Science.gov

Sample records for quantum efficiency cathode

  1. Nano-patterned superconducting surface for high quantum efficiency cathode

    DOEpatents

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  2. Time dependant quantum efficiency and dark current measurements in an RF photocathode injector with a high quantum efficiency cathode

    SciTech Connect

    Fliller, R.P., III; Edwards, H.; Hartung, W.; /Michigan State U., NSCL

    2005-05-01

    Studies of photo-emission and field emission behavior in an RF gun have been carried out. Unexpected phenomena were observed. In situ changes in the cathode's quantum efficiency and dark current with time were seen during operation of the photo-injector. These changes were correlated with the magnetostatic field at the cathode. In addition, multipacting has been observed under certain conditions. Recent measurements indicate a correlation between multipacting and anomalous photo- and field emission behavior.

  3. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-05-23

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected

  4. Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes.

    PubMed

    Peng, Huiren; Jiang, Yibin; Chen, Shuming

    2016-10-20

    Colloidal quantum dot light-emitting diodes (QLEDs) are recognized as promising candidates for next generation displays. QLEDs can be fabricated by low-cost solution processing except for the metal electrodes, which, in general, are deposited by costly vacuum evaporation. To be fully compatible with the low-cost solution process, we herein demonstrate vacuum-free and solvent-free fabrication of electrodes using a printable liquid metal. With eutectic gallium-indium (EGaIn) based liquid metal cathodes, vacuum-free-processed QLEDs are demonstrated with superior external quantum efficiencies of 11.51%, 12.85% and 5.03% for red, green and blue devices, respectively, which are about 2-, 1.5- and 1.1-fold higher than those of the devices with thermally evaporated Al cathodes. The improved performance is attributable to the reduction of electron injection by the native oxide of EGaIn, which serves as an electron-blocking layer for the devices and thus improves the balance of carrier injection. Also, the T50 half-lifetime of the vacuum-free-processed QLEDs is about 2-fold longer than that of the devices with Al cathodes. Our results demonstrate that EGaIn-based solvent-free liquid metals are promising printable electrodes for realizing efficient, low-cost and vacuum-free-processed QLEDs. The elimination of vacuum and high-temperature processes significantly reduces the production cost and paves the way for industrial roll-to-roll manufacturing of large area displays.

  5. Hydroxyl-Terminated CuInS2-Based Quantum Dots: Potential Cathode Interfacial Modifiers for Efficient Inverted Polymer Solar Cells.

    PubMed

    Chen, Hui; Chao, Pengjie; Han, Dengbao; Wang, Huan; Miao, Jingsheng; Zhong, Haizheng; Meng, Hong; He, Feng

    2017-03-01

    The use of interfacial modifiers on cathode or anode layers can effectively reduce the recombination loss and thus have potential to enhance the device performance of polymer solar cells. In this work, we demonstrated that hydroxyl-terminated CuInS2-based quantum dots could be potential cathode interfacial modifiers on ZnO layer for inverted polymer solar cells. By casting of a thin film of CuInS2-based quantum dots onto ZnO layer, the controlled devices show obvious enhancements of open-circuit voltage, short-circuit current, and fill factor. With an optimized interfacial layer with ∼7 nm thickness, an improvement of power conversion efficiency up to 16% is obtained and the optimized power conversion efficiency of PTB7-based (PTB7: poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno[3,4-b] thiophenediyl

  6. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    SciTech Connect

    Dowell, David H.; Schmerge, John F.; /SLAC

    2009-03-04

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others.

  7. Sorting quantum systems efficiently

    PubMed Central

    Ionicioiu, Radu

    2016-01-01

    Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705

  8. Efficient quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Dai, Yuewei

    2016-05-01

    An efficient quantum secret sharing scheme is proposed, in which the dealer generates some single particles and then uses the operations of quantum-controlled-not and Hadamard gate to encode a determinate secret into these particles. The participants get their shadows by performing the single-particle measurements on their particles, and even the dealer cannot know their shadows. Compared to the existing schemes, our scheme is more practical within the present technologies.

  9. Efficient quantum walk on a quantum processor

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-05-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  10. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  11. Efficient quantum walk on a quantum processor.

    PubMed

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-05-05

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  12. Efficient Quantum Information Processing via Quantum Compressions

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Luo, M. X.; Ma, S. Y.

    2016-01-01

    Our purpose is to improve the quantum transmission efficiency and reduce the resource cost by quantum compressions. The lossless quantum compression is accomplished using invertible quantum transformations and applied to the quantum teleportation and the simultaneous transmission over quantum butterfly networks. New schemes can greatly reduce the entanglement cost, and partially solve transmission conflictions over common links. Moreover, the local compression scheme is useful for approximate entanglement creations from pre-shared entanglements. This special task has not been addressed because of the quantum no-cloning theorem. Our scheme depends on the local quantum compression and the bipartite entanglement transfer. Simulations show the success probability is greatly dependent of the minimal entanglement coefficient. These results may be useful in general quantum network communication.

  13. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells.

    PubMed

    Nian, Li; Zhang, Wenqiang; Zhu, Na; Liu, Linlin; Xie, Zengqi; Wu, Hongbin; Würthner, Frank; Ma, Yuguang

    2015-06-10

    A highly photoconductive cathode interlayer was achieved by doping a 1 wt % light absorber, such as perylene bisimide, into a ZnO thin film, which absorbs a very small amount of light but shows highly increased conductivity of 4.50 × 10(-3) S/m under sunlight. Photovoltaic devices based on this kind of photoactive cathode interlayer exhibit significantly improved device performance, which is rather insensitive to the thickness of the cathode interlayer over a broad range. Moreover, a power conversion efficiency as high as 10.5% was obtained by incorporation of our photoconductive cathode interlayer with the PTB7-Th:PC71BM active layer, which is one of the best results for single-junction polymer solar cells.

  14. Efficient Quantum Pseudorandomness

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-04-01

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  15. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  16. Radiation Efficiency of AC-excited Micro Hollow Cathode Discharges

    SciTech Connect

    Biborosch, L. D.; Popescu, S.; Luca, D.; Petzenhauser, I.; Frank, K.

    2006-01-15

    This contribution reports on micro hollow cathode discharges (MHCD) generated in a device supplied by rectified but non-filtered low-frequency currents to preserve the cathode function of one micro electrode. The vacuum ultraviolet (VUV) radiation efficiency of such an MHCD was investigated in high-pressure argon in the frequency range from 40 kHz to 140 kHz. Both the currents and voltages of the MHCD device are nonlinear and the power input shows a flat maximum at about 50 kHz. The VUV relative efficiency also displays a more pronounced maximum at this frequency but remains still comparable with those of the dc supplied MHCD. Unfortunately, this VUV efficiency rather refers to the resonant lines of oxygen impurity at about 130.5 nm and not to the argon excimer radiation.

  17. Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode.

    PubMed

    Seo, Jung-Tak; Han, Junebeom; Lim, Taekyung; Lee, Ki-Heon; Hwang, Jungseek; Yang, Heesun; Ju, Sanghyun

    2014-12-23

    A fully transparent quantum dot light-emitting diode (QD-LED) was fabricated by incorporating two types (anode and cathode) of graphene-based electrodes, which were controlled in their work functions and sheet resistances. Either gold nanoparticles or silver nanowires were inserted between layers of graphene to control the work function, whereas the sheet resistance was determined by the number of graphene layers. The inserted gold nanoparticles or silver nanowires in graphene films caused a charge transfer and changed the work function to 4.9 and 4.3 eV, respectively, from the original work function (4.5 eV) of pristine graphene. Moreover the sheet resistance values for the anode and cathode electrodes were improved from ∼63,000 to ∼110 Ω/sq and from ∼100,000 to ∼741 Ω/sq as the number of graphene layers increased from 1 to 12 and from 1 to 8, respectively. The main peak wavelength, luminance, current efficiency, and optical transmittance of the fully transparent QD-LED integrated with graphene anode and cathode were 535 nm, ∼358 cd/m2, ∼0.45 cd/A, and 70-80%, respectively. The findings of the study are expected to lay a foundation for the production of high-efficiency, fully transparent, and flexible displays using graphene-based electrodes.

  18. Luminance enhancement in quantum dot light-emitting diodes fabricated with Field’s metal as the cathode

    NASA Astrophysics Data System (ADS)

    Basilio, Carlos; Oliva, Jorge; Lopez-Luke, Tzarara; Pu, Ying-Chih; Zhang, Jin Z.; Rodriguez, C. E.; de la Rosa, E.

    2017-03-01

    This work reports the fabrication and characterization of blue–green quantum dot light-emitting diodes (QD-LEDs) by using core/shell/shell Cd1‑x Zn x Se/ZnSe/ZnS quantum dots. Poly [(9,9-bis(3‧-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)] (PFN) was introduced in order to enhance the electron injection and also acted as a protecting layer during the deposition of the cathode (a Field’s metal sheet) on the organic/inorganic active layers at low temperature (63 °C). This procedure permitted us to eliminate the process of thermal evaporation for the deposition of metallic cathodes, which is typically used in the fabrication of OLEDs. The performance of devices made with an aluminum cathode was compared with that of devices which employed Field’s metal (FM) as the cathode. We found that the luminance and efficiency of devices with FM was ~70% higher with respect to those that employed aluminum as the cathode and their consumption of current was similar up to 13 V. We also demonstrated that the simultaneous presence of 1,2-ethanedethiol (EDT) and PFN enhanced the luminance in our devices and improved the current injection in QD-LEDs. Hence, the architecture for QD-LEDs presented in this work could be useful for the fabrication of low-cost luminescent devices.

  19. Quantum-enhanced Sensing and Efficient Quantum Computation

    DTIC Science & Technology

    2015-07-27

    AFRL-AFOSR-UK-TR-2015-0039 Quantum -enhanced sensing and efficient quantum computation Ian Walmsley THE UNIVERSITY OF...COVERED (From - To) 1 February 2013 - 31 January 2015 4. TITLE AND SUBTITLE Quantum -enhanced sensing and efficient quantum computation 5a. CONTRACT...accuracy. The system was used to improve quantum boson sampling tests. 15. SUBJECT TERMS EOARD, Quantum Information Processing, Transition Edge Sensors

  20. Efficient Universal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G.

    2013-12-01

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party’s quantum computer without revealing either which computation is performed, or its input and output. The first party’s computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog⁡2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  1. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-06

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  2. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode

    NASA Astrophysics Data System (ADS)

    Jing, Pengtao; Ji, Wenyu; Zeng, Qinghui; Li, Di; Qu, Songnan; Wang, Jia; Zhang, Dandan

    2015-07-01

    Efficient transparent quantum-dot light emitting diodes (QD-LEDs) are demonstrated by using a silver nanowire (AgNW) cathode. The devices are fabricated through a solution technique, not any vacuum processes are involved. Almost identical performance is obtained for both sides of the transparent device, which is primary due to the high transmittance of AgNW cathode. The maximum luminance (efficiency) for ITO and AgNW side is 25,040 cd/m2 (5.6 cd/A) and 23,440 cd/m2 (5.2 cd/A), respectively. The average specular transmittance of the device (involving the glass substrate) is over 60% in the visible range. This study indicates that AgNW electrodes can serve as a cost-effective, flexible alternative to ITO, and thereby improve the economic viability and mechanical stability of QD-LEDs. All the results suggest that this is an important progress toward producing transparent QD-LEDs based displays and lighting sources.

  3. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode

    PubMed Central

    Jing, Pengtao; Ji, Wenyu; Zeng, Qinghui; Li, Di; Qu, Songnan; Wang, Jia; Zhang, Dandan

    2015-01-01

    Efficient transparent quantum-dot light emitting diodes (QD-LEDs) are demonstrated by using a silver nanowire (AgNW) cathode. The devices are fabricated through a solution technique, not any vacuum processes are involved. Almost identical performance is obtained for both sides of the transparent device, which is primary due to the high transmittance of AgNW cathode. The maximum luminance (efficiency) for ITO and AgNW side is 25,040 cd/m2 (5.6 cd/A) and 23,440 cd/m2 (5.2 cd/A), respectively. The average specular transmittance of the device (involving the glass substrate) is over 60% in the visible range. This study indicates that AgNW electrodes can serve as a cost-effective, flexible alternative to ITO, and thereby improve the economic viability and mechanical stability of QD-LEDs. All the results suggest that this is an important progress toward producing transparent QD-LEDs based displays and lighting sources. PMID:26198668

  4. Efficiency and formalism of quantum games

    SciTech Connect

    Lee, C.F.; Johnson, Neil F.

    2003-02-01

    We show that quantum games are more efficient than classical games and provide a saturated upper bound for this efficiency. We also demonstrate that the set of finite classical games is a strict subset of the set of finite quantum games. Our analysis is based on a rigorous formulation of quantum games, from which quantum versions of the minimax theorem and the Nash equilibrium theorem can be deduced.

