructure Optical Properties

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew

    2003-03-01

    Near linear scaling Quantum Monte Carlo (QMC) calculations[1] are used to calculate the optical gaps, electron affinities, and ionization potentials of silicon and germanium quantum dots ranging in size from 0 to 2 nm[2]. These QMC results are used to examine the accuracy of semi-empirical and density functional (DFT) calculations. We find optical gaps are underestimated by DFT by 1-2 eV depending on choice of functional. Corrections introduced by the time dependent formalisms are found to be minimal in these systems. Our results also show that quantum confinement in germanium is significantly greater than in silicon leading to a crossover of their optical gaps in dots between 2 and 3 nm in size, verifying recent experiment observations. [1] A. J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87, 246406-1 (2001). [2] A.J. Williamson J.C. Grossman, R.Q. Hood, A. Puzder and Giulia Galli, Phys. Rev. Lett, 89, 196803 (2002).

  15. Stochastic solution to quantum dynamics

    NASA Technical Reports Server (NTRS)

    John, Sarah; Wilson, John W.

    1994-01-01

    The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.

  16. Hierarchy of Stochastic Pure States for Open Quantum System Dynamics

    NASA Astrophysics Data System (ADS)

    Suess, D.; Eisfeld, A.; Strunz, W. T.

    2014-10-01

    We derive a hierarchy of stochastic evolution equations for pure states (quantum trajectories) for open quantum system dynamics with non-Markovian structured environments. This hierarchy of pure states (HOPS) is generally applicable and provides the exact reduced density operator as an ensemble average over normalized states. The corresponding nonlinear equations are presented. We demonstrate that HOPS provides an efficient theoretical tool and apply it to the spin-boson model, the calculation of absorption spectra of molecular aggregates, and energy transfer in a photosynthetic pigment-protein complex.

  17. Cavity-assisted dynamical quantum phase transition in superconducting quantum simulators

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    Coupling a quantum many-body system to a cavity can create bifurcation points in the phase diagram, where the many-body system switches between different phases. Here I will discuss the dynamical quantum phase transitions at the bifurcation points of a one-dimensional transverse field Ising model coupled to a cavity. The Ising model can be emulated with various types of superconducting qubits connected in a chain. With a time-dependent Bogoliubov method, we show that an infinitesimal quench of the driving field can cause gradual evolution of the transverse field on the Ising spins to pass through the quantum critical point. Our calculation shows that the cavity-induced nonlinearity plays an important role in the dynamics of this system. Quasiparticles can be excited in the Ising chain during this process, which results in the deviation of the system from its adiabatic ground state. This work is supported by the National Science Foundation under Award Number 0956064.

  18. Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians

    NASA Astrophysics Data System (ADS)

    Ma, Fengjie; Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry

    2015-06-01

    We present a combination of a downfolding many-body approach with auxiliary-field quantum Monte Carlo (AFQMC) calculations for extended systems. Many-body calculations operate on a simpler Hamiltonian which retains material-specific properties. The Hamiltonian is systematically improvable and allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a by-product, pseudopotential errors are essentially eliminated using frozen orbitals constructed adaptively from the solid environment. The computational cost of the many-body calculation is dramatically reduced without sacrificing accuracy. Excellent accuracy is achieved for a range of solids, including semiconductors, ionic insulators, and metals. We apply the method to calculate the equation of state of cubic BN under ultrahigh pressure, and determine the spin gap in NiO, a challenging prototypical material with strong electron correlation effects.

  19. Quantum dynamics of Lorentzian spacetime foam

    NASA Astrophysics Data System (ADS)

    Redmount, Ian H.; Suen, Wai-Mo

    1994-05-01

    A simple spacetime wormhole, which evolves classically from zero throat radius to a maximum value and recontracts, can be regarded as one possible mode of fluctuation in the microscopic ``spacetime foam'' first suggested by Wheeler. The dynamics of a particularly simple version of such a wormhole can be reduced to that of a single quantity, its throat radius; this wormhole thus provides a ``minisuperspace model'' for a mode of Lorentzian-signature foam. The classical equation of motion for the wormhole throat is obtained from the Einstein field equations and a suitable equation of state for the matter at the throat. Analysis of the quantum behavior of the hole then proceeds from an action corresponding to that equation of motion. The action obtained simply by calculating the scalar curvature of the hole spacetime yields a model with features like those of the relativistic free particle. In particular the Hamiltonian is nonlocal, and for the wormhole cannot even be given as a differential operator in closed form. Nonetheless the general solution of the Schrödinger equation for wormhole wave functions, i.e., the wave-function propagator, can be expressed as a path integral. Too complicated to perform exactly, this can yet be evaluated via a WKB approximation. The result indicates that the wormhole, classically stable, is quantum-mechanically unstable: A Feynman-Kac decomposition of the WKB propagator yields no spectrum of bound states. Although an initially localized wormhole wave function may oscillate for many classical expansion and recontraction periods, it must eventually leak to large radius values. The possibility of such a mode unstable against growth, combined with the observed absence of macroscopic wormholes, suggests that stability considerations may place constraints on the nature or even the existence of Planck-scale foamlike structure, at least of Lorentzian signature.

  20. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene; Martinazzo, Rocco

    2015-09-01

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (˜0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  1. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    SciTech Connect

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  2. Quantum dynamics of hydrogen atoms on graphene. II. Sticking.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  3. Relaxation dynamics in correlated quantum dots

    SciTech Connect

    Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.

    2014-12-04

    We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.

  4. Molecular dynamics of large systems with quantum corrections for the nuclei

    SciTech Connect

    Gu, Bing; Garashchuk, Sophya

    2015-12-31

    This paper describes an approximate approach to quantum dynamics based on the quantum trajectory formulation of the Schrödinger equation. The quantum-mechanical effects are incorporated through the quantum potential of the mean-field type, acting on a trajectory ensemble in addition to the classical potential. Efficiency for large systems is achieved by using the quantum corrections for selected degrees of freedom and introduction of empirical friction into the ground-state energy calculations. The classical potential, if needed, can be computed on-the-fly using the Density Functional Tight Binding method of electronic structure merged with the quantum trajectory dynamics code. The approach is practical for a few hundred atoms. Applications include a study of adsorption of quantum hydrogen colliding with the graphene model, C{sub 37}H{sub 15} and a calculation of the ground state of solid {sup 4}He simulated by a cell 180-atoms.

  5. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation.

    PubMed

    Hasegawa, Taisuke

    2016-11-07

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  6. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Taisuke

    2016-11-01

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  7. Accelerating quantum instanton calculations of the kinetic isotope effects

    SciTech Connect

    Karandashev, Konstantin; Vaníček, Jiří

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H{sub α} + H{sub β}H{sub γ} → H{sub α}H{sub β} + ⋅ H{sub γ} reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH{sub 4} + ⋅ H ⇌ ⋅ CH{sub 3} + H{sub 2} forward and backward reactions.

  8. Nuclear quantum dynamics in dense hydrogen

    PubMed Central

    Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin

    2014-01-01

    Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754

  9. Compressing measurements in quantum dynamic parameter estimation

    NASA Astrophysics Data System (ADS)

    Magesan, Easwar; Cooper, Alexandre; Cappellaro, Paola

    2013-12-01

    We present methods that can provide an exponential savings in the resources required to perform dynamic parameter estimation using quantum systems. The key idea is to merge classical compressive sensing techniques with quantum control methods to significantly reduce the number of signal coefficients that are required for reconstruction of time-varying parameters with high fidelity. We show that incoherent measurement bases and, more generally, suitable random measurement matrices can be created by performing simple control sequences on the quantum system. Random measurement matrices satisfying the restricted isometry property can be used efficiently to reconstruct signals that are sparse in any basis. Because many physical processes are approximately sparse in some basis, these methods can benefit a variety of applications such as quantum sensing and magnetometry with nitrogen-vacancy centers.

  10. Spin Dynamics of Charged Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stern, N. P.

    2005-03-01

    Colloidal semiconductor quantum dots are promising structures for controlling spin phenomena because of their highly size- tunable physical properties, ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Recent experiments have succeeded in controlling the charging of the lowest electronic state of colloidal quantum dots ootnotetextC. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem B 108, 9027 (2004).. Here we use time-resolved Faraday rotation measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe quantum dot films in both a charged and uncharged state at room temperature. The charging of the film is controlled by applying a voltage in an electrochemical cell and is confirmed by absorbance measurements. Significant changes in the spin precession are observed upon charging, reflecting the voltage- controlled electron occupation of the quantum dot states and filling of surface states.

  11. Understanding molecular dynamics quantum-state by quantum-state

    SciTech Connect

    Lawrance, W.D.; Moore, C.B.; Petek, H.

    1985-02-22

    It is now possible to resolve completely the initial and final quantum states in chemical processes. Spectra of reactive intermediates, of highly vibrationally excited molecules, and even of molecules in the process of falling apart have been recorded. This information has led to greater understanding of the molecular structure and dynamics of small gas-phase molecules. Many of the concepts and spectroscopic techniques that have been developed will be valuable throughout chemistry.

  12. Dynamical correlations after a quantum quench.

    PubMed

    Essler, Fabian H L; Evangelisti, Stefano; Fagotti, Maurizio

    2012-12-14

    We consider dynamic (non-equal-time) correlation functions of local observables after a quantum quench. We show that, in the absence of long-range interactions in the final Hamiltonian, the dynamics is determined by the same ensemble that describes static (equal-time) correlations. For many integrable models, static correlation functions of local observables after a quantum quench relax to stationary values, which are described by a generalized Gibbs ensemble. The same generalized Gibbs ensemble then determines dynamic correlation functions, and the basic form of the fluctuation dissipation theorem holds, although the absorption and emission spectra are not simply related as in the thermal case. For quenches in the transverse field Ising chain, we derive explicit expressions for the time evolution of dynamic order parameter correlators after a quench.

  13. Delay time calculation for dual-wavelength quantum cascade lasers

    SciTech Connect

    Hamadou, A.; Lamari, S.; Thobel, J.-L.

    2013-11-28

    In this paper, we calculate the turn-on delay (t{sub th}) and buildup (Δt) times of a midinfrared quantum cascade laser operating simultaneously on two laser lines having a common upper level. The approach is based on the four-level rate equations model describing the variation of the electron number in the states and the photon number present within the cavity. We obtain simple analytical formulae for the turn-on delay and buildup times that determine the delay times and numerically apply our results to both the single and bimode states of a quantum cascade laser, in addition the effects of current injection on t{sub th} and Δt are explored.

  14. Intrinsic spin dynamics in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Valín-Rodríguez, Manuel

    2005-12-01

    We investigate the characteristic spin dynamics corresponding to semiconductor quantum dots within the multiband envelope function approximation (EFA). By numerically solving an 8 × 8 k·p Hamiltonian we treat systems based on different III-V semiconductor materials. It is shown that, even in the absence of an applied magnetic field, these systems show intrinsic spin dynamics governed by intraband and interband transitions leading to characteristic spin frequencies ranging from THz to optical frequencies.

  15. Dynamical initial conditions in quantum cosmology.

    PubMed

    Bojowald, M

    2001-09-17

    Loop quantum cosmology is shown to provide both the dynamical law and initial conditions for the wave function of a universe by one discrete evolution equation. Accompanied by the condition that semiclassical behavior is obtained at large volume, a unique wave function is predicted.

  16. Mixed Quantum-Classical Liouville Approach for Calculating Proton-Coupled Electron-Transfer Rate Constants.

    PubMed

    Shakib, Farnaz; Hanna, Gabriel

    2016-07-12

    In this work, we derive a general mixed quantum-classical formula for calculating thermal proton-coupled electron-transfer (PCET) rate constants, starting from the time integral of the quantum flux-flux correlation function. This formula allows for the direct simulation of PCET reaction dynamics via the mixed quantum-classical Liouville approach. Owing to the general nature of the derivation, this formula does not rely on any prior mechanistic assumptions and can be applied across a wide range of electronic and protonic coupling regimes. To test the validity of this formula, we applied it to a reduced model of a condensed-phase PCET reaction. Good agreement with the numerically exact rate constant is obtained, demonstrating the accuracy of our formalism. We believe that this approach constitutes a solid foundation for future investigations of the rates and mechanisms of a wide range of PCET reactions.

  17. Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei.

    PubMed

    Ceriotti, Michele; Manolopoulos, David E

    2012-09-07

    Light nuclei at room temperature and below exhibit a kinetic energy which significantly deviates from the predictions of classical statistical mechanics. This quantum kinetic energy is responsible for a wide variety of isotope effects of interest in fields ranging from chemistry to climatology. It also furnishes the second moment of the nuclear momentum distribution, which contains subtle information about the chemical environment and has recently become accessible to deep inelastic neutron scattering experiments. Here, we show how, by combining imaginary time path integral dynamics with a carefully designed generalized Langevin equation, it is possible to dramatically reduce the expense of computing the quantum kinetic energy. We also introduce a transient anisotropic Gaussian approximation to the nuclear momentum distribution which can be calculated with negligible additional effort. As an example, we evaluate the structural properties, the quantum kinetic energy, and the nuclear momentum distribution for a first-principles simulation of liquid water.

  18. Annular tautomerism: experimental observations and quantum mechanics calculations

    NASA Astrophysics Data System (ADS)

    Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.

  19. Chaotic Behaviour in Quantum Dynamics.

    DTIC Science & Technology

    1986-12-01

    1.6 Relevance of Classical Analisys to the Problem of Microwave Ionization The other nonconservative system discussed in this report - the H-atom in...a microwave field - had never been sublected to quantum analisys , neither theoretical nor computational, up to the start of our program. Nevertheless...m, . A2) can tie expanded in a double Fourier series in the angle variables Xi, X2: (I,, A, ,klk2 Z= > (ni, n,, n) e i(0 K C) The coefficeuts z ,i can

  20. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  1. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    PubMed

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  2. Importance of parametrizing constraints in quantum-mechanical variational calculations

    NASA Technical Reports Server (NTRS)

    Chung, Kwong T.; Bhatia, A. K.

    1992-01-01

    In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.

  3. Loop quantum cosmology: from pre-inflationary dynamics to observations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Barrau, Aurélien

    2015-12-01

    The Planck collaboration has provided us rich information about the early Universe, and a host of new observational missions will soon shed further light on the ‘anomalies’ that appear to exist on the largest angular scales. From a quantum gravity perspective, it is natural to inquire if one can trace back the origin of such puzzling features to Planck scale physics. Loop quantum cosmology provides a promising avenue to explore this issue because of its natural resolution of the big bang singularity. Thanks to advances over the last decade, the theory has matured sufficiently to allow concrete calculations of the phenomenological consequences of its pre-inflationary dynamics. In this article we summarize the current status of the ensuing two-way dialog between quantum gravity and observations.

  4. Calculation of exchange interaction for modified Gaussian coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2017-03-01

    A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots (d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.

  5. Method for discovering relationships in data by dynamic quantum clustering

    DOEpatents

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  6. Instability of quantum equilibrium in Bohm's dynamics

    PubMed Central

    Colin, Samuel; Valentini, Antony

    2014-01-01

    We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for ‘extended’ non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation. PMID:25383020

  7. Quantum dynamics in the thermodynamic limit

    SciTech Connect

    Wezel, Jasper van

    2008-08-01

    The description of spontaneous symmetry breaking that underlies the connection between classically ordered objects in the thermodynamic limit and their individual quantum-mechanical building blocks is one of the cornerstones of modern condensed-matter theory and has found applications in many different areas of physics. The theory of spontaneous symmetry breaking, however, is inherently an equilibrium theory, which does not address the dynamics of quantum systems in the thermodynamic limit. Here, we will use the example of a particular antiferromagnetic model system to show that the presence of a so-called thin spectrum of collective excitations with vanishing energy - one of the well-known characteristic properties shared by all symmetry-breaking objects - can allow these objects to also spontaneously break time-translation symmetry in the thermodynamic limit. As a result, that limit is found to be able, not only to reduce quantum-mechanical equilibrium averages to their classical counterparts, but also to turn individual-state quantum dynamics into classical physics. In the process, we find that the dynamical description of spontaneous symmetry breaking can also be used to shed some light on the possible origins of Born's rule. We conclude by describing an experiment on a condensate of exciton polaritons which could potentially be used to experimentally test the proposed mechanism.

  8. Communication: quantum dynamics in classical spin baths.

    PubMed

    Sergi, Alessandro

    2013-07-21

    A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.

  9. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete

  10. Quantum Monte Carlo Calculations of Nucleon-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Wiringa, R. B.; Nollett, Kenneth M.; Pieper, Steven C.; Brida, I.

    2009-10-01

    We report recent quantum Monte Carlo (variational and Green's function) calculations of elastic nucleon-nucleus scattering. We are adding the cases of proton-^4He, neutron-^3H and proton-^3He scattering to a previous GFMC study of neutron-^4He scattering [1]. To do this requires generalizing our methods to include long-range Coulomb forces and to treat coupled channels. The two four-body cases can be compared to other accurate four-body calculational methods such as the AGS equations and hyperspherical harmonic expansions. We will present results for the Argonne v18 interaction alone and with Urbana and Illinois three-nucleon potentials. [4pt] [1] K.M. Nollett, S. C. Pieper, R.B. Wiringa, J. Carlson, and G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007)

  11. Accelerating atomistic calculations of quantum energy eigenstates on graphic cards

    NASA Astrophysics Data System (ADS)

    Rodrigues, Walter; Pecchia, A.; Lopez, M.; Auf der Maur, M.; Di Carlo, A.

    2014-10-01

    Electronic properties of nanoscale materials require the calculation of eigenvalues and eigenvectors of large matrices. This bottleneck can be overcome by parallel computing techniques or the introduction of faster algorithms. In this paper we report a custom implementation of the Lanczos algorithm with simple restart, optimized for graphical processing units (GPUs). The whole algorithm has been developed using CUDA and runs entirely on the GPU, with a specialized implementation that spares memory and reduces at most machine-to-device data transfers. Furthermore parallel distribution over several GPUs has been attained using the standard message passing interface (MPI). Benchmark calculations performed on a GaN/AlGaN wurtzite quantum dot with up to 600,000 atoms are presented. The empirical tight-binding (ETB) model with an sp3d5s∗+spin-orbit parametrization has been used to build the system Hamiltonian (H).

  12. Automated quantum conductance calculations using maximally-localised Wannier functions

    NASA Astrophysics Data System (ADS)

    Shelley, Matthew; Poilvert, Nicolas; Mostofi, Arash A.; Marzari, Nicola

    2011-10-01

    A robust, user-friendly, and automated method to determine quantum conductance in quasi-one-dimensional systems is presented. The scheme relies upon an initial density-functional theory calculation in a specific geometry after which the ground-state eigenfunctions are transformed to a maximally-localised Wannier function (MLWF) basis. In this basis, our novel algorithms manipulate and partition the Hamiltonian for the calculation of coherent electronic transport properties within the Landauer-Buttiker formalism. Furthermore, we describe how short-ranged Hamiltonians in the MLWF basis can be combined to build model Hamiltonians of large (>10,000 atom) disordered systems without loss of accuracy. These automated algorithms have been implemented in the Wannier90 code (Mostofi et al., 2008) [1], which is interfaced to a number of electronic structure codes such as Quantum-ESPRESSO, AbInit, Wien2k, SIESTA and FLEUR. We apply our methods to an Al atomic chain with a Na defect, an axially heterostructured Si/Ge nanowire and to a spin-polarised defect on a zigzag graphene nanoribbon.

  13. Classical and quantum dynamics of the sphere

    NASA Astrophysics Data System (ADS)

    Lasukov, Vladimir; Moldovanova, Evgeniia; Abdrashitova, Maria; Malik, Hitendra; Gorbacheva, Ekaterina

    2016-07-01

    In Minkowski space, there has been developed the mathematic quantum model of the real particle located on the sphere evolving owing to the negative pressure inside the sphere. The developed model is analogous to the geometrodynamic model of the Lemaitre-Friedmann primordial atom in superspace-time, whose spatial coordinate is the scale factor functioning as a radial coordinate. There is a formulation of quantum geometrodynamics in which the spatial coordinate is an offset of the scale factor and wave function at the same time. With the help of the Dirac procedure for extracting the root from the Hamiltonian operator we have constructed a Dirac quantum dynamics of the sphere with fractional spin.

  14. Dynamical Response near Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William

    2017-02-01

    We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O (N ) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.

  15. Quantum dynamics of a semi-infinite homogeneous harmonic chain

    NASA Astrophysics Data System (ADS)

    Prato, Domingo; Lamberti, Pedro W.

    1993-07-01

    The quantum dynamics of a semi-infinite homogeneous harmonic chain is studied. Assuming the system to be in its ground state, a harmonic motion, A sin(ω t), is imposed on the mass at the beginning of the chain. The quantum state of the system for t>0 is calculated by means of the evolution operator. Two different regimes occur: one for angular frequencies ω outside the allowed band ω>ω 0 and the other one for ω inside the band. After a transient the time derivative of the total energy of the chain vanishes for the first regime and tends to a constant for the second one. The mean values of the displacements from their equilibrium position are also calculated for masses along the chain. These averaged displacements and the time derivative of the total energy are shown to give exactly the same expression as in the classical case.

  16. Dynamics of quantum wave packets

    SciTech Connect

    Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.

  17. Quantum dynamics in ultracold atomic physics

    NASA Astrophysics Data System (ADS)

    He, Qiong-Yi; Reid, Margaret D.; Opanchuk, Bogdan; Polkinghorne, Rodney; Rosales-Zárate, Laura E. C.; Drummond, Peter D.

    2012-02-01

    We review recent developments in the theory of quantum dynamics in ultracold atomic physics, including exact techniques and methods based on phase-space mappings that are applicable when the complexity becomes exponentially large. Phase-space representations include the truncated Wigner, positive- P and general Gaussian operator representations which can treat both bosons and fermions. These phase-space methods include both traditional approaches using a phase-space of classical dimension, and more recent methods that use a non-classical phase-space of increased dimensionality. Examples used include quantum Einstein-Podolsky-Rosen (EPR) entanglement of a four-mode BEC, time-reversal tests of dephasing in single-mode traps, BEC quantum collisions with up to 106 modes and 105 interacting particles, quantum interferometry in a multi-mode trap with nonlinear absorption, and the theory of quantum entropy in phase-space. We also treat the approach of variational optimization of the sampling error, giving an elementary example of a nonlinear oscillator.

  18. Quantum Monte Carlo Calculations Applied to Magnetic Molecules

    SciTech Connect

    Engelhardt, Larry

    2006-01-01

    We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these

  19. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    SciTech Connect

    Christov, Ivan P.

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  20. Dynamic Dimensionality Identification for Quantum Control

    NASA Astrophysics Data System (ADS)

    Roslund, Jonathan; Rabitz, Herschel

    2014-04-01

    The control of quantum systems with shaped laser pulses presents a paradox since the relative ease with which solutions are discovered appears incompatible with the enormous variety of pulse shapes accessible with a standard pulse shaper. Quantum landscape theory indicates that the relevant search dimensionality is not dictated by the number of pulse shaper elements, but rather is related to the number of states participating in the controlled dynamics. The actual dimensionality is encoded within the sensitivity of the observed yield to all of the pulse shaper elements. To investigate this proposition, the Hessian matrix is measured for controlled transitions amongst states of atomic rubidium, and its eigendecomposition reveals a dimensionality consistent with that predicted by landscape theory. Additionally, this methodology furnishes a low-dimensional picture that captures the essence of the light-matter interaction and the ensuing system dynamics.

  1. Quantum phase transitions with dynamical flavors

    NASA Astrophysics Data System (ADS)

    Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.

    2016-07-01

    We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.

  2. Dynamical systems and quantum bicrossproduct algebras

    NASA Astrophysics Data System (ADS)

    Arratia, Oscar; del Olmo, Mariano A.

    2002-06-01

    We present a unified study of some aspects of quantum bicrossproduct algebras of inhomogeneous Lie algebras, such as Poincaré, Galilei and Euclidean in N dimensions. The action associated with the bicrossproduct structure allows us to obtain a nonlinear action over a new group linked to the translations. This new nonlinear action associates a dynamical system with each generator which is the object of our study.

  3. Computer Visualization of Many-Particle Quantum Dynamics

    SciTech Connect

    Ozhigov, A. Y.

    2009-03-10

    In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.

  4. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  5. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    PubMed

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  6. Exact quantum dynamics study of the O{sup +}+H{sub 2}(v=0,j=0){yields}OH{sup +}+H ion-molecule reaction and comparison with quasiclassical trajectory calculations

    SciTech Connect

    Martinez, Rodrigo; Lucas, Josep M.; Gimenez, Xavier; Aguilar, Antonio; Gonzalez, Miguel

    2006-04-14

    The close-coupling hyperspherical (CCH) exact quantum method was used to study the title barrierless reaction up to a collision energy (E{sub T}) of 0.75 eV, and the results compared with quasiclassical trajectory (QCT) calculations to determine the importance of quantum effects. The CCH integral cross section decreased with E{sub T} and, although the QCT results were in general quite similar to the CCH ones, they presented a significant deviation from the CCH data within the 0.2-0.6 eV collision energy range, where the QCT method did not correctly describe the reaction probability. A very good accord between both methods was obtained for the OH{sup +} vibrational distribution, where no inversion of population was found. For the OH{sup +} rotational distributions, the agreement between the CCH and QCT results was not as good as in the vibrational case, but it was satisfactory in many conditions. The kk{sup '} angular distribution showed a preferential forward character, and the CCH method produced higher forward peaks than the QCT one. All the results were interpreted considering the potential energy surface and plots of a representative sampling of reactive trajectories.

  7. The quantum dynamics of chemical reactions

    NASA Astrophysics Data System (ADS)

    Kuppermann, A.

    1983-03-01

    In this project, we developed accurate and approximate methods for calculating cross sections of elementary reactions. These methods were applied to systems of importance for the fundamental aspects of chemical dynamics and for advanced technologies of interest to the United States Air Force. The application included calculations of three-atom exchange reactions, break-up and three-body recombination collisions and vibrational quenching by reaction. These calculations improved our understanding of such processes and permitted an assessment of some approximate methods.

  8. Electron Dynamics in Finite Quantum Systems

    NASA Astrophysics Data System (ADS)

    McDonald, Christopher R.

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to

  9. Using the Chebychev expansion in quantum transport calculations.

    PubMed

    Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich

    2015-04-21

    Irradiation by laser pulses and a fluctuating surrounding liquid environment can, for example, lead to time-dependent effects in the transport through molecular junctions. From the theoretical point of view, time-dependent theories of quantum transport are still challenging. In one of these existing transport theories, the energy-dependent coupling between molecule and leads is decomposed into Lorentzian functions. This trick has successfully been combined with quantum master approaches, hierarchical formalisms, and non-equilibrium Green's functions. The drawback of this approach is, however, its serious limitation to certain forms of the molecule-lead coupling and to higher temperatures. Tian and Chen [J. Chem. Phys. 137, 204114 (2012)] recently employed a Chebychev expansion to circumvent some of these latter problems. Here, we report on a similar approach also based on the Chebychev expansion but leading to a different set of coupled differential equations using the fact that a derivative of a zeroth-order Bessel function can again be given in terms of Bessel functions. Test calculations show the excellent numerical accuracy and stability of the presented formalism. The time span for which this Chebychev expansion scheme is valid without any restrictions on the form of the spectral density or temperature can be determined a priori.