  5. Verification of high efficient broad beam cold cathode ion source

    NASA Astrophysics Data System (ADS)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  6. Efficient simulation of open quantum system in duality quantum computing

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Long, Gui-Lu

    2016-11-01

    Practical quantum systems are open systems due to interactions with their environment. Understanding the evolution of open systems dynamics is important for quantum noise processes , designing quantum error correcting codes, and performing simulations of open quantum systems. Here we proposed an efficient quantum algorithm for simulating the evolution of an open quantum system on a duality quantum computer. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality algorithm, the time evolution of open quantum system is realized by using Kraus operators which is naturally realized in duality quantum computing. Compared to the Lloyd's quantum algorithm [Science.273, 1073(1996)] , the dependence on the dimension of the open quantum system in our algorithm is decreased. Moreover, our algorithm uses a truncated Taylor series of the evolution operators, exponentially improving the performance on the precision compared with existing quantum simulation algorithms with unitary evolution operations.

  7. Quantum computing: Efficient fault tolerance

    NASA Astrophysics Data System (ADS)

    Gottesman, Daniel

    2016-12-01

    Dealing with errors in a quantum computer typically requires complex programming and many additional quantum bits. A technique for controlling errors has been proposed that alleviates both of these problems.

  8. Quantum efficiency of a double quantum dot microwave photon detector

    NASA Astrophysics Data System (ADS)

    Wong, Clement; Vavilov, Maxim

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we study charge transfer through a double quantum dot (DQD) capacitively coupled to a superconducting cavity subject to a microwave field. We analyze the DQD current response using input-output theory and determine the optimal parameter regime for complete absorption of radiation and efficient conversion of microwave photons to electric current. For experimentally available DQD systems, we show that the cavity-coupled DQD operates as a photon-to-charge converter with quantum efficiencies up to 80% C.W. acknowledges support by the Intelligence Community Postdoctoral Research Fellowship Program.

  9. Photosensor with enhanced quantum efficiency

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)

    1989-01-01

    A method to significantly increase the quantum efficiency (QE) of a CCD (or similar photosensor) applied in the UV, far UV and low energy x-ray regions of the spectrum. The increase in QE is accomplished by overthinning the backside of a CCD substrate beyond the epitaxial interface and UV flooding the sensor prior to use. The UV light photoemits electrons to the thinned surface and charges the backside negatively. This in turn forms an accumulation layer of holes near the Si-SiO.sub.2 interface creating an electric field gradient in the silicon which directs the photogenerated signal to the frontside where they are collected in pixel locations and later transferred. An oxide film, in which the backside charge resides, must have quality equivalent to a well aged native oxide which typically takes several years to form under ambient conditions. To reduce the amount of time in growing an oxide of sufficient quality, a process has been developed to grow an oxide by using deionized steam at 95.degree. C. which takes less than one hour to grow.

  10. Counterfactual quantum key distribution with high efficiency

    SciTech Connect

    Sun Ying; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  11. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  12. Cathodic stripping synthesis and cytotoxity studies of glutathione-capped CdTe quantum dots.

    PubMed

    Ge, Cunwang; Zhao, Yu; Hui, Jie; Zhang, Tianyi; Miao, Wujian; Yu, Wei

    2011-08-01

    A cathodic stripping of Te precursor in the presence of Cd2+ and biocompatible glutathione (GSH) was reported for facile synthesis of lowly cytotoxic and highly luminescent CdTe quantum dots (QDs) in aqueous solution. The photoluminescence, electrogenerated chemiluminescence (ECL), toxicity, and cyto-osmosis of the QDs were evaluated to reveal their potential bio-applications. The morphology and composition of as-prepared QDs were investigated by HRTEM and powder XRD spectroscopy, which indicated that the QDs consisted of a CdTe core coated with a CdS shell. The obtained CdTe/CdS core/shell QDs possessed good crystallinity, narrow monodispersity and long-term stability. These QDs showed high fluorescence quantum yields of 49% to 63% over a broad spectral range of 540-650 nm. Efficient and stable ECL of QDs was observed on the anodic potential region upon the electrode potential cycled between 1.5 and -2.0 V versus Ag/AgCl. Furthermore, human liver cancer HepG2 cells were chosen as model cells for toxicity assay of QDs. Effects of the concentration, size, and incubation time of CdTe QDs capped with GSH or mercaptoacetic acid (MAA) on the cell metabolic viability and cyto-osmosis were evaluated. GSH-capped CdTe QDs could infiltrate cytomembrane and karyothecas, and were less cytotoxic than MAA-capped ones under the same experimental conditions. The reported CdTe QDs could be good candidates of fluorescent and ECL probes for biosensing and cell imaging.

  13. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source.

    PubMed

    Obraztsov, Alexander N; Kleshch, Victor I; Smolnikova, Elena A

    2013-01-01

    The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

  14. An efficient quantum algorithm for spectral estimation

    NASA Astrophysics Data System (ADS)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum–classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  15. Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Gaines, Geoffrey A.

    1990-01-01

    Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.

  16. Efficient quantum dialogue without information leakage

    NASA Astrophysics Data System (ADS)

    Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong

    2015-02-01

    A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.

  17. Efficient multiparty quantum-secret-sharing schemes

    SciTech Connect

    Xiao Li; Deng Fuguo; Long Guilu; Pan Jianwei

    2004-05-01

    In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information.

  18. Efficient quantum computing of complex dynamics.

    PubMed

    Benenti, G; Casati, G; Montangero, S; Shepelyansky, D L

    2001-11-26

    We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more significant than the errors of random noise in gate operations.

  19. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer

    DOE PAGES

    Zhu, Zonglong; Chueh, Chu -Chen; Lin, Francis; ...

    2016-03-22

    A novel fullerene cathode interlayer is employed to facilitate the fabrication of stable and efficient perovskite solar cells. Here, this modified fullerene surfactant significantly increases air stability of the derived devices due to its hydrophobic characteristics to enable 80% of the initial PCE to be retained after being exposed in ambient condition with 20% relative humidity for 14 days.

  20. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries.

    PubMed

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-29

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12,441 mAh g(-1) at a current density of 100 mA g(-1). When they were cycled at a limited capacity of 800 mAh g(-1) at current densities of 200 or 400 mA g(-1), these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  1. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    NASA Astrophysics Data System (ADS)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  2. Efficient polymer light-emitting diode with air-stable aluminum cathode

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Doumon, N. Y.; Blom, P. W. M.

    2016-03-01

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlOx) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtained by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlOx cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlOx into the emissive layer. PLEDs with an AlOx cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.

  3. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  4. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  5. Improving quantum sensing efficiency with virtual modes

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Uhlmann, Jeffrey; Le, Truc; Jitrik, Oliverio; Venegas-Andraca, Salvador E.

    2016-05-01

    Recent research suggests that quantum radar offers several potential advantages over classical sensing technologies. At present, the primary practical challenge is the fast and efficient generation of entangled microwave photons. To mitigate this limitation we propose and briefly examine a distributed architecture to synthetically increase the number of effectively-distinguishable modes.

  6. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  7. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm(-1) at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  8. High efficiency quantum cascade laser frequency comb

    NASA Astrophysics Data System (ADS)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  9. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  10. Internal quantum efficiency modeling of silicon photodiodes.

    PubMed

    Gentile, T R; Brown, S W; Lykke, K R; Shaw, P S; Woodward, J T

    2010-04-01

    Results are presented for modeling of the shape of the internal quantum efficiency (IQE) versus wavelength for silicon photodiodes in the 400 nm to 900 nm wavelength range. The IQE data are based on measurements of the external quantum efficiencies of three transmission optical trap detectors using an extensive set of laser wavelengths, along with the transmittance of the traps. We find that a simplified version of a previously reported IQE model fits the data with an accuracy of better than 0.01%. These results provide an important validation of the National Institute of Standards and Technology (NIST) spectral radiant power responsivity scale disseminated through the NIST Spectral Comparator Facility, as well as those scales disseminated by other National Metrology Institutes who have employed the same model.

  11. Efficient quantum optical state engineering and applications

    NASA Astrophysics Data System (ADS)

    McCusker, Kevin T.

    Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.

  12. Optimization of electron transport and cathode materials for efficient organic solar cells

    NASA Astrophysics Data System (ADS)

    Colsmann, Alexander; Junge, Johannes; Wellinger, Thomas; Kayser, Christian; Lemmer, Uli

    2006-04-01

    In this work we discuss improvements of organic solar cells based on poly(3-hexylthiophene-2,5-diyl) : C 61-butyric acid methyl ester (P3HT:PCBM) blends. The polymer layer is combined with various electron transport materials and different cathodes. We were able to utilize the good charge carrier separation and transport properties of the P3HT:PCBM blend together with the flexibility of evaporated heterostructures. The systematic use of different cathodes such as calcium, aluminium/lithiumfluoride and organic intermediate layers resulted in higher fill factors and open circuit voltages compared to simple aluminium cathodes. In particular we studied the influence of additional layers of electron transport layer consisting of C 60, lithium doped bathophenanthroline (BPhen:Li) 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and 2,9- dimethyl-4,7-diphenyl-1,10-phenantrolene (BCP) on the cell properties. Solar cells with power conversion efficiencies well above 3% have been fabricated.

  13. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  14. Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process.

    PubMed

    Liang, Liang; Yu, Fangke; An, Yiran; Liu, Mengmeng; Zhou, Minghua

    2017-01-01

    A composite graphite felt (GF) modified with transition metal was fabricated and used as cathode in heterogeneous electro-Fenton (EF) for methyl orange (MO) degradation. Characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the morphology and surface physicochemical properties of the cathodes after modification were observed considerably changed. After loading metals, the current response became higher, the accumulation of H2O2 and the degradation efficiency of MO were improved. Under the same conditions, GF-Co had the highest catalytic activity for electro-reduction of O2 to H2O2 and MO degradation. At pH 3, 99 % of MO degradation efficiency was obtained using GF-Co after 120 min treatment and even at initial pH 9, 82 % of that was obtained. TOC removal efficiency reached 93.8 % using GF-Co at pH 3 after 120 min treatment while that was 12.3 % using GF. After ten-time runs, the mineralization ratio of the GF-Co was still 89.5 %, suggesting that GF-Co was very promising for wastewater treatment. The addition of isopropanol proved that (·)OH played an important role in degradation of MO.

  15. Efficient Polar Coding of Quantum Information

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.; Dupuis, Frédéric; Renner, Renato

    2012-08-01

    Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here, we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme that asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Our codes generally require preshared entanglement between sender and receiver, but for channels with a sufficiently low noise level we demonstrate that the rate of preshared entanglement required is zero.

  16. Efficient quantum dot-quantum dot and quantum dot-dye energy transfer in biotemplated assemblies.

    PubMed

    Achermann, Marc; Jeong, Sohee; Balet, Laurent; Montano, Gabriel A; Hollingsworth, Jennifer A

    2011-03-22

    CdSe semiconductor nanocrystal quantum dots are assembled into nanowire-like arrays employing microtubule fibers as nanoscale molecular "scaffolds." Spectrally and time-resolved energy-transfer analysis is used to assess the assembly of the nanoparticles into the hybrid inorganic biomolecular structure. Specifically, we demonstrate that a comprehensive study of energy transfer between quantum dot pairs on the biotemplate and, alternatively, between quantum dots and molecular dyes embedded in the microtubule scaffold comprises a powerful spectroscopic tool for evaluating the assembly process. In addition to revealing the extent to which assembly has occurred, the approach allows determination of particle-to-particle (and particle-to-dye) distances within the biomediated array. Significantly, the characterization is realized in situ, without need for further sample workup or risk of disturbing the solution-phase constructs. Furthermore, we find that the assemblies prepared in this way exhibit efficient quantum dot-quantum dot and quantum dot-dye energy transfer that affords faster energy-transfer rates compared to densely packed quantum dot arrays on planar substrates and to small-molecule-mediated quantum dot-dye couples, respectively.

  17. Structured electron beams from nano-engineered cathodes

    NASA Astrophysics Data System (ADS)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.; Piot, P.

    2017-03-01

    The ability to engineer cathodes at the nano-scale have opened new possibilities such as enhancing quantum efficiency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper, we present numerical investigations of the beam dynamics associated with this class of cathode in the weak- and strong-field regimes. We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  18. Information criteria for efficient quantum state estimation

    SciTech Connect

    Yin, J. O. S.; Enk, S. J. van

    2011-06-15

    Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state, or (iii) only the permutationally invariant part of the density matrix is determined. We add one more method in that same spirit: We allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in the above-mentioned cases, but is based on well-established statistical methods that go under the name of ''information criteria.'' We exploit here, in particular, the Akaike information criterion. We illustrate the method by simulating experiments on (noisy) Dicke states.

  19. Efficient multiuser quantum cryptography network based on entanglement

    PubMed Central

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-01-01

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory. PMID:28374854

  20. Duality quantum algorithm efficiently simulates open quantum systems

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-07-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.

  1. Duality quantum algorithm efficiently simulates open quantum systems.

    PubMed

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-07-28

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.

  2. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  3. Experimental Implementation of Efficient Linear Optics Quantum Computation

    DTIC Science & Technology

    2007-11-02

    Experimental Implementation of Efficient Linear Optics Quantum Computation Final Report G. J. Milburn, T. C. Ralph, and A. G. White University of...Queensland, Australia 1. Statement of Problem. One of the earliest proposals [1] for implementing quantum computation was based on encoding...containing few photons. In 2001 Knill, Laflamme and Milburn (KLM) found a way to circumvent this restriction and implement efficient quantum computation

  4. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells.

    PubMed

    Ter Heijne, Annemiek; Hamelers, Hubertus V M; De Wilde, Vinnie; Rozendal, René A; Buisman, Cees J N

    2006-09-01

    There is a need for alternative catalysts for oxygen reduction in the cathodic compartment of a microbial fuel cell (MFC). In this study, we show that a bipolar membrane combined with ferric iron reduction on a graphite electrode is an efficient cathode system in MFCs. A flat plate MFC with graphite felt electrodes, a volume of 1.2 L and a projected surface area of 290 cm2 was operated in continuous mode. Ferric iron was reduced to ferrous iron in the cathodic compartment according to Fe(3+) + e(-) --> Fe2+ (E0 = +0.77 V vs NHE, normal hydrogen electrode). This reversible electron transfer reaction considerably reduced the cathode overpotential. The low catholyte pH required to keep ferric iron soluble was maintained by using a bipolar membrane instead of the commonly used cation exchange membrane. For the MFC with cathodic ferric iron reduction, the maximum power density was 0.86 W/m2 at a current density of 4.5 A/m2. The Coulombic efficiency and energy recovery were 80-95% and 18-29% respectively.

  5. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  6. K2CsSb Cathode Development

    SciTech Connect

    Smedley,J.; Rao, T.; Wang, E.

    2008-10-01

    K{sub 2}CsSb is an attractive photocathode for high current applications. With a quantum efficiency of >4% at 532nm and >10% at 355nm, it is the only cathode to have demonstrated an average current of 35mA in an accelerator environment We describe ongoing cathode development work. for the energy recovery linac being constructed at BNL Several cathodes have been created on both copper and stainless steel substrates, and their spatial uniformity and spectral response have been characterized. Preliminary lifetime measurements have been performed at high average current densities (>1 mA/mm{sup 2}).

  7. Most Efficient Quantum Thermoelectric at Finite Power Output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2014-04-01

    Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems, heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

  8. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Li, Nan; An, Jingkun; Zhou, Lean; Li, Tian; Li, Junhui; Feng, Cuijuan; Wang, Xin

    2016-02-01

    Carbon black and graphite hybrid air-cathode is proved to be effective for H2O2 production in bioelectrochemical systems. The optimal mass ratio of carbon black to graphite is 1:5 with the highest H2O2 yield of 11.9 mg L-1 h-1 cm-2 (12.3 mA cm-2). Continuous flow is found to improve the current efficiency due to the avoidance of H2O2 accumulation. In the biological system, the highest H2O2 yield reaches 3.29 mg L-1h-1 (0.079 kg m-3day-1) with a current efficiency of 72%, which is higher than the abiotic system at the same current density. H2O2 produced in this system is mainly from the oxygen diffused through this air-cathode (>66%), especially when a more negative cathode potential is applied (94% at -1.0 V). This hybrid air-cathode has advantages of high H2O2 yield, high current density and no need of aeration, which make the synthesis of H2O2 more efficient and economical.

  9. Surface Characterization of the LCLS RF Gun Cathode

    SciTech Connect

    Brachmann, Axel; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Gilevich, Sasha; Hays, Gregory; Hering, Philippe; Huang, Zhirong; Iverson, Richard; Loos, Henrik; Miahnahri, Alan; Nordlund, Dennis; Nuhn, Heinz-Dieter; Pianetta, Piero; Turner, James; Welch, James; White, William; Wu, Juhao; Xiang, Dao; /SLAC

    2012-06-25

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  10. Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    NASA Astrophysics Data System (ADS)

    Hentschel, Alexander; Sanders, Barry C.

    2011-12-01

    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.

  11. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  12. Highly efficient frequency conversion with bandwidth compression of quantum light

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  13. Highly efficient and stable cryo-ground sulphur cathode for Li-S batteries

    NASA Astrophysics Data System (ADS)

    Kazda, T.; Krbal, M.; Pouzar, M.; Vondrák, J.; Straková, A. Fedorková; Slávik, M.; Wagner, T.; Macak, J. M.

    2016-11-01

    Here we report on a Li-S battery with cathode, based on a S powder obtained from bulk amorphous S, by cryogenic grinding. The cathode was prepared from a slurry, wherein the content of cryo-ground S powder was equal to 80 wt % (corresponds to ≈ 2.26 mg cm-2). Other slurry components included carbon Super P, and polyvinylidene fluoride, dispersed in N-methylpyrrolidone. The electrochemical performance of the as-prepared battery was compared to a battery based on an identically prepared paste, but containing reference S powder (with the orthorhombic structure). A longer life cycle, and enhanced capacity per gram, as well as per cm2 of electrode was revealed for the cryo-ground S-based cathode. The electrochemical results show that the loss in capacity of the cryo-ground S powder cathode was just 3% after 50 cycles, which suggests on a higher stability of S inside the cathode during cycling.

  14. Efficient quantum circuits for Toeplitz and Hankel matrices

    NASA Astrophysics Data System (ADS)

    Mahasinghe, A.; Wang, J. B.

    2016-07-01

    Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.

  15. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  16. Determination of the Quantum Efficiency of a Light Detector

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2008-01-01

    The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…

  17. Efficiency of lithium pacemaker batteries as a function of discharge rate and iodine:P2VP cathode composition

    SciTech Connect

    Helgeson, W.D.; Fester, K.E.

    1980-01-01

    Electrochemical discharge data for Li/I/sub 2/-P2VP pacemaker batteries at various discharge currents show the efficiency of the battery to be a function of discharge current. Depending on the iodine:P2VP cathode composition, the optimum current drain occurs between discharge currents of 100 to 200 /mu/a. As current drain is reduced to pacemaker application drains, 15-25 /mu/a, the efficiency of the Li/I/sub 2/-P2VP battery decreases. The loss in efficiency at pacemaker rates is attributed primarily to self-discharge. The efficiency of Li/I/sub 2/-P2VP batteries is improved by increasing the percent of iodine in the cathode. I/sub 2/:P2VP weight ratios of 10:1, 15:1 and 20:1 have been discharged at various currents and the data indicate that there is significant improvement in efficiency at pacemaker rate in going from 10:1 to 20:1 cathode weight ratio. 2 refs.

  18. High Quantum Efficiency AlGaN/InGaN Photodetectors

    SciTech Connect

    Buckley, James H; Leopold, Daniel

    2009-11-24

    High efficiency photon counting detectors in use today for high energy particle detection applications have a significant spectral mismatch with typical sources and have a number of practical problems compared with conventional bialkali photomultiplier tubes. Numerous high energy physics experiments that employ scintillation light detectors or Cherenkov detectors would benefit greatly from photomultipliers with higher quantum efficiencies. The need for extending the sensitivity of photon detectors to the blue and UV wavebands comes from the fact that both Cherenkov light and some scintillators have an emission spectrum which is peaked at short wavelengths. This research involves the development of high quantum efficiency, high gain, UV/blue photon counting detectors based on AlGaN/InGaN photocathode heterostructures grown by molecular beam epitaxy (MBE). The work could eventually lead to nearly ideal light detectors with a number of distinct advantages over existing technologies for numerous applications in high-energy physics and particle astrophysics. Potential advantages include much lower noise detection, better stability and radiation resistance than other cathode structures, very low radioactive background levels for deep underground experiments and high detection efficiency of individual UV-visible photons. We are also working on the development of photocathodes with intrinsic gain, initially improving the detection efficiency of hybrid semiconductor-vacuum tube devices, and eventually leading to an all-solid-state photomultiplier device.

  19. Quantum Efficiency of ZnO Nanowire Nanolasers

    SciTech Connect

    Zhang, Yanfeng; Russo, Richard E.; Mao, Samuel S.

    2005-03-28

    Crystalline ZnO nanowires were grown on sapphire and silicon substrates using pulsed-laser deposition. The optical properties of nanowire nanolasers, including their absolute light emission intensity and external and internal quantum efficiencies were experimentally determined. The external differential quantum efficiency was measured to be as high as 60% for lasing ZnO nanowires of 7.5 {micro}m in length, compared to a value of approximately 10% for photoluminescence. The absolute light emission intensity for individual nanowires was found to be in the vicinity of 0.1 mW. By measuring the dependence of external differential quantum efficiency on the cavity length, the internal quantum efficiency of ZnO nanowire nanolasers was determined to be about 85%.

  20. High-efficiency quantum state transfer and quantum memory using a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Eleuch, H.

    2015-03-01

    We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q factor it is possible to achieve a transfer efficiency of 99.4 % by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of 96 % employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.

  1. Quantum efficiency of the photocurrent in Schottky barrier structures

    NASA Astrophysics Data System (ADS)

    Simeonov, S. S.; Kafedzhiiska, E. I.; Gerasimov, A. L.

    1987-03-01

    Expressions for the concentration of minority and majority carriers in the illuminated space charge layer of Schottky barrier structures are obtained. The dark current and the photocurrent are determined from the minority and majority carrier concentration at the metal-semiconductor boundary of Schottky barrier structures. A correction to the Gartner expression for the quantum efficiency of the Schottky barrier structures is given. A qualitative estimation of a short-wavelength decrease in the quantum efficiency of Schottky barrier structures is proposed.

  2. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, Brian W.; Hanak, Joseph J.

    1986-01-01

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  3. Direct determination of quantum efficiency of semiconducting films

    DOEpatents

    Faughnan, B.W.; Hanak, J.J.

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  4. Quantum Efficient Detectors for Use in Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Faust, Jessica; Eastwood, Michael; Pavri, Betina; Raney, James

    1998-01-01

    The trap or quantum efficient detector has a quantum efficiency of greater than 0.98 for the region from 450 to 900 nm. The region of flattest response is from 600 to 900 nm. The QED consists of three windowless Hamamatsu silicon detectors. The QED was mounted below AVIRIS to monitor the Spectralon panel for changes in radiance during radiometric calibration. The next step is to permanently mount the detector to AVIRIS and monitor the overall radiance of scenes along with calibration.

  5. Optimal entanglement generation for efficient hybrid quantum repeaters

    SciTech Connect

    Azuma, Koji; Sota, Naoya; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki; Namiki, Ryo; Oezdemir, Sahin Kaya

    2009-12-15

    We propose a realistic protocol to generate entanglement between quantum memories at neighboring nodes in hybrid quantum repeaters. Generated entanglement includes only one type of error, which enables efficient entanglement distillation. In contrast to the known protocols with such a property, our protocol with ideal detectors achieves the theoretical limit of the success probability and the fidelity to a Bell state, promising higher efficiencies in the repeaters. We also show that the advantage of our protocol remains even with realistic threshold detectors.

  6. Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharges

    SciTech Connect

    Baranov, O.; Romanov, M.; Kumar, S.; Zong, X. X.; Ostrikov, K.

    2011-03-15

    Characteristics of electrical breakdown of a planar magnetron enhanced with an electromagnet and a hollow-cathode structure, are studied experimentally and numerically. At lower pressures the breakdown voltage shows a dependence on the applied magnetic field, and the voltage necessary to achieve the self-sustained discharge regime can be significantly reduced. At higher pressures, the dependence is less sensitive to the magnetic field magnitude and shows a tendency of increased breakdown voltage at the stronger magnetic fields. A model of the magnetron discharge breakdown is developed with the background gas pressure and the magnetic field used as parameters. The model describes the motion of electrons, which gain energy by passing the electric field across the magnetic field and undergo collisions with neutrals, thus generating new bulk electrons. The electrons are in turn accelerated in the electric field and effectively ionize a sufficient amount of neutrals to enable the discharge self-sustainment regime. The model is based on the assumption about the combined classical and near-wall mechanisms of electron conductivity across the magnetic field, and is consistent with the experimental results. The obtained results represent a significant advance toward energy-efficient multipurpose magnetron discharges.

  7. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  8. Efficient classical simulation of continuous variable quantum information processes.

    PubMed

    Bartlett, Stephen D; Sanders, Barry C; Braunstein, Samuel L; Nemoto, Kae

    2002-03-04

    We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.