  10. Using the Chebychev expansion in quantum transport calculations

    SciTech Connect

    Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich

    2015-04-21

    Irradiation by laser pulses and a fluctuating surrounding liquid environment can, for example, lead to time-dependent effects in the transport through molecular junctions. From the theoretical point of view, time-dependent theories of quantum transport are still challenging. In one of these existing transport theories, the energy-dependent coupling between molecule and leads is decomposed into Lorentzian functions. This trick has successfully been combined with quantum master approaches, hierarchical formalisms, and non-equilibrium Green’s functions. The drawback of this approach is, however, its serious limitation to certain forms of the molecule-lead coupling and to higher temperatures. Tian and Chen [J. Chem. Phys. 137, 204114 (2012)] recently employed a Chebychev expansion to circumvent some of these latter problems. Here, we report on a similar approach also based on the Chebychev expansion but leading to a different set of coupled differential equations using the fact that a derivative of a zeroth-order Bessel function can again be given in terms of Bessel functions. Test calculations show the excellent numerical accuracy and stability of the presented formalism. The time span for which this Chebychev expansion scheme is valid without any restrictions on the form of the spectral density or temperature can be determined a priori.

  11. Molecular thermodynamics of metabolism: quantum thermochemical calculations for key metabolites.

    PubMed

    Hadadi, N; Ataman, M; Hatzimanikatis, V; Panayiotou, C

    2015-04-28

    The present work is the first of a series of papers aiming at a coherent and unified development of the thermodynamics of metabolism and the rationalization of feasibility analysis of metabolic pathways. The focus in this part is on high-level quantum chemical calculations of the thermochemical quantities of relatively heavy metabolites such as amino acids/oligopeptides, nucleosides, saccharides and their derivatives in the ideal gas state. The results of this study will be combined with the corresponding hydration/solvation results in subsequent parts of this work in order to derive the desired thermochemical quantities in aqueous solutions. The above metabolites exist in a vast conformational/isomerization space including rotational conformers, tautomers or anomers exhibiting often multiple or cooperative intramolecular hydrogen bonding. We examine the challenges posed by these features for the reliable estimation of thermochemical quantities. We discuss conformer search, conformer distribution and averaging processes. We further consider neutral metabolites as well as protonated and deprotonated metabolites. In addition to the traditional presentation of gas-phase acidities, basicities and proton affinities, we also examine heats and free energies of ionic species. We obtain simple linear relations between the thermochemical quantities of ions and the formation quantities of their neutral counterparts. Furthermore, we compare our calculations with reliable experimental measurements and predictive calculations from the literature, when available. Finally, we discuss the next steps and perspectives for this work.

  12. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed.

  13. Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine

    NASA Astrophysics Data System (ADS)

    Ayala, A. P.; Siesler, H. W.; Wardell, S. M. S. V.; Boechat, N.; Dabbene, V.; Cuffini, S. L.

    2007-02-01

    Nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'e][1,4]diazepin-6-one) is an antiretroviral drug belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. As most of this kind of antiretroviral drugs, nevirapine displays a butterfly-like conformation which is preserved in complexes with the HIV-1 reverse transcriptase. In this work, we present a detailed vibrational spectroscopy investigation of nevirapine by using mid-infrared, near-infrared, and Raman spectroscopies. These data are supported by quantum mechanical calculations, which allow us to characterize completely the vibrational spectra of this compound. Based on these results, we discuss the correlation between the vibrational modes and the crystalline structure of the most stable form of nevirapine.

  14. Quantum plasmonics: from jellium models to ab initio calculations

    NASA Astrophysics Data System (ADS)

    Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel

    2016-08-01

    Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  15. Fragment quantum mechanical calculation of proteins and its applications.

    PubMed

    He, Xiao; Zhu, Tong; Wang, Xianwei; Liu, Jinfeng; Zhang, John Z H

    2014-09-16

    Conspectus The desire to study molecular systems that are much larger than what the current state-of-the-art ab initio or density functional theory methods could handle has naturally led to the development of novel approximate methods, including semiempirical approaches, reduced-scaling methods, and fragmentation methods. The major computational limitation of ab initio methods is the scaling problem, because the cost of ab initio calculation scales nth power or worse with system size. In the past decade, the fragmentation approach based on chemical locality has opened a new door for developing linear-scaling quantum mechanical (QM) methods for large systems and for applications to large molecular systems such as biomolecules. The fragmentation approach is highly attractive from a computational standpoint. First, the ab initio calculation of individual fragments can be conducted almost independently, which makes it suitable for massively parallel computations. Second, the electron properties, such as density and energy, are typically combined in a linear fashion to reproduce those for the entire molecular system, which makes the overall computation scale linearly with the size of the system. In this Account, two fragmentation methods and their applications to macromolecules are described. They are the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method and the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. The EE-GMFCC method is developed from the MFCC approach, which was initially used to obtain accurate protein-ligand QM interaction energies. The main idea of the MFCC approach is that a pair of conjugate caps (concaps) is inserted at the location where the subsystem is divided by cutting the chemical bond. In addition, the pair of concaps is fused to form molecular species such that the overcounted effect from added concaps can be properly removed. By introducing the electrostatic

  16. Large Scale Electronic Structure Calculations using Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.

    1998-03-01

    This talk will address our recent efforts in developing fast, linear scaling electronic structure methods for large scale applications. Of special importance is our fast multipole method( M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271), 51 (1996). (FMM) for achieving linear scaling for the quantum Coulomb problem (GvFMM), the traditional bottleneck in quantum chemistry calculations based on Gaussian orbitals. Fast quadratures(R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. Lett. 257), 213 (1996). combined with methods that avoid the Hamiltonian diagonalization( J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106), 5569 (1997) have resulted in density functional theory (DFT) programs that can be applied to systems containing many hundreds of atoms and ---depending on computational resources or level of theory-- to many thousands of atoms.( A. D. Daniels, J. M. Millam and G. E. Scuseria, J. Chem. Phys. 107), 425 (1997). Three solutions for the diagonalization bottleneck will be analyzed and compared: a conjugate gradient density matrix search (CGDMS), a Hamiltonian polynomial expansion of the density matrix, and a pseudo-diagonalization method. Besides DFT, our near-field exchange method( J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 105), 8969 (1996). for linear scaling Hartree-Fock calculations will be discussed. Based on these improved capabilities, we have also developed programs to obtain vibrational frequencies (via analytic energy second derivatives) and excitation energies (through time-dependent DFT) of large molecules like porphyn or C_70. Our GvFMM has been extended to periodic systems( K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett., in press.) and progress towards a Gaussian-based DFT and HF program for polymers and solids will be reported. Last, we will discuss our progress on a Laplace-transformed \\cal O(N^2) second-order pertubation theory (MP2) method.

  17. Applications of Quantum Probability Theory to Dynamic Decision Making

    DTIC Science & Technology

    2015-08-13

    quantum learning algorithm for the dynamic environments; and most importantly, (c) To experimentally test whether the quantum reinforcement learning...seeking tasks, which are relevant to Air Force applications. In particular, we developed a new quantum reinforcement learning algorithm for MDP’s. The... quantum reinforcement-learning algorithm does not require a quantum computer, and can be directly used to learn to perform practical sequential

  18. Dissipative dynamics of a quantum two-state system in presence of nonequilibrium quantum noise

    NASA Astrophysics Data System (ADS)

    Mann, Niklas; Brüggemann, Jochen; Thorwart, Michael

    2016-12-01

    We analyze the real-time dynamics of a quantum two-state system in the presence of nonequilibrium quantum fluctuations. The latter are generated by a coupling of the two-state system to a single electronic level of a quantum dot which carries a nonequilibrium tunneling current. We restrict to the sequential tunneling regime and calculate the dynamics of the two-state system, of the dot population, and of the nonequilibrium charge current on the basis of a diagrammatic perturbative method valid for a weak tunneling coupling. We find a nontrivial dependence of the relaxation and dephasing rates of the two-state system due to the nonequilibrium fluctuations which is directly linked to the structure of the unperturbed central system. In addition, a Heisenberg-Langevin-equation of motion allows us to calculate the correlation function of the nonequilibrium fluctuations. By this, we obtain a generalized nonequilibrium fluctuation relation which includes the equilibrium fluctuation-dissipation theorem in the limit of zero transport voltage. A straightforward extension to the case with a time-periodic ac voltage is shown.

  19. Self-consistent magnetization dynamics of a ferromagnetic quantum dot driven by a spin bias

    NASA Astrophysics Data System (ADS)

    Siu, Z. B.; Jalil, M. B. A.; Tan, S. G.

    2012-04-01

    We present an iterative scheme which combines the non-equilibrium Green's function (NEGF) for evaluating the quantum spin transport in a ferromagnetic quantum dot device and the Landau-Lifshitz (LL) equation for modeling the magnetization dynamics of the dot. For a given initial magnetization, the spin polarization of current and the resulting spin torque in the dot are calculated using the NEGF formalism. The torque acts on the magnetic moment of the dot, and the resultant magnetization dynamics is obtained from the LL equation. The new value of the dot's magnetization is then used as an input for the next round of NEGF calculation, and the whole process is repeated iteratively. The spin torque is thus calculated self-consistently with the dynamics of the magnetic moment of the dot. We apply this self-consistent iterative scheme to study the magnetization dynamics in an exemplary quantum dot system with an induced spin bias in the leads under varying damping conditions.

  20. Conditional and unconditional Gaussian quantum dynamics

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Lami, Ludovico; Serafini, Alessio

    2016-07-01

    This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as 'general-dyne') quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be missing in the existing literature. We will then move on to consider the linear coupling with a white noise bath, and derive the diffusion equations that describe the evolution of Gaussian states under such circumstances. Starting from these equations, we outline a constructive method to derive general master equations that apply outside the Gaussian regime. Next, we include the general-dyne monitoring of the environmental degrees of freedom and recover the Riccati equation for the conditional evolution of Gaussian states. Our derivation relies exclusively on the standard quantum mechanical update of the system state, through the evaluation of Gaussian overlaps. The parametrisation of the conditional dynamics we obtain is novel and, at variance with existing alternatives, directly ties in to physical detection schemes. We conclude our study with two examples of conditional dynamics that can be dealt with conveniently through our formalism, demonstrating how monitoring can suppress the noise in optical parametric processes as well as stabilise systems subject to diffusive scattering.

  1. Feynman's clock, a new variational principle, and parallel-in-time quantum dynamics.

    PubMed

    McClean, Jarrod R; Parkhill, John A; Aspuru-Guzik, Alán

    2013-10-08

    We introduce a discrete-time variational principle inspired by the quantum clock originally proposed by Feynman and use it to write down quantum evolution as a ground-state eigenvalue problem. The construction allows one to apply ground-state quantum many-body theory to quantum dynamics, extending the reach of many highly developed tools from this fertile research area. Moreover, this formalism naturally leads to an algorithm to parallelize quantum simulation over time. We draw an explicit connection between previously known time-dependent variational principles and the time-embedded variational principle presented. Sample calculations are presented, applying the idea to a hydrogen molecule and the spin degrees of freedom of a model inorganic compound, demonstrating the parallel speedup of our method as well as its flexibility in applying ground-state methodologies. Finally, we take advantage of the unique perspective of this variational principle to examine the error of basis approximations in quantum dynamics.

  2. Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics

    PubMed Central

    McClean, Jarrod R.; Parkhill, John A.; Aspuru-Guzik, Alán

    2013-01-01

    We introduce a discrete-time variational principle inspired by the quantum clock originally proposed by Feynman and use it to write down quantum evolution as a ground-state eigenvalue problem. The construction allows one to apply ground-state quantum many-body theory to quantum dynamics, extending the reach of many highly developed tools from this fertile research area. Moreover, this formalism naturally leads to an algorithm to parallelize quantum simulation over time. We draw an explicit connection between previously known time-dependent variational principles and the time-embedded variational principle presented. Sample calculations are presented, applying the idea to a hydrogen molecule and the spin degrees of freedom of a model inorganic compound, demonstrating the parallel speedup of our method as well as its flexibility in applying ground-state methodologies. Finally, we take advantage of the unique perspective of this variational principle to examine the error of basis approximations in quantum dynamics. PMID:24062428

  3. Numerically Exact Dynamics of Functional Quantum Systems - Applications to GaAs Quantum Dot Qubits and 2-DIMENSIONAL Spectra of Very Large Photosyntheitc Complexes

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.

    2013-06-01

    Functional quantum systems is an emerging research field which includes quantum engineering (the design of technologies that make use of quantum mechanics to outperform their classical counterparts, such as quantum computers, quantum communication devices, quantum thermometers, quantum telescopes, etc.) and the study of natural processes where quantum mechanics provides some improvement that cannot be realized with classical mechanics (possible examples are photosynthesis, animal navigation, the sense of smell, etc.). Being able to predict how a quantum mechanical system changes (ie, how its density matrix changes), given its hamiltonian, is paramount in quantum engineering as one needs to know which hamiltonian will give the desired outcome. Likewise, being able to predict density matrix dynamics in natural systems can help in understanding the system's mechanism, in controlling the system's processes, and can be helpful if designing a technology which attempts to mimic a natural process. State of the art techniques for calculating density matrix dynamics of functional quantum systems in real-time, and with numerically exact accuracy, have been developed over the last year. These techniques will be presented, followed by applications for quantum dot based quantum computing, and for calculating the 2D spectra of large biological systems.

  4. Excited State Quantum-Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.

  5. Quantum corrections to inflaton and curvaton dynamics

    SciTech Connect

    Markkanen, Tommi; Tranberg, Anders E-mail: anders.tranberg@nbi.dk

    2012-11-01

    We compute the fully renormalized one-loop effective action for two interacting and self-interacting scalar fields in FRW space-time. We then derive and solve the quantum corrected equations of motion both for fields that dominate the energy density (such as an inflaton) and fields that do not (such as a subdominant curvaton). In particular, we introduce quantum corrected Friedmann equations that determine the evolution of the scale factor. We find that in general, gravitational corrections are negligible for the field dynamics. For the curvaton-type fields this leaves only the effect of the flat-space Coleman-Weinberg-type effective potential, and we find that these can be significant. For the inflaton case, both the corrections to the potential and the Friedmann equations can lead to behaviour very different from the classical evolution. Even to the point that inflation, although present at tree level, can be absent at one-loop order.

  6. Reversing quantum dynamics with near-optimal quantum and classical fidelity

    NASA Astrophysics Data System (ADS)

    Barnum, H.; Knill, E.

    2002-05-01

    We consider the problem of reversing quantum dynamics, with the goal of preserving an initial state's quantum entanglement or classical correlation with a reference system. We exhibit an approximate reversal operation, adapted to the initial density operator and the "noise" dynamics to be reversed. We show that its error in preserving either quantum or classical information is no more than twice that of the optimal reversal operation. Applications to quantum algorithms and information transmission are discussed.

  7. Quantum Phase Transition and Universal Dynamics in the Rabi Model.

    PubMed

    Hwang, Myung-Joong; Puebla, Ricardo; Plenio, Martin B

    2015-10-30

    We consider the Rabi Hamiltonian, which exhibits a quantum phase transition (QPT) despite consisting only of a single-mode cavity field and a two-level atom. We prove QPT by deriving an exact solution in the limit where the atomic transition frequency in the unit of the cavity frequency tends to infinity. The effect of a finite transition frequency is studied by analytically calculating finite-frequency scaling exponents as well as performing a numerically exact diagonalization. Going beyond this equilibrium QPT setting, we prove that the dynamics under slow quenches in the vicinity of the critical point is universal; that is, the dynamics is completely characterized by critical exponents. Our analysis demonstrates that the Kibble-Zurek mechanism can precisely predict the universal scaling of residual energy for a model without spatial degrees of freedom. Moreover, we find that the onset of the universal dynamics can be observed even with a finite transition frequency.

  8. Warm dense iron equation of state from quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sjostrom, Travis; Crockett, Scott

    Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and orbital-free density functional theory, we calculate the equation of state of warm dense iron in the density range 7-30 g/cm3 and temperatures from 1 to 100 eV. A critical examination of the iron pseudopotential is made, from which we find the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014)] to be in error. Our results also significantly extend the ranges of density and temperature which are attempted in that prior work. We calculate the shock Hugoniot and find very good agreement with experimental results to pressures over 20 TPa. Additionally we have utilized the QMD results to generate a new SESAME tabular equation of state for fluid iron, accurate in the warm dense matter region, and also extending to much broader regions of density and temperature than can be accessed by the QMD alone.

  9. Quantum walk coherences on a dynamical percolation graph.

    PubMed

    Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine

    2015-08-27

    Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.

  10. Calculation of strain compensation thickness for III-V semiconductor quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Polly, S. J.; Bailey, C. G.; Grede, A. J.; Forbes, D. V.; Hubbard, S. M.

    2016-11-01

    Models based on continuum elasticity theory are discussed to calculate the necessary thickness of a strain compensation (SC) layer for a superlattice (SL) of strained quantum wells (QW) or quantum dots (QD). These models are then expanded to cover material systems (substrates, QW or QD, and SC) composed of AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, or InSb, as well as the ternary, quaternary, and higher order material alloys possible in the Al/Ga/In/P/As/Sb systems. SC thickness calculation methods were compared against dynamical scattering simulations and experimental X-ray diffraction measurements of the InAs/GaP/GaAs QD/SC/Substrate superlattices of varying SC thickness. Based on the reduced (but not eliminated) strain present, a further modified strain compensation thickness is calculated to maximize the number of SL repeat units before the onset of misfit dislocations is also calculated. These models have been assembled into a free application on nanoHUB for use by the community.

  11. Recombination Dynamics in Quantum Well Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Fouquet, Julie Elizabeth

    Time-resolved and time-integrated photoluminescence as a function of excitation energy density have been observed in order to study recombination dynamics in GaAs/Al(,x)Ga(,1 -x)As quantum well structures. The study of room temperature photoluminescence from the molecular beam epitaxy (MBE) -grown multiple quantum well structure and photoluminescence peak energy as a function of tem- perature shows that room temperature recombination at excitation densities above the low 10('16) cm('-3) level is due to free carriers, not excitons. This is the first study of time-resolved photoluminescence of impurities in quantum wells; data taken at different emission wave- lengths at low temperatures shows that the impurity-related states at photon energies lower than the free exciton peaks luminesce much more slowly than the free exciton states. Results from a similar structure grown by metal -organic chemical vapor deposition (MOCVD) are explained by saturation of traps. An unusual increase in decay rate observed tens of nanoseconds after excitation is probably due to carriers falling out of the trap states. Since this is the first study of time-resolved photoluminescence of MOCVD-grown quantum well structures, this unusual behavior may be realted to the MOCVD growth process. Further investigations indi- cate that the traps are not active at low temperatures; they become active at approximately 150 K. The traps are probably associated with the (hetero)interfaces rather than the bulk Al(,x)Ga(,1-x)As material. The 34 K photoluminescence spectrum of this sample revealed a peak shifted down by approximately 36 meV from the main peak. Time-resolved and time-integrated photoluminescence results here show that this peak is not a stimulated phonon emission sideband, but rather is an due to an acceptor impurity, probably carbon. Photo- luminescence for excitation above and below the barrier bandgap shows that carriers are efficiently collected in the wells in both single and multiple

  12. Topological blocking in quantum quench dynamics

    NASA Astrophysics Data System (ADS)

    Kells, G.; Sen, D.; Slingerland, J. K.; Vishveshwara, S.

    2014-06-01

    We study the nonequilibrium dynamics of quenching through a quantum critical point in topological systems, focusing on one of their defining features: ground-state degeneracies and associated topological sectors. We present the notion of "topological blocking," experienced by the dynamics due to a mismatch in degeneracies between two phases, and we argue that the dynamic evolution of the quench depends strongly on the topological sector being probed. We demonstrate this interplay between quench and topology in models stemming from two extensively studied systems, the transverse Ising chain and the Kitaev honeycomb model. Through nonlocal maps of each of these systems, we effectively study spinless fermionic p-wave paired topological superconductors. Confining the systems to ring and toroidal geometries, respectively, enables us to cleanly address degeneracies, subtle issues of fermion occupation and parity, and mismatches between topological sectors. We show that various features of the quench, which are related to Kibble-Zurek physics, are sensitive to the topological sector being probed, in particular, the overlap between the time-evolved initial ground state and an appropriate low-energy state of the final Hamiltonian. While most of our study is confined to translationally invariant systems, where momentum is a convenient quantum number, we briefly consider the effect of disorder and illustrate how this can influence the quench in a qualitatively different way depending on the topological sector considered.

  13. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  14. Quantum gravity, dynamical phase-space and string theory

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2014-08-01

    In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).

  15. Scheme for accelerating quantum tunneling dynamics

    NASA Astrophysics Data System (ADS)

    Khujakulov, Anvar; Nakamura, Katsuhiro

    2016-02-01

    We propose a scheme of the exact fast forwarding of standard quantum dynamics for a charged particle. The present idea allows the acceleration of both the amplitude and the phase of the wave function throughout the fast-forward time range and is distinct from that of Masuda and Nakamura [Proc. R. Soc. A 466, 1135 (2010), 10.1098/rspa.2009.0446], which enabled acceleration of only the amplitude of the wave function on the way. We apply the proposed method to the quantum tunneling phenomena and obtain the electromagnetic field to ensure the rapid penetration of wave functions through a tunneling barrier. Typical examples described here are (1) an exponential wave packet passing through the δ -function barrier and (2) the opened Moshinsky shutter with a δ -function barrier just behind the shutter. We elucidate the tunneling current in the vicinity of the barrier and find a remarkable enhancement of the tunneling rate (tunneling power) due to the fast forwarding. In the case of a very high barrier, in particular, we present the asymptotic analysis and exhibit a suitable driving force to recover a recognizable tunneling current. The analysis is also carried out on the exact acceleration of macroscopic quantum tunneling with use of the nonlinear Schrödinger equation, which accommodates a tunneling barrier.

  16. Quantum dynamics of a plane pendulum

    SciTech Connect

    Leibscher, Monika; Schmidt, Burkhard

    2009-07-15

    A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution of the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.

  17. Quantum Monte Carlo Algorithms for Diagrammatic Vibrational Structure Calculations

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew; Hirata, So

    2015-06-01

    Convergent hierarchies of theories for calculating many-body vibrational ground and excited-state wave functions, such as Møller-Plesset perturbation theory or coupled cluster theory, tend to rely on matrix-algebraic manipulations of large, high-dimensional arrays of anharmonic force constants, tasks which require large amounts of computer storage space and which are very difficult to implement in a parallel-scalable fashion. On the other hand, existing quantum Monte Carlo (QMC) methods for vibrational wave functions tend to lack robust techniques for obtaining excited-state energies, especially for large systems. By exploiting analytical identities for matrix elements of position operators in a harmonic oscillator basis, we have developed stochastic implementations of the size-extensive vibrational self-consistent field (MC-XVSCF) and size-extensive vibrational Møller-Plesset second-order perturbation (MC-XVMP2) theories which do not require storing the potential energy surface (PES). The programmable equations of MC-XVSCF and MC-XVMP2 take the form of a small number of high-dimensional integrals evaluated using Metropolis Monte Carlo techniques. The associated integrands require independent evaluations of only the value, not the derivatives, of the PES at many points, a task which is trivial to parallelize. However, unlike existing vibrational QMC methods, MC-XVSCF and MC-XVMP2 can calculate anharmonic frequencies directly, rather than as a small difference between two noisy total energies, and do not require user-selected coordinates or nodal surfaces. MC-XVSCF and MC-XVMP2 can also directly sample the PES in a given approximation without analytical or grid-based approximations, enabling us to quantify the errors induced by such approximations.

  18. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  19. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Shinoda, Wataru

    2005-10-01

    As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given reasonable results based on the simple point-charge/flexible potential model. The calculated heat capacities (divided by the Boltzmann constant) in the quantum simulation are 3.1 in the vapor H2O at 300 K, 6.9 in the liquid H2O at 300 K, and 4.1 in the ice IhH2O at 250 K, respectively, which are comparable to the experimental data of 3.04, 8.9, and 4.1, respectively. The quantum simulation also reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than that of H2O, while it is 13% higher in the experiment. The results demonstrate that the path-integral simulation is a promising approach to quantitatively evaluate the heat capacities for molecular systems, taking account of quantum-mechanical vibrations as well as strongly anharmonic motions.

  20. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    SciTech Connect

    Demiralp, Emre; Demiralp, Metin

    2010-09-30

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  1. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  2. Optimal dynamic discrimination of similar quantum systems

    NASA Astrophysics Data System (ADS)

    Li, Baiqing

    2005-07-01

    The techniques for identifying and separating similar molecules have always been very important to chemistry and other branches of science and engineering. Similar quantum systems share comparable Hamiltonians, so their eigenenergy levels, transition dipole moments, and therefore their ordinary observable properties are alike. Traditional analytical methods have mostly been restricted by working with the subtle differences in the physical and chemical properties of the similar species. Optimal Dynamic Discrimination (ODD) aims at magnifying the dissimilarity of the agents by actively controlling their quantum evolution, drawing on the extremely rich information embedded in their dynamics. ODD is developed based on the tremendous flexibility of Optimal Control Theory (OCT) and on the practical implementation of closed-loop learning control, which has become a more and more indispensable tool for controlling quantum processes. The ODD experimental paradigm is designed to combat a number of factors that are detrimental to the discrimination of similar molecules: laser pulse noise, signal detection errors, finite time resolution in the signals, and environmental decoherence effects. It utilizes either static signals or time series signal, the latter capable of providing more information. Simulations are performed in this dissertation progressing from the wave function to the density matrix formulation, in order to study the decoherence effects. Analysis of the results reveals the roles of the adverse factors, unravels the underlying mechanisms of ODD, and provides insights on laboratory implementation. ODD emphasizes the incorporation of algorithmic development and laboratory design, and seeks to bridge the gap between theoretical/computational chemistry and experimental chemistry, with the help from applied mathematics and computer science.

  3. Modeling quantum fluid dynamics at nonzero temperatures

    PubMed Central

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  4. Dynamical phase transitions in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rotter, Ingrid

    2012-02-01

    The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  5. Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.

    PubMed

    Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K

    2016-08-01

    Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.

  6. Quantum nature of the big bang: Improved dynamics

    SciTech Connect

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-10-15

    An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as ''emergent time'', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.

  7. Progesterone and testosterone studies by neutron scattering and nuclear magnetic resonance methods and quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2004-05-01

    Inelastic incoherent neutron scattering spectra of progesterone and testosterone measured at 20 and 290 K were compared with the IR spectra measured at 290 K. The Phonon Density of States spectra display well resolved peaks of low frequency internal vibration modes up to 1200 cm -1. The quantum chemistry calculations were performed by semiempirical PM3 method and by the density functional theory method with different basic sets for isolated molecule, as well as for the dimer system of testosterone. The proposed assignment of internal vibrations of normal modes enable us to conclude about the sequence of the onset of the torsion movements of the CH 3 groups. These conclusions were correlated with the results of proton molecular dynamics studies performed by NMR method. The GAUSSIAN program had been used for calculations.

  8. A quantifier of genuine multipartite quantum correlations and its dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Qiu, Liang

    2015-03-01

    By using measurement-induced disturbance (S Luo 2008 Phys. Rev. A 77 022301), we propose a quantifier for genuine multipartite quantum correlations. The connection between this quantum correlations measure and the quantum advantage in multiport dense coding for pure three-qubit states is established. It is also used to investigate the dynamics of quantum correlations in a four-partite system. The phenomena of generation of quantum correlations and holding of quantum correlations in some time windows are found. As a byproduct, the monogamy score based on measurement-induced disturbance is related to the generalized geometric measure for pure three-qubit states.

  9. Walking in the woods with quantum chemistry--applications of quantum chemical calculations in natural products research.

    PubMed

    Tantillo, Dean J

    2013-08-01

    This Highlight describes applications of quantum chemical calculations to problems in natural products chemistry, including the elucidation of natural product structures (distinguishing between constitutional isomers, distinguishing between diastereomers, and assigning absolute configuration) and determination of reasonable mechanisms for their formation.

  10. Dynamics in the quantum/classical limit based on selective use of the quantum potential

    SciTech Connect

    Garashchuk, Sophya Dell’Angelo, David; Rassolov, Vitaly A.

    2014-12-21

    A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.

  11. Dissipative quantum dynamics in low-energy collisions of complex nuclei

    SciTech Connect

    Diaz-Torres, A.; Hinde, D. J.; Dasgupta, M.; Milburn, G. J.; Tostevin, J. A.

    2008-12-15

    Model calculations that include the effects of irreversible, environmental couplings on top of a coupled-channels dynamical description of the collision of two complex nuclei are presented. The Liouville-von Neumann equation for the time evolution of the density matrix of a dissipative system is solved numerically providing a consistent transition from coherent to decoherent (and dissipative) dynamics during the collision. Quantum decoherence and dissipation are clearly manifested in the model calculations. Energy dissipation, due to the irreversible decay of giant-dipole vibrational states of the colliding nuclei, is shown to result in a hindrance of quantum tunneling and fusion.

  12. Dynamics of open bosonic quantum systems in coherent state representation

    SciTech Connect

    Dalvit, D. A. R.; Berman, G. P.; Vishik, M.

    2006-01-15

    We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.

  13. Dynamics of Quantum Matter with Long-Range Entanglement

    DTIC Science & Technology

    2013-06-07

    REPORT Final Report: Dynamics of quantum matter with long-range entanglement. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Recent experiments on...ultracold atoms in optical lattices have opened a remarkable new window on the dynamics of quantum matter with long-range entanglement. The simplest...paradigm of this is the boson superfluid-insulator quantum phase transition in two spatial dimensions. This project will study the theoretical

  14. Role of quantum statistics in multi-particle decay dynamics

    SciTech Connect

    Marchewka, Avi; Granot, Er’el

    2015-04-15

    The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.

  15. Dynamic-local-field approximation for the quantum solids

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Danilowicz, R. L.

    1974-01-01

    A local-molecular-field description for the ground-state properties of the quantum solids is presented. The dynamical behavior of atoms contributing to the local field, which acts on an arbitrary pair of test particles, is incorporated by decoupling the pair correlations between these field atoms. The energy, pressure, compressibility, single-particle-distribution function, and the rms atomic deviations about the equilibrium lattice sites are calculated for H2, He-3, and He-4 over the volume range from 5 to 24.5 cu cm/mole. The results are in close agreement with existing Monte Carlo calculations wherever comparisons are possible. At very high pressure, the results agree with simplified descriptions which depend on negligible overlap of the system wave function between neighboring lattice sites.

  16. De Sitter Space Without Dynamical Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2016-06-01

    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

  17. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits

    NASA Astrophysics Data System (ADS)

    Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.

    2016-01-01

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  18. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits.

    PubMed

    Strambini, E; Makarenko, K S; Abulizi, G; de Jong, M P; van der Wiel, W G

    2016-01-06

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  19. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits

    PubMed Central

    Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.

    2016-01-01

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751

  20. Exponential rise of dynamical complexity in quantum computing through projections.

    PubMed

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-10-10

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

  1. Exponential rise of dynamical complexity in quantum computing through projections

    PubMed Central

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-01-01

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692

  2. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  3. Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach.

    PubMed

    Antipov, Sergey V; Ye, Ziyu; Ananth, Nandini

    2015-05-14

    We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.

  4. Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach

    SciTech Connect

    Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini

    2015-05-14

    We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.

  5. Quantum dynamical structure factor of liquid neon via a quasiclassical symmetrized method

    NASA Astrophysics Data System (ADS)

    Monteferrante, Michele; Bonella, Sara; Ciccotti, Giovanni

    2013-02-01

    We apply the phase integration method for quasiclassical quantum time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011), 10.1080/00268976.2011.619506] to compute the dynamic structure factor of liquid neon. So far the method had been tested only on model systems. By comparing our results for neon with experiments and previous calculations, we demonstrate that the scheme is accurate and efficient also for a realistic model of a condensed phase system showing quantum behavior.

  6. Quantum molecular dynamics simulations of dense matter

    SciTech Connect

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  7. Strong Analog Classical Simulation of Coherent Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng

    2017-02-01

    A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods. Funding support from NSERC of Canada and a research fellowship at Department of Physics and Astronomy, University of British Columbia are acknowledged

  8. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  9. Switching quantum dynamics for fast stabilization

    NASA Astrophysics Data System (ADS)

    Scaramuzza, Pierre; Ticozzi, Francesco

    2015-06-01

    Control strategies for dissipative preparation of target quantum states, both pure and mixed, and subspaces are obtained by switching between a set of available semigroup generators. We show that the class of problems of interest can be recast, from a control-theoretic perspective, into a switched-stabilization problem for linear dynamics. This is attained by a suitable affine transformation of the coherence-vector representation. In particular, we propose and compare stabilizing time-based and state-based switching rules for entangled state preparation, showing that the latter not only ensure faster convergence with respect to nonswitching methods, but can be designed so that they retain robustness with respect to initialization, as long as the target is a pure state or a subspace.

  10. Advanced Quantum Mechanical Calculation of Superheavy Ions: Energy Levels, Radiation and Finite Nuclear Size Effects

    SciTech Connect

    Glushkov, Alexander V.; Gurnitskaya, E.P.; Loboda, A.V.

    2005-10-26

    Advanced quantum approach to calculation of spectra for superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is developed and based on the gauge invariant quantum electrodynamics (QED) perturbation theory (PT). The Lamb shift polarization part is calculated in the Ueling approximation, self-energy part is defined within a new non-PT procedure of Ivanov-Ivanova. Calculation results for energy levels, hyperfine structure parameters of some heavy elements ions are presented.

  11. Quantum and classical non-adiabatic dynamics of Li_{2}^{+}Ne photodissociation

    NASA Astrophysics Data System (ADS)

    Pouilly, Brigitte; Monnerville, Maurice; Zanuttini, David; Gervais, Benoît

    2015-01-01

    The 3D photodissociation dynamics of Li2+Ne system is investigated by quantum calculations using the multi-configuration time-dependent Hartree (MCTDH) method and by classical simulations with the trajectory surface hopping (TSH) approach. Six electronic states of A’ symmetry and two states of A” symmetry are involved in the process. Couplings in the excitation region and two conical intersections in the vicinity of the Franck-Condon zone control the non-adiabatic nuclear dynamics. A diabatic representation including all the states and the couplings is determined. Diabatic and adiabatic populations calculated for initial excitation to pure diabatic and adiabatic states lead to a clear understanding of the mechanisms governing the non-adiabatic photodissociation process. The classical and quantum photodissociation cross-sections for absorption in two adiabatic states of the A’ symmetry are calculated. A remarkable agreement between quantum and classical results is obtained regarding the populations and the absorption cross-sections.

  12. Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

    SciTech Connect

    Ananth, Nandini

    2008-01-01

    One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex

  13. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.

    PubMed

    Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter

    2014-02-07

    Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.

  14. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    NASA Astrophysics Data System (ADS)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2017-04-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  15. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    NASA Astrophysics Data System (ADS)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2016-12-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  16. Dynamical collective calculation of supernova neutrino signals.

    PubMed

    Gava, Jérôme; Kneller, James; Volpe, Cristina; McLaughlin, G C

    2009-08-14

    We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

  17. THE IONIC PATHWAYS OF LITHIUM CHEMISTRY IN THE EARLY UNIVERSE: QUANTUM CALCULATIONS FOR LiH{sup +} REACTING WITH H

    SciTech Connect

    Bovino, S.; Gianturco, F. A.; Stoecklin, T.

    2010-01-10

    To better understand the overall role of lithium chemistry in the early universe, reactive quantum calculations involving LiH{sup +} have been carried out and rate coefficients have been obtained. The reactive quantum calculations have been performed using a negative imaginary potential method. Infinite-order sudden approximation and the coupled state approximation have been used to simplify the angular coupling dynamics. Rate coefficients are obtained from the reactive cross sections by further integration over Boltzmann distribution of velocities. The results from the present calculations suggest that, at low redshifts (z), LiH{sup +} should be amenable to observation as imprinted on the cosmic background radiation, in contrast with its neutral counterpart. At higher z, the ionic species may disappear through both depletion reaction and three-body break-up processes.

  18. Density functional calculation of the structural and electronic properties of germanium quantum dots

    SciTech Connect

    Anas, M. M.; Gopir, G.

    2015-04-24

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  19. Density functional calculation of the structural and electronic properties of germanium quantum dots

    NASA Astrophysics Data System (ADS)

    Anas, M. M.; Gopir, G.

    2015-04-01

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) - lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  20. Quantum mechanical wave packet and quasiclassical trajectory calculations for the Li + H2(+) reaction.

    PubMed

    Bulut, N; Castillo, J F; Bañares, L; Aoiz, F J

    2009-12-31

    The dynamics and kinetics of the Li + H2(+) reaction have been studied by means of quantum mechanical (QM) real wave packet, wave packet with flux operator, and quasiclassical trajectory (QCT) calculations on the ab initio potential energy surface of Martinazzo et al. [J. Chem. Phys., 2003, 119, 21]. Total initial state-selected reaction probabilities for the title reaction have been calculated for total angular momentum J = 0 at collision energies from threshold up to 1 eV. Wave packet reaction probabilities at selected values of the total angular momentum up to J = 60 are obtained using the centrifugal sudden approximation (CSA). Integral cross sections and rate constants have been calculated from the wave packet reactions probabilities by means of a refined J-shifting method and the separable rotation approximation in combination with the CSA for J > 0. The calculated rate constants as function of temperature show an Arrhenius type behavior. The QM results are found to be in overall good agreement with the corresponding QCT data.

  1. Dynamics and conductivity near quantum criticality

    NASA Astrophysics Data System (ADS)

    Gazit, Snir; Podolsky, Daniel; Auerbach, Assa; Arovas, Daniel P.

    2013-12-01

    Relativistic O(N) field theories are studied near the quantum-critical point in two space dimensions. We compute dynamical correlations by large-scale Monte Carlo simulations and numerical analytic continuation. In the ordered side, the scalar spectral function exhibits a universal peak at the Higgs mass. For N=3 and 4, we confirm its ω3 rise at low frequency. On the disordered side, the spectral function exhibits a sharp gap. For N=2, the dynamical conductivity rises above a threshold at the Higgs mass (density gap), in the superfluid (Mott insulator) phase. For charged bosons (Josephson arrays), the power-law rise above the Higgs mass increases from two to four. Approximate charge-vortex duality is reflected in the ratio of imaginary conductivities on either side of the transition. We determine the critical conductivity to be σc*=0.3(±0.1)×4e2/h and describe a generalization of the worm algorithm to N>2. We use a singular value decomposition error analysis for the numerical analytic continuation.

  2. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  3. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  4. Eigenvector Approximation Leading to Exponential Speedup of Quantum Eigenvalue Calculation

    NASA Astrophysics Data System (ADS)

    Jaksch, Peter; Papageorgiou, Anargyros

    2003-12-01

    We present an efficient method for preparing the initial state required by the eigenvalue approximation quantum algorithm of Abrams and Lloyd. Our method can be applied when solving continuous Hermitian eigenproblems, e.g., the Schrödinger equation, on a discrete grid. We start with a classically obtained eigenvector for a problem discretized on a coarse grid, and we efficiently construct, quantum mechanically, an approximation of the same eigenvector on a fine grid. We use this approximation as the initial state for the eigenvalue estimation algorithm, and show the relationship between its success probability and the size of the coarse grid.

  5. Exciton Relaxation and Electron Transfer Dynamics of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Liu, Cunming

    Quantum dots (QDs), also referred to as colloidal semiconductor nanocrystals, exhibit unique electronic and optical properties arising from their three-dimensional confinement and strongly enhanced coulomb interactions. Developing a detailed understanding of the exciton relaxation dynamics within QDs is important not only for sake of exploring the fundamental physics of quantum confinement processes, but also for their applications. Ultrafast transient absorption (TA) spectroscopy, as a powerful tool to explore the relaxation dynamics of excitons, was employed to characterize the hot single/multiexciton relaxation dynamics at the first four exciton states of CdSe/CdZnS QDs. We observed for the first time that the hot hole can relax through two possible pathways: Intraband multiple phonon coupling and intrinsic defect trapping, with a lifetime of ˜7 ps. Additionally, an ultra-short component of ˜ 8 ps, directly associated with the Auger recombination of highly energetic exciton states, was discovered. After exploring the exciton relaxation inside QDs, ultrafast TA spectroscopy was further applied to study the electron transferring outside from QDs. By using a brand-new photocatalytic system consisting of CdSe QDs and Ni-dihydrolipoic acid (Ni-DHLA) catalyst, which has represented a robust photocatalysis of H2 from water, the photoinduced electron transfer (ET) dynamics between QD and the catalyst, one of most important steps during H2 generation, was studied. We found smaller bare CdSe QDs exhibit a better ET performance and CdS shelling on the bare QDs leads to worsen the ET. The calculations of effective mass approximation (EMA) and Marcus theory show the ET process is mainly dominated by driving force, electronic coupling strength and reorganization energy between QD and the catalyst.

  6. Conditional Born-Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine.

    PubMed

    Albareda, Guillermo; Bofill, Josep Maria; Tavernelli, Ivano; Huarte-Larrañaga, Fermin; Illas, Francesc; Rubio, Angel

    2015-05-07

    We report a new theoretical approach to solve adiabatic quantum molecular dynamics halfway between wave function and trajectory-based methods. The evolution of a N-body nuclear wave function moving on a 3N-dimensional Born-Oppenheimer potential-energy hyper-surface is rewritten in terms of single-nuclei wave functions evolving nonunitarily on a 3-dimensional potential-energy surface that depends parametrically on the configuration of an ensemble of generally defined trajectories. The scheme is exact and, together with the use of trajectory-based statistical techniques, can be exploited to circumvent the calculation and storage of many-body quantities (e.g., wave function and potential-energy surface) whose size scales exponentially with the number of nuclear degrees of freedom. As a proof of concept, we present numerical simulations of a 2-dimensional model porphine where switching from concerted to sequential double proton transfer (and back) is induced quantum mechanically.

  7. A perspective on quantum mechanics calculations in ADMET predictions.

    PubMed

    Bowen, J Phillip; Güner, Osman F

    2013-01-01

    Understanding the molecular basis of drug action has been an important objective for pharmaceutical scientists. With the increasing speed of computers and the implementation of quantum chemistry methodologies, pharmacodynamic and pharmacokinetic problems have become more computationally tractable. Historically the former has been the focus of drug design, but within the last two decades efforts to understand the latter have increased. It takes about fifteen years and over $1 billion dollars for a drug to go from laboratory hit, through lead optimization, to final approval by the U.S. Food and Drug Administration. While the costs have increased substantially, the overall clinical success rate for a compound to emerge from clinical trials is approximately 10%. Most of the attrition rate can be traced to ADMET (absorption, distribution, metabolism, excretion, and toxicity) problems, which is a powerful impetus to study these issues at an earlier stage in drug discovery. Quantum mechanics offers pharmaceutical scientists the opportunity to investigate pharmacokinetic problems at the molecular level prior to laboratory preparation and testing. This review will provide a perspective on the use of quantum mechanics or a combination of quantum mechanics coupled with other classical methods in the pharmacokinetic phase of drug discovery. A brief overview of the essential features of theory will be discussed, and a few carefully selected examples will be given to highlight the computational methods.

  8. Combining Dynamical Decoupling with Fault-Tolerant Quantum Computation

    DTIC Science & Technology

    2009-11-17

    ar X iv :0 91 1. 32 02 v1 [ qu an t- ph ] 1 7 N ov 2 00 9 Combining dynamical decoupling with fault-tolerant quantum computation Hui Khoon Ng,1...Daniel A. Lidar,2 and John Preskill1 1Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA 2Departments...of Chemistry, Electrical Engineering, and Physics, and Center for Quantum Information Science & Technology, University of Southern California, Los

  9. Post-Markovian dynamics of quantum correlations: entanglement versus discord

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hamidreza

    2017-02-01

    Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

  10. Quantum statistical effects on fusion dynamics of heavy ions

    SciTech Connect

    Ayik, S.; Yilmaz, B.; Gokalp, A.; Yilmaz, O.; Takigawa, N.

    2005-05-01

    To describe the fusion of two very heavy nuclei at near barrier energies, a generalized Langevin approach is proposed. The approach incorporates the quantum statistical fluctuations in accordance with the fluctuation and dissipation theorem. It is illustrated that the quantum statistical effects introduce an enhancement of the formation of a compound nucleus, though the quantum enhancement is somewhat less pronounced as indicated in the previous calculations.

  11. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  12. On classical and quantum dynamics of tachyon-like fields and their cosmological implications

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Dragoljub D.; Djordjević, Goran S.; Milošević, Milan; Vulcanov, Dumitru

    2014-11-01

    We consider a class of tachyon-like potentials, motivated by string theory, D-brane dynamics and inflation theory in the context of classical and quantum mechanics. A formalism for describing dynamics of tachyon fields in spatially homogenous and one-dimensional - classical and quantum mechanical limit is proposed. A few models with concrete potentials are considered. Additionally, possibilities for p-adic and adelic generalization of these models are discussed. Classical actions and corresponding quantum propagators, in the Feynman path integral approach, are calculated in a form invariant on a change of the background number fields, i.e. on both archimedean and nonarchimedean spaces. Looking for a quantum origin of inflation, relevance of p-adic and adelic generalizations are briefly discussed.

  13. On classical and quantum dynamics of tachyon-like fields and their cosmological implications

    SciTech Connect

    Dimitrijević, Dragoljub D. Djordjević, Goran S. Milošević, Milan; Vulcanov, Dumitru

    2014-11-24

    We consider a class of tachyon-like potentials, motivated by string theory, D-brane dynamics and inflation theory in the context of classical and quantum mechanics. A formalism for describing dynamics of tachyon fields in spatially homogenous and one-dimensional - classical and quantum mechanical limit is proposed. A few models with concrete potentials are considered. Additionally, possibilities for p-adic and adelic generalization of these models are discussed. Classical actions and corresponding quantum propagators, in the Feynman path integral approach, are calculated in a form invariant on a change of the background number fields, i.e. on both archimedean and nonarchimedean spaces. Looking for a quantum origin of inflation, relevance of p-adic and adelic generalizations are briefly discussed.

  14. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  15. Observing the nonequilibrium dynamics of the quantum transverse-field Ising chain in circuit QED.

    PubMed

    Viehmann, Oliver; von Delft, Jan; Marquardt, Florian

    2013-01-18

    We show how a quantum Ising spin chain in a time-dependent transverse magnetic field can be simulated and experimentally probed in the framework of circuit QED with current technology. The proposed setup provides a new platform for observing the nonequilibrium dynamics of interacting many-body systems. We calculate its spectrum to offer a guideline for its initial experimental characterization. We demonstrate that quench dynamics and the propagation of localized excitations can be observed with the proposed setup and discuss further possible applications and modifications of this circuit QED quantum simulator.

  16. Noether's theorem for dissipative quantum dynamical semi-groups

    NASA Astrophysics Data System (ADS)

    Gough, John E.; Ratiu, Tudor S.; Smolyanov, Oleg G.

    2015-02-01

    Noether's theorem on constants of the motion of dynamical systems has recently been extended to classical dissipative systems (Markovian semi-groups) by Baez and Fong [J. Math. Phys. 54, 013301 (2013)]. We show how to extend these results to the fully quantum setting of quantum Markov dynamics. For finite-dimensional Hilbert spaces, we construct a mapping from observables to completely positive maps that leads to the natural analogue of their criterion of commutativity with the infinitesimal generator of the Markov dynamics. Using standard results on the relaxation of states to equilibrium under quantum dynamical semi-groups, we are able to characterise the constants of the motion under quantum Markov evolutions in the infinite-dimensional setting under the usual assumption of existence of a stationary strictly positive density matrix. In particular, the Noether constants are identified with the fixed point of the Heisenberg picture semi-group.

  17. Generalized dynamic scaling for quantum critical relaxation in imaginary time.

    PubMed

    Zhang, Shuyi; Yin, Shuai; Zhong, Fan

    2014-10-01

    We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.

  18. Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations

    SciTech Connect

    O'Brien, M; Taylor, J; Procassini, R

    2004-12-22

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations.

  19. First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO

    NASA Astrophysics Data System (ADS)

    Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.

    2016-05-01

    In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.

  20. Quantum dynamical framework for Brownian heat engines

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; Chaturvedi, S.

    2013-07-01

    We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.

  1. Effective quantum dynamics of interacting systems with inhomogeneous coupling

    SciTech Connect

    Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.

    2007-03-15

    We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.

  2. Quantum analysis applied to thermo field dynamics on dissipative systems

    SciTech Connect

    Hashizume, Yoichiro; Okamura, Soichiro; Suzuki, Masuo

    2015-03-10

    Thermo field dynamics is one of formulations useful to treat statistical mechanics in the scheme of field theory. In the present study, we discuss dissipative thermo field dynamics of quantum damped harmonic oscillators. To treat the effective renormalization of quantum dissipation, we use the Suzuki-Takano approximation. Finally, we derive a dissipative von Neumann equation in the Lindbrad form. In the present treatment, we can easily obtain the initial damping shown previously by Kubo.

  3. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    PubMed

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  4. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model

    NASA Astrophysics Data System (ADS)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-01

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  5. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  6. Analytic and numerical calculations of quantum synchrotron spectra from relativistic electron distributions

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.; Petrosian, V.

    1987-01-01

    Calculations are performed numerically and analytically of synchrotron spectra for thermal and power-law electron distributions using the single-particle synchrotron power spectrum derived from quantum electrodynamics. It is found that the photon energy at which quantum effects appear is proportional to temperature and independent of field strength for thermal spectra; quantum effects introduce an exponential roll-off away from the classical spectra. For power law spectra, the photon energy at which quantum effects appear is inversely proportional to the magnetic field strength; quantum effects produce a steeper power law than is found classically. The results are compared with spectra derived from the classical power spectrum with an energy cutoff ensuring conservation of energy. It is found that an energy cutoff is generally an inadequate approximation of quantum effects for low photon energies and for thermal spectra, but gives reasonable results for high-energy emission from power-law electron distributions.

  7. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations.

  8. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  9. Quantum walk coherences on a dynamical percolation graph

    PubMed Central

    Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine

    2015-01-01

    Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media. PMID:26311434

  10. Dynamic Quantum Tomography Model for Phase-Damping Channels

    NASA Astrophysics Data System (ADS)

    Czerwiński, Artur; Jamiołkowski, Andrzej

    In this paper we propose a dynamic quantum tomography model for open quantum systems with evolution given by phase-damping channels. Mathematically, these channels correspond to completely positive trace-preserving maps defined by the Hadamard product of the initial density matrix with a time-dependent matrix which carries the knowledge about the evolution. Physically, there is a strong motivation for considering this kind of evolution because such channels appear naturally in the theory of open quantum systems. The main idea behind a dynamic approach to quantum tomography claims that by performing the same kind of measurement at some time instants one can obtain new data for state reconstruction. Thus, this approach leads to a decrease in the number of distinct observables which are required for quantum tomography; however, the exact benefit for employing the dynamic approach depends strictly on how the quantum system evolves in time. Algebraic analysis of phase-damping channels allows one to determine criteria for quantum tomography of systems in question. General theorems and observations presented in the paper are accompanied by a specific example, which shows step by step how the theory works. The results introduced in this paper can potentially be applied in experiments where there is a tendency to look at quantum tomography from the point of view of economy of measurements, because each distinct kind of measurement requires, in general, preparing a separate setup.

  11. Quantum dynamics of the O + OH -> H + O2 reaction at low temperatures

    SciTech Connect

    Kendrick, Brian Kent; Quemener, Goulven; Balakrishnan, Naduvalath

    2008-01-01

    We report quantum dynamics calculations of rate coefficients for the O + OH {yields} H + O{sub 2} reaction on two potential energy surfaces (PESs) using a time-independent quantum formalism based on hyperspherical coordinates. Our calculations show that the rate coefficient remains largely constant in the temperature range 10--39 K, in agreement with the conclusions of a recent experimental study [Carty et al., J. Phys. Chem. A 110, 3101 (2006)]. This is in constrast with the quantum calculations of Xu et al. [J. Chem. Phys. 127, 024304 (2007)] which, using the same PES, predicted two orders of magnitude drop in the rate coefficient value from 39 K to 10 K. Implications of our findings to oxygen chemistry in the interstellar medium are discussed.

  12. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  13. Dynamical algebra of observables in dissipative quantum systems

    NASA Astrophysics Data System (ADS)

    Alipour, Sahar; Chruściński, Dariusz; Facchi, Paolo; Marmo, Giuseppe; Pascazio, Saverio; Rezakhani, Ali T.

    2017-02-01

    Dynamics and features of quantum systems can be drastically different from classical systems. Dissipation is understood as a general mechanism through which quantum systems may lose part or all of their quantum aspects. Here we discuss a method to analyze behaviors of dissipative quantum systems in an algebraic sense. This method employs a time-dependent product between system’s observables which is induced by the underlying dissipative dynamics. We argue that the long-time limit of the algebra of observables defined with this product yields a contractive algebra which reflects the loss of some quantum features of the dissipative system, and it bears relevant information about irreversibility. We illustrate this result through several examples of dissipation in various Markovian and non-Markovian systems.

  14. Quantum centipedes: collective dynamics of interacting quantum walkers

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.; Luck, J. M.; Mallick, K.

    2016-08-01

    We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N. Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large-N limit.

  15. Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope

    SciTech Connect

    Campo, A. de

    2011-09-15

    In this Rapid Communication, a method is proposed to spatially scale up a trapped ultracold gas while conserving the quantum correlations of the initial many-body state. For systems supporting self-similar dynamics, this is achieved by implementing an engineered finite-time quench of the harmonic trap, which induces a frictionless expansion of the gas and acts as a quantum dynamical microscope.

  16. Quantum chemical calculations for polymers and organic compounds

    NASA Technical Reports Server (NTRS)

    Lopez, J.; Yang, C.