  9. Efficient Luminescence from Perovskite Quantum Dot Solids.

    PubMed

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F; Sargent, Edward H

    2015-11-18

    Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  10. Quantum transport efficiency and Fourier's law.

    PubMed

    Manzano, Daniel; Tiersch, Markus; Asadian, Ali; Briegel, Hans J

    2012-12-01

    We analyze the steady-state energy transfer in a chain of coupled two-level systems connecting two thermal reservoirs. Through an analytic treatment we find that the energy current is independent of the system size, hence violating Fourier's law of heat conduction. The classical diffusive behavior in Fourier's law of heat conduction can be recovered by introducing decoherence to the quantum systems constituting the chain. We relate these results to recent discussions of energy transport in biological light-harvesting systems, and discuss the role of quantum coherence and entanglement.

  11. Bright high efficiency blue organic light-emitting diodes with Al{sub 2}O{sub 3}/Al cathodes

    SciTech Connect

    Tang, H.; Li, F.; Shinar, J.

    1997-11-01

    The behavior of bright, efficient, low-driving-voltage blue organic light-emitting diodes based on amino-oxadiazole-fluorenes (AODFs) with Al{sub 2}O{sub 3}/Al cathodes is described. It is shown that the thin Al{sub 2}O{sub 3} buffer layer sharply enhances current injection, increases the device efficiency, and reduces the driving voltage; the performance of devices with the optimal oxide buffer layer thickness approaches those with Mg{sub 0.9}Ag{sub 0.1} cathodes. The effects of the Al{sub 2}O{sub 3} buffer layer are believed to result from the removal of interface gap states induced by defects and chemical bonds between the AODF and Al, which trap carriers and quench singlet excitons nonradiatively. {copyright} {ital 1997 American Institute of Physics.}

  12. Lead Sulfide Cathode for Quantum Dot Solar Cells: Electrosynthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Van Le, Nghiem; Nguyen, Hoang Thai; Le, Hai Viet; Nguyen, Thoa Thi Phuong

    2017-01-01

    Deposition of lead sulfide (PbS) nanocrystalline thin films onto conducting fluorine-doped tin oxide (FTO) glass has been performed by cyclic voltammetry (CV) in 1.5 mM solution of lead nitrate and sodium thiosulfate at 100 mV s-1 scan rate in the potential range of -1.0 V to 0.0 V versus saturated calomel electrode. X-ray diffraction analysis and scanning electron microscopy revealed formation of cubic PbS crystals with size of 100 nm to 150 nm after 50 cycles. High electrocatalytic activity of the synthesized PbS film for the S2-/S n 2- redox couple, used as a mediator for quantum dot solar cells (QDSCs), was demonstrated by electrochemical impedance spectroscopy and CV measurements. The prepared PbS/FTO was used as a counterelectrode to fabricate PbS-QDSCs with a photoanode consisting of CdS/CdSe quantum dots adsorbed on mesoporous TiO2 film and a polysulfide solution electrolyte. The performance of the PbS-QDSC was compared with a QDSC with a platinum counterelectrode (Pt-QDSC). It was found that, using the same fabrication conditions, the performance of the PbS-QDSC was better than that of the Pt-QDSC. At 1 sun (100 mW cm-2) simulated light, average energy conversion efficiency of 2.14%, short-circuit current of 9.22 mA cm-2, open-circuit potential of 0.50 V, and fill factor of 0.47 were achieved by the fabricated PbS-QDSC.

  13. Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne

    2016-08-01

    In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.

  14. Research on quantum efficiency of GaN wire photocathode

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Diao, Yu; Kong, Yike

    2017-02-01

    On the basis of three-dimensional continuity equation in semiconductors and finite difference method, the carrier concentration and the quantum efficiency of GaN wire photocathode as a function of incident photon energy are achieved. Results show that the quantum efficiency of the wire photocathode is largely enhanced compared with the conventional planar photocathode. The superiority of the wire photocathode is reflected in its structure with surrounding surfaces. The quantum efficiency of the wire photocathode largely depends on the wire width, surface reflectivity, surface escape probability and incident angle of light. The back interface recombination rate, however, has little influences on the quantum efficiency of the wire photocathode. The simulation results suggest that the optimal width for photoemission is 150-200 nm. Besides, the quantum efficiency increases and decreases linearly with increasing surface escape probability and surface reflectivity, respectively. With increasing ratio of wire spacing to wire height, the optimal incident angle of light is reduced. These simulations are expected to guide the preparation of a better performing GaN wire photocathode.

  15. Efficient classical simulation of optical quantum information circuits.

    PubMed

    Bartlett, Stephen D; Sanders, Barry C

    2002-11-11

    We identify a broad class of physical processes in an optical quantum circuit that can be efficiently simulated on a classical computer: this class includes unitary transformations, amplification, noise, and measurements. This simulatability result places powerful constraints on the capability to realize exponential quantum speedups as well as on inducing an optical nonlinear transformation via linear optics, photodetection-based measurement, and classical feedforward of measurement results, optimal cloning, and a wide range of other processes.

  16. Efficient method for transport simulations in quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Maczka, Mariusz; Pawlowski, Stanislaw

    2016-12-01

    An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green's functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.

  17. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    NASA Astrophysics Data System (ADS)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2017-04-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  18. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    NASA Astrophysics Data System (ADS)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2016-12-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  19. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  20. An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    PubMed Central

    2014-01-01

    Background In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration of 0.1 M and ionic strength of 2.5 mM). Conclusions In conclusion, results verify that response surface methodology could successfully determine cathode chamber optimum operational conditions. PMID:24423039

  1. Positive Wigner functions render classical simulation of quantum computation efficient.

    PubMed

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  2. Quantum Efficiency Enhancement in CsI/Metal Photocathodes

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Hess, Wayne P.

    2015-02-01

    High quantum efficiency enhancement is found for hybrid metal-insulator photocathodes consisting of thin films of CsI deposited on Cu(100), Ag(100), Au(111) and Au films irradiated by 266 nm laser pulses. Low work functions (near or below 2 eV) are observed following ultraviolet laser activation. Work functions are reduced by roughly 3 eV from that of clean metal surfaces. We discuss various mechanisms of quantum efficiency enhancement for alkali halide/metal photocathode systems and conclude that the large change in work function, due to Cs accumulation of Cs metal at the metal-alkali halide interface, is the dominant mechanism for quantum efficiency enhancement

  3. Holmium fibre laser with record quantum efficiency

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Tsvetkov, V B; Marakulin, A V; Minashina, L A; Medvedkov, O I; Kosolapov, A F

    2011-06-30

    We report holmium-doped fibre lasers with a Ho{sup 3+} concentration of 1.6 x 10{sup 19} cm{sup -3} and lasing wavelengths of 2.02, 2.05, 2.07 and 2.1 {mu}m at a pump wavelength of 1.15 {mu}m. The slope efficiency of the lasers has been measured. The maximum efficiency, 0.455, has been obtained at a lasing wavelength of 2.05 {mu}m. The laser efficiency is influenced by both the optical loss in the wing of a vibrational absorption band of silica and active-ion clustering. (lasers)

  4. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect

    Sertore, Daniele Michelato, Paolo; Monaco, Laura; Manini, Paolo; Siviero, Fabrizio

    2014-05-15

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20 l s{sup −1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8⋅10{sup −8} Pa was achieved using only a sputter ion pump after a 6 day bake-out. With the addition of a NEG pump, a pressure of 2⋅10{sup −9} Pa was achieved after a 2 day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  5. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on

  6. An efficient quantum search engine on unsorted database

    NASA Astrophysics Data System (ADS)

    Lu, Songfeng; Zhang, Yingyu; Liu, Fang

    2013-10-01

    We consider the problem of finding one or more desired items out of an unsorted database. Patel has shown that if the database permits quantum queries, then mere digitization is sufficient for efficient search for one desired item. The algorithm, called factorized quantum search algorithm, presented by him can locate the desired item in an unsorted database using O() queries to factorized oracles. But the algorithm requires that all the attribute values must be distinct from each other. In this paper, we discuss how to make a database satisfy the requirements, and present a quantum search engine based on the algorithm. Our goal is achieved by introducing auxiliary files for the attribute values that are not distinct, and converting every complex query request into a sequence of calls to factorized quantum search algorithm. The query complexity of our algorithm is O() for most cases.

  7. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    SciTech Connect

    Xu, Xingsheng

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  8. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  9. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  10. Quantum efficiency measurements of Tektronix backside thinned CCDs

    NASA Technical Reports Server (NTRS)

    Delamere, Alan; Atkinson, Mike; Rice, James P.; Blouke, Morley; Reed, Richard

    1990-01-01

    Results are presented of a program in progress to produce CCDs with high stable quantum efficiency (QE). Measurements made at 253.7 nm over a six-month period showed no significant QE difference between two CCDs manufactured in 1989 and one manufactured in 1988. QE improvement by the addition of a two-layer antireflection coating is about threefold at 400 nm.

  11. High-efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    SciTech Connect

    Huang, J. S.; Wei, L. F.; Oh, C. H.

    2011-03-15

    We propose a high-efficiency scheme to tomographically reconstruct an unknown quantum state by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the stationary transmissions through a driven dispersively coupled resonator. It is shown that only one kind of QND measurement is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining nondiagonal elements can be similarly determined by transferring them to the diagonal locations after a series of unitary operations. Compared with the tomographic reconstructions based on the usual destructive projective measurements (wherein one such measurement can determine only one diagonal element of the density matrix), the present reconstructive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.

  12. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  13. An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin

    2017-01-01

    In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.

  14. An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin

    2017-04-01

    In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.

  15. Coherence-enhanced efficiency of feedback-driven quantum engines

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Bauer, Michael; Schmid, Michael T.; Seifert, Udo

    2015-06-01

    A genuine feature of projective quantum measurements is that they inevitably alter the mean energy of the observed system if the measured quantity does not commute with the Hamiltonian. Compared to the classical case, Jacobs proved that this additional energetic cost leads to a stronger bound on the work extractable after a single measurement from a system initially in thermal equilibrium (2009 Phys. Rev. A 80 012322). Here, we extend this bound to a large class of feedback-driven quantum engines operating periodically and in finite time. The bound thus implies a natural definition for the efficiency of information to work conversion in such devices. For a simple model consisting of a laser-driven two-level system, we maximize the efficiency with respect to the observable whose measurement is used to control the feedback operations. We find that the optimal observable typically does not commute with the Hamiltonian and hence would not be available in a classical two level system. This result reveals that periodic feedback engines operating in the quantum realm can exploit quantum coherences to enhance efficiency.

  16. Efficient quantum algorithm for computing n-time correlation functions.

    PubMed

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  17. Efficient computations of quantum canonical Gibbs state in phase space

    NASA Astrophysics Data System (ADS)

    Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.

    2016-06-01

    The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.

  18. Analysis of the efficiency of intermediate band solar cells based on quantum dot supercrystals

    SciTech Connect

    Heshmati, S; Golmohammadi, S; Abedi, K; Taleb, H

    2014-03-28

    We have studied the influence of the quantum-dot (QD) width and the quantum-dot conduction band (QD-CB) offset on the efficiency of quantum-dot intermediate band solar cells (QD-IBSCs). Simulation results demonstrate that with increasing QD-CB offset and decreasing QD width, the maximum efficiency is achieved. (laser applications and other topics in quantum electronics)

  19. Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers.

    PubMed

    Greck, Peter; Birner, Stefan; Huber, Bernhard; Vogl, Peter

    2015-03-09

    We present a novel and very efficient method for calculating quantum transport in quantum cascade lasers (QCLs). It follows the nonequilibrium Green's function (NEGF) framework but sidesteps the calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. This method generalizes the phenomenological Büttiker probe model by taking into account individual scattering mechanisms. It is orders of magnitude more efficient than a fully self-consistent NEGF calculation for realistic devices. We apply this method to a new THz QCL design which works up to 250 K - according to our calculations.

  20. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    NASA Astrophysics Data System (ADS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  1. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  2. Rate-loss analysis of an efficient quantum repeater architecture

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Krovi, Hari; Fuchs, Christopher A.; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2015-08-01

    We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared state's fidelity and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range, and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.

  3. Simulations of multipacting in the cathode stalk and FPC of 112 MHz superconducting electron gun

    SciTech Connect

    Xin T.; Ben-Zvi, I.; Belomestnykh, S.; Chang, X.; Rao, T.; Skaritka, J.; Wu, Q.; Wang, E.; Liang, X.

    2012-05-20

    A 112 MHz superconducting quarter-wave resonator electron gun will be used as the injector of the Coherent Electron Cooling (CEC) proof-of-principle experiment at BNL. Furthermore, this electron gun can be used for testing of the performance of various high quantum efficiency photocathodes. In a previous paper, we presented the design of the cathode stalks and a Fundamental Power Coupler (FPC). In this paper we present updated designs of the cathode stalk and FPC. Multipacting in the cathode stalk and FPC was simulated using three different codes. All simulation results show no serious multipacting in the cathode stalk and FPC.