    1982-01-01

    The relativistic effects of the orbiting electrons on a model compound were calculated. The computational method used was based on 'Modified Neglect of Differential Overlap' (MNDO). The compound tetracyanoplatinate was used since empirical measurement and calculations along "classical" lines had yielded many known properties. The purpose was to show that for large molecules relativity effects could not be ignored and that these effects could be calculated and yield data in closer agreement to empirical measurements. Both the energy band structure and molecular orbitals are depicted.

  17. Ergodic dynamics and thermalization in an isolated quantum system

    NASA Astrophysics Data System (ADS)

    Neill, C.; Roushan, P.; Fang, M.; Chen, Y.; Kolodrubetz, M.; Chen, Z.; Megrant, A.; Barends, R.; Campbell, B.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Mutus, J.; O'Malley, P. J. J.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Polkovnikov, A.; Martinis, J. M.

    2016-11-01

    Statistical mechanics is founded on the assumption that all accessible configurations of a system are equally likely. This requires dynamics that explore all states over time, known as ergodic dynamics. In isolated quantum systems, however, the occurrence of ergodic behaviour has remained an outstanding question. Here, we demonstrate ergodic dynamics in a small quantum system consisting of only three superconducting qubits. The qubits undergo a sequence of rotations and interactions and we measure the evolution of the density matrix. Maps of the entanglement entropy show that the full system can act like a reservoir for individual qubits, increasing their entropy through entanglement. Surprisingly, these maps bear a strong resemblance to the phase space dynamics in the classical limit; classically, chaotic motion coincides with higher entanglement entropy. We further show that in regions of high entropy the full multi-qubit system undergoes ergodic dynamics. Our work illustrates how controllable quantum systems can investigate fundamental questions in non-equilibrium thermodynamics.

  18. Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes

    NASA Astrophysics Data System (ADS)

    Billeter, Salomon R.; Webb, Simon P.; Iordanov, Tzvetelin; Agarwal, Pratul K.; Hammes-Schiffer, Sharon

    2001-04-01

    A hybrid approach for simulating proton and hydride transfer reactions in enzymes is presented. The electronic quantum effects are incorporated with an empirical valence bond approach. The nuclear quantum effects of the transferring hydrogen are included with a mixed quantum/classical molecular dynamics method in which the hydrogen nucleus is described as a multidimensional vibrational wave function. The free energy profiles are obtained as functions of a collective reaction coordinate. A perturbation formula is derived to incorporate the vibrationally adiabatic nuclear quantum effects into the free energy profiles. The dynamical effects are studied with the molecular dynamics with quantum transitions (MDQT) surface hopping method, which incorporates nonadiabatic transitions among the adiabatic hydrogen vibrational states. The MDQT method is combined with a reactive flux approach to calculate the transmission coefficient and to investigate the real-time dynamics of reactive trajectories. This hybrid approach includes nuclear quantum effects such as zero point energy, hydrogen tunneling, and excited vibrational states, as well as the dynamics of the complete enzyme and solvent. The nuclear quantum effects are incorporated during the generation of the free energy profiles and dynamical trajectories rather than subsequently added as corrections. Moreover, this methodology provides detailed mechanistic information at the molecular level and allows the calculation of rates and kinetic isotope effects. An initial application of this approach to the enzyme liver alcohol dehydrogenase is also presented.

  19. Principles and Dynamics of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Efthimiades, Spyros

    2009-05-01

    Quantum mechanics can be founded on three principles: particle waves, concurrent states and averaged energy relations. The Schrodinger, time-evolution and Dirac equations are derived to be the conditions the wavefunction must satisfy in order to fulfill the corresponding averaged energy relations. Adopting a particle and wave balanced approach we attain a clear, consistent and justified quantum theory.

  20. Quenching a quantum critical state by the order parameter: Dynamical quantum phase transitions and quantum speed limits

    NASA Astrophysics Data System (ADS)

    Heyl, Markus

    2017-02-01

    Quantum critical states exhibit strong quantum fluctuations and are therefore highly susceptible to perturbations. In this Rapid Communication we study the dynamical stability against a sudden coupling to these strong fluctuations by quenching the order parameter of the underlying transition. Such a quench can generate superextensive energy fluctuations. This leads to a dynamical quantum phase transition (DQPT) with nonanalytic real-time behavior in the resulting decay of the initial state. By establishing a general connection between DQPTs and quantum speed limits, this allows us to obtain a quantum speed limit with unconventional system-size dependence. These findings are illustrated for the one-dimensional and the infinitely connected transverse-field Ising model. The main concepts, however, are general and can be applied also to other critical states. An outlook is given on the implications of superextensive energy fluctuations on potential restricted thermalization despite nonintegrability.

  1. Quantum dynamics of the avian compass

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.

    2014-10-01

    The ability of migratory birds to orient relative to the Earth's magnetic field is believed to involve a coherent superposition of two spin states of a radical electron pair. However, the mechanism by which this coherence can be maintained in the face of strong interactions with the cellular environment has remained unclear. This paper addresses the problem of decoherence between two electron spins due to hyperfine interaction with a bath of spin-1/2 nuclei. Dynamics of the radical pair density matrix are derived and shown to yield a simple mechanism for sensing magnetic field orientation. Rates of dephasing and decoherence are calculated ab initio and found to yield millisecond coherence times, consistent with behavioral experiments.

  2. Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics

    SciTech Connect

    Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.

    2015-05-21

    We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.

  3. Confidence and efficiency scaling in variational quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Delyon, F.; Bernu, B.; Holzmann, Markus

    2017-02-01

    Based on the central limit theorem, we discuss the problem of evaluation of the statistical error of Monte Carlo calculations using a time-discretized diffusion process. We present a robust and practical method to determine the effective variance of general observables and show how to verify the equilibrium hypothesis by the Kolmogorov-Smirnov test. We then derive scaling laws of the efficiency illustrated by variational Monte Carlo calculations on the two-dimensional electron gas.

  4. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  5. Quantum charge transport and conformational dynamics of macromolecules.

    PubMed

    Boninsegna, L; Faccioli, P

    2012-06-07

    We study the dynamics of quantum excitations inside macromolecules which can undergo conformational transitions. In the first part of the paper, we use the path integral formalism to rigorously derive a set of coupled equations of motion which simultaneously describe the molecular and quantum transport dynamics, and obey the fluctuation/dissipation relationship. We also introduce an algorithm which yields the most probable molecular and quantum transport pathways in rare, thermally activated reactions. In the second part of the paper, we apply this formalism to simulate the propagation of a quantum charge during the collapse of a polymer from an initial stretched conformation to a final globular state. We find that the charge dynamics is quenched when the chain reaches a molten globule state. Using random matrix theory we show that this transition is due to an increase of quantum localization driven by dynamical disorder. We argue that collapsing conducting polymers may represent a physical realization of quantum small-world networks with dynamical rewiring probability.

  6. Quantum grow--A quantum dynamics sampling approach for growing potential energy surfaces and nonadiabatic couplings

    SciTech Connect

    Godsi, Oded; Peskin, Uri; Collins, Michael A.

    2010-03-28

    A quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions, and the accurate quantum mechanical description of nonadiabatic transitions. The increased complexity associated with running quantum dynamics is reduced by using approximate low order expansions of the nuclear wave function within a Multi-configuration time-dependent Hartree scheme during the Grow process. The sampling algorithm is formulated and applied for three representative test cases, demonstrating the recovery of analytic potentials by the interpolated ones, and the convergence of a dynamic observable.

  7. Order-N Electronic Structure Calculation of n-TYPE GaAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Nomura, S.; Iitaka, T.

    2008-10-01

    A linear scale method for calculating electronic properties of large and complex systems is introduced within a local density approximation. The method is based on the Chebyshev polynomial expansion and the time-dependent method, which is tested in calculating the electronic structure of a model n-type GaAs quantum dot.

  8. Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Pen'kov, N. V.

    2006-08-15

    In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

  9. Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Yang; Chen, Mi; Yu, Ting; You, J. Q.

    2016-02-01

    One longstanding difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its crucial applications in quantum noise control and manipulation as well as its central role in developing quantum theories of open systems. Here we solve this important model by developing a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent states of the bath, we can derive a set of non-Markovian quantum Bloch equations containing no explicit noise variables. This special feature offers a tremendous advantage over the existing stochastic Schrödinger equations in numerical simulations. The physical significance and generality of our approach are briefly discussed.

  10. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  11. Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics.

    PubMed

    Ding, Jin-Jin; Wang, Yao; Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-01-14

    We revisit Caldeira-Leggett's quantum master equation representing mixed quantum-classical theory, but with limited applications. Proposed is a Fokker-Planck quantum master equation theory, with a generic bi-exponential correlation function description on semiclassical Brownian oscillators' environments. The new theory has caustic terms that bridge between the quantum description on primary systems and the semiclassical or quasi-classical description on environments. Various parametrization schemes, both analytical and numerical, for the generic bi-exponential environment bath correlation functions are proposed and scrutinized. The Fokker-Planck quantum master equation theory is of the same numerical cost as the original Caldeira-Leggett's approach but acquires a significantly broadened validity and accuracy range, as illustrated against the exact dynamics on model systems in quantum Brownian oscillators' environments, at moderately low temperatures.

  12. Quantum Monte Carlo calculations of two neutrons in finite volume

    DOE PAGES

    Klos, P.; Lynn, J. E.; Tews, I.; ...

    2016-11-18

    Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground state and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial formore » determining observables from the calculated energies. Finally, using the Lüscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.« less

  13. Quantum Monte Carlo calculations of two neutrons in finite volume

    SciTech Connect

    Klos, P.; Lynn, J. E.; Tews, I.; Gandolfi, Stefano; Gezerlis, A.; Hammer, H. -W.; Hoferichter, M.; Schwenk, A.

    2016-11-18

    Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground state and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial for determining observables from the calculated energies. Finally, using the Lüscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.

  14. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  15. Advancements in dynamic kill calculations for blowout wells

    SciTech Connect

    Kouba, G.E. . Production Fluids Div.); MacDougall, G.R. ); Schumacher, B.W. . Information Technology Dept.)

    1993-09-01

    This paper addresses the development, interpretation, and use of dynamic kill equations. To this end, three simple calculation techniques are developed for determining the minimum dynamic kill rate. Two techniques contain only single-phase calculations and are independent of reservoir inflow performance. Despite these limitations, these two methods are useful for bracketing the minimum flow rates necessary to kill a blowing well. For the third technique, a simplified mechanistic multiphase-flow model is used to determine a most-probable minimum kill rate.

  16. Progesterone and testosterone studies by neutron-scattering methods and quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Holderna-Natkaniec, K.; Szyczewski, A.; Natkaniec, I.; Khavryutchenko, V. D.; Pawlukojc, A.

    Inelastic incoherent neutron scattering (IINS) and neutron diffraction spectra of progesterone and testosterone were measured simultaneously on the NERA spectrometer at the IBR-2 pulsed reactor in Dubna. Both studied samples do not indicate any phase transition in the temperature range from 20 to 290K. The IINS spectra have been transformed to the phonon density of states (PDS) in the one-phonon scattering approximation. The PDS spectra display well-resolved peaks of low-frequency internal vibration modes up to 600cm-1. The assignment of these modes was proposed taking into account the results of calculations of the structure and dynamics of isolated molecules of the investigated substances. The quantum chemistry calculations were performed by the semi-empirical PM3 method and at the restricted Hartree-Fock level with the 6-31* basis set. The lower internal modes assigned to torsional vibration of the androstane skeleton mix with the lattice vibrations. The intense bands in the PDS spectra in the frequency range from 150 to 300cm-1 are related to librations of structurally inequivalent methyl groups.

  17. Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties

    SciTech Connect

    Liao, Sing; Green, Michael E.

    2011-01-01

    Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 water molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if these

  18. Quantum-like model of unconscious–conscious dynamics

    PubMed Central

    Khrennikov, Andrei

    2015-01-01

    We present a quantum-like model of sensation–perception dynamics (originated in Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses and instruments. We illustrate our approach with the model of bistable perception of a particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious and conscious processing of information and their interaction. The starting point of our quantum-like journey was the observation that perception dynamics is essentially contextual which implies impossibility of (straightforward) embedding of experimental statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This motivates application of nonclassical probabilistic schemes. And the quantum formalism provides a variety of the well-approved and mathematically elegant probabilistic schemes to handle results of measurements. The theory of quantum apparatuses and instruments is the most general quantum scheme describing measurements and it is natural to explore it to model the sensation–perception dynamics. In particular, this theory provides the scheme of indirect quantum measurements which we apply to model unconscious inference leading to transition from sensations to perceptions. PMID:26283979

  19. Quantum-like model of unconscious-conscious dynamics.

    PubMed

    Khrennikov, Andrei

    2015-01-01

    We present a quantum-like model of sensation-perception dynamics (originated in Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses and instruments. We illustrate our approach with the model of bistable perception of a particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious and conscious processing of information and their interaction. The starting point of our quantum-like journey was the observation that perception dynamics is essentially contextual which implies impossibility of (straightforward) embedding of experimental statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This motivates application of nonclassical probabilistic schemes. And the quantum formalism provides a variety of the well-approved and mathematically elegant probabilistic schemes to handle results of measurements. The theory of quantum apparatuses and instruments is the most general quantum scheme describing measurements and it is natural to explore it to model the sensation-perception dynamics. In particular, this theory provides the scheme of indirect quantum measurements which we apply to model unconscious inference leading to transition from sensations to perceptions.

  20. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    PubMed

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  1. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport

    NASA Astrophysics Data System (ADS)

    Riascos, A. P.; Mateos, José L.

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.

  2. Mixed quantum classical calculation of proton transfer reaction rates: From deep tunneling to over the barrier regimes

    SciTech Connect

    Xie, Weiwei; Xu, Yang; Zhu, Lili; Shi, Qiang

    2014-05-07

    We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula.

  3. Mixed quantum classical calculation of proton transfer reaction rates: from deep tunneling to over the barrier regimes.

    PubMed

    Xie, Weiwei; Xu, Yang; Zhu, Lili; Shi, Qiang

    2014-05-07

    We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula.

  4. Divisible quantum dynamics satisfies temporal Tsirelson’s bound

    NASA Astrophysics Data System (ADS)

    Le, Thao; Pollock, Felix A.; Paterek, Tomasz; Paternostro, Mauro; Modi, Kavan

    2017-02-01

    We give strong evidence that divisibility of qubit quantum processes implies temporal Tsirelson’s bound. We also give strong evidence that the classical bound of the temporal Bell’s inequality holds for dynamics that can be described by entanglement-breaking channels—a more general class of dynamics than that allowed by classical physics.

  5. Recent Advances in Quantum Dynamics of Bimolecular Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Dong H.; Guo, Hua

    2016-05-01

    In this review, we survey the latest advances in theoretical understanding of bimolecular reaction dynamics in the past decade. The remarkable recent progress in this field has been driven by more accurate and efficient ab initio electronic structure theory, effective potential-energy surface fitting techniques, and novel quantum scattering algorithms. Quantum mechanical characterization of bimolecular reactions continues to uncover interesting dynamical phenomena in atom-diatom reactions and beyond, reaching an unprecedented level of sophistication. In tandem with experimental explorations, these theoretical developments have greatly advanced our understanding of key issues in reaction dynamics, such as microscopic reaction mechanisms, mode specificity, product energy disposal, influence of reactive resonances, and nonadiabatic effects.

  6. Stochastic Approximation of Dynamical Exponent at Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Suwa, Hidemaro; Yasuda, Shinya; Todo, Synge

    We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z. During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S = 1 / 2 quantum XY model, or equivalently the hard-core boson system, in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z = 1 . Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2+2) governs the quantum phase transition. We will discuss also the system with random magnetic fields, or the dirty boson system, bearing a non-trivial dynamical exponent.Reference: S. Yasuda, H. Suwa, and S. Todo Phys. Rev. B 92, 104411 (2015); arXiv:1506.04837

  7. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  8. Comparisons of classical chemical dynamics simulations of the unimolecular decomposition of classical and quantum microcanonical ensembles.

    PubMed

    Manikandan, Paranjothy; Hase, William L

    2012-05-14

    Previous studies have shown that classical trajectory simulations often give accurate results for short-time intramolecular and unimolecular dynamics, particularly for initial non-random energy distributions. To obtain such agreement between experiment and simulation, the appropriate distributions must be sampled to choose initial coordinates and momenta for the ensemble of trajectories. If a molecule's classical phase space is sampled randomly, its initial decomposition will give the classical anharmonic microcanonical (RRKM) unimolecular rate constant for its decomposition. For the work presented here, classical trajectory simulations of the unimolecular decomposition of quantum and classical microcanonical ensembles, at the same fixed total energy, are compared. In contrast to the classical microcanonical ensemble, the quantum microcanonical ensemble does not sample the phase space randomly. The simulations were performed for CH(4), C(2)H(5), and Cl(-)---CH(3)Br using both analytic potential energy surfaces and direct dynamics methods. Previous studies identified intrinsic RRKM dynamics for CH(4) and C(2)H(5), but intrinsic non-RRKM dynamics for Cl(-)---CH(3)Br. Rate constants calculated from trajectories obtained by the time propagation of the classical and quantum microcanonical ensembles are compared with the corresponding harmonic RRKM estimates to obtain anharmonic corrections to the RRKM rate constants. The relevance and accuracy of the classical trajectory simulation of the quantum microcanonical ensemble, for obtaining the quantum anharmonic RRKM rate constant, is discussed.

  9. Relativistic quantum metrology in open system dynamics.

    PubMed

    Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang

    2015-01-22

    Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself.

  10. Role of Core Electrons in Quantum Dynamics Using TDDFT.

    PubMed

    Foglia, Nicolás O; Morzan, Uriel N; Estrin, Dario A; Scherlis, Damian A; Gonzalez Lebrero, Mariano C

    2017-01-10

    The explicit simulation of time dependent electronic processes requires computationally onerous routes involving the temporal integration of motion equations for the charge density. Efficiency optimization of these methods typically relies on increasing the integration time-step and on the reduction of the computational cost per step. The implicit representation of inner electrons by effective core potentials-or pseudopotentials-is a standard practice in localized-basis quantum-chemistry implementations to improve the efficiency of ground-state calculations, still preserving the quality of the output. This article presents an investigation on the impact that effective core potentials have on the overall efficiency of real time electron dynamics with TDDFT. Interestingly, the speedups achieved with the use of pseudopotentials in this kind of simulation are on average much more significant than in ground-state calculations, reaching in some cases a factor as large as 600×. This boost in performance originates from two contributions: on the one hand, the size of the density matrix, which is considerably reduced, and, on the other, the elimination of high-frequency electronic modes, responsible for limiting the maximum time-step, which vanish when the core electrons are not propagated explicitly. The latter circumstance allows for significant increases in time-step, that in certain cases may reach up to 3 orders of magnitude, without losing any relevant chemical or spectroscopic information.

  11. Calculating two-dimensional spectra with the mixed quantum-classical Ehrenfest method.

    PubMed

    van der Vegte, C P; Dijkstra, A G; Knoester, J; Jansen, T L C

    2013-07-25

    We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this feedback of the quantum system on the classical system influences the shape of two-dimensional spectra. We show that the feedback leads to the expected Stokes shift of the energy levels in the quantum system. This subsequently leads to changes in the population transfer between quantum sites, which in turn influence the intensities of the peaks in two-dimensional spectra. The obtained spectra are compared with spectra calculated using the Hierarchical Equations of Motion method which is exact. While the spectra match perfectly for short waiting times, clear differences are found for longer waiting times. This is attributed to a violation of detailed balance between the quantum states in the Ehrenfest method. The energy of the total quantum-classical system however does obey a Boltzmann distribution, when coupled to a stochastic heat bath.

  12. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

    PubMed Central

    2015-01-01

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules. PMID:26146493

  13. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE PAGES

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  14. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    SciTech Connect

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  15. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.

    PubMed

    Dral, Pavlo O; von Lilienfeld, O Anatole; Thiel, Walter

    2015-05-12

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

  16. Quantum Monte Carlo Calculations of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas

    2006-03-01

    Quantum Monte Carlo is a powerful computational tool to study correlated systems, allowing us to explicitly treat many-body interactions with favorable scaling in the number of particles. It has been regarded as a benchmark tool for first and second row condensed matter systems, although its accuracy has not been thoroughly investigated in strongly correlated transition metal oxides. QMC has also historically suffered from the mixed estimator error in operators that do not commute with the Hamiltonian and from stochastic uncertainty, which make small energy differences unattainable. Using the Reptation Monte Carlo algorithm of Moroni and Baroni(along with contributions from others), we have developed a QMC framework that makes these previously unavailable quantities computationally feasible for systems of hundreds of electrons in a controlled and consistent way, and apply this framework to transition metal oxides. We compare these results with traditional mean-field results like the LDA and with experiment where available, focusing in particular on the polarization and lattice constants in a few interesting ferroelectric materials. This work was performed in collaboration with Lubos Mitas and Jeffrey Grossman.

  17. Comparison of Oxygen Gauche Effects in Poly(Oxyethylene) and Poly(ethylene terephtylene) Based on Quantum Chemistry Calculations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The so-called oxygen gauche effect in poly(oxyethylene) (POE) and its model molecules such as 1,2-dimethoxyethane (DME) and diglyme (CH3OC2H4OC2H4OCH3) is manifested in the preference for gauche C-C bond conformations over trans. This has also been observed for poly(ethylene terephthalate) (PET). Our previous quantum chemistry calculations demonstrated that the large C-C gauche population in DME is due, in part, to a low-lying tg +/- g+ conformer that exhibits a substantial 1,5 CH ... O attraction. New calculations will be described that demonstrate the accuracy of the original quantum chemistry calculations. In addition, an extension of this work to model molecules for PET will be presented. It is seen that the C-C gauche preference is much stronger in 1,2 diacetoxyethane than in DME. In addition, there exist low-lying tg +/- g+/- and g+/-g+/-g+/- conformers that exhibit 1,5 CH ... O attractions involving the carbonyl oxygens. It is expected that the -O-C-C-O- torsional properties will be quite different in these two polymers. The quantum chemistry results are used to parameterize rotational isomeric states models (RIS) and force fields for molecular dynamics simulations of these polymers.

  18. Quantum chemistry calculation of resveratrol and related stilbenes

    NASA Astrophysics Data System (ADS)

    Del Nero, J.; de Melo, C. P.

    2003-01-01

    We report a semiempirical investigation of the first excited states and of the spectroscopic properties of resveratrol, a phytoalexin with well-known antioxidative properties, and of structurally related stilbenes. The analysis of the calculated bond length and charge rearrangements resulting from the photoexcitation and of the corresponding theoretical spectra gives us some insight of how chemical modifications of these molecules could affect the possible physiological properties of resveratrol.

  19. Efficient method for calculating electronic bound states in arbitrary one-dimensional quantum wells

    NASA Astrophysics Data System (ADS)

    de Aquino, V. M.; Iwamoto, H.; Dias, I. F. L.; Laureto, E.; da Silva, M. A. T.; da Silva, E. C. F.; Quivy, A. A.

    2017-01-01

    In the present paper it is demonstrated that the bound electronic states of multiple quantum wells structures may be calculated very efficiently by expanding their eigenstates in terms of the eigenfunctions of a particle in a box. The bound states of single and multiple symmetric or nonsymmetric wells are calculated within the single-band effective mass approximation. A comparison is then made between the results obtained for simple cases with exact calculations. We also apply our approach to a GaAs/AlGaAs multiple quantum well structure composed of forty periods each one with seven quantum wells. The method may be very useful to design narrow band quantum cascade photodetectors to work without applied bias in a photovoltaic mode. With the presented method the effects of a electric field may also be easily included which is very important if one desires study quantum well structures for application to the development of quantum cascade lasers. The advantages of the method are also presented.

  20. Communications: Evaluation of the nondiabaticity of quantum molecular dynamics with the dephasing representation of quantum fidelity.

    PubMed

    Zimmermann, Tomás; Vanícek, Jirí

    2010-06-28

    We propose an approximate method for evaluating the importance of non-Born-Oppenheimer effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing representation (DR) of quantum fidelity to several diabatic potential energy surfaces and its computational cost is the cost of dynamics of a classical phase space distribution. It can be implemented easily into any molecular dynamics program and also can utilize on-the-fly ab initio electronic structure information. We test the methodology on three model problems introduced by Tully and on the photodissociation of NaI. The results show that for dynamics close to the diabatic limit, the decay of fidelity due to nondiabatic effects is described accurately by the DR. In this regime, unlike the mixed quantum-classical methods such as surface hopping or Ehrenfest dynamics, the DR can capture more subtle quantum effects than the population transfer between potential energy surfaces. Hence we propose using the DR to estimate the dynamical importance of diabatic, spin-orbit, or other couplings between potential energy surfaces. The acquired information can help reduce the complexity of a studied system without affecting the accuracy of the quantum simulation.

  1. Ring-Polymer Molecular Dynamics Rate Coefficient Calculations for Insertion Reactions: X + H2 → HX + H (X = N, O).

    PubMed

    Li, Yongle; Suleimanov, Yury V; Guo, Hua

    2014-02-20

    The thermal rate constants of two prototypical insertion-type reactions, namely, N/O + H2 → NH/OH + H, are investigated with ring polymer molecular dynamics (RPMD) on full-dimensional potential energy surfaces using recently developed RPMDrate code. It is shown that the unique ability of the RPMD approach among the existing theoretical methods to capture the quantum effects, e.g., tunneling and zero-point energy, as well as recrossing dynamics quantum mechanically with ring-polymer trajectories leads to excellent agreement with rigorous quantum dynamics calculations. The present result is encouraging for future applications of the RPMD method and the RPMDrate code to complex-forming chemical reactions involving polyatomic reactants.

  2. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    PubMed Central

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-01-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588

  3. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    NASA Astrophysics Data System (ADS)

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-12-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.

  4. Quantum chemistry calculations for molecules coupled to reservoirs: Formalism, implementation, and application to benzenedithiol

    NASA Astrophysics Data System (ADS)

    Arnold, A.; Weigend, F.; Evers, F.

    2007-05-01

    Modern quantum chemistry calculations are usually implemented for isolated systems—big molecules or atom clusters; total energy and particle number are fixed. However, in many situations, like quantum transport calculations or molecules in a electrochemical environment, the molecule can exchange particles (and energy) with a reservoir. Calculations for such cases require to switch from the canonical to a grand canonical description, where one fixes the chemical potential rather than particle number. To achieve this goal, the authors propose an implementation in standard quantum chemistry packages. An application to the nonlinear charge transport through 1,4-benzenedithiol will be presented. They explain the leading finite bias effect on the transmission as a consequence of a nonequilibrium Stark effect and discuss the relation to earlier work.

  5. Partial dynamical symmetry at critical points of quantum phase transitions.

    PubMed

    Leviatan, A

    2007-06-15

    We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.

  6. Quantum modeling of nonlinear dynamics of stock prices: Bohmian approach

    NASA Astrophysics Data System (ADS)

    Choustova, O.

    2007-08-01

    We use quantum mechanical methods to model the price dynamics in the financial market mathematically. We propose describing behavioral financial factors using the pilot-wave (Bohmian) model of quantum mechanics. The real price trajectories are determined (via the financial analogue of the second Newton law) by two financial potentials: the classical-like potential V (q) (“hard” market conditions) and the quantumlike potential U(q) (behavioral market conditions).