  4. Plasmon-mediated emergence of collective emission and enhanced quantum efficiency in quantum dot films

    NASA Astrophysics Data System (ADS)

    Praveena, M.; Mukherjee, Arnab; Venkatapathi, Murugesan; Basu, J. K.

    2015-12-01

    We present experimental and theoretical results on monolayer colloidal cadmium selenide quantum dot films embedded with tiny gold nanoparticles. By varying the density of the embedded gold nanoparticles, we were able to engineer a plasmon-mediated crossover from emission quenching to enhancement regime at interparticle distances for which only quenching of emission is expected. This crossover and a nonmonotonic variation of photoluminescence intensity and decay rate, in experiments, is explained in terms of a model for plasmon-mediated collective emission of quantum emitters which points to the emergence of a new regime in plasmon-exciton interactions. The presented methodology to achieve enhancement in optical quantum efficiency for optimal doping of gold nanoparticles in such ultrathin high-density quantum dot films can be beneficial for new-generation displays and photodetectors.

  5. Efficient free energy calculations of quantum systems through computer simulations

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo

    2009-03-01

    In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)

  6. Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells.

    PubMed

    Zhao, Xuemei; Xu, Chenhui; Wang, Haitao; Chen, Fei; Zhang, Wenfeng; Zhao, Zhiqiang; Chen, Liwei; Yang, Shangfeng

    2014-03-26

    Three amino-containing small-molecule organic materials-biuret, dicyandiamide (DCDA), and urea-were successfully applied as novel cathode buffer layers (CBLs) in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs) for the first time, resulting in obvious efficiency enhancement. Under the optimized condition, the power conversion efficiencies (PCEs) of the CBL-incorporated BHJ-PSC devices are 3.84%, 4.25%, and 4.39% for biuret, DCDA, and urea, which are enhanced by ∼15%, ∼27%, and ∼31%, respectively, compared to the reference poly(3-hexylthiophene-2,5-diyl) : [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) BHJ-PSC device without any CBL. The efficiency enhancement is primarily attributed to the increases of both short-circuit current density (Jsc) and fill factor (FF), for which the enhancement ratio is found to be sensitively dependent on the molecular structure of small-molecule organic materials. The surface morphologies and surface potential changes of the CBL-incorporated P3HT:PCBM photoactive layers were studied by atomic force microscopy and scanning Kelvin probe microscopy, respectively, suggesting the formation of an interfacial dipole layer between the photoactive layer and Al cathode, which may decrease the energy level offset between the work function of Al and the lowest unoccipoed molecular orbital level (LUMO) of the PCBM acceptor and consequently facilitate electron extraction by the Al cathode. The difference in the enhancement effect of biuret, DCDA, and urea is due to their difference on the work function matching with P3HT:PCBM. Besides, the coordination interaction between the lone-pair electrons on the N atoms of the amino (-NH2) group and the Al atoms may prohibit interaction between Al and the thiophene rings of P3HT, contributing to the efficiency enhancement of the CBL-incorporated devices as well. In this sense, the different CBL performance of biuret, DCDA, and urea is also proposed to partially originate from the

  7. Efficient quantum circuits for continuous-time quantum walks on composite graphs

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2017-02-01

    In this paper, we investigate the simulation of continuous-time quantum walks on specific classes of graphs, for which it is possible to fast-forward the time-evolution operator to achieve constant-time simulation complexity and to perform the simulation exactly, i.e. ε =0 , while maintaining \\text{poly}≤ft(\\text{log}(n)\\right) efficiency. In particular, we discuss two classes of composite graphs, commuting graphs and Cartesian product of graphs, that contain classes of graphs which can be simulated in this fashion. This allows us to identify new families of graphs that we can efficiently simulate in a quantum circuit framework, providing practical and explicit means to explore quantum-walk based algorithms in laboratories.

  8. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  9. High-efficiency reconciliation for continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, Zengliang; Yang, Shenshen; Li, Yongmin

    2017-04-01

    Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.

  10. Investigation of the quantum efficiency of optical heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1984-01-01

    The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.

  11. Electrolytic gate for quantum efficiency enhancement in thinned CCDs

    NASA Astrophysics Data System (ADS)

    Damento, Michael A.; Watson, Mary; Sims, Gary R.

    1993-07-01

    A transparent, semi-solid, electrolytic gate has been applied to the backside of thinned CCDs for quantum efficiency enhancement. The gate is applied by spreading a water solution of phosphoric acid and polyvinyl alcohol onto the silicon and drying it to form a thin plastic film. When a negative voltage of less than one volt with respect to substrate ground is applied to the gate, a QE pinned condition (100% internal quantum efficiency) is produced. An insulating layer is not needed with this gate (as it is with electronic conductors) since a threshold voltage of about 1.2 V is required before conduction into the silicon can occur. The mechanism of charging is believed to involve a pile-up of negative ions at the silicon-electrolyte interface which compensates for the positive oxide charge. Conduction into the silicon at low voltages is restricted by the oxidation potential of the negative ions in the electrolyte.

  12. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    SciTech Connect

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  13. Internal quantum efficiency analysis of solar cell by genetic algorithm

    SciTech Connect

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Zhou, Taofei; Wang, Rongxin; Qiu, Kai; Dong, Jianrong; Jiang, Desheng

    2010-11-15

    To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated. (author)

  14. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    SciTech Connect

    Iida, Daisuke; Fadil, Ahmed Ou, Yiyu; Kopylov, Oleksii; Ou, Haiyan; Chen, Yuntian; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  15. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

    PubMed Central

    2015-01-01

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847

  16. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.

    PubMed

    Böhm, Marcus L; Jellicoe, Tom C; Tabachnyk, Maxim; Davis, Nathaniel J L K; Wisnivesky-Rocca-Rivarola, Florencia; Ducati, Caterina; Ehrler, Bruno; Bakulin, Artem A; Greenham, Neil C

    2015-12-09

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump-probe transient absorption and pump-push-photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG.

  17. Efficient quantum trajectory representation of wavefunctions evolving in imaginary time

    SciTech Connect

    Garashchuk, Sophya; Mazzuca, James; Vazhappilly, Tijo

    2011-07-21

    The Boltzmann evolution of a wavefunction can be recast as imaginary-time dynamics of the quantum trajectory ensemble. The quantum effects arise from the momentum-dependent quantum potential - computed approximately to be practical in high-dimensional systems - influencing the trajectories in addition to the external classical potential [S. Garashchuk, J. Chem. Phys. 132, 014112 (2010)]. For a nodeless wavefunction represented as {psi}(x, t) = exp ( -S(x, t)/({Dirac_h}/2{pi})) with the trajectory momenta defined by {nabla}S(x, t), analysis of the Lagrangian and Eulerian evolution shows that for bound potentials the former is more accurate while the latter is more practical because the Lagrangian quantum trajectories diverge with time. Introduction of stationary and time-dependent components into the wavefunction representation generates new Lagrangian-type dynamics where the trajectory spreading is controlled improving efficiency of the trajectory description. As an illustration, different types of dynamics are used to compute zero-point energy of a strongly anharmonic well and low-lying eigenstates of a high-dimensional coupled harmonic system.

  18. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass

    SciTech Connect

    Okada, Takashi Yonezawa, Susumu

    2013-08-15

    Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.

  19. Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot

    NASA Astrophysics Data System (ADS)

    Wong, Clement H.; Vavilov, Maxim G.

    2017-01-01

    Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we consider a double quantum dot (DQD) capacitively coupled to a superconducting resonator that is driven by the microwave field of a superconducting transmission line. We analyze the DQD current response using input-output theory and show that the resonator-coupled DQD is a sensitive microwave single photon detector. Using currently available experimental parameters of DQD-resonator coupling and dissipation, including the effects of 1 /f charge noise and phonon noise, we determine the parameter regime for which incident photons are completely absorbed and near-unit ≳98 % efficiency can be achieved. We show that this regime can be reached by using very high quality resonators with quality factor Q ≃105 .

  20. Optimal power and efficiency of quantum Stirling heat engines

    NASA Astrophysics Data System (ADS)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  1. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  2. Quantum efficiencies exceeding unity in amorphous silicon solar cells

    SciTech Connect

    Vanmaekelbergh, D.; Lagemaat, J. van de; Schropp, R.E.I.

    1994-12-31

    The experimental observation of internal quantum efficiencies above unity in crystalline silicon solar cells has brought up the question whether the generation of multiple electron/hole pairs has to be taken into consideration also in solar cells based on direct gap amorphous semiconductors. To study photogenerated carrier dynamics, the authors have applied Intensity Modulated Photocurrent Spectroscopy (IMPS) to hydrogenated amorphous silicon p-i-n solar cells. In the reverse voltage bias region at low illumination intensities it has been observed that the low frequency limit of the AC quantum yield Y increases significantly above unit with decreasing light intensity, indicating that more than one electron per photon is detected in the external circuit. This phenomenon can be explained by considering trapping and thermal emission of photogenerated carriers at intragap atmospheric dangling bond defect centers.

  3. Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States

    NASA Astrophysics Data System (ADS)

    Creatore, C.; Parker, M. A.; Emmott, S.; Chin, A. W.

    2013-12-01

    Artificially implementing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new direction for the future development of photovoltaic devices. Here, we develop such a paradigm and present a model photocell based on the nanoscale architecture and molecular elements of photosynthetic reaction centers. Quantum interference of photon absorption and emission induced by the dipole-dipole interaction between molecular excited states guarantees an enhanced light-to-current conversion and power generation for a wide range of electronic, thermal, and optical parameters for optimized dipolar geometries. This result opens a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.

  4. Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion

    PubMed Central

    Romero, Elisabet; Augulis, Ramunas; Novoderezhkin, Vladimir I.; Ferretti, Marco; Thieme, Jos; Zigmantas, Donatas; van Grondelle, Rienk

    2014-01-01

    The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies. PMID:26870153

  5. Beam Dynamics Simulations of Optically-Enhanced Field Emission from Structured Cathodes

    SciTech Connect

    Seymour, A.; Grote, D.; Mihalcea, D.; Piot, P.; Vay, J.-L.

    2014-01-01

    Structured cathodes - cathodes with a segmented emission surface - are finding an increasing number of applications and can be combined with a variety of emission mechanisms, including photoemission and field emission. These cathodes have been used to enhance the quantum efficiency of metallic cathodes when operated as plasmonic cathodes, have produced high-current electron bunches though field emission from multiple tips, and can be used to form beams with transverse segmentations necessary for improving the performance of accelerator-based light sources. In this report we present recent progress towards the development of finite-difference time-domain particle-in-cell simulations using the emission process in structured cathodes based on the WARP framework. The simulations give further insight on the localized source of the emitted electrons which could be used for additional high-fidelity start-to-end simulations of electron accelerators that employ this type of electron source.

  6. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    PubMed Central

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  7. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-07-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors.

  8. Absolute quantum cutting efficiency of Tb3+-Yb3+ co-doped glass

    NASA Astrophysics Data System (ADS)

    Duan, Qianqian; Qin, Feng; Zhao, Hua; Zhang, Zhiguo; Cao, Wenwu

    2013-12-01

    The absolute quantum cutting efficiency of Tb3+-Yb3+ co-doped glass was quantitatively measured by an integrating sphere detection system, which is independent of the excitation power. As the Yb3+ concentration increases, the near infrared quantum efficiency exhibited an exponential growth with an upper limit of 13.5%, but the visible light efficiency was reduced rapidly. As a result, the total quantum efficiency monotonically decreases rather than increases as theory predicted. In fact, the absolute quantum efficiency was far less than the theoretical value due to the low radiative efficiency of Tb3+ (<61%) and significant cross-relaxation nonradiative loss between Yb3+ ions.

  9. Efficient teleportation between remote single-atom quantum memories.

    PubMed

    Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan

    2013-04-05

    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.

  10. Deterministic and efficient quantum cryptography based on Bell's theorem

    SciTech Connect

    Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg

    2006-05-15

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.

  11. Surface and bulk contribution to Cu(111) quantum efficiency

    SciTech Connect

    Pedersoli, Emanuele; Greaves, Corin Michael Ricardo; Wan, Weishi; Coleman-Smith, Christopher; Padmore, Howard A.; Pagliara, Stefania; Cartella, Andrea; Lamarca, Fabrizio; Ferrini, Gabriele; Galimberti, Gianluca; Montagnese, Matteo; dal Conte, Stefano; Parmigiani, Fulvio

    2008-11-04

    The quantum efficiency (QE) of Cu(111) is measured for different impinging light angles with photon energies just above the work function. We observe that the vectorial photoelectric effect, an enhancement of the QE due to illumination with light with an electric vector perpendicular to the sample surface, is stronger in the more surface sensitive regime. This can be explained by a contribution to photoemission due to the variation in the electromagnetic potential at the surface. The contributions of bulk and surface electrons can then be determined.