  7. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    SciTech Connect

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M.

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  8. Complex scattering dynamics and the quantum Hall effects

    SciTech Connect

    Trugman, S.A.

    1994-12-16

    We review both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the quantum Hall effect. Classical scattering is complex, due to the approach of scattering states to an infinite number of dynamically bound states. Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances in place of the classical bound states. Extended scatterers provide a quantitative explanation for the breakdown of the QHE at a comparatively small Hall voltage as seen by Kawaji et al., and possibly for noise effects.

  9. Computer studies of multiple-quantum spin dynamics

    SciTech Connect

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  10. Bohmian dynamics on subspaces using linearized quantum force.

    PubMed

    Rassolov, Vitaly A; Garashchuk, Sophya

    2004-04-15

    In the de Broglie-Bohm formulation of quantum mechanics the time-dependent Schrodinger equation is solved in terms of quantum trajectories evolving under the influence of quantum and classical potentials. For a practical implementation that scales favorably with system size and is accurate for semiclassical systems, we use approximate quantum potentials. Recently, we have shown that optimization of the nonclassical component of the momentum operator in terms of fitting functions leads to the energy-conserving approximate quantum potential. In particular, linear fitting functions give the exact time evolution of a Gaussian wave packet in a locally quadratic potential and can describe the dominant quantum-mechanical effects in the semiclassical scattering problems of nuclear dynamics. In this paper we formulate the Bohmian dynamics on subspaces and define the energy-conserving approximate quantum potential in terms of optimized nonclassical momentum, extended to include the domain boundary functions. This generalization allows a better description of the non-Gaussian wave packets and general potentials in terms of simple fitting functions. The optimization is performed independently for each domain and each dimension. For linear fitting functions optimal parameters are expressed in terms of the first and second moments of the trajectory distribution. Examples are given for one-dimensional anharmonic systems and for the collinear hydrogen exchange reaction.

  11. Dynamical quantum phase transitions in presence of a spin bath

    NASA Astrophysics Data System (ADS)

    Gómez-León, Á.; Stamp, P. C. E.

    2017-02-01

    We derive an effective time independent Hamiltonian for the transverse Ising model coupled to a spin bath, in the presence of a high frequency AC magnetic field. The spin blocking mechanism that removes the quantum phase transition can be suppressed by the AC field, allowing tunability of the quantum critical point. We calculate the phase diagram, including the nuclear spins, and apply the results to quantum Ising systems with long-range dipolar interactions; the example of LiHoF4 is discussed in detail.

  12. Computational Issues in the Control of Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    2003-03-01

    Computational Issues in the Control of Quantum Dynamics Phenomena Herschel Rabitz Department of Chemistry Princeton University The control of quantum phenomena embraces a variety of applications, with the most common implementation involving tailored laser pulses to steer the dynamics of a quantum system towards some specified observable outcome. The theoretical and computational aspects of this subject are intimately tied to the growing experimental capabilities, especially the ability to perform massive numbers of high throughput experiments. Computational studies in this context have special roles. Especially important is the use of computational techniques to develop new control algorithms, which ultimately would be implemented in the laboratory to guide the control of complex quantum systems. Beyond control alone, many of the same concepts can be exploited for the performance of experiments optimally tuned for inversion, to extract Hamiltonian information. The latter scenario poses very high demands on the efficiency of solving the quantum dynamics equations to extract the information content from the experimental data. The concept of exploiting a computational quantum control tool kit will be introduced as a means for addressing many of these challenges.

  13. Stochastic approximation of dynamical exponent at quantum critical point

    NASA Astrophysics Data System (ADS)

    Yasuda, Shinya; Suwa, Hidemaro; Todo, Synge

    2015-09-01

    We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z . During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S =1 /2 quantum X Y model in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z =1 , i.e., the three-dimensional classical X Y universality class. Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2 +2 ) governs the quantum phase transition.

  14. Operators versus functions: from quantum dynamical semigroups to tomographic semigroups

    NASA Astrophysics Data System (ADS)

    Aniello, Paolo

    2013-11-01

    Quantum mechanics can be formulated in terms of phase-space functions, according to Wigner's approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called generalized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup 'in disguise', namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The 'disguised counterparts' of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.

  15. Nonanalyticity, Valley Quantum Phases, and Lightlike Exciton Dispersion in Monolayer Transition Metal Dichalcogenides: Theory and First-Principles Calculations.

    PubMed

    Qiu, Diana Y; Cao, Ting; Louie, Steven G

    2015-10-23

    Exciton dispersion as a function of center-of-mass momentum Q is essential to the understanding of exciton dynamics. We use the ab initio GW-Bethe-Salpeter equation method to calculate the dispersion of excitons in monolayer MoS(2) and find a nonanalytic lightlike dispersion. This behavior arises from an unusual |Q|-term in both the intra- and intervalley exchange of the electron-hole interaction, which concurrently gives rise to a valley quantum phase of winding number two. A simple effective Hamiltonian to Q(2) order with analytic solutions is derived to describe quantitatively these behaviors.

  16. Nonanalyticity, Valley Quantum Phases, and Lightlike Exciton Dispersion in Monolayer Transition Metal Dichalcogenides: Theory and First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Qiu, Diana Y.; Cao, Ting; Louie, Steven G.

    2015-10-01

    Exciton dispersion as a function of center-of-mass momentum Q is essential to the understanding of exciton dynamics. We use the ab initio G W -Bethe-Salpeter equation method to calculate the dispersion of excitons in monolayer MoS2 and find a nonanalytic lightlike dispersion. This behavior arises from an unusual |Q |-term in both the intra- and intervalley exchange of the electron-hole interaction, which concurrently gives rise to a valley quantum phase of winding number two. A simple effective Hamiltonian to Q2 order with analytic solutions is derived to describe quantitatively these behaviors.

  17. Cosmological dynamics in spin-foam loop quantum cosmology: challenges and prospects

    NASA Astrophysics Data System (ADS)

    Craig, David A.; Singh, Parampreet

    2017-04-01

    We explore the structure of the spin foam-like vertex expansion in loop quantum cosmology and discuss properties of the corresponding amplitudes, with the aim of elucidating some of the expansion’s useful properties and features. We find that the expansion is best suited for consideration of conceptual questions and for investigating short-time, highly quantum behavior. In order to study dynamics at cosmological scales, the expansion must be carried to very high order, limiting its direct utility as a calculational tool for such questions. Conversely, it is unclear that the expansion can be truncated at finite order in a controlled manner.

  18. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    PubMed

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  19. Simulation of Quantum Dynamics Based on the Quantum Stochastic Differential Equation

    PubMed Central

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm. PMID:23781156

  20. Quantum superchemistry: dynamical quantum effects in coupled atomic and molecular Bose-Einstein condensates.

    PubMed

    Hope, J J; Olsen, M K

    2001-04-09

    We show that in certain parameter regimes there is a macroscopic dynamical breakdown of the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive- P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the noiseless limit. The full quantum theory includes the spontaneous processes which will become significant when the atomic population is low. The experimental signature of the quantum effects will be the time scale of the revival of the atomic population after a near total conversion to the molecular condensate.

  1. Dissipation and dynamics in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Barker, Brent Wendolyn

    In this thesis, we simulate the time evolution of quantum many-body systems and use comparisons to experimental data in order to learn more about the properties of nuclear matter and understand better the dynamical processes in central nuclear collisions. We further advance the development of a nonequilibrium Green's function description of both central nuclear collisions and Bose-Einstein Condensates. First in the thesis, we determine the viscosity of nuclear matter by adjusting the in-medium nucleon-nucleon cross section (IMNNCS) in our BUU transport model until the simulation results match experimental data on nuclear stopping in central nuclear collisions at intermediate energies. Then we use that cross section to calculate the viscosity self-consistently. We also calculate the ratio of shear viscosity to entropy density to determine how close the system is to the proposed universal quantum lower limit. Next, we use the same BUU transport model to isolate the protons emitted early in a central nuclear collision at intermediate energy, as predicted in the model, using a filter on high transverse momentum, and we show the effect on the source function. We predict a recontraction of protons at late times in the central collision of 112Sn+112Sn at 50 MeV/nucleon that results in a resurgence of emission of protons and show how to use the transverse momentum filter and the source function to test this prediction in experiment. Next, we develop an early implementation of a more fully quantal transport model than the BUU equations, with our sights set on solving central nuclear collisions in 3D using nonequilibrium Green's functions. In our 1D, mean field, density matrix model, we demonstrate the initial state preparation and collision of 1D nuclear "slabs". With the aim of reducing the computational cost of the calculation, we show that we can neglect far off-diagonal elements in the density matrix without affecting the one-body observables. Further, we describe a

  2. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  3. Complexity of controlling quantum many-body dynamics

    NASA Astrophysics Data System (ADS)

    Caneva, T.; Silva, A.; Fazio, R.; Lloyd, S.; Calarco, T.; Montangero, S.

    2014-04-01

    We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal control—contrary to standard time-reversal procedures—is extremely robust to external sources of noise. We provide a lower bound on the control complexity of a many-body quantum dynamics in terms of the dimension of the manifold supporting it, elucidating the role played by integrability in this context.

  4. Quantum Monte Carlo calculations of the dimerization energy of borane.

    PubMed

    Fracchia, Francesco; Bressanini, Dario; Morosi, Gabriele

    2011-09-07

    Accurate thermodynamic data are required to improve the performance of chemical hydrides that are potential hydrogen storage materials. Boron compounds are among the most interesting candidates. However, different experimental measurements of the borane dimerization energy resulted in a rather wide range (-34.3 to -39.1) ± 2 kcal/mol. Diffusion Monte Carlo (DMC) simulations usually recover more than 95% of the correlation energy, so energy differences rely less on error cancellation than other methods. DMC energies of BH(3), B(2)H(6), BH(3)CO, CO, and BH(2)(+) allowed us to predict the borane dimerization energy, both via the direct process and indirect processes such as the dissociation of BH(3)CO. Our D(e) = -43.12(8) kcal/mol, corrected for the zero point energy evaluated by considering the anharmonic contributions, results in a borane dimerization energy of -36.59(8) kcal/mol. The process via the dissociation of BH(3)CO gives -34.5(2) kcal/mol. Overall, our values suggest a slightly less D(e) than the most recent W4 estimate D(e) = -44.47 kcal/mol [A. Karton and J. M. L. Martin, J. Phys. Chem. A 111, 5936 (2007)]. Our results show that reliable thermochemical data for boranes can be predicted by fixed node (FN)-DMC calculations.

  5. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed.

  6. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics.

    PubMed

    Craig, Ian R; Manolopoulos, David E

    2004-08-22

    We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.

  7. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    SciTech Connect

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.; Levashov, P. R.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  8. Quantum calculations for the photodetachment cross sections of H- located between two walls

    NASA Astrophysics Data System (ADS)

    Zhao, H. J.; Ma, Z. J.; Du, M. L.

    2015-06-01

    We re-investigate the photodetachment cross sections of H- in a quantum well consisting of two parallel hard walls using a quantum approach. The formulas for the cross sections are explicitly derived and compared with those derived by using closed-orbit theory (G.C. Yang, et al., Physica B 404 (2009) 1576 [15]). The present quantum results confirm the staircase pattern of the cross sections obtained earlier when the polarization of photons is parallel to the normal direction of the walls. However, we find that when the polarization is perpendicular to the normal direction of the walls, oscillations in the cross sections in the present quantum calculations are still present in contrast to the predictions of closed-orbit theory. The differences in the two results are large enough to be observable.

  9. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  10. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    PubMed

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.

  11. Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chen; Rubenstein, Brenda M.; Morales, Miguel A.

    2016-12-01

    Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wave function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.

  12. Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations

    DOE PAGES

    Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.

    2016-12-19

    Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less

  13. Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations

    SciTech Connect

    Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.

    2016-12-19

    Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wave function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.

  14. Accurate quantum calculation of the bound and resonant rovibrational states of Li-(H2)

    NASA Astrophysics Data System (ADS)

    Xiao, Yingsheng; Poirier, Bill

    2005-03-01

    In a recent paper [B. Poirier, Chem. Phys. 308, 305 (2005)] a full-dimensional quantum method for computing the rovibrational dynamics of triatomic systems was presented, incorporating three key features: (1) exact analytical treatment of Coriolis coupling, (2) three-body "effective potential," and (3) a single bend angle basis for all rotational states. In this paper, these ideas are applied to the Li-(H2) electrostatic complex, to compute all of the rovibrational bound state energies, and a number of resonance energies and widths, to very high accuracy (thousandths of a wave number). This application is very challenging, owing to the long-range nature of the interaction and to narrow level spacings near dissociation. Nevertheless, by combining the present method with a G4 symmetry-adapted phase-space-optimized representation, only modest basis sizes are required for which the matrices are amenable to direct diagonalization. Several new bound levels are reported, as compared with a previous calculation [D. T. Chang, G. Surratt, G. Ristroff, and G. I. Gellene, J. Chem. Phys. 116, 9188 (2002)]. The resonances exhibit a clear-cut separation into shape and Feshbach varieties, with the latter characterized by extremely long lifetimes (microseconds or longer).

  15. Dissipative Particle Dynamics interaction parameters from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Sepehr, Fatemeh; Paddison, Stephen J.

    2016-02-01

    Dissipative Particle Dynamics (DPD) is a commonly employed coarse-grained method to model complex systems. Presented here is a pragmatic approach to connect atomic-scale information to the meso-scale interactions defined between the DPD particles or beads. Specifically, electronic structure calculations were utilized for the calculation of the DPD pair-wise interaction parameters. An implicit treatment of the electrostatic interactions for charged beads is introduced. The method is successfully applied to derive the parameters for a hydrated perfluorosulfonic acid ionomer with absorbed vanadium cations.

  16. Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system

    NASA Astrophysics Data System (ADS)

    Schanz, Holger; Esser, Bernd

    1997-05-01

    The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.

  17. Investigation of the ICT state of DPA-DSB using spectroscopic experiments and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    He, Xing; Wang, Yang; Liu, Weilong; Yang, Zhenling; Du, Xin; Liu, Yuqiang; Yang, Yanqiang

    2011-01-01

    The excited states of a symmetric D- π-D structure two-photon excited fluorescence material 1,4-di (4'- N, N-diphenylaminostyryl) benzene (DPA-DSB) have been investigated by spectroscopic experiments and quantum chemical calculations. The solvent polarity dependent fluorescence properties indicate that upon photoexcitation, a radiative intramolecular charge-transfer (ICT) state is formed resulting from the ICT process. The molecular structure does not have large change during the ICT process, which is confirmed by the quantum chemical calculations performed by G AUSSIAN 03 software. The planar structure of the fluorescent ICT state results in the high fluorescence quantum yield which is important in the two-photon excited fluorescence application.

  18. Dynamical and thermodynamical control of open quantum Brownian motion

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    Open quantum Brownian motion was introduced as a new type of quantum Brownian motion for Brownian particles with internal quantum degrees of freedom. Recently, an example of the microscopic derivation of open quantum Brownian motion has been presented [I. Sinayskiy and F. Petruccione, Phys. Scr. T165, 014017 (2015)]. The microscopic derivation allows to relate the dynamical properties of open Quantum Brownian motion and the thermodynamical properties of the environment. In the present work, we study the possibility of control of the external degrees of freedom of the ''walker'' (position) by manipulating the internal one, e.g. spin, polarization, occupation numbers. In the particular example of the known microscopic derivation the connection between dynamics of the ''walker'' and thermodynamical parameters of the system is established. For the system of open Brownian walkers coupled to the same environment controllable creation of quantum correlations is investigated. This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  19. Quantum-like dynamics of decision-making

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu

    2012-03-01

    In cognitive psychology, some experiments for games were reported, and they demonstrated that real players did not use the “rational strategy” provided by classical game theory and based on the notion of the Nasch equilibrium. This psychological phenomenon was called the disjunction effect. Recently, we proposed a model of decision making which can explain this effect (“irrationality” of players) Asano et al. (2010, 2011) [23,24]. Our model is based on the mathematical formalism of quantum mechanics, because psychological fluctuations inducing the irrationality are formally represented as quantum fluctuations Asano et al. (2011) [55]. In this paper, we reconsider the process of quantum-like decision-making more closely and redefine it as a well-defined quantum dynamics by using the concept of lifting channel, which is an important concept in quantum information theory. We also present numerical simulation for this quantum-like mental dynamics. It is non-Markovian by its nature. Stabilization to the steady state solution (determining subjective probabilities for decision making) is based on the collective effect of mental fluctuations collected in the working memory of a decision maker.

  20. Structure and dynamics of the uranyl tricarbonate complex in aqueous solution: insights from quantum mechanical charge field molecular dynamics.

    PubMed

    Tirler, Andreas O; Hofer, Thomas S

    2014-11-13

    This investigation presents the characterization of structural and dynamical properties of uranyl tricarbonate in aqueous solution employing an extended hybrid quantum mechanical/molecular mechanical (QM/MM) approach. It is shown that the inclusion of explicit solvent molecules in the quantum chemical treatment is essential to mimic the complex interaction occurring in an aqueous environment. Thus, in contrast to gas phase cluster calculations on a quantum chemical level proposing a 6-fold coordination of the three carbonates, the QMCF MD simulation proposes a 5-fold coordination. An extensive comparison of the simulation results to structural and dynamical data available in the literature was found to be in excellent agreement. Furthermore, this work is the first theoretical study on a quantum chemical level of theory able to observe the conversion of carbonate (CO₃²⁻) to bicarbonate (HCO₃⁻) in the equatorial coordination sphere of the uranyl ion. From a comparison of the free energy ΔG values for the unprotonated educt [UO₂(CO₃)₃]⁴⁻ and the protonated [UO₂(CO₃)₂(HCO₃)]³⁻, it could be concluded that the reaction equilibrium is strongly shifted toward the product state confirming the benignity for the observed protonation reaction. Structural properties and the three-dimensional arrangement of carbonate ligands were analyzed via pair-, three-body, and angular distributions, the dynamical properties were evaluated by hydrogen-bond correlation functions and vibrational power spectra.

  1. Young’s modulus calculations for cellulose Iß by MM3 and quantum mechanics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantum mechanics (QM) and molecular mechanics (MM) calculations were performed to elucidate Young’s moduli for a series of cellulose Iß models. Computations using the second generation empirical force field MM3 with a disaccharide cellulose model, 1,4'-O-dimethyl-ß-cellobioside (DMCB), and an analo...

  2. Quantum state transfer and conditional phase gate via off-resonant quantum Zeno dynamics

    NASA Astrophysics Data System (ADS)

    Su, Wan-Jun; Yang, Zhen-Biao; Wu, Huai-Zhi

    2017-01-01

    We propose a scheme to realize the quantum state transfer (QST) and conditional phase gate (CPG) between two qubits (acted by nitrogen-vacancy (NV) centers) based on off-resonant quantum Zeno dynamics. We also consider the entanglement dynamics of two qubits in this system. Since no cavity photons or excited levels of the NV center is populated during the whole process, the scheme is immune to the decay of cavity and spontaneous emission of the NV center. The strictly numerical simulation shows that the fidelities of QST and CPG are high even in the presence of realistic imperfections.

  3. Relativistic quantum dynamics on a double cone

    NASA Astrophysics Data System (ADS)

    Gomes, F. A.; Silva, Edilberto O.; Lima, Jonas R. F.; Filgueiras, C.; Moraes, F.

    2017-02-01

    In this paper, we study the relativistic quantum problem of a particle constrained to a double cone surface. For this purpose, we build the Dirac equation in a curved space using the tetrads formalism. Two cases are analysed. First, we consider a free particle on the conical surface, and then we add an uniform magnetic field. In the first case, the exact energy spectrum is obtained and its non-relativistic limit compared to previously published results. In the second case, the spectrum is also exactly obtained and a detailed analysis considering all possible combinations of signs of the quantum numbers reveals the occurrence of highly degenerate zero energy modes. The results obtained here can be applied, for instance, in the investigation of the electronic and transport properties of condensed matter systems that can be described by an effective Dirac equation, such as graphene and topological insulators.

  4. Full-dimensional quantum dynamics of vibrationally highly excited NHD2.

    PubMed

    Marquardt, Roberto; Sanrey, Michael; Gatti, Fabien; Le Quéré, Frédéric

    2010-11-07

    We report on full-dimensional vibrational quantum dynamics of the highly excited ammonia isotopologue NHD(2) using a newly developed potential energy surface and the MCTDH program package. The calculations allow to realistically simulate an infrared laser induced stereomutation reaction at the pyramidal nitrogen atom in the femtosecond time domain. Our results allow for a thorough qualitative and quantitative understanding of infrared photoinduced stereomutation kinetics, the underlying quantum dynamics, and the reaction mechanisms. Comparison is made with a previous, reduced dimensionality study of the same reaction [R. Marquardt, M. Quack, I. Thanopulos, and D. Luckhaus, J. Chem. Phys. 118, 643 (2003)], and it is shown that slight variances of reduced spaces lead to significantly different kinetics. Because the quantum dynamics depends subtly on variances of reduced spaces, reduced dimensionality treatments are not reliable even for qualitative predictions of the stereomutation kinetics. The first direct comparison between the Multiconfigurational Time Dependent Hartree [M. H. Beck, A. Jäckle, G. A. Worth et al., Phys. Rep. 324, 1 (2000)] and Unimolecular Reactions Induced by Monochromatic Infrared Radiation [M. Quack and E. Sutcliffe, QCPE Bulletin 6, 98 (1986)] program packages on a specific, four dimensional quantum dynamical problem allows for their full validation in the present work.

  5. A Monte Carlo Resampling Approach for the Calculation of Hybrid Classical and Quantum Free Energies.

    PubMed

    Cave-Ayland, Christopher; Skylaris, Chris-Kriton; Essex, Jonathan W

    2017-02-14

    Hybrid free energy methods allow estimation of free energy differences at the quantum mechanics (QM) level with high efficiency by performing sampling at the classical mechanics (MM) level. Various approaches to allow the calculation of QM corrections to classical free energies have been proposed. The single step free energy perturbation approach starts with a classically generated ensemble, a subset of structures of which are postprocessed to obtain QM energies for use with the Zwanzig equation. This gives an estimate of the free energy difference associated with the change from an MM to a QM Hamiltonian. Owing to the poor numerical properties of the Zwanzig equation, however, recent developments have produced alternative methods which aim to provide access to the properties of the true QM ensemble. Here we propose an approach based on the resampling of MM structural ensembles and application of a Monte Carlo acceptance test which in principle, can generate the exact QM ensemble or intermediate ensembles between the MM and QM states. We carry out a detailed comparison against the Zwanzig equation and recently proposed non-Boltzmann methods. As a test system we use a set of small molecule hydration free energies for which hybrid free energy calculations are performed at the semiempirical Density Functional Tight Binding level. Equivalent ensembles at this level of theory have also been generated allowing the reverse QM to MM perturbations to be performed along with a detailed analysis of the results. Additionally, a previously published nucleotide base pair data set simulated at the QM level using ab initio molecular dynamics is also considered. We provide a strong rationale for the use of the Monte Carlo Resampling and non-Boltzmann approaches by showing that configuration space overlaps can be estimated which provide useful diagnostic information regarding the accuracy of these hybrid approaches.

  6. Dynamic steady state of periodically driven quantum systems

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.

    2016-01-01

    Using the density matrix formalism, we prove the existence of the periodic steady state for an arbitrary periodically driven system described by linear dynamic equations. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution (t →+∞ ) due to relaxation processes. The presented derivation simultaneously contains a simple and effective computational algorithm (without using either the Floquet or Fourier formalisms), which automatically guarantees a full account of all frequency components. As a particular example, for three-level Λ system we calculate the line shape and field-induced shift of the dark resonance formed by the field with a periodically modulated phase. Also we have analytically solved a basic theoretical problem of the direct frequency comb spectroscopy, when the two-level system is driven by the periodic sequence of rectangular pulses. In this case, the radical dependence of the spectroscopy line shape on pulse area is found. Moreover, the existence of quasiforbidden spectroscopic zones, in which the Ramsey fringes are significantly reduced, is predicted. Our results have a wide area of applications in laser physics, spectroscopy, atomic clocks, and magnetometry. Also they can be useful for any area of quantum physics where periodically driven systems are considered.

  7. Calculation of Dynamic Coefficients for Multiwound Foil Bearings

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Kaneko, Shigehiko

    Dynamic performance of multiwound foil bearings with the effects of foil local deflection is investigated. The foils, separated and supported by projections on the ir surface are treated as thin plates. Deflections of the foils are solved with a finite element model. The air pressure is calculated with the Reynolds' equation by treating the lubricant as an isothermal idea gas. The effects of foils are simulated with the deflection of top foil added to the film thickness. A finite difference computer program is developed to solve the Reynolds equation and the elastic deflection equation, simultaneously. Perturbation method is used to determine the dynamic coefficients. The effects of foil deflection is discussed by comparing the dynamic coefficients of a foil bearing and a rigid bearing. Experimental data from a test rig supported by two multiwound foil bearings are used to validate this numerical solution.

  8. Towards robust dynamical decoupling and high fidelity adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Quantum computation (QC) relies on the ability to implement high-fidelity quantum gate operations and successfully preserve quantum state coherence. One of the most challenging obstacles for reliable QC is overcoming the inevitable interaction between a quantum system and its environment. Unwanted interactions result in decoherence processes that cause quantum states to deviate from a desired evolution, consequently leading to computational errors and loss of coherence. Dynamical decoupling (DD) is one such method, which seeks to attenuate the effects of decoherence by applying strong and expeditious control pulses solely to the system. Provided the pulses are applied over a time duration sufficiently shorter than the correlation time associated with the environment dynamics, DD effectively averages out undesirable interactions and preserves quantum states with a low probability of error, or fidelity loss. In this study various aspects of this approach are studied from sequence construction to applications of DD to protecting QC. First, a comprehensive examination of the error suppression properties of a near-optimal DD approach is given to understand the relationship between error suppression capabilities and the number of required DD control pulses in the case of ideal, instantaneous pulses. While such considerations are instructive for examining DD efficiency, i.e., performance vs the number of control pulses, high-fidelity DD in realizable systems is difficult to achieve due to intrinsic pulse imperfections which further contribute to decoherence. As a second consideration, it is shown how one can overcome this hurdle and achieve robustness and recover high-fidelity DD in the presence of faulty control pulses using Genetic Algorithm optimization and sequence symmetrization. Thirdly, to illustrate the implementation of DD in conjunction with QC, the utilization of DD and quantum error correction codes (QECCs) as a protection method for adiabatic quantum

  9. A Reduced-frequency Approach for Calculating Dynamic Derivatives

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.

    2005-01-01

    Computational Fluid Dynamics (CFD) is increasingly being used to both augment and create an aerodynamic performance database for aircraft configurations. This aerodynamic database contains the response of the aircraft to varying flight conditions and control surface deflections. The current work presents a novel method for calculating dynamic stability derivatives which reduces the computational cost over traditional unsteady CFD approaches by an order of magnitude, while still being applicable to arbitrarily complex geometries over a wide range of flow regimes. The primary thesis of this work is that the response to a forced motion can often be represented with a small, predictable number of frequency components without loss of accuracy. By resolving only those frequencies of interest, the computational effort is significantly reduced so that the routine calculation of dynamic derivatives becomes practical. The current implementation uses this same non-linear, frequency-domain approach and extends the application to the 3-D Euler equations. The current work uses a Cartesian, embedded-boundary method to automate the generation of dynamic stability derivatives.

  10. Quantum mechanics simulation of protein dynamics on long timescale.

    PubMed

    Liu, H; Elstner, M; Kaxiras, E; Frauenheim, T; Hermans, J; Yang, W

    2001-09-01

    Protein structure and dynamics are the keys to a wide range of problems in biology. In principle, both can be fully understood by using quantum mechanics as the ultimate tool to unveil the molecular interactions involved. Indeed, quantum mechanics of atoms and molecules have come to play a central role in chemistry and physics. In practice, however, direct application of quantum mechanics to protein systems has been prohibited by the large molecular size of proteins. As a consequence, there is no general quantum mechanical treatment that not only exceeds the accuracy of state-of-the-art empirical models for proteins but also maintains the efficiency needed for extensive sampling in the conformational space, a requirement mandated by the complexity of protein systems. Here we show that, given recent developments in methods, a general quantum mechanical-based treatment can be constructed. We report a molecular dynamics simulation of a protein, crambin, in solution for 350 ps in which we combine a semiempirical quantum-mechanical description of the entire protein with a description of the surrounding solvent, and solvent-protein interactions based on a molecular mechanics force field. Comparison with a recent very high-resolution crystal structure of crambin (Jelsch et al., Proc Natl Acad Sci USA 2000;102:2246-2251) shows that geometrical detail is better reproduced in this simulation than when several alternate molecular mechanics force fields are used to describe the entire system of protein and solvent, even though the structure is no less flexible. Individual atomic charges deviate in both directions from "canonical" values, and some charge transfer is found between the N and C-termini. The capability of simulating protein dynamics on and beyond the few hundred ps timescale with a demonstrably accurate quantum mechanical model will bring new opportunities to extend our understanding of a range of basic processes in biology such as molecular recognition and enzyme

  11. Quantum dynamics of simultaneously measured non-commuting observables

    NASA Astrophysics Data System (ADS)

    Hacohen-Gourgy, Shay; Martin, Leigh S.; Flurin, Emmanuel; Ramasesh, Vinay V.; Whaley, K. Birgitta; Siddiqi, Irfan

    2016-10-01

    In quantum mechanics, measurements cause wavefunction collapse that yields precise outcomes, whereas for non-commuting observables such as position and momentum Heisenberg’s uncertainty principle limits the intrinsic precision of a state. Although theoretical work has demonstrated that it should be possible to perform simultaneous non-commuting measurements and has revealed the limits on measurement outcomes, only recently has the dynamics of the quantum state been discussed. To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables to a superconducting qubit. We implement multiple readout channels by coupling the qubit to multiple modes of a cavity. To control the measurement observables, we implement a ‘single quadrature’ measurement by driving the qubit and applying cavity sidebands with a relative phase that sets the observable. Here, we use this approach to show that the uncertainty principle governs the dynamics of the wavefunction by enforcing a lower bound on the measurement-induced disturbance. Consequently, as we transition from measuring identical to measuring non-commuting observables, the dynamics make a smooth transition from standard wavefunction collapse to localized persistent diffusion and then to isotropic persistent diffusion. Although the evolution of the state differs markedly from that of a conventional measurement, information about both non-commuting observables is extracted by keeping track of the time ordering of the measurement record, enabling quantum state tomography without alternating measurements. Our work creates novel capabilities for quantum control, including rapid state purification, adaptive measurement, measurement-based state steering and continuous quantum error correction. As physical systems often interact continuously with their environment via non-commuting degrees of freedom, our work offers a way to study how notions of contemporary

  12. Quantum teleportation of dynamics and effective interactions between remote systems.

    PubMed

    Muschik, Christine A; Hammerer, Klemens; Polzik, Eugene S; Cirac, Ignacio J

    2013-07-12

    Most protocols for quantum information processing consist of a series of quantum gates, which are applied sequentially. In contrast, interactions between matter and fields, for example, as well as measurements such as homodyne detection of light are typically continuous in time. We show how the ability to perform quantum operations continuously and deterministically can be leveraged for inducing nonlocal dynamics between two separate parties. We introduce a scheme for the engineering of an interaction between two remote systems and present a protocol that induces a dynamics in one of the parties that is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time, and are based on real-time feedback.

  13. Nonadiabatic quantum state engineering driven by fast quench dynamics

    NASA Astrophysics Data System (ADS)

    Herrera, Marcela; Sarandy, Marcelo S.; Duzzioni, Eduardo I.; Serra, Roberto M.

    2014-02-01

    There are a number of tasks in quantum information science that exploit nontransitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its "thermodynamical cost," provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.

  14. Systematic study of imidazoles inhibiting IDO1 via the integration of molecular mechanics and quantum mechanics calculations.

    PubMed

    Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng

    2017-05-05

    Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design.

  15. Quantum dynamics study of H + DBr and D + HBr reaction.

    PubMed

    Zhang, Ai Jie; Jia, JianFeng; Wu, Hai Shun; He, Guo Zhong

    2014-09-01

    Time-dependent quantum wave packet calculations have been performed for the H + DBr and D + HBr reaction using the recent diabatic potential energy surfaces. Reaction probabilities, integral cross sections, and rate constants are obtained. The results show that the isotopic effects have an influence on the nonadiabatic effect which is generally inversely proportional to the atom mass. The calculated rate constants are in good overall agreement with experimental values, indicating that the ab initio surfaces are accurate to describe the isotopic effects.

  16. Exploring the control landscape for nonlinear quantum dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Julia; Hocker, David; Long, Ruixing; Ho, Tak-San; Rabitz, Herschel

    2014-06-01

    Manipulation of a quantum system can be viewed in the framework of a control landscape defined as the physical objective as a functional of the control. Control landscape analyses have thus far considered linear quantum dynamics. This paper extends the analysis of control landscape topology to nonlinear quantum dynamics with the objective of steering a finite-level quantum system from an initial state to a final target state. The analysis rests on the assumptions that (i) the final state is reachable from the initial state, (ii) the differential mapping from the control to the state is surjective, and (iii) the control resources are unconstrained. Under these assumptions, landscape critical points (i.e., where the slope vanishes) for nonlinear quantum dynamics only appear as the global maximum and minimum; thus, the landscape is free of traps. Moreover, the landscape Hessian (i.e., the second derivative with respect to the control) at the global maximum has finite rank, indicating the presence of a large level set of optimal controls that preserve the value of the maximum. Extensive numerical simulations on finite-level models of the Gross-Pitaevskii equation confirm the trap-free nature of the landscape as well as the Hessian rank analysis, using either an applied electric field or a tunable condensate two-body interaction strength as the control. In addition, the control mechanisms arising in the numerical simulations are qualitatively assessed. These results are a generalization of previous findings for the linear Schrödinger equation, and show promise for successful control in a wide range of nonlinear quantum dynamics applications.

  17. Dynamical and thermodynamical control of Open Quantum Walks

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    2014-03-01

    Over the last few years dynamical properties and limit distributions of Open Quantum Walks (OQWs), quantum walks driven by dissipation, have been intensely studied [S. Attal et. al. J. Stat. Phys. 147, Issue 4, 832 (2012)]. For some particular cases of OQWs central limit theorems have been proven [S. Attal, N. Guillotin, C. Sabot, ``Central Limit Theorems for Open Quantum Random Walks,'' to appear in Annales Henri Poincaré]. However, only recently the connection between the rich dynamical behavior of OQWs and the corresponding microscopic system-environment models has been established. The microscopic derivation of an OQW as a reduced system dynamics on a 2-nodes graph [I. Sinayskiy, F. Petruccione, Open Syst. Inf. Dyn. 20, 1340007 (2013)] and its generalization to arbitrary graphs allow to explain the dependance of the dynamical behavior of the OQW on the temperature and coupling to the environment. For thermal environments we observe Gaussian behaviour, whereas at zero temperature population trapping and ``soliton''-like behaviour are possible. Physical realizations of OQWs in quantum optical setups will be also presented. This work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  18. Dynamical mean-field theory from a quantum chemical perspective.

    PubMed

    Zgid, Dominika; Chan, Garnet Kin-Lic

    2011-03-07

    We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dynamical mean-field theory offers a formalism to extend quantum chemical methods for finite systems to infinite periodic problems within a local correlation approximation. In addition, quantum chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for DMFT. Here, we explore some ways in which these things may be achieved. First, we present an informal overview of dynamical mean-field theory to connect to quantum chemical language. Next, we describe an implementation of dynamical mean-field theory where we start from an ab initio Hartree-Fock Hamiltonian that avoids double counting issues present in many applications of DMFT. We then explore the use of the configuration interaction hierarchy in DMFT as an approximate solver for the impurity problem. We also investigate some numerical issues of convergence within DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but challenging test for correlation methods. Finally, we finish with some conclusions for future directions.

  19. Quantum Dynamics and a Semiclassical Description of the Photon.

    ERIC Educational Resources Information Center

    Henderson, Giles

    1980-01-01

    Uses computer graphics and nonstationary, superposition wave functions to reveal the dynamic quantum trajectories of several molecular and electronic transitions. These methods are then coupled with classical electromagnetic theory to provide a conceptually clear picture of the emission process and emitted radiation localized in time and space.…

  20. Husimi-Wehrl entropy in the quantum chaotic system -An efficient calculational method-

    NASA Astrophysics Data System (ADS)

    Tsukiji, Hidekazu; Iida, Hideaki; Kunihiro, Teiji; Ohnishi, Akira

    2014-09-01

    Early thermalization in heavy ion collisions still remains a theoretical challenge. It was suggested in the hydrodynamical analyses of the relativistic heavy-ion collisions at RHIC and later at LHC. There are many proposals for pinning down the underlying mechanism for it. Quantum fluctuations on top of the classical configurations (glasma) are found to induce instabilities. It may trigger the chaotic behavior of the gauge field and eventually give rise to entropy production. In this work, we investigate thermalization of glasma by using the Husimi-Wehrl entropy. Quasi-distribution function defined in phase space should be useful to describe possible chaotic behavior of a quantum system. We adopt the Husimi distribution function to discuss entropy production of quantum systems. Husimi function is a minimally coarse-grained Wigner function and semi-positive definite. As a first stage of the study, we calculate the Husimi-Wehrl (H-W) entropy of a quantum Yang-Mills system [Tsai, Muller (2012)] with two-degrees of freedom. We propose a Monte-Carlo method to numerically calculate the time evolution of the Husimi function and the H-W entropy. We also discuss an extension of the method to quantum field theories.

  1. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach.

    PubMed

    Borrelli, Raffaele; Gelin, Maxim F

    2016-12-14

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  2. Theory of dynamic nuclear polarization and feedback in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Barnes, Edwin

    2014-04-01

    An electron confined in a quantum dot interacts with its local nuclear spin environment through the hyperfine contact interaction. This interaction combined with external control and relaxation or measurement of the electron spin allows for the generation of dynamic nuclear polarization. The quantum nature of the nuclear bath, along with the interplay of coherent external fields and incoherent dynamics in these systems renders a wealth of intriguing phenomena seen in recent experiments such as electron Zeeman frequency focusing, hysteresis, and line dragging. We develop in detail a fully quantum, self-consistent theory that can be applied to such experiments and that moreover has predictive power. Our theory uses the operator sum representation formalism in order to incorporate the incoherent dynamics caused by the additional, Markovian bath, which in self-assembled dots is the vacuum field responsible for electron-hole optical recombination. The beauty of this formalism is that it reduces the complexity of the problem by encoding the joint dynamics of the external coherent and incoherent driving in an effective dynamical map that only acts on the electron spin subspace. This, together with the separation of time scales in the problem, allows for a tractable and analytically solvable formalism. The key role of entanglement between the electron spin and the nuclear spins in the formation of dynamic nuclear polarization naturally follows from our solution. We demonstrate the theory in detail for an optical pulsed experiment and present an in-depth discussion and physical explanation of our results.

  3. Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Sindoni, Lorenzo; Wilson-Ewing, Edward

    2016-11-01

    We study the effective cosmological dynamics, emerging as the hydrodynamics of simple condensate states, of a group field theory (GFT) model for quantum gravity coupled to a massless scalar field and reduced to its isotropic sector. The quantum equations of motion for these GFT condensate states are given in relational terms with respect to the scalar field, from which effective dynamics for spatially flat, homogeneous and isotropic space-times can be extracted. The result is a generalisation of the Friedmann equations, including quantum gravity modifications, in a specific regime of the theory corresponding to a Gross-Pitaevskii approximation where interactions are subdominant. The classical Friedmann equations of general relativity are recovered in a suitable semi-classical limit for some range of parameters of the microscopic dynamics. An important result is that the quantum geometries associated with these GFT condensate states are non-singular: a bounce generically occurs in the Planck regime. For some choices of condensate states, these modified Friedmann equations are very similar to those of loop quantum cosmology.

  4. New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2014-01-01

    We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.

  5. New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.

    2014-05-01

    We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.

  6. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.

    PubMed

    Zhang, Yu; Yam, ChiYung; Chen, GuanHua

    2015-04-28

    A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.

  7. Quantum mechanical calculation of spectral statistics of a modified Kepler problem.

    PubMed

    Ma, Tao; Serota, R A

    2012-03-01

    For a modified Kepler problem, we reexamine jumps in the saturation spectral rigidity and large oscillations of the level number variance with near zero minima. Earlier discrepancy between the periodic orbit theory and numerical calculation is cleared by a quantum mechanical calculation. A new class of radial periodic orbits is included establishing a complete correspondence between the periodic orbit theory and the quantum mechanical approach. We show that the diagonal approximation for the level density in the periodic orbit theory already gives a good fit with the numerical calculation. Even greater accuracy is achieved by considering coherent interference between the classical periodic orbits term and the Balian-Bloch term. This procedure produces improved results for the hard-wall rectangular billiards as well.

  8. Quantum dynamics of a Bose superfluid vortex.

    PubMed

    Thompson, L; Stamp, P C E

    2012-05-04

    We derive a fully quantum-mechanical equation of motion for a vortex in a 2-dimensional Bose superfluid in the temperature regime where the normal fluid density ρ(n)(T) is small. The coupling between the vortex "zero mode" and the quasiparticles has no term linear in the quasiparticle variables--the lowest-order coupling is quadratic. We find that as a function of the dimensionless frequency Ω=ℏΩ/k(B)T, the standard Hall-Vinen-Iordanskii equations are valid when Ω≪1 (the "classical regime"), but elsewhere, the equations of motion become highly retarded, with significant experimental implications when Ω≳1.

  9. Dynamical quantum filtering in hydrogen surface reactions

    NASA Astrophysics Data System (ADS)

    Diño, Wilson Agerico; Kasai, Hideaki; Okiji, Ayao

    1998-11-01

    We report on how surfaces that adsorb hydrogen could act as rotational quantum state filters and cause, for example, D 2 molecules desorbing in the vibrational ground state from Cu(111) to exhibit strong rotational alignment. For low final translational energies, we found that desorbing D 2 molecules have rotational alignment factor values corresponding to cartwheel-type rotational preference. As the final translational energy increases, the corresponding alignment factor increases initially to values corresponding to helicopter-type rotational preference and then, eventually, decreases to values almost compatible with a spatially isotropic distribution, as the translational energy increases further.

  10. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    NASA Astrophysics Data System (ADS)

    Nagashima, Hiroki; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi; Tokumasu, Takashi

    2014-10-01

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.

  11. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    SciTech Connect

    Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi

    2014-10-06

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.

  12. Analysis of quantum Monte Carlo dynamics for quantum adiabatic evolution in infinite-range spin systems

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-Ichi

    2011-03-01

    We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.

  13. Algorithmic differentiation and the calculation of forces by quantum Monte Carlo.

    PubMed

    Sorella, Sandro; Capriotti, Luca

    2010-12-21

    We describe an efficient algorithm to compute forces in quantum Monte Carlo using adjoint algorithmic differentiation. This allows us to apply the space warp coordinate transformation in differential form, and compute all the 3M force components of a system with M atoms with a computational effort comparable with the one to obtain the total energy. Few examples illustrating the method for an electronic system containing several water molecules are presented. With the present technique, the calculation of finite-temperature thermodynamic properties of materials with quantum Monte Carlo will be feasible in the near future.

  14. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.

    2009-12-17

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  15. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  16. Studies on the Conformational Landscape of Tert-Butyl Acetate Using Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle

    2014-06-01

    The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.

  17. Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms

    SciTech Connect

    Master, Cyrus P.; Yamaguchi, Fumiko; Yamamoto, Yoshihisa

    2003-03-01

    Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coefficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size.

  18. Calculations of the dynamic dipole polarizabilities for the Li+ ion

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Tang, Li-Yan; Zhang, Xian-Zhou; Shi, Ting-Yun

    2016-10-01

    The B-spline configuration-interaction method is applied to the investigations of dynamic dipole polarizabilities for the four lowest triplet states (2 3S, 33S, 23P, and 33P) of the Li+ ion. The accurate energies for the triplet states of n 3S, n 3P, and n 3D, the dipole oscillator strengths for 23S(33S) → n 3P, 23P(33P) → n 3S, and 23P(33P) → n 3D transitions, with the main quantum number n up to 10 are tabulated for references. The dynamic dipole polarizabilities for the four triplet states under a wide range of photon energy are also listed, which provide input data for analyzing the Stark shift of the Li+ ion. Furthermore, the tune-out wavelengths in the range from 100 nm to 1.2 μm for the four triplet states, and the magic wavelengths in the range from 100 nm to 600 nm for the 23S → 33S, 23S → 23P, and 23S → 33P transitions are determined accurately for the experimental design of the Li+ ion. Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11474319, 11274348, and 91536102).

  19. Quantum computation for quantum chemistry

    NASA Astrophysics Data System (ADS)

    Aspuru-Guzik, Alan

    2010-03-01

    Numerically exact simulation of quantum systems on classical computers is in general, an intractable computational problem. Computational chemists have made progress in the development of approximate methods to tackle complex chemical problems. The downside of these approximate methods is that their failure for certain important cases such as long-range charge transfer states in the case of traditional density functional theory. In 1982, Richard Feynman suggested that a quantum device should be able to simulate quantum systems (in our case, molecules) exactly using quantum computers in a tractable fashion. Our group has been working in the development of quantum chemistry algorithms for quantum devices. In this talk, I will describe how quantum computers can be employed to carry out numerically exact quantum chemistry and chemical reaction dynamics calculations, as well as molecular properties. Finally, I will describe our recent experimental quantum computation of the energy of the hydrogen molecule using an optical quantum computer.

  20. Quantum Process Tomography Quantifies Coherence Transfer Dynamics in Vibrational Exciton

    PubMed Central

    Chuntonov, Lev; Ma, Jianqiang

    2013-01-01

    Quantum coherence has been a subject of great interest in many scientific disciplines. However, detailed characterization of the quantum coherence in molecular systems, especially its transfer and relaxation mechanisms, still remains a major challenge. The difficulties arise in part because the spectroscopic signatures of the coherence transfer are typically overwhelmed by other excitation relaxation processes. We use quantum process tomography (QPT) via two-dimensional infrared spectroscopy to quantify the rate of the elusive coherence transfer between two vibrational exciton states. QPT retrieves the dynamics of the dissipative quantum system directly from the experimental observables. It thus serves as an experimental alternative to theoretical models of the system-bath interaction, and can be used to validate these theories. Our results for coupled carbonyl groups of a diketone molecule in chloroform, used as a benchmark system, reveal the non-secular nature of the interaction between the exciton and the Markovian bath and open the door for the systematic studies of the dissipative quantum systems dynamics in detail. PMID:24079417

  1. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-01

    The prototypical multi-channel reaction H + H2S → H2 + SH/H + H2S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  2. Universal time fluctuations in near-critical out-of-equilibrium quantum dynamics.

    PubMed

    Campos Venuti, Lorenzo; Zanardi, Paolo

    2014-02-01

    Out-of-equilibrium quantum systems display complex temporal patterns. Such time fluctuations are generically exponentially small in the system volume and therefore can be safely ignored in most of the cases. However, if one consider small quench experiments, time fluctuations can be greatly enhanced. We show that time fluctuations may become stronger than other forms of equilibrium quantum fluctuations if the quench is performed close to a critical point. For sufficiently relevant operators the full distribution function of dynamically evolving observable expectation values becomes a universal function uniquely characterized by the critical exponents and the boundary conditions. At regular points of the phase diagram and for nonsufficiently relevant operators the distribution becomes Gaussian. Our predictions are confirmed by an explicit calculation on the quantum Ising model.

  3. Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation.

    PubMed

    Zimmermann, Tomáš; Vaníček, Jiří

    2012-03-07

    We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schrödinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used in the diabatic basis to measure the importance of the diabatic couplings. The method is tested on three model problems introduced by Tully and on a two-surface model of dissociation of NaI.

  4. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.

    PubMed

    Ruckenstein, Eli; Shulgin, Ivan L; Tilson, Jeffrey L

    2005-02-10

    Large molecular clusters can be considered as intermediate states between gas and condensed phases, and information about them can help us understand condensed phases. In this paper, ab initio quantum mechanical methods have been used to examine clusters formed of methanol and water molecules. The main goal was to obtain information about the intermolecular interactions and the structure of methanol/water clusters at the molecular level. The large clusters (CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10)) containing one molecule of one component (methanol or water) and many (12, 10) molecules of the other component were considered. Møller-Plesset perturbation theory (MP2) was used in the calculations. Several representative cluster geometries were optimized, and nearest-neighbor interaction energies were calculated for the geometries obtained in the first step. The results of the calculations were compared to the available experimental information regarding the liquid methanol/water mixtures and to the molecular dynamics and Monte Carlo simulations, and good agreement was found. For the CH(4)O...(H(2)O)(12) cluster, it was shown that the molecules of water can be subdivided into two classes: (i) H bonded to the central methanol molecule and (ii) not H bonded to the central methanol molecule. As expected, these two classes exhibited striking energy differences. Although they are located almost the same distance from the carbon atom of the central methanol molecule, they possess very different intermolecular interaction energies with the central molecule. The H bonding constitutes a dominant factor in the hydration of methanol in dilute aqueous solutions. For the H(2)O...(CH(4)O)(10) cluster, it was shown that the central molecule of water has almost three H bonds with the methanol molecules; this result differs from those in the literature that concluded that the average number of H bonds between a central water molecule and methanol molecules in dilute solutions of

  5. Criticality of environmental information obtainable by dynamically controlled quantum probes

    NASA Astrophysics Data System (ADS)

    Zwick, Analia; Álvarez, Gonzalo A.; Kurizki, Gershon

    2016-10-01

    A universal approach to decoherence control combined with quantum estimation theory reveals a critical behavior, akin to a phase transition, of the information obtainable by a qubit probe concerning the memory time of environmental fluctuations of generalized Ornstein-Uhlenbeck processes. The criticality is intrinsic to the environmental fluctuations but emerges only when the probe is subject to suitable dynamical control aimed at inferring the memory time. A sharp transition is anticipated between two dynamical phases characterized by either a short or long memory time compared to the probing time. This phase transition of the environmental information is a fundamental feature that characterizes open quantum-system dynamics and is important for attaining the highest estimation precision of the environment memory time under experimental limitations.

  6. Quantum vortex dynamics in two-dimensional neutral superfluids

    SciTech Connect

    Wang, C.-C. Joseph; Duine, R. A.; MacDonald, A. H.

    2010-01-15

    We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and obtain an expression for the vortex mass. We find that this adiabatic approximation is valid only when the superfluid droplet radius R, or the typical distance between vortices, is very much larger than the coherence length xi. We go beyond the adiabatic approximation numerically, accounting for the quantum dynamics of environmental modes and capturing their dissipative coupling to condensate dynamics. For the case of an optical-lattice superfluid, we demonstrate that vortex motion damping can be adjusted by tuning the ratio between the tunneling energy J and the on-site interaction energy U. We comment on the possibility of realizing vortex-Landau-level physics.

  7. Ultrafast carrier dynamics in CuInS{sub 2} quantum dots

    SciTech Connect

    Sun, Jianhui; Zhu, Dehua; Zhao, Jialong; Ikezawa, Michio; Masumoto, Yasuaki; Wang, Xiuying

    2014-01-13

    The ultrafast carrier dynamics in CuInS{sub 2} (CIS) quantum dots (QDs) was studied by means of femtosecond transient absorption (TA) spectroscopy. The size-dependent 1S transition energy determined from bleaching spectra is in agreement with that calculated on the finite-depth-well model in the effective mass approximation. The TA bleaching comes from filling of electron quantized levels, allowing us to know the dynamics of the 1S electron in CIS QDs. The sub-100-ps electron trapping at surface defects in bare QDs accelerates with decreasing QD size, while is effectively suppressed in well-passivated CIS/ZnS core/shell QDs.

  8. The classical and quantum dynamics of molecular spins on graphene

    PubMed Central

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2015-01-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019

  9. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  10. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  11. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  12. Comparison of dynamic properties of InP/InAs quantum-dot and quantum-dash lasers

    NASA Astrophysics Data System (ADS)

    Sadeev, T.; Arsenijević, D.; Bimberg, D.

    2016-10-01

    The dynamic properties of MOVPE grown InP/InAs quantum-dot and quantum-dash lasers, showing identical structural design, emitting in the C-band are investigated and compared to each other. Based on the small-signal measurements, we show the impact of the density of states function on the cut-off frequency, being larger for quantum dots at low currents, and reaching similar values for quantum dashes only at higher currents. The large-signal measurements show error-free data transmission at 22.5 and 17.5 Gbit/s for the quantum-dot and quantum-dash lasers.

  13. Quantum Phase Transition Effect on Dynamical Decoupling: a Case Study

    NASA Astrophysics Data System (ADS)

    Cui, H. T.; Yang, G.; Tian, J. L.

    2017-04-01

    The effect of quantum phase transition (QPT) on the coherence retrieval by dynamical decoupling is discussed explicitly by exemplifications. Two different cases can be identified; For QPT without variant of topology, dynamical decoupling can work better than that without QPT. Whereas the systems have nontrivial topology, it displays limited improvement of retrieval of qubit coherent. This feature can be understood by the fact that dynamical decoupling is physically to average out the effect of harmful local couplings. When nontrivial topology is involved, the local operation becomes invalid. Hence one has to find more efficient way to recover qubit coherence.

  14. Operational dynamic modeling transcending quantum and classical mechanics.

    PubMed

    Bondar, Denys I; Cabrera, Renan; Lompay, Robert R; Ivanov, Misha Yu; Rabitz, Herschel A

    2012-11-09

    We introduce a general and systematic theoretical framework for operational dynamic modeling (ODM) by combining a kinematic description of a model with the evolution of the dynamical average values. The kinematics includes the algebra of the observables and their defined averages. The evolution of the average values is drawn in the form of Ehrenfest-like theorems. We show that ODM is capable of encompassing wide-ranging dynamics from classical non-relativistic mechanics to quantum field theory. The generality of ODM should provide a basis for formulating novel theories.