  12. CdSe quantum-dot-sensitized solar cell with ∼100% internal quantum efficiency.

    PubMed

    Fuke, Nobuhiro; Hoch, Laura B; Koposov, Alexey Y; Manner, Virginia W; Werder, Donald J; Fukui, Atsushi; Koide, Naoki; Katayama, Hiroyuki; Sykora, Milan

    2010-11-23

    We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO(2) film (NQD/TiO(2)), aqueous Na(2)S or Li(2)S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO(2) photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO(2) interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li(2)S as an electrolyte, it is possible to achieve ∼100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

  13. Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation.

    PubMed

    Zimmermann, Tomáš; Vaníček, Jiří

    2012-03-07

    We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schrödinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used in the diabatic basis to measure the importance of the diabatic couplings. The method is tested on three model problems introduced by Tully and on a two-surface model of dissociation of NaI.

  14. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode.

    PubMed

    Sirés, Ignasi; Guivarch, Elodie; Oturan, Nihal; Oturan, Mehmet A

    2008-06-01

    Fenton's reagent (Fe2+ +H2O2) has been electrogenerated in situ in an undivided electrolytic cell from the effective reduction of Fe3+ and O2 at carbon-felt cathode for the treatment of aqueous solutions of four triphenylmethane dyes (TPMs), namely malachite green (MG), crystal violet (CV), methyl green (MeG) and fast green FCF (FCF), at pH 3.0 and room temperature. MG has been used as a model among them to study the influence of some experimental parameters on the decay kinetics, COD removal and current efficiency. The results in such electro-Fenton system are explained in terms of the many parasitic reactions involving .OH. Higher efficiency values are obtained with rising organic content and decreasing applied current. The first stage of the mineralization process, involving aromatic by-products, leads to fast decoloration as well as quick initial COD removal that fit well to a pseudo-first-order kinetics. At prolonged electrolysis time, the mineralization rate and efficiency decrease due to the formation of hardly oxidizable compounds and the enhancement of wasting reactions. Solutions of all four TPMs are quickly degraded following a pseudo-first-order decay kinetics. The absolute rate constant (kTPM) for their reaction with .OH increases in the order MeGefficiency near 100% at the beginning of the treatment. A general scheme for the mineralization of TPMs is proposed.

  15. High-Efficient Arbitrated Quantum Signature Scheme Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Fatahi, Negin; Naseri, Mosayeb; Gong, Li-Hua; Liao, Qing-Hong

    2017-02-01

    The arbitrated quantum signature characteristics including the security and the efficiency are investigated and a new efficient and secure arbitrated quantum signature is proposed. It is shown that the proposed scheme exhibits an efficiency of 64 %. Furthermore, to gain a higher security, the decoy photons security checking is employed.

  16. Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells

    SciTech Connect

    Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T.

    2014-04-21

    A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.

  17. A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Lu, Xuejun; Vaillancourt, Jarrod; Gu, Guiru

    2017-04-01

    In this paper, we report a quantum dot infrared photodetector (QDIP) embedded in a plasmonic perfect absorber (PPA) cavity designed at the plasmonic resonant wavelength of 8.2 µm. The reflection spectra and the electric-field are simulated and found to have strong confinement at the resonant wavelength. The QDIP embedded in the PPA cavity was fabricated using our flip-chip bonding and fan-out reading based fabrication process. Strong photocurrent enhancement is observed at the resonant wavelength. Due to the PPA enhancement, a high quantum efficiency (QE) of 50% is achieved. The high QE QDIP demonstration indicates that the PPA enhancement is a promising approach to achieve high QE in QDIPs.

  18. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    PubMed

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  19. Shot noise, LER, and quantum efficiency of EUV photoresists

    NASA Astrophysics Data System (ADS)

    Brainard, Robert L.; Trefonas, Peter; Lammers, Jeroen H.; Cutler, Charlotte A.; Mackevich, Joseph F.; Trefonas, Alexander; Robertson, Stewart A.

    2004-05-01

    The shot noise, line edge roughness (LER) and quantum efficiency of EUV interaction with seven resists related to EUV-2D (SP98248B) are studied. These resists were identical to EUV-2D except were prepared with seven levels of added base while keeping all other resist variables constant. These seven resists were patterned with EUV lithography, and LER was measured on 100-200 nm dense lines. Similarly, the resists were also imaged using DUV lithography and LER was determined for 300-500 nm dense lines. LER results for both wavelengths were plotted against Esize. Both curves show very similar LER behavior-the resists requiring low doses have poor LER, whereas the resists requiring high doses have good LER. One possible explanation for the observed LER response is that the added base improves LER by reacting with the photogenerated acid to control the lateral spread of acid, leading to better chemical contrast at the line edge. An alternative explanation to the observed relationship between LER and Esize is that shot-noise generated LER decreases as the number of photons absorbed at the line edge increases. We present an analytical model for the influence of shot noise based on Poisson statistics that preidicts that the LER is proportional to (Esize)-1/2. Indeed, both sets of data give straight lines when plotted this way (DUV r2 = 0.94; EUV r2 = 0.97). We decided to further evaluate this interpretation by constructing a simulation model for shot noise resulting from exposure and acid diffusion at the mask edge. In order to acquire the data for this model, we used the base titration method developed by Szmanda et al. to determine C-parameters and hence the quantum efficiency for producing photogenerated acid. This information, together with film absorptivity, allows the calculation of number and location of acid molecules generated at the mask edgte by assuming a stochastic distribution of individual photons corresponding to the aerial image function. The edge

  20. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  1. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.

    PubMed

    Mokkapati, Sudha; Saxena, Dhruv; Tan, Hark Hoe; Jagadish, Chennupati

    2013-12-09

    The optimal geometries for reducing the radiative recombination lifetime and thus enhancing the quantum efficiency of III-V semiconductor nanowires by coupling them to plasmonic nanoparticles are established. The quantum efficiency enhancement factor due to coupling to plasmonic nanoparticles reduces as the initial quality of the nanowire increases. Significant quantum efficiency enhancement is observed for semiconductors only within about 15 nm from the nanoparticle. It is also identified that the modes responsible for resonant enhancement in the quantum efficiency of an emitter in the nanowire are geometric resonances of surface plasmon polariton modes supported at the nanowire/nanoparticle interface.

  2. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2013-08-01

    Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900-1000 °C using a lab-scale reactor with varying concentrations of Na(2)CO(3) at different melting temperatures and melting times. The optimum Na(2)CO(3) dosage and melting temperature for efficient lead recovery was 0.5 g per 1g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1M HCl, and the lead recovery improved to 98%.

  3. Polymer-Oxide Nanolayer/Al Composite Cathode for Efficient Polymer Light-Emitting Diodes

    DTIC Science & Technology

    2007-06-30

    bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4-4′-diamine (NPB) layers and made contact with the indium-tin-oxide (ITO)/ glass anode. Extensive studies...Ag:Ag2O coated on the glass substrate. The electroluminescence (EL) efficiency of 8.9 cd/A for phenyl-substituted poly(para-phenylene vinylene...of Fig. 3. The Ag:Ag2O electrode on the glass substrate, reported by Chen et al., [7] is used as a highly reflective anode, and supports the

  4. Efficient eco-friendly inverted quantum dot sensitized solar cells.

    PubMed

    Park, Jinhyung; Sajjad, Muhammad T; Jouneau, Pierre-Henri; Ruseckas, Arvydas; Faure-Vincent, Jérôme; Samuel, Ifor D W; Reiss, Peter; Aldakov, Dmitry

    2016-01-21

    Recent progress in quantum dot (QD) sensitized solar cells has demonstrated the possibility of low-cost and efficient photovoltaics. However, the standard device structure based on n-type materials often suffers from slow hole injection rate, which may lead to unbalanced charge transport. We have fabricated efficient p-type (inverted) QD sensitized cells, which combine the advantages of conventional QD cells with p-type dye sensitized configurations. Moreover, p-type QD sensitized cells can be used in highly promising tandem configurations with n-type ones. QDs without toxic Cd and Pb elements and with improved absorption and stability were successfully deposited onto mesoporous NiO electrode showing good coverage and penetration according to morphological analysis. Detailed photophysical charge transfer studies showed that high hole injection rates (10(8) s(-1)) observed in such systems are comparable with electron injection in conventional n-type QD assemblies. Inverted solar cells fabricated with various QDs demonstrate excellent power conversion efficiencies of up to 1.25%, which is 4 times higher than the best values for previous inverted QD sensitized cells. Attempts to passivate the surface of the QDs show that traditional methods of reduction of recombination in the QD sensitized cells are not applicable to the inverted architectures.

  5. Efficient multiparty quantum key agreement protocol based on commutative encryption

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Huang, Jiwu; Wang, Ping

    2016-05-01

    A secure multiparty quantum key agreement protocol using single-qubit states is proposed. The agreement key is computed by performing exclusive-OR operation on all the participants' secret keys. Based on the commutative property of the commutative encryption, the exclusive-OR operation can be performed on the plaintext in the encrypted state without decrypting it. Thus, it not only protects the final shared key, but also reduces the complexity of the computation. The efficiency of the proposed protocol, compared with previous multiparty QKA protocols, is also improved. In the presented protocol, entanglement states, joint measurement and even the unitary operations are not needed, and only rotation operations and single-state measurement are required, which are easier to be realized with current technology.

  6. Highly Efficient Long-Distance Quantum Communication: a Blueprint for Implementation

    NASA Astrophysics Data System (ADS)

    Li, Linshu; Muralidharan, Sreraman; Kim, Jungsang; Lutkenhaus, Norbert; Lukin, Mikhail; Jiang, Liang

    2015-03-01

    Quantum repeaters provide a way for long distance quantum communication through optical fiber networks. Transmission losses and operation errors are two major challenges to the implementation of quantum repeaters. At each intermediate repeater station, transmission losses can be overcome using either heralded entanglement generation or quantum error correction, while operation errors can be corrected via entanglement purification or quantum error correction. Depending on the mechanisms used to correct loss and operation errors respectively, three generations of quantum repeaters have been proposed. We present a quantitative comparison of different quantum repeater schemes by evaluating the time- and qubit-resource consumed simultaneously. We can identify the most efficient scheme for given technological capabilities, which are characterized by fiber coupling efficiency, local gate fidelity, and local gate speed. Our work provides a roadmap for high-speed quantum networks across continental distances. Linshu and Sreraman contributed equally to this work.

  7. High-conjugation-efficiency aqueous CdSe quantum dots.

    PubMed

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2013-11-12

    Quantum dots (QDs) are photoluminescent nanoparticles that can be directly or indirectly coupled with a receptor such as an antibody to specifically image a target biomolecule such as an antigen. Recent studies have shown that QDs can be directly made at room temperature and in an aqueous environment (AQDs) with 3-mercaptopropionic acid (MPA) as the capping ligand without solvent and ligand exchange typically required by QDs made by the organic solvent routes (OQDs). In this study, we have synthesized CdSe AQDs and compared their conjugation efficiency and imaging efficacy with commercial carboxylated OQDs in HT29 colon cancer cells using a primary antibody-biotinylated secondary antibody-streptavidin (SA) sandwich. We showed that the best imaging condition for AQDs occurred when one AQD was bound with 3 ± 0.3 SA with a nominal SA/AQD ratio of 4 corresponding to an SA conjugation efficiency of 75 ± 7.5%. In comparison, for commercial CdSe-ZnS OQDs to achieve 2.7 ± 0.4 bound SAs per OQD for comparable imaging efficacy a nominal SA/OQD ratio of 80 was needed corresponding to an SA conjugation efficiency of 3.4 ± 0.5% for CdSe-ZnS OQDs. The more than 10 times better SA conjugation efficiency of the CdSe AQDs as compared to that of the CdSe-ZnS OQDs was attributed to more capping molecules on the AQD surface as a result of the direct aqueous synthesis. More capping molecules on the AQD surface also allowed the SA-AQD conjugate to be stable in cell culture medium for more than three days without losing their staining capability in a flowing cell culture medium. In contrast, SA-OQD conjugates aggregated in cell culture medium and in phosphate buffer saline solution over time.

  8. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

    PubMed

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-01-01

    Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes.

  9. Resource efficient gadgets for compiling adiabatic quantum optimization problems

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; O'Gorman, Bryan; Aspuru-Guzik, Alán

    2013-11-01

    We develop a resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a (k-1)-local optimization Hamiltonian. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. First, we optimize methods of applying these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla qubits. Next, we show a novel reduction gadget which minimizes control precision and a heuristic which uses this gadget to compile 3-local problems with a significant reduction in control precision. Finally, we present numerics which indicate a substantial decrease in the resources required to implement randomly generated, 3-body optimization Hamiltonians when compared to other methods in the literature.