  15. Time scales and relaxation dynamics in quantum-dot lasers

    SciTech Connect

    Erneux, Thomas; Viktorov, Evgeny A.; Mandel, Paul

    2007-08-15

    We analyze a three-variable rate equation model that takes into account carrier capture and Pauli blocking in quantum dot semiconductor lasers. The exponential decay of the relaxation oscillations is analyzed from the linearized equations in terms of three key parameters that control the time scales of the laser. Depending on their relative values, we determine two distinct two-variable reductions of the rate equations in the limit of large capture rates. The first case leads to the rate equations for quantum well lasers, exhibiting relaxation oscillations dynamics. The second case corresponds to dots nearly saturated by the carriers and is characterized by the absence of relaxation oscillations.

  16. Direct characterization of quantum dynamics with noisy ancilla

    DOE PAGES

    Dumitrescu, Eugene F.; Humble, Travis S.

    2015-11-23

    We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on the principal system in what amounts to filtering of ancilla noise. The example of composite noise involving amplitude damping and depolarizing channels is used to demonstrate the method, while we find the rate of noise filtering is more generally dependent on code distance. Furthermore our results indicate the accuracy of quantum process characterization can be greatly improved while remaining within reach of current experimentalmore » capabilities.« less

  17. Direct characterization of quantum dynamics with noisy ancilla

    SciTech Connect

    Dumitrescu, Eugene F.; Humble, Travis S.

    2015-11-23

    We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on the principal system in what amounts to filtering of ancilla noise. The example of composite noise involving amplitude damping and depolarizing channels is used to demonstrate the method, while we find the rate of noise filtering is more generally dependent on code distance. Furthermore our results indicate the accuracy of quantum process characterization can be greatly improved while remaining within reach of current experimental capabilities.

  18. Quantum effects in the dynamics of deeply supercooled water

    SciTech Connect

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Sokolov, Alexei P

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  19. Quantum effects in the dynamics of deeply supercooled water

    DOE PAGES

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; ...

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  20. Dynamical mean-field theory for quantum chemistry.

    PubMed

    Lin, Nan; Marianetti, C A; Millis, Andrew J; Reichman, David R

    2011-03-04

    The dynamical mean-field concept of approximating an unsolvable many-body problem in terms of the solution of an auxiliary quantum impurity problem, introduced to study bulk materials with a continuous energy spectrum, is here extended to molecules, i.e., finite systems with a discrete energy spectrum. The application to small clusters of hydrogen atoms yields ground state energies which are competitive with leading quantum chemical approaches at intermediate and large interatomic distances as well as good approximations to the excitation spectrum.

  1. Dynamic symmetries and quantum nonadiabatic transitions

    SciTech Connect

    Li, Fuxiang; Sinitsyn, Nikolai A.

    2016-05-30

    Kramers degeneracy theorem is one of the basic results in quantum mechanics. According to it, the time-reversal symmetry makes each energy level of a half-integer spin system at least doubly degenerate, meaning the absence of transitions or scatterings between degenerate states if the Hamiltonian does not depend on time explicitly. Here we generalize this result to the case of explicitly time-dependent spin Hamiltonians. We prove that for a spin system with the total spin being a half integer, if its Hamiltonian and the evolution time interval are symmetric under a specifically defined time reversal operation, the scattering amplitude between an arbitrary initial state and its time reversed counterpart is exactly zero. Lastly, we also discuss applications of this result to the multistate Landau–Zener (LZ) theory.

  2. Dynamic symmetries and quantum nonadiabatic transitions

    DOE PAGES

    Li, Fuxiang; Sinitsyn, Nikolai A.

    2016-05-30

    Kramers degeneracy theorem is one of the basic results in quantum mechanics. According to it, the time-reversal symmetry makes each energy level of a half-integer spin system at least doubly degenerate, meaning the absence of transitions or scatterings between degenerate states if the Hamiltonian does not depend on time explicitly. Here we generalize this result to the case of explicitly time-dependent spin Hamiltonians. We prove that for a spin system with the total spin being a half integer, if its Hamiltonian and the evolution time interval are symmetric under a specifically defined time reversal operation, the scattering amplitude between anmore » arbitrary initial state and its time reversed counterpart is exactly zero. Lastly, we also discuss applications of this result to the multistate Landau–Zener (LZ) theory.« less

  3. Dynamic symmetries and quantum nonadiabatic transitions

    NASA Astrophysics Data System (ADS)

    Li, Fuxiang; Sinitsyn, Nikolai A.

    2016-12-01

    Kramers degeneracy theorem is one of the basic results in quantum mechanics. According to it, the time-reversal symmetry makes each energy level of a half-integer spin system at least doubly degenerate, meaning the absence of transitions or scatterings between degenerate states if the Hamiltonian does not depend on time explicitly. We generalize this result to the case of explicitly time-dependent spin Hamiltonians. We prove that for a spin system with the total spin being a half integer, if its Hamiltonian and the evolution time interval are symmetric under a specifically defined time reversal operation, the scattering amplitude between an arbitrary initial state and its time reversed counterpart is exactly zero. We also discuss applications of this result to the multistate Landau-Zener (LZ) theory.

  4. Self-consistent calculations of optical properties of type I and type II quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Shuvayev, Vladimir A.

    In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several

  5. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.

    PubMed

    Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J

    2015-07-05

    This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc.

  6. Calculated Hovering Helicopter Flight Dynamics with a Circulation Controlled Rotor

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Chopra, I.

    1977-01-01

    The influence of the rotor blowing coefficient on the calculated roots of the longitudinal and lateral motion was examined for a range of values of the rotor lift and the blade flap frequency. The control characteristics of a helicopter with a circulation controlled rotor are discussed. The principal effect of the blowing is a reduction in the rotor speed stability derivative. Above a critical level of blowing coefficient, which depends on the flap frequency and rotor lift, negative speed stability is produced and the dynamic characteristics of the helicopter are radically altered.

  7. Robust Biased Brownian Dynamics for Rate Constant Calculation

    PubMed Central

    Zou, Gang; Skeel, Robert D.

    2003-01-01

    A reaction probability is required to calculate the rate constant of a diffusion-dominated reaction. Due to the complicated geometry and potentially high dimension of the reaction probability problem, it is usually solved by a Brownian dynamics simulation, also known as a random walk or path integral method, instead of solving the equivalent partial differential equation by a discretization method. Building on earlier work, this article completes the development of a robust importance sampling algorithm for Brownian dynamics—i.e., biased Brownian dynamics with weight control—to overcome the high energy and entropy barriers in biomolecular association reactions. The biased Brownian dynamics steers sampling by a bias force, and the weight control algorithm controls sampling by a target weight. This algorithm is optimal if the bias force and the target weight are constructed from the solution of the reaction probability problem. In reality, an approximate reaction probability has to be used to construct the bias force and the target weight. Thus, the performance of the algorithm depends on the quality of the approximation. Given here is a method to calculate a good approximation, which is based on the selection of a reaction coordinate and the variational formulation of the reaction probability problem. The numerically approximated reaction probability is shown by computer experiments to give a factor-of-two speedup over the use of a purely heuristic approximation. Also, the fully developed method is compared to unbiased Brownian dynamics. The tests for human superoxide dismutase, Escherichia coli superoxide dismutase, and antisweetener antibody NC6.8, show speedups of 17, 35, and 39, respectively. The test for reactions between two model proteins with orientations shows speedups of 2578 for one set of configurations and 3341 for another set of configurations. PMID:14507681

  8. Quantum Dynamical Applications of Salem's Theorem

    NASA Astrophysics Data System (ADS)

    Damanik, David; Del Rio, Rafael

    2009-07-01

    We consider the survival probability of a state that evolves according to the Schrödinger dynamics generated by a self-adjoint operator H. We deduce from a classical result of Salem that upper bounds for the Hausdorff dimension of a set supporting the spectral measure associated with the initial state imply lower bounds on a subsequence of time scales for the survival probability. This general phenomenon is illustrated with applications to the Fibonacci operator and the critical almost Mathieu operator. In particular, this gives the first quantitative dynamical bound for the critical almost Mathieu operator.

  9. Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei

    2017-03-01

    Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems.

  10. Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method

    PubMed Central

    Zhang, Dawei

    2017-01-01

    Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems. PMID:28300179

  11. Loss of coherence and memory effects in quantum dynamics Loss of coherence and memory effects in quantum dynamics

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Floreanini, Roberto; Scholes, Greg

    2012-08-01

    The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless

  12. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    PubMed

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction.

  13. "Shut up and calculate": the available discursive positions in quantum physics courses

    NASA Astrophysics Data System (ADS)

    Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja

    2016-08-01

    Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum physics courses at two Swedish universities, we instead ask what it means to become a physicist, and whether certain ways of becoming a physicist and doing physics is privileged in this process. Asking the question of what discursive positions are made accessible to students, we use observations of lectures and problem solving sessions together with interviews with students to characterize the discourse in the courses. Many students seem to have high expectations for the quantum physics course and generally express that they appreciate the course more than other courses. Nevertheless, our analysis shows that the ways of being a "good quantum physics student" are limited by the dominating focus on calculating quantum physics in the courses. We argue that this could have negative consequences both for the education of future physicists and the discipline of physics itself, in that it may reproduce an instrumental "shut up and calculate"-culture of physics, as well as an elitist physics education. Additionally, many students who take the courses are not future physicists, and the limitation of discursive positions may also affect these students significantly.

  14. [Terahertz Absorption Spectra Simulation of Glutamine Based on Quantum-Chemical Calculation].

    PubMed

    Zhang, Tian-yao; Zhang, Zhao-hui; Zhao, Xiao-yan; Zhang, Han; Yan, Fang; Qian, Ping

    2015-08-01

    With simulation of absorption spectra in THz region based on quantum-chemical calculation, the THz absorption features of target materials can be assigned with theoretical normal vibration modes. This is necessary for deeply understanding the origin of THz absorption spectra. The reliabilities of simulation results mainly depend on the initial structures and theoretical methods used throughout the calculation. In our study, we utilized THz-TDS to obtain the THz absorption spectrum of solid-state L-glutamine. Then three quantum-chemical calculation schemes with different initial structures commonly used in previous studies were proposed to study the inter-molecular interactions' contribution to the THz absorption of glutamine, containing monomer structure, dimer structure and crystal unit cell structure. After structure optimization and vibration modes' calculation based on density functional theory, the calculation results were converted to absorption spectra by Lorentzian line shape function for visual comparison with experimental spectra. The result of dimmer structure is better than monomer structure in number of absorption features while worse than crystal unit cell structure in position of absorption peaks. With the most reliable simulation result from crystal unit cell calculation, we successfully assigned all three experimental absorption peaks of glutamine ranged from 0.3 to 2.6 THz with overall vibration modes. Our study reveals that the crystal unit cell should be used as initial structure during theoretical simulation of solid-state samples' THz absorption spectrum which comprehensively considers not only the intra-molecular interactions but also inter-molecular interactions.

  15. Numerical approach to time-dependent quantum transport and dynamical Kondo transition.

    PubMed

    Zheng, Xiao; Jin, Jinshuang; Welack, Sven; Luo, Meng; Yan, YiJing

    2009-04-28

    An accurate and efficient numerical approach is developed for the transient electronic dynamics of open quantum systems at low temperatures. The calculations are based on a formally exact hierarchical equations of motion quantum dissipation theory [J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)]. We propose a hybrid scheme that combines the Matsubara expansion technique and a frequency dispersion treatment to account for reservoir correlation functions. The new scheme not just admits various forms of reservoir spectral functions but also greatly reduces the computational cost of the resulting hierarchical equations, especially in the low temperature regime. Dynamical Kondo effects are obtained and the cotunneling induced Kondo transitions are resolved in the transient current in response to time-dependent external voltages.

  16. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  17. Optimally combining dynamical decoupling and quantum error correction.

    PubMed

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  18. Dynamical cooling of nuclear spins in double quantum dots.

    PubMed

    Rudner, M S; Levitov, L S

    2010-07-09

    Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.

  19. Emergence of coherence and the dynamics of quantum phase transitions

    PubMed Central

    Braun, Simon; Friesdorf, Mathis; Hodgman, Sean S.; Schreiber, Michael; Ronzheimer, Jens Philipp; Riera, Arnau; del Rey, Marco; Bloch, Immanuel; Eisert, Jens

    2015-01-01

    The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose–Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble–Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model. PMID:25775515

  20. Emergence of coherence and the dynamics of quantum phase transitions.

    PubMed

    Braun, Simon; Friesdorf, Mathis; Hodgman, Sean S; Schreiber, Michael; Ronzheimer, Jens Philipp; Riera, Arnau; Del Rey, Marco; Bloch, Immanuel; Eisert, Jens; Schneider, Ulrich

    2015-03-24

    The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose-Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble-Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model.

  1. Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.

    PubMed

    Zamstein, Noa; Tannor, David J

    2012-12-14

    We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.

  2. A Separable, Dynamically Local Ontological Model of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pienaar, Jacques

    2016-01-01

    A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.

  3. Dynamics of Photoexcited State of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Trivedi, Dhara J.

    In this thesis, non-adiabatic molecular dynamics (NAMD) of excited states in semiconductor quantum dots are investigated. Nanoscale systems provide important opportunities for theory and computation for research because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial in understanding what is being measured. The simulation of NAMD is an indispensable tool for understanding complex ultrafast photoinduced processes such as charge and energy transfer, thermal relaxation, and charge recombination. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the thesis presents a comprehensive discussion of the dynamical processes in quantum dots, ranging from the initial photon absorption to the final emission. We investigate the energy relaxation and transfer rates in pure and surface passivated quantum dots of different sizes. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. We develop and implement more accurate and efficient methods for NAMD. These methods are advantageous over the traditional ones when one encounters classically forbidden transitions. We also explore the effect of decoherence and non-adiabatic couplings on the dynamics. The results indicate significant influence on the accuracy and related computational cost of the simulated dynamics.

  4. Band like Electronic Structures in Square Hollow Quantum Dots by 3D-MHFKS Calculation

    NASA Astrophysics Data System (ADS)

    Takizawa, Tokihiro; Okada, Hoshihito; Matsuse, Takehiro

    To find novel aspects of the electronic structures in quantum dots (QD) from a view point of spatial broken symmetry, 3-dimensional-mesh Hartree-Fock-Kohn-Sham (3D-MHFKS) calculations1 are applied to the interacting electron system of electron number N in a symmetry broken hollow QD. For the case of a square hollow quantum dot confined in square hard wall (HW) potential (SSHQD), the magnetic (B) field dependence of the obtained single particle energy levels and chemical potentials in B-N diagram are shown to have a band like electronic structures over the wide B-field range up to 20T. To clarify the origin of the band like electronic structures in SSHQD, 3D-MHFKS calculations are also applied for the mixed symmetry QD's with a circular hollow in square HW potential (SCHQD) and with a square hollow in circular HW potential (CSHQD).

  5. Calculation of spontaneous emission and gain spectra for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Yang, Q. K.; Li, A. Z.

    2000-02-01

    In this paper, a quantum cascade laser has been treated as a three-level system, and the calculation of the spontaneous emission and gain spectra has been given. In the calculation, the conduction band nonparabolicity and the injection and exit of electrons have been considered. Results have shown that with increasing injection current, the spontaneous emission peak blue shifts, and the peak intensity increases near linearly with current. With increasing temperatures, the broadening of the spontaneous emission spectra has been attributed to the electron-optical phonon interactions. The peak gain of the stimulated emission has been shown to be determined mainly by the subband lifespans. We have pointed out that it is essential to obtain a long lifespan for the second excited state and short lifespan for the first excited state in order to obtain efficient population inversion and high peak gain for quantum cascade lasers.

  6. Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics

    PubMed Central

    Hu, Kan-Nian; Debelouchina, Galia T.; Smith, Albert A.; Griffin, Robert G.

    2011-01-01

    Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer—the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron–nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω0I, where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ωM = ω0S ± ω0I, where ωM, ω0S and ω0I are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω0I > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω0S1−ω0S2=ω0I and ωM∼ω0S1 orω0S2, where ω0S1 and ω0S2 are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the

  7. Nonlinear damping calculation in cylindrical gear dynamic modeling

    NASA Astrophysics Data System (ADS)

    Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc

    2012-04-01

    The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.

  8. Helium trimer calculations with a public quantum three-body code

    SciTech Connect

    Kolganova, E. A.; Roudnev, V.; Cavagnero, M.

    2012-10-15

    We present an illustration of using a quantumthree-body code being prepared for public release. The code is based on iterative solving of the three-dimensional Faddeev equations. The code is easy to use and allows users to perform highly-accurate calculations of quantum three-body systems. The previously known results for He{sub 3} ground state are well reproduced by the code.

  9. Quantum dynamics in the bosonic Josephson junction

    SciTech Connect

    Chuchem, Maya; Cohen, Doron; Smith-Mannschott, Katrina; Hiller, Moritz; Kottos, Tsampikos; Vardi, Amichay

    2010-11-15

    We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial relative phase between the two condensates. For initially incoherent condensates, we find a universal value for the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix coherent preparations, finding striking differences in their convergence to classicality as the number of particles increases.

  10. Quantum dynamics through conical intersections in macrosystems: Combining effective modes and time-dependent Hartree

    NASA Astrophysics Data System (ADS)

    Basler, Mathias; Gindensperger, Etienne; Meyer, Hans-Dieter; Cederbaum, Lorenz S.

    2008-05-01

    We address the nonadiabatic quantum dynamics of (macro)systems involving a vast number of nuclear degrees of freedom (modes) in the presence of conical intersections. The macrosystem is first decomposed into a system part carrying a few, strongly coupled modes, and an environment, comprising the remaining modes. By successively transforming the modes of the environment, a hierarchy of effective Hamiltonians for the environment can be constructed. Each effective Hamiltonian depends on a reduced number of effective modes, which carry cumulative effects. The environment is described by a few effective modes augmented by a residual environment. In practice, the effective modes can be added to the system's modes and the quantum dynamics of the entire macrosystem can be accurately calculated on a limited time-interval. For longer times, however, the residual environment plays a role. We investigate the possibility to treat fully quantum mechanically the system plus a few effective environmental modes, augmented by the dynamics of the residual environment treated by the time-dependent Hartree (TDH) approximation. While the TDH approximation is known to fail to correctly reproduce the dynamics in the presence of conical intersections, it is shown that its use on top of the effective-mode formalism leads to much better results. Two numerical examples are presented and discussed; one of them is known to be a critical case for the TDH approximation.

  11. Quantum calculations of the carrier mobility: Methodology, Matthiessen's rule, and comparison with semi-classical approaches

    SciTech Connect

    Niquet, Yann-Michel Nguyen, Viet-Hung; Duchemin, Ivan; Nier, Olivier; Rideau, Denis

    2014-02-07

    We discuss carrier mobilities in the quantum Non-Equilibrium Green's Functions (NEGF) framework. We introduce a method for the extraction of the mobility that is free from contact resistance contamination and with minimal needs for ensemble averages. We focus on silicon thin films as an illustration, although the method can be applied to various materials such as semiconductor nanowires or carbon nanostructures. We then introduce a new paradigm for the definition of the partial mobility μ{sub M} associated with a given elastic scattering mechanism “M,” taking phonons (PH) as a reference (μ{sub M}{sup −1}=μ{sub PH+M}{sup −1}−μ{sub PH}{sup −1}). We argue that this definition makes better sense in a quantum transport framework as it is free from long range interference effects that can appear in purely ballistic calculations. As a matter of fact, these mobilities satisfy Matthiessen's rule for three mechanisms [e.g., surface roughness (SR), remote Coulomb scattering (RCS) and phonons] much better than the usual, single mechanism calculations. We also discuss the problems raised by the long range spatial correlations in the RCS disorder. Finally, we compare semi-classical Kubo-Greenwood (KG) and quantum NEGF calculations. We show that KG and NEGF are in reasonable agreement for phonon and RCS, yet not for SR. We discuss the reasons for these discrepancies.

  12. Quantum calculations of the carrier mobility: Methodology, Matthiessen's rule, and comparison with semi-classical approaches

    NASA Astrophysics Data System (ADS)

    Niquet, Yann-Michel; Nguyen, Viet-Hung; Triozon, François; Duchemin, Ivan; Nier, Olivier; Rideau, Denis

    2014-02-01

    We discuss carrier mobilities in the quantum Non-Equilibrium Green's Functions (NEGF) framework. We introduce a method for the extraction of the mobility that is free from contact resistance contamination and with minimal needs for ensemble averages. We focus on silicon thin films as an illustration, although the method can be applied to various materials such as semiconductor nanowires or carbon nanostructures. We then introduce a new paradigm for the definition of the partial mobility μM associated with a given elastic scattering mechanism "M," taking phonons (PH) as a reference (μM-1=μPH+M-1-μPH-1). We argue that this definition makes better sense in a quantum transport framework as it is free from long range interference effects that can appear in purely ballistic calculations. As a matter of fact, these mobilities satisfy Matthiessen's rule for three mechanisms [e.g., surface roughness (SR), remote Coulomb scattering (RCS) and phonons] much better than the usual, single mechanism calculations. We also discuss the problems raised by the long range spatial correlations in the RCS disorder. Finally, we compare semi-classical Kubo-Greenwood (KG) and quantum NEGF calculations. We show that KG and NEGF are in reasonable agreement for phonon and RCS, yet not for SR. We discuss the reasons for these discrepancies.

  13. Dynamical quantum Hall effect in the parameter space.

    PubMed

    Gritsev, V; Polkovnikov, A

    2012-04-24

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.

  14. Exact mapping between different dynamics of isotropically trapped quantum gases

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Pelster, Axel; Anglin, James R.

    2016-05-01

    Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact theoretical treatment. In this talk, we present a class of exact mappings between all the observables of different experiments, under the experimentally attainable conditions that the gas particles interact via a homogeneously scaling two-body potential which is in general time-dependent, and are confined in an isotropic harmonic trap. We express our result through an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics which makes it general. It applies to arbitrary measurements on possibly multi-component Bose or Fermi gases in arbitrary initial quantum states, no matter how highly excited or far from equilibrium. We use an example to show how the results of two different and currently feasible experiments can be mapped onto each other by our spacetime transformation. DAMOP sorting category: 6.11 Nonlinear dynamics and out-of-equilibrium trapped gases EW acknowledge the financial support from the Alexander von Humboldt foundation.

  15. Photosynthetic quantum yield dynamics: from photosystems to leaves.

    PubMed

    Hogewoning, Sander W; Wientjes, Emilie; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Croce, Roberta; Harbinson, Jeremy

    2012-05-01

    The mechanisms underlying the wavelength dependence of the quantum yield for CO(2) fixation (α) and its acclimation to the growth-light spectrum are quantitatively addressed, combining in vivo physiological and in vitro molecular methods. Cucumber (Cucumis sativus) was grown under an artificial sunlight spectrum, shade light spectrum, and blue light, and the quantum yield for photosystem I (PSI) and photosystem II (PSII) electron transport and α were simultaneously measured in vivo at 20 different wavelengths. The wavelength dependence of the photosystem excitation balance was calculated from both these in vivo data and in vitro from the photosystem composition and spectroscopic properties. Measuring wavelengths overexciting PSI produced a higher α for leaves grown under the shade light spectrum (i.e., PSI light), whereas wavelengths overexciting PSII produced a higher α for the sun and blue leaves. The shade spectrum produced the lowest PSI:PSII ratio. The photosystem excitation balance calculated from both in vivo and in vitro data was substantially similar and was shown to determine α at those wavelengths where absorption by carotenoids and nonphotosynthetic pigments is insignificant (i.e., >580 nm). We show quantitatively that leaves acclimate their photosystem composition to their growth light spectrum and how this changes the wavelength dependence of the photosystem excitation balance and quantum yield for CO(2) fixation. This also proves that combining different wavelengths can enhance quantum yields substantially.

  16. Reptation Quantum Monte Carlo Calculation of Charge Transfer in The Na-Cl Dimer

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    2015-03-01

    Reptation Quantum Monte Carlo (QMC) calculations are performed to describe the charge transfer behavior in a NaCl dimer. Influence of fixed node approximation on the charge transfer was examined by obtaining electron density via reputation QMC. We employ Slater-Jastrow wavefunction as the trial wavefunction, and the fermion nodes are obtained from single particle orbitals of Hartree-Fock and Density Functional Theory (DFT) with several exchange-correlation approximations. We will discuss our QMC results together with DFT calculations to give insights into observed dependence of the charge transfer behavior on the fixed-node approximation.

  17. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  18. Methods for calculating X-ray diffuse scattering from a crystalline medium with spheroidal quantum dots

    NASA Astrophysics Data System (ADS)

    Punegov, V. I.; Sivkov, D. V.

    2015-03-01

    Two independent approaches to calculate the angular distribution of X-ray diffusion scattering from a crystalline medium with spheroidal quantum dots (QDs) have been proposed. The first method is based on the analytical solution involving the multipole expansion of elastic strain fields beyond QDs. The second approach is based on calculations of atomic displacements near QDs by the Green's function method. An analysis of the diffuse scattering intensity distribution in the reciprocal space within these two approaches shows that both methods yield similar results for the chosen models of QD spatial distribution.

  19. Nonadiabatic Dynamics in Atomistic Environments: Harnessing Quantum-Classical Theory with Generalized Quantum Master Equations.

    PubMed

    Pfalzgraff, William C; Kelly, Aaron; Markland, Thomas E

    2015-12-03

    The development of methods that can efficiently and accurately treat nonadiabatic dynamics in quantum systems coupled to arbitrary atomistic environments remains a significant challenge in problems ranging from exciton transport in photovoltaic materials to electron and proton transfer in catalysis. Here we show that our recently introduced MF-GQME approach, which combines Ehrenfest mean field theory with the generalized quantum master equation framework, is able to yield quantitative accuracy over a wide range of charge-transfer regimes in fully atomistic environments. This is accompanied by computational speed-ups of up to 3 orders of magnitude over a direct application of Ehrenfest theory. This development offers the opportunity to efficiently investigate the atomistic details of nonadiabatic quantum relaxation processes in regimes where obtaining accurate results has previously been elusive.

  20. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    PubMed

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  1. Dynamical localization simulated on a few-qubit quantum computer

    SciTech Connect

    Benenti, Giuliano; Montangero, Simone; Casati, Giulio; Shepelyansky, Dima L.

    2003-05-01

    We show that a quantum computer operating with a small number of qubits can simulate the dynamical localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the system is computed efficiently up to a time t{>=}l, and then the localization length l can be obtained with accuracy {nu} by means of order 1/{nu}{sup 2} computer runs, followed by coarse-grained projective measurements on the computational basis. We also show that in the presence of static imperfections, a reliable computation of the localization length is possible without error correction up to an imperfection threshold which drops polynomially with the number of qubits.

  2. Time-correlated blip dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Wiedmann, Michael; Stockburger, Jürgen T.; Ankerhold, Joachim

    2016-11-01

    The non-Markovian dynamics of open quantum systems is still a challenging task, particularly in the nonperturbative regime at low temperatures. While the stochastic Liouville-von Neumann equation (SLN) provides a formally exact tool to tackle this problem for both discrete and continuous degrees of freedom, its performance deteriorates for long times due to an inherently nonunitary propagator. Here we present a scheme that combines the SLN with projector operator techniques based on finite dephasing times, gaining substantial improvements in terms of memory storage and statistics. The approach allows for systematic convergence and is applicable in regions of parameter space where perturbative methods fail, up to the long-time domain. Findings are applied to the coherent and incoherent quantum dynamics of two- and three-level systems. In the long-time domain sequential and superexchange transfer rates are extracted and compared to perturbative predictions.