  10. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    SciTech Connect

    Montgomery, Eric J.; Pan Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-22

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  11. Towards a Robust, Efficient Dispenser Photocathode: the Effect of Recesiation on Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.; Pan, Zhigang; Leung, Jessica; Feldman, Donald W.; O'Shea, Patrick G.; Jensen, Kevin L.

    2009-01-01

    Future electron accelerators and Free Electron Lasers (FELs) require high brightness electron sources; photocathodes for such devices are challenged to maintain long life and high electron emission efficiency (high quantum efficiency, or QE). The UMD dispenser photocathode design addresses this tradeoff of robustness and QE. In such a dispenser, a cesium-based surface layer is deposited on a porous substrate. The surface layer can be replenished from a subsurface cesium reservoir under gentle heating, allowing cesium to diffuse controllably to the surface and providing demonstrably more robust photocathodes. In support of the premise that recesiation is able to restore contaminated photocathodes, we here report controlled contamination of cesium-based surface layers with subsequent recesiation and the resulting effect on QE. Contaminant gases investigated include examples known from the vacuum environment of typical electron guns.

  12. Toward efficient fiber-based quantum interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey

    2016-04-01

    NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports

  13. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

    PubMed

    Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi

    2016-07-20

    We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability.

  14. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires.

    PubMed

    Chen, R S; Wang, W C; Lu, M L; Chen, Y F; Lin, H C; Chen, K H; Chen, L C

    2013-08-07

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.

  15. Efficient Synthesis of Graphene Nanoscrolls for Fabricating Sulfur-Loaded Cathode and Flexible Hybrid Interlayer toward High-Performance Li-S Batteries.

    PubMed

    Guo, Yi; Zhao, Gang; Wu, Naiteng; Zhang, Yun; Xiang, Mingwu; Wang, Bo; Liu, Heng; Wu, Hao

    2016-12-21

    A modified lyophilization approach is developed and used for highly efficient transformation of 2D graphene oxide sheet into 1D graphene nanoscroll (GNS) with high topological transforming efficiency (∼94%). Because of the unique open tubular structure and large specific surface area (545 m(2) g(-1)), GNS is utilized for the first time as a porous cathode scaffold for encapsulating sulfur with a high loading (81 wt %), and also as a conductive skeleton for assembling MnO2 nanowires into a flexible free-standing hybrid interlayer, both enabling high-rate and long-life Li-S battery.

  16. Optimal and efficient decoding of concatenated quantum block codes

    SciTech Connect

    Poulin, David

    2006-11-15

    We consider the problem of optimally decoding a quantum error correction code--that is, to find the optimal recovery procedure given the outcomes of partial ''check'' measurements on the system. In general, this problem is NP hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message-passing algorithm. We compare the performance of the message-passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: (i) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel; and (ii) for noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead.

  17. Effects of image processing on the detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na

    2010-04-01

    Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.

  18. Quantum Efficiency of a 2-LEVEL InAs/AlSb Quantum Cascade Structure

    NASA Astrophysics Data System (ADS)

    Faugeras, Clement; Leuliet, Aude; Vasanelli, Angela; Sirtori, Carlo; Wade, Aaron; Fedorov, Georgy; Smirnov, Dmitry; Teissier, Roland; Baranov, Alexei; Barate, David; Devenson, Jan

    The quantum efficiency of an electroluminescent intersubband emitter based on InAs/AlSb has been measured as a function of the magnetic field up to 20T. Two series of oscillations periodic in 1/B are observed, corresponding to the elastic and inelastic scattering of electrons of the upper state of the radiative transitions. Experimental results are accurately reproduced by a calculation of the excited state lifetime as a function of the applied magnetic field. The interpretation of these data gives an exact measure of the relative weight of the scattering mechanisms and allows the extraction of material parameters such as the energy dependent electron effective mass and the optical phonon energy.

  19. Efficiency and its bounds for a quantum Einstein engine at maximum power.

    PubMed

    Yan, H; Guo, Hao

    2012-11-01

    We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.

  20. Sensitive Bioanalysis Based on in-Situ Droplet Anodic Stripping Voltammetric Detection of CdS Quantum Dots Label after Enhanced Cathodic Preconcentration

    PubMed Central

    Qin, Xiaoli; Wang, Linchun; Xie, Qingji

    2016-01-01

    We report a protocol of CdS-labeled sandwich-type amperometric bioanalysis with high sensitivity, on the basis of simultaneous chemical-dissolution/cathodic-enrichment of the CdS quantum dot biolabel and anodic stripping voltammetry (ASV) detection of Cd directly on the bioelectrode. We added a microliter droplet of 0.1 M aqueous HNO3 to dissolve CdS on the bioelectrode and simultaneously achieved the potentiostatic cathodic preconcentration of Cd by starting the potentiostatic operation before HNO3 addition, which can largely increase the ASV signal. Our protocol was used for immunoanalysis and aptamer-based bioanalysis of several proteins, giving limits of detection of 4.5 fg·mL−1 for human immunoglobulin G, 3.0 fg·mL−1 for human carcinoembryonic antigen (CEA), 4.9 fg·mL−1 for human α-fetoprotein (AFP), and 0.9 fM for thrombin, which are better than many reported results. The simultaneous and sensitive analysis of CEA and AFP at two screen-printed carbon electrodes was also conducted by our protocol. PMID:27563894

  1. Using G-quadruplex/hemin to "switch-on" the cathodic photocurrent of p-type PbS quantum dots: toward a versatile platform for photoelectrochemical aptasensing.

    PubMed

    Wang, Guang-Li; Shu, Jun-Xian; Dong, Yu-Ming; Wu, Xiu-Ming; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2015-03-03

    We present a novel photoelectrochemical (PEC) biosensing platform by taking advantage of the phenomenon that hemin intercalated in G-quadruplex "switched-on" the cathode photocurrent of p-type PbS quantum dots (QDs). Photoinduced electron transfer between PbS QDs and G-quadruplex/hemin(III) complexes with the subsequent catalytic oxygen reduction by the reduced G-quadruplex/hemin(II) led to an obvious enhancement in the cathodic photocurrent of the PbS QDs. For the detection process, in the presence of hemin, the specific recognition of the targets with the sensing sequence would trigger the formation of a stable G-quadruplex/hemin complex, which will result in reduced charge recombination and hence amplified photocurrent intensity of the PbS QDs. By using different target sequences, the developed system made possible a novel, label-free "switch-on" PEC aptasensor toward versatile biomolecular targets such as DNA and thrombin. Especially, with ambient oxygen to regenerate G-quadruplex/hemin(II) to G-quadruplex/hemin(III), this substrate-free strategy not only promoted the photoelectric effect and thus the enhanced sensitivity of the system, but also avoided the addition of supplementary substrates of G-quadruplex/hemin such as H2O2 and organic substances.

  2. Sensitive Bioanalysis Based on in-Situ Droplet Anodic Stripping Voltammetric Detection of CdS Quantum Dots Label after Enhanced Cathodic Preconcentration.

    PubMed

    Qin, Xiaoli; Wang, Linchun; Xie, Qingji

    2016-08-23

    We report a protocol of CdS-labeled sandwich-type amperometric bioanalysis with high sensitivity, on the basis of simultaneous chemical-dissolution/cathodic-enrichment of the CdS quantum dot biolabel and anodic stripping voltammetry (ASV) detection of Cd directly on the bioelectrode. We added a microliter droplet of 0.1 M aqueous HNO₃ to dissolve CdS on the bioelectrode and simultaneously achieved the potentiostatic cathodic preconcentration of Cd by starting the potentiostatic operation before HNO₃ addition, which can largely increase the ASV signal. Our protocol was used for immunoanalysis and aptamer-based bioanalysis of several proteins, giving limits of detection of 4.5 fg·mL(-1) for human immunoglobulin G, 3.0 fg·mL(-1) for human carcinoembryonic antigen (CEA), 4.9 fg·mL(-1) for human α-fetoprotein (AFP), and 0.9 fM for thrombin, which are better than many reported results. The simultaneous and sensitive analysis of CEA and AFP at two screen-printed carbon electrodes was also conducted by our protocol.

  3. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    SciTech Connect

    Kuhn, Stefan Tiegel, Mirko; Herrmann, Andreas; Rüssel, Christian; Engel, Sebastian; Wenisch, Christoph; Gräf, Stephan; Müller, Frank A.; Körner, Jörg; Seifert, Reinhard; Yue, Fangxin; Klöpfel, Diethardt; Hein, Joachim; Kaluza, Malte C.

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information about the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.

  4. An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition Problem.

    PubMed

    Li, Jun; Peng, Xinhua; Du, Jiangfeng; Suter, Dieter

    2012-01-01

    Quantum computers are known to be qualitatively more powerful than classical computers, but so far only a small number of different algorithms have been discovered that actually use this potential. It would therefore be highly desirable to develop other types of quantum algorithms that widen the range of possible applications. Here we propose an efficient and exact quantum algorithm for finding the square-free part of a large integer - a problem for which no efficient classical algorithm exists. The algorithm relies on properties of Gauss sums and uses the quantum Fourier transform. We give an explicit quantum network for the algorithm. Our algorithm introduces new concepts and methods that have not been used in quantum information processing so far and may be applicable to a wider class of problems.

  5. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.

    PubMed

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Murali, Banavoth; Sarmah, Smritakshi P; Yuan, Mingjian; Sinatra, Lutfan; Alyami, Noktan M; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N; Mohammed, Omar F; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H; Bakr, Osman M

    2016-10-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  6. Optimal efficiency of quantum transport in a disordered trimer.

    PubMed

    Giusteri, Giulio G; Celardo, G Luca; Borgonovi, Fausto

    2016-03-01

    Disordered quantum networks, such as those describing light-harvesting complexes, are often characterized by the presence of peripheral ringlike structures, where the excitation is initialized, and inner structures and reaction centers (RCs), where the excitation is trapped and transferred. The peripheral rings often display distinguished coherent features: Their eigenstates can be separated, with respect to the transfer of excitation, into two classes of superradiant and subradiant states. Both are important to optimize transfer efficiency. In the absence of disorder, superradiant states have an enhanced coupling strength to the RC, while the subradiant ones are basically decoupled from it. Static on-site disorder induces a coupling between subradiant and superradiant states, thus creating an indirect coupling to the RC. The problem of finding the optimal transfer conditions, as a function of both the RC energy and the disorder strength, is very complex even in the simplest network, namely, a three-level system. In this paper we analyze such trimeric structure, choosing as the initial condition an excitation on a subradiant state, rather than the more common choice of an excitation localized on a single site. We show that, while the optimal disorder is of the order of the superradiant coupling, the optimal detuning between the initial state and the RC energy strongly depends on system parameters: When the superradiant coupling is much larger than the energy gap between the superradiant and the subradiant levels, optimal transfer occurs if the RC energy is at resonance with the subradiant initial state, whereas we find an optimal RC energy at resonance with a virtual dressed state when the superradiant coupling is smaller than or comparable to the gap. The presence of dynamical noise, which induces dephasing and decoherence, affects the resonance structure of energy transfer producing an additional incoherent resonance peak, which corresponds to the RC energy being

  7. Optimal efficiency of quantum transport in a disordered trimer

    NASA Astrophysics Data System (ADS)

    Giusteri, Giulio G.; Celardo, G. Luca; Borgonovi, Fausto

    2016-03-01

    Disordered quantum networks, such as those describing light-harvesting complexes, are often characterized by the presence of peripheral ringlike structures, where the excitation is initialized, and inner structures and reaction centers (RCs), where the excitation is trapped and transferred. The peripheral rings often display distinguished coherent features: Their eigenstates can be separated, with respect to the transfer of excitation, into two classes of superradiant and subradiant states. Both are important to optimize transfer efficiency. In the absence of disorder, superradiant states have an enhanced coupling strength to the RC, while the subradiant ones are basically decoupled from it. Static on-site disorder induces a coupling between subradiant and superradiant states, thus creating an indirect coupling to the RC. The problem of finding the optimal transfer conditions, as a function of both the RC energy and the disorder strength, is very complex even in the simplest network, namely, a three-level system. In this paper we analyze such trimeric structure, choosing as the initial condition an excitation on a subradiant state, rather than the more common choice of an excitation localized on a single site. We show that, while the optimal disorder is of the order of the superradiant coupling, the optimal detuning between the initial state and the RC energy strongly depends on system parameters: When the superradiant coupling is much larger than the energy gap between the superradiant and the subradiant levels, optimal transfer occurs if the RC energy is at resonance with the subradiant initial state, whereas we find an optimal RC energy at resonance with a virtual dressed state when the superradiant coupling is smaller than or comparable to the gap. The presence of dynamical noise, which induces dephasing and decoherence, affects the resonance structure of energy transfer producing an additional incoherent resonance peak, which corresponds to the RC energy being

  8. Quantum efficiency affected by localized carrier distribution near the V-defect in GaN based quantum well

    SciTech Connect

    Cho, Yong-Hee Shim, Mun-Bo; Hwang, Sangheum; Kim, Sungjin; Kim, Jun-Youn; Kim, Jaekyun; Park, Young-Soo; Park, Seoung-Hwan

    2013-12-23

    It is known that due to the formation of in-plane local energy barrier, V-defects can screen the carriers which non-radiatively recombine in threading dislocations (TDs) and hence, enhance the internal quantum efficiency in GaN based light-emitting diodes. By a theoretical modeling capable of describing the inhomogeneous carrier distribution near the V-defect in GaN based quantum wells, we show that the efficient suppression of non-radiative (NR) recombination via TD requires the local energy barrier height of V-defect larger than ∼80 meV. The NR process in TD combined with V-defect influences the quantum efficiency mainly in the low injection current density regime suitably described by the linear dependence of carrier density. We provide a simple phenomenological expression for the NR recombination rate based on the model result.

  9. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-07-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01635h

  10. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    SciTech Connect

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  11. High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability

    PubMed Central

    Yang, Weihuang; Li, Jinchai; Zhang, Yong; Huang, Po-Kai; Lu, Tien-Chang; Kuo, Hao-Chung; Li, Shuping; Yang, Xu; Chen, Hangyang; Liu, Dayi; Kang, Junyong

    2014-01-01

    High internal efficiency and high temperature stability ultraviolet (UV) light-emitting diodes (LEDs) at 308 nm were achieved using high density (2.5 × 109 cm−2) GaN/AlN quantum dots (QDs) grown by MOVPE. Photoluminescence shows the characteristic behaviors of QDs: nearly constant linewidth and emission energy, and linear dependence of the intensity with varying excitation power. More significantly, the radiative recombination was found to dominant from 15 to 300 K, with a high internal quantum efficiency of 62% even at room temperature. PMID:24898569

  12. Influence of parallel vs. perpendicular source geometry on cathodic: Arc efficiency and film quality for generation of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Eno, D. M.; DeLeon, R. L.; Garvey, J. F.

    2014-01-01

    ZnO films have been grown on Si (111) substrates using a modified PAMBD (pulsed arc molecular beam deposition) reactive cathodic arc source employing either O2, N2, or NH3 as carrier gas. Utilizing new source geometry, a two to three fold improvement in source efficiency has been realized. Scanning electron microscopy analysis confirms that this new source configuration gives a significant reduction in marcoparticle contamination and exhibits good crystalline properties for room temperature deposition. ZnO films were grown with this new source and characterized using X-ray diffraction and X-ray photoelectron spectroscopy.

  13. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    YongMan Choi; Meilin Liu

    2006-09-30

    novel combustion chemical vapor deposition (CCVD) technique. (5) Application of advanced quantum chemical calculations to interpret measured spectroscopic information, as well as to guide design of high efficient cathode materials.

  14. Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater.

    PubMed

    Blackwood, D J; Lim, C S; Teo, S L M

    2010-10-01

    Aluminum and zinc based sacrificial anodes are routinely used to provide corrosion protection to metals (typically steel) exposed to seawater, for example in steel pipelines and storage tanks. However, the high fouling rates experienced in South East Asia means that both the anodes and the metals to be protected rapidly become coated with macrofoulers, which could potentially prevent the anodes from being effective. The present study, involving exposure tests of up to 18 months, indicates that both aluminum and zinc sacrificial anodes remain effective even after being completely coated with biofouling. Furthermore, it was easier to remove the biofouling on the cathodically protected samples than on their unprotected counterparts, possibly due to the higher local pH produced by cathodic protection at the metal and seawater interface.

  15. Efficient capture and simple quantification of circulating tumor cells using quantum dots and magnetic beads.

    PubMed

    Min, Hyegeun; Jo, Seong-Min; Kim, Hak-Sung

    2015-06-03

    Circulating tumor cells (CTCs) are valuable biomarkers for monitoring the status of cancer patients and drug efficacy. However, the number of CTCs in the blood is extremely low, and the isolation and detection of CTCs with high efficiency and sensitivity remain a challenge. Here, we present an approach to the efficient capturing and simple quantification of CTCs using quantum dots and magnetic beads. Anti-EpCAM antibody-conjugated quantum dots are used for the targeting and quantification of CTCs, and quantum-dot-attached CTCs are isolated using anti-IgG-modified magnetic beads. Our approach is shown to result in a capture efficiency of about 70%-80%, enabling the simple quantification of captured CTCs based on the fluorescence intensity of the quantum dots. The present method can be used effectively in the capturing and simple quantification of CTCs with high efficiency for cancer diagnosis and monitoring.

  16. Robust Timing Synchronization for Aviation Communications, and Efficient Modulation and Coding Study for Quantum Communication

    NASA Technical Reports Server (NTRS)

    Xiong, Fugin

    2003-01-01

    One half of Professor Xiong's effort will investigate robust timing synchronization schemes for dynamically varying characteristics of aviation communication channels. The other half of his time will focus on efficient modulation and coding study for the emerging quantum communications.

  17. Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O2 Batteries.

    PubMed

    Ramakrishnan, Prakash; Shanmugam, Sangaraju; Kim, Jae Hyun

    2017-02-01

    Cost-effective dual heteroatom-doped 3D carbon nanofoam-wrapped FeS nanoparticles (NPs), FeS-C, act as efficient bifunctional catalysts for Li-O2 batteries. This cathode exhibits a maximum deep discharge capacity of 14 777.5 mA h g(-1) with a 98.1 % columbic efficiency at 0.1 mA cm(-2) . The controlled capacity (500 mA h g(-1) ) test of this cathode delivers a minimum polarization gap of 0.73 V at 0.1 mA cm(-2) and is sustained for 100 cycles with an energy efficiency of approximately 64 % (1st cycle) and 52 % (100th cycle) at 0.3 mA cm(-2) , under the potential window of 2.0-4.5 V. X-ray photoelectron spectroscopy reveals the substantial reversible formation and complete decomposition of Li2 O2 . The excellent recharging ability, high rate performance, and cycle stability of this catalyst is attributed to the synergistic effect of FeS catalytic behavior and textural properties of heteroatom-doped carbon nanostructures.

  18. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications.

  19. Room-temperature efficient light detection by amorphous Ge quantum wells

    PubMed Central

    2013-01-01

    In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. PMID:23496870

  20. Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators

    DTIC Science & Technology

    2012-09-27

    REPORT Quantum tomography via compressed sensing : error bounds, sample complexity and efficient estimators 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum tomography, compressed sensing Steven T Flammia, David Gross, Yi-Kai Liu... compressed sensing : error bounds, sample complexity and efficient estimators Report Title ABSTRACT Intuitively, if a density operator has small rank, then

  1. How to squeeze high quantum efficiency and high time resolution out of a SPAD

    NASA Technical Reports Server (NTRS)

    Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.

    1993-01-01

    We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.

  2. Characterization of Si nanostructures using internal quantum efficiency measurements

    SciTech Connect

    ZAIDI,SALEEM H.

    2000-04-01

    Hemispherical reflectance and internal quantum efficiency measurements have been employed to evaluate the response of Si nanostructured surfaces formed by using random and periodic reactive ion etching techniques. Random RIE-textured surfaces have demonstrated solar weighted reflectance of {approx} 3% over 300--1,200-nm spectral range even without the benefit of anti-reflection films. Random RIE-texturing has been found to be applicable over large areas ({approximately} 180 cm{sup 2}) of both single and multicrystalline Si surfaces. Due to the surface contamination and plasma-induced damage, RIE-textured surfaces did not initially provide increased short circuit current as expected from the enhanced absorption. Improved processing combined with wet-chemical damage removal etches resulted in significant improvement in the short circuit current with IQEs comparable to the random, wet-chemically textured surfaces. An interesting feature of the RIE-textured surfaces was their superior performance in the near IR spectral range. The response of RIE-textured periodic surfaces can be broadly classified into three distinct regimes. One-dimensional grating structures with triangular profiles are characterized by exceptionally low, polarization-independent reflective behavior. The reflectance response of such surfaces is similar to a graded-index anti-reflection film. The IQE response from these surfaces is severely degraded in the UV-Visible spectral region due to plasma-induced surface damage. One-dimensional grating structures with rectangular profiles exhibit spectrally selective absorptive behavior with somewhat similar IQE response. The third type of grating structure combines broadband anti-reflection behavior with significant IQE enhancement in 800--1,200-nm spectral region. The hemispherical reflectance of these 2D grating structures is comparable to random RIE-textured surfaces. The IQE enhancement in the long wavelength spectral region can be attributed to

  3. Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Li, Tian; Lu, Haofeng; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati; Dagenais, Mario

    2015-02-01

    Reduced quantum dot (QD) absorption due to state filling effects and enhanced electron transport in doped QDs are demonstrated to play a key role in solar energy conversion. Reduced QD state absorption with increased n-doping is observed in the self-assembled In0.5Ga0.5As/GaAs QDs from high resolution below-bandgap external quantum efficiency (EQE) measurement, which is a direct consequence of the Pauli exclusion principle. We also show that besides partial filling of the quantum states, electron-doping produces negatively charged QDs that exert a repulsive Coulomb force on the mobile electrons, thus altering the electron trajectory and reducing the probability of electron capture, leading to an improved collection efficiency of photo-generated carriers, as indicated by an absolute above-bandgap EQE measurement. The resulting redistribution of the mobile electron in the planar direction is further validated by the observed photoluminescence intensity dependence on doping.

  4. Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Alber, G.

    2016-05-01

    We propose a scheme for triggering a dissipation-dominated highly efficient excitation transfer from a single-photon wave packet to a single quantum emitter. This single-photon-induced optical pumping turns dominant dissipative processes, such as spontaneous photon emission by the emitter or cavity decay, into valuable tools for quantum information processing and quantum communication. It works for an arbitrarily shaped single-photon wave packet with sufficiently small bandwidth provided a matching condition is satisfied which balances the dissipative rates involved. Our scheme does not require additional laser pulses or quantum feedback and does not rely on high finesse optical resonators. In particular, it can be used to enhance significantly the coupling of a single photon to a single quantum emitter implanted in a one-dimensional waveguide or even in a free space scenario. We demonstrate the usefulness of our scheme for building a deterministic quantum memory and a deterministic frequency converter between photonic qubits of different wavelengths.

  5. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge.

    PubMed

    Sablon, Kimberly A; Little, John W; Mitin, Vladimir; Sergeev, Andrei; Vagidov, Nizami; Reinhardt, Kitt

    2011-06-08

    We report a 50% increase in the power conversion efficiency of InAs/GaAs quantum dot solar cells due to n-doping of the interdot space. The n-doped device was compared with GaAs reference cell, undoped, and p-doped devices. We found that the quantum dots with built-in charge (Q-BIC) enhance electron intersubband quantum dot transitions, suppress fast electron capture processes, and preclude deterioration of the open circuit voltage in the n-doped structures. These factors lead to enhanced harvesting and efficient conversion of IR energy in the Q-BIC solar cells.

  6. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-07-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  7. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  8. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  9. Cathode materials review

    NASA Astrophysics Data System (ADS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  10. Cathode materials review

    SciTech Connect

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  11. Beating the efficiency of both quantum and classical simulations with a semiclassical method.

    PubMed

    Mollica, Cesare; Vaníček, Jiří

    2011-11-18

    While rigorous quantum dynamical simulations of many-body systems are extremely difficult (or impossible) due to exponential scaling with dimensionality, the corresponding classical simulations ignore quantum effects. Semiclassical methods are generally more efficient but less accurate than quantum methods and more accurate but less efficient than classical methods. We find a remarkable exception to this rule by showing that a semiclassical method can be both more accurate and faster than a classical simulation. Specifically, we prove that for the semiclassical dephasing representation the number of trajectories needed to simulate quantum fidelity is independent of dimensionality and also that this semiclassical method is even faster than the most efficient corresponding classical algorithm. Analytical results are confirmed with simulations of fidelity in up to 100 dimensions with 2(1700)-dimensional Hilbert space.

  12. Efficient Integration of Quantum Mechanical Wave Equations by Unitary Transforms

    SciTech Connect

    Bauke, Heiko; Keitel, Christoph H.

    2009-08-13

    The integration of time dependent quantum mechanical wave equations is a fundamental problem in computational physics and computational chemistry. The energy and momentum spectrum of a wave function imposes fundamental limits on the performance of numerical algorithms for this problem. We demonstrate how unitary transforms can help to surmount