  3. Quantum dynamics of impurities coupled to a Fermi sea

    NASA Astrophysics Data System (ADS)

    Parish, Meera M.; Levinsen, Jesper

    2016-11-01

    We consider the dynamics of an impurity atom immersed in an ideal Fermi gas at zero temperature. We focus on the coherent quantum evolution of the impurity following a quench to strong impurity-fermion interactions, where the interactions are assumed to be short range like in cold-atom experiments. To approximately model the many-body time evolution, we use a truncated basis method, where at most two particle-hole excitations of the Fermi sea are included. When the system is initially noninteracting, we show that our method exactly captures the short-time dynamics following the quench, and we find that the overlap between initial and final states displays a universal nonanalytic dependence on time in this limit. We further demonstrate how our method can be used to compute the impurity spectral function, as well as describe many-body phenomena involving coupled impurity spin states, such as Rabi oscillations in a medium or highly engineered quantum quenches.

  4. Quantum quench dynamics in analytically solvable one-dimensional models

    NASA Astrophysics Data System (ADS)

    Iucci, Anibal; Cazalilla, Miguel A.; Giamarchi, Thierry

    2008-03-01

    In connection with experiments in cold atomic systems, we consider the non-equilibrium dynamics of some analytically solvable one-dimensional systems which undergo a quantum quench. In this quench one or several of the parameters of the Hamiltonian of an interacting quantum system are changed over a very short time scale. In particular, we concentrate on the Luttinger model and the sine-Gordon model in the Luther-Emery point. For the latter, we show that the order parameter and the two-point correlation function relax in the long time limit to the values determined by a generalized Gibbs ensemble first discussed by J. T. Jaynes [Phys. Rev. 106, 620 (1957); 108, 171 (1957)], and recently conjectured by M. Rigol et.al. [Phys. Rev. Lett. 98, 050405 (2007)] to apply to the non-equilibrium dynamics of integrable systems.

  5. Universal short-time quantum critical dynamics in imaginary time

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Mai, Peizhi; Zhong, Fan

    2014-04-01

    We propose a scaling theory for the universal imaginary-time quantum critical dynamics for both short and long times. We discover that there exists a universal critical initial slip related to a small initial order parameter M0. In this stage, the order parameter M increases with the imaginary time τ as M ∝M0τθ with a universal initial-slip exponent θ. For the one-dimensional transverse-field Ising model, we estimate θ to be 0.373, which is markedly distinct from its classical counterpart. Apart from the local order parameter, we also show that the entanglement entropy exhibits universal behavior in the short-time region. As the critical exponents in the early stage and in equilibrium are identical, we apply the short-time dynamics method to determine quantum critical properties. The method is generally applicable in both the Landau-Ginzburg-Wilson paradigm and topological phase transitions.

  6. Quantum dynamics of a single dislocation

    NASA Astrophysics Data System (ADS)

    de Gennes, Pierre-Gilles

    We discuss the zero temperature motions of an edge dislocation in a quantum solid (e.g., He4). If the dislocation has one kink (equal in length to its Burgers vector b) the kink has a creation energy U and can move along the line with a certain transfer integral t. When t and U are of comparable magnitude, two opposite kinks can form an extended bound state, with a size l. The overall shape of the dislocation in the ground state is then associated with a random walk of persistence length l (along the line) and hop sizes b. We also discuss the motions of kinks under an applied shear stress σ: the glide velocity is proportional to exp(-σ*/σ), where σ* is a characteristic stress, controlled by tunneling processes. Mouvements quantiques d'une dislocation. On analyse le mouvement à température nulle d'une dislocation coin dans un solide quantique (He4). La dislocation peut avoir un cran (d'énergie U) dans son plan de glissement. Le cran peut avancer ou reculer le long de la dislocation par effet tunnel, avec une certaine intégrale de transfert t. Deux crans de signe opposé peuvent former un état lié. En présence d'une contrainte extérieure σ, la ligne doit avancer avec une vitesse ~exp(-σ*/σ) où σ* est une contrainte seuil, contrôlée par l'effet tunnel.

  7. Regular and chaotic quantum dynamics in atom-diatom reactive collisions

    SciTech Connect

    Gevorkyan, A. S.; Nyman, G.

    2008-05-15

    A new microirreversible 3D theory of quantum multichannel scattering in the three-body system is developed. The quantum approach is constructed on the generating trajectory tubes which allow taking into account influence of classical nonintegrability of the dynamical quantum system. When the volume of classical chaos in phase space is larger than the quantum cell in the corresponding quantum system, quantum chaos is generated. The probability of quantum transitions is constructed for this case. The collinear collision of the Li + (FH) {sup {yields}}(LiF) + H system is used for numerical illustration of a system generating quantum (wave) chaos.

  8. Nuclear quantum effect on intramolecular hydrogen bond of hydrogen maleate anion: An ab initio path integral molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kawashima, Yukio; Tachikawa, Masanori

    2013-05-01

    Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.

  9. An Experiment on the Limits of Quantum Electro-dynamics

    DOE R&D Accomplishments Database

    Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.

    1959-06-01

    The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)

  10. Spin dynamics and magnetic correlation length in two-dimensional quantum heisenberg antiferromagnets

    PubMed

    Carretta; Ciabattoni; Cuccoli; Mognaschi; Rigamonti; Tognetti; Verrucchi

    2000-01-10

    The correlated spin dynamics and temperature dependence of the correlation length xi(T) in two-dimensional quantum (S = 1/2) Heisenberg antiferromagnets (2DQHAF) on a square lattice are discussed in light of experimental results of proton spin lattice relaxation in copper formiate tetradeuterate. In this compound the exchange constant is much smaller than the one in recently studied 2DQHAF, such as La2CuO4 and Sr2CuO2Cl2. Thus the spin dynamics can be probed in detail over a wider temperature range. The NMR relaxation rates turn out to be in excellent agreement with a theoretical mode-coupling calculation. The deduced temperature behavior of xi(T) is in agreement with high-temperature expansions, quantum Monte Carlo simulations, and the pure quantum self-consistent harmonic approximation. Contrary to the predictions of the theories based on the nonlinear sigma model, no evidence of crossover between different quantum regimes is observed.

  11. Phase-ordering dynamics in itinerant quantum ferromagnets

    NASA Astrophysics Data System (ADS)

    Saha, R.; Belitz, D.; Kirkpatrick, T. R.

    2007-03-01

    Phase ordering following a rapid quench from the disordered phase to the ordered phase occurs via growth of domains that arise from spontaneous fluctuations. The linear size L of these domains grow as a power law function of time for late times: L(t) t^1/z, with z a dynamical exponent[1]. Until now this description of phase ordering dynamics has been applied to classical systems only. We apply this theory to describe domain growth in both clean and dirty itinerant quantum ferromagnets. The fluctuation effects that invalidate Hertz's theory of the quantum phase transition[2] also affect the phase ordering. For a quench into the ordered phase a transient regime appears, where the dynamical exponent differs from the classical case, and for asymptotically long times the prefactor of the growth law has an anomalous magnetization dependence[3]. A quench to the quantum critical point results in a growth law which is not a power-law function of time.[1] A.J. Bray, Adv. in Phys. 43, 357 (1994). [2] D. Belitz, T.R. Kirkpatrick, and T. Vojta, Rev. Mod. Phys. 77, 579 (2005). [3] D. Belitz, T. R. Kirkpatrick, and Ronojoy Saha, cond-mat/0610650.

  12. Accelerated monotonic convergence of optimal control over quantum dynamics.

    PubMed

    Ho, Tak-San; Rabitz, Herschel

    2010-08-01

    The control of quantum dynamics is often concerned with finding time-dependent optimal control fields that can take a system from an initial state to a final state to attain the desired value of an observable. This paper presents a general method for formulating monotonically convergent algorithms to iteratively improve control fields. The formulation is based on a two-point boundary-value quantum control paradigm (TBQCP) expressed as a nonlinear integral equation of the first kind arising from dynamical invariant tracking control. TBQCP is shown to be related to various existing techniques, including local control theory, the Krotov method, and optimal control theory. Several accelerated monotonic convergence schemes for iteratively computing control fields are derived based on TBQCP. Numerical simulations are compared with the Krotov method showing that the new TBQCP schemes are efficient and remain monotonically convergent over a wide range of the iteration step parameters and the control pulse lengths, which is attributable to the trap-free character of the transition probability quantum dynamics control landscape.

  13. Entanglement dynamics in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Abanin, Dmitry A.

    2017-03-01

    The dynamics of entanglement has recently been realized as a useful probe in studying ergodicity and its breakdown in quantum many-body systems. In this paper, we study theoretically the growth of entanglement in quantum many-body systems and propose a method to measure it experimentally. We show that entanglement growth is related to the spreading of local operators in real space. We present a simple toy model for ergodic systems in which linear spreading of operators results in a universal, linear-in-time growth of entanglement for initial product states, in contrast with the logarithmic growth of entanglement in many-body localized (MBL) systems. Furthermore, we show that entanglement growth is directly related to the decay of the Loschmidt echo in a composite system comprised of several copies of the original system, in which connections are controlled by a quantum switch (two-level system). By measuring only the switch's dynamics, the growth of the Rényi entropies can be extracted. Our work provides a way of understanding entanglement dynamics in many-body systems and to directly measure its growth in time via a single local measurement.

  14. Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations

    SciTech Connect

    Belyaev, Andrey K.; Domcke, Wolfgang; Lasser, Caroline Trigila, Giulio

    2015-03-14

    The Landau–Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs a recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Three different time scales are detected for the nuclear dynamics: Ultrafast Jahn–Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; and relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs. Beyond 100 fs, the adiabatic electronic populations are nearly constant due to a dynamic equilibrium between the three states. The ultrafast nonradiative decay of the excited-state populations provides a qualitative explanation of the experimental evidence that the ammonia cation is nonfluorescent.

  15. Multi-group dynamic quantum secret sharing with single photons

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Ma, Haiqiang; Wei, Kejin; Yang, Xiuqing; Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu

    2016-07-01

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application.

  16. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    SciTech Connect

    Abolfath, R; Guo, F; Chen, Z; Nath, R

    2014-06-01

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basis of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.

  17. Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential

    SciTech Connect

    Garashchuk, Sophya

    2010-01-07

    The quantum trajectory dynamics is extended to the wave function evolution in imaginary time. For a nodeless wave function a simple exponential form leads to the classical-like equations of motion of trajectories, representing the wave function, in the presence of the momentum-dependent quantum potential in addition to the external potential. For a Gaussian wave function this quantum potential is a time-dependent constant, generating zero quantum force yet contributing to the total energy. For anharmonic potentials the momentum-dependent quantum potential is cheaply estimated from the global Least-squares Fit to the trajectory momenta in the Taylor basis. Wave functions with nodes are described in the mixed coordinate space/trajectory representation at little additional computational cost. The nodeless wave function, represented by the trajectory ensemble, decays to the ground state. The mixed representation wave functions, with lower energy contributions projected out at each time step, decay to the excited energy states. The approach, illustrated by computing energy levels for anharmonic oscillators and energy level splitting for the double-well potential, can be used for the Boltzmann operator evolution.

  18. Dynamics of quantum turbulence of different spectra

    PubMed Central

    Walmsley, Paul; Zmeev, Dmitry; Pakpour, Fatemeh; Golov, Andrei

    2014-01-01

    Turbulence in a superfluid in the zero-temperature limit consists of a dynamic tangle of quantized vortex filaments. Different types of turbulence are possible depending on the level of correlations in the orientation of vortex lines. We provide an overview of turbulence in superfluid 4He with a particular focus on recent experiments probing the decay of turbulence in the zero-temperature regime below 0.5 K. We describe extensive measurements of the vortex line density during the free decay of different types of turbulence: ultraquantum and quasiclassical turbulence in both stationary and rotating containers. The observed decays and the effective dissipation as a function of temperature are compared with theoretical models and numerical simulations. PMID:24704876

  19. Quantum Dynamics of Ultracold Bose Polarons

    NASA Astrophysics Data System (ADS)

    Shchadilova, Yulia E.; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene

    2016-09-01

    We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T -matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned.

  20. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    SciTech Connect

    Liu, Tianhui; Fu, Bina E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H. E-mail: zhangdh@dicp.ac.cn

    2014-04-14

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.

  1. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2014-04-01

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.

  2. Trading drift and fluctuations in entropic dynamics: quantum dynamics as an emergent universality class

    NASA Astrophysics Data System (ADS)

    Bartolomeo, Daniel; Caticha, Ariel

    2016-03-01

    Entropic Dynamics (ED) is a framework that allows the formulation of dynamical theories as an application of entropic methods of inference. In the generic application of ED to derive the Schrödinger equation for N particles the dynamics is a non-dissipative diffusion in which the system follows a “Brownian” trajectory with fluctuations superposed on a smooth drift. We show that there is a family of ED models that differ at the “microscopic” or sub-quantum level in that one can enhance or suppress the fluctuations relative to the drift. Nevertheless, members of this family belong to the same universality class in that they all lead to the same emergent Schrödinger behavior at the “macroscopic” or quantum level. The model in which fluctuations are totally suppressed is of particular interest: the system evolves along the smooth lines of probability flow. Thus ED includes the Bohmian or causal form of quantum mechanics as a special limiting case. We briefly explore a different universality class - a nondissipative dynamics with microscopic fluctuations but no quantum potential. The Bohmian limit of these hybrid models is equivalent to classical mechanics. Finally we show that the Heisenberg uncertainty relation is unaffected either by enhancing or suppressing microscopic fluctuations or by switching off the quantum potential.

  3. Quantum computing applied to calculations of molecular energies: CH2 benchmark.

    PubMed

    Veis, Libor; Pittner, Jiří

    2010-11-21

    Quantum computers are appealing for their ability to solve some tasks much faster than their classical counterparts. It was shown in [Aspuru-Guzik et al., Science 309, 1704 (2005)] that they, if available, would be able to perform the full configuration interaction (FCI) energy calculations with a polynomial scaling. This is in contrast to conventional computers where FCI scales exponentially. We have developed a code for simulation of quantum computers and implemented our version of the quantum FCI algorithm. We provide a detailed description of this algorithm and the results of the assessment of its performance on the four lowest lying electronic states of CH(2) molecule. This molecule was chosen as a benchmark, since its two lowest lying (1)A(1) states exhibit a multireference character at the equilibrium geometry. It has been shown that with a suitably chosen initial state of the quantum register, one is able to achieve the probability amplification regime of the iterative phase estimation algorithm even in this case.

  4. Microscopic model calculations for the magnetization process of layered triangular-lattice quantum antiferromagnets.

    PubMed

    Yamamoto, Daisuke; Marmorini, Giacomo; Danshita, Ippei

    2015-01-16

    Magnetization processes of spin-1/2 layered triangular-lattice antiferromagnets (TLAFs) under a magnetic field H are studied by means of a numerical cluster mean-field method with a scaling scheme. We find that small antiferromagnetic couplings between the layers give rise to several types of extra quantum phase transitions among different high-field coplanar phases. Especially, a field-induced first-order transition is found to occur at H≈0.7H_{s}, where H_{s} is the saturation field, as another common quantum effect of ideal TLAFs in addition to the well-established one-third plateau. Our microscopic model calculation with appropriate parameters shows excellent agreement with experiments on Ba_{3}CoSb_{2}O_{9} [T. Susuki et al., Phys. Rev. Lett. 110, 267201 (2013)]. Given this fact, we suggest that the Co^{2+}-based compounds may allow for quantum simulations of intriguing properties of this simple frustrated model, such as quantum criticality and supersolid states.

  5. Quantum Dynamics of a d-wave Josephson Junction

    NASA Astrophysics Data System (ADS)

    Bauch, Thilo

    2007-03-01

    Thilo Bauch ^1, Floriana Lombardi ^1, Tobias Lindstr"om ^2, Francesco Tafuri ^3, Giacomo Rotoli ^4, Per Delsing ^1, Tord Claeson ^1 1 Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-412 96 G"oteborg, Sweden. 2 National Physical Laboratory, Queens Road, Teddington, Middlesex TW11 0LW, UK. 3 Istituto Nazionale per la Fisica della Materia-Dipartimento Ingegneria dell'Informazione, Seconda Universita di Napoli, Aversa (CE), Italy. 4 Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Universita of L'Aquila, Localita Monteluco, L'Aquila, Italy. We present direct observation of macroscopic quantum properties in an all high critical temperature superconductor d-wave Josephson junction. Although dissipation caused by low energy excitations is expected to strongly suppress quantum effects we demonstrate macroscopic quantum tunneling [1] and energy level quantization [2] in our d-wave Josephson junction. The results clearly indicate that the role of dissipation mechanisms in high temperature superconductors has to be revised, and may also have consequences for a new class of solid state ``quiet'' quantum bit with superior coherence time. We show that the dynamics of the YBCO grain boundary Josephson junctions fabricated on a STO substrate are strongly affected by their environment. As a first approximation we model the environment by the stray capacitance and stray inductance of the junction electrodes. The total system consisting of the junction and stray elements has two degrees of freedom resulting in two characteristic resonance frequencies. Both frequencies have to be considered to describe the quantum mechanical behavior of the Josephson circuit. [1] T. Bauch et al, Phys. Rev. Lett. 94, 087003 (2005). [2] T. Bauch et al, Science 311, 57 (2006).

  6. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules.

    PubMed

    Fox, Stephen J; Pittock, Chris; Fox, Thomas; Tautermann, Christofer S; Malcolm, Noj; Skylaris, Chris-Kriton

    2011-12-14

    Biomolecular simulations with atomistic detail are often required to describe interactions with chemical accuracy for applications such as the calculation of free energies of binding or chemical reactions in enzymes. Force fields are typically used for this task but these rely on extensive parameterisation which in cases can lead to limited accuracy and transferability, for example for ligands with unusual functional groups. These limitations can be overcome with first principles calculations with methods such as density functional theory (DFT) but at a much higher computational cost. The use of electrostatic embedding can significantly reduce this cost by representing a portion of the simulated system in terms of highly localised charge distributions. These classical charge distributions are electrostatically coupled with the quantum system and represent the effect of the environment in which the quantum system is embedded. In this paper we describe and evaluate such an embedding scheme in which the polarisation of the electronic density by the embedding charges occurs self-consistently during the calculation of the density. We have implemented this scheme in a linear-scaling DFT program as our aim is to treat with DFT entire biomolecules (such as proteins) and large portions of the solvent. We test this approach in the calculation of interaction energies of ligands with biomolecules and solvent and investigate under what conditions these can be obtained with the same level of accuracy as when the entire system is described by DFT, for a variety of neutral and charged species.

  7. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics.

    PubMed

    Straka, Michal; Lantto, Perttu; Vaara, Juha

    2008-03-27

    We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized

  8. Quantum dynamics of cold trapped ions with application to quantum computation

    NASA Astrophysics Data System (ADS)

    James, D. F. V.

    1998-02-01

    The theory of interactions between lasers and cold trapped ions as it pertains to the design of Cirac-Zoller quantum computers is discussed. The mean positions of the trapped ions, the eigenvalues and eigenmodes of the ions' oscillations, the magnitude of the Rabi frequencies for both allowed and forbidden internal transitions of the ions, and the validity criterion for the required Hamiltonian are calculated. Energy level data for a variety of ion species are also presented.

  9. Dynamical coupled channels calculation of pion and omega meson production

    SciTech Connect

    Paris, Mark W.

    2009-02-15

    The dynamical coupled-channels approach developed at the Excited Baryon Analysis Center is extended to include the {omega}N channel to study {pi}- and {omega}-meson production induced by scattering pions and photons from the proton. Six intermediate channels, including {pi}N, {eta}N, {pi}{delta}, {sigma}N, {rho}N, and {omega}N, are employed to describe unpolarized and polarized data. Bare parameters in an effective hadronic Lagrangian are determined in a fit to the data for {pi}N{yields}{pi}N, {gamma}N{yields}{pi}N, {pi}{sup -}p{yields}{omega}n, and {gamma}p{yields}{omega}p reactions at center-of-mass energies from threshold to W<2.0 GeV. The T matrix determined in these fits is used to calculate the photon beam asymmetry for {omega}-meson production and the {omega}N{yields}{omega}N total cross section and {omega}N-scattering lengths. The calculated beam asymmetry is in good agreement with the observed in the range of energies near threshold to W < or approx. 2.0 GeV.

  10. Born Oppenheimer Molecular Dynamics calculation of the νO-H IR spectra for acetic acid cyclic dimers

    NASA Astrophysics Data System (ADS)

    El Amine Benmalti, Mohamed; Krallafa, Abdelghani; Gaigeot, Marie-Pierre

    2015-01-01

    Both ab initio molecular dynamics simulations based on the Born-Oppenheimer approach calculations and a quantum theoretical model are used in order to study the IR spectrum of the acetic acid dimer in the gas phase. The theoretical model is taking into account the strong anharmonic coupling, Davydov coupling, multiple Fermi resonances between the first harmonics of some bending modes and the first excited state of the symmetric combination of the two vO-H modes and the quantum direct and indirect relaxation. The IR spectra obtained from DFT-based molecular dynamics is compared with our theoretical lineshape and with experiment. Note that in a previous work we have shown that our approach reproduces satisfactorily the main futures of the IR experimental lineshapes of the acetic acid dimer [Mohamed el Amine Benmalti, Paul Blaise, H. T. Flakus, Olivier Henri-Rousseau, Chem Phys, 320(2006) 267-274.].

  11. An efficient monte carlo method for calculating the equilibrium properties for a quantum system coupled strongly to a classical one

    NASA Astrophysics Data System (ADS)

    Carmeli, Benny; Metiu, Horia

    1987-02-01

    We calculate the equilibrium properties of a system consisting of two strongly interacting quantum and classical subsystems, by using a fast Fourier transform method to evaluate the quantum contribution and a Monte Carlo method to evaluate the contribution of the classical part. The method is applied to a model relevant to tunneling problems.

  12. Communication: Multistate quantum dynamics of photodissociation of carbon dioxide between 120 nm and 160 nm

    SciTech Connect

    Grebenshchikov, Sergy Yu.

    2012-07-14

    UV absorption cross section of CO{sub 2} is studied using high level ab initio quantum chemistry for electrons and iterative quantum dynamics for nuclear motion on interacting global full dimensional potential energy surfaces. Six electronic states-1, 2, 3{sup 1}A{sup Prime} and 1, 2, 3{sup 1}A{sup Double-Prime }-are considered. At linearity, they correspond to the ground electronic state X(tilde sign){sup 1}{Sigma}{sub g}{sup +} and the optically forbidden but vibronically allowed valence states 1{sup 1}{Delta}{sub u}, 1{sup 1}{Sigma}{sub u}{sup -}, and 1{sup 1}{Pi}{sub g}. In the Franck-Condon region, these states interact via Renner-Teller and conical intersections and are simultaneously involved in an intricate network of non-adiabatic couplings. The absorption spectrum, calculated for many rotational states, reproduces the distinct two-band shape of the experimental spectrum measured at 190 K and the characteristic patterns of the diffuse structures in each band. Quantum dynamics unravel the relative importance of different vibronic mechanisms, while metastable resonance states, underlying the diffuse structures, provide dynamically based vibronic assignments of individual lines.

  13. Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Song Bin; Wu, Yong; Wang, Jian Guo

    2016-12-01

    The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.

  14. Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Ruixue; Chen, Hongwei; Gong, Jiangbin; Peng, Xinhua; Du, Jiangfeng

    2011-07-08

    Quantum simulation can beat current classical computers with minimally a few tens of qubits. Here we report an experimental demonstration that a small nuclear-magnetic-resonance quantum simulator is already able to simulate the dynamics of a prototype laser-driven isomerization reaction using engineered quantum control pulses. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future.

  15. Calculating work in weakly driven quantum master equations: Backward and forward equations

    NASA Astrophysics Data System (ADS)

    Liu, Fei

    2016-01-01

    I present a technical report indicating that the two methods used for calculating characteristic functions for the work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014), 10.1103/PhysRevE.89.042122], while the other is based on two energy measurements on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014), 10.1103/PhysRevE.90.022103]. These represent backward and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward and forward equations used in classical stochastic theory. The microscopic basis for the former method is also clarified. In addition, a previously unnoticed equality related to the heat is also revealed.

  16. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  17. Low-Mode Conformational Search Method with Semiempirical Quantum Mechanical Calculations: Application to Enantioselective Organocatalysis.

    PubMed

    Kamachi, Takashi; Yoshizawa, Kazunari

    2016-02-22

    A conformational search program for finding low-energy conformations of large noncovalent complexes has been developed. A quantitatively reliable semiempirical quantum mechanical PM6-DH+ method, which is able to accurately describe noncovalent interactions at a low computational cost, was employed in contrast to conventional conformational search programs in which molecular mechanical methods are usually adopted. Our approach is based on the low-mode method whereby an initial structure is perturbed along one of its low-mode eigenvectors to generate new conformations. This method was applied to determine the most stable conformation of transition state for enantioselective alkylation by the Maruoka and cinchona alkaloid catalysts and Hantzsch ester hydrogenation of imines by chiral phosphoric acid. Besides successfully reproducing the previously reported most stable DFT conformations, the conformational search with the semiempirical quantum mechanical calculations newly discovered a more stable conformation at a low computational cost.

  18. FragBuilder: an efficient Python library to setup quantum chemistry calculations on peptides models.

    PubMed

    Christensen, Anders S; Hamelryck, Thomas; Jensen, Jan H

    2014-01-01

    We present a powerful Python library to quickly and efficiently generate realistic peptide model structures. The library makes it possible to quickly set up quantum mechanical calculations on model peptide structures. It is possible to manually specify a specific conformation of the peptide. Additionally the library also offers sampling of backbone conformations and side chain rotamer conformations from continuous distributions. The generated peptides can then be geometry optimized by the MMFF94 molecular mechanics force field via convenient functions inside the library. Finally, it is possible to output the resulting structures directly to files in a variety of useful formats, such as XYZ or PDB formats, or directly as input files for a quantum chemistry program. FragBuilder is freely available at https://github.com/jensengroup/fragbuilder/ under the terms of the BSD open source license.

  19. Quantum calculation of disordered length in fcc single crystals using channelling techniques

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.

    2006-04-01

    Lattices of face-centred cubic crystals (fcc), due to irradiation processes, may become disordered in stable configurations like the dumb-bell configuration (DBC) or body-centred interstitial (BCI). In this work, a quantum mechanical treatment for the calculation of transmission coefficients of channelled positrons from their bound states in the normal lattice regions into the allowed bound states in the disordered regions is given as a function of the length of the disordered regions. In order to obtain more reliable results, higher anharmonic terms in the planar channelling potential are considered in the calculations by using first-order perturbation theory where new bound states have been found. The calculations were executed in the energy range 10 200 MeV of the incident positron on a copper single crystal in the planar direction (100).

  20. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    PubMed

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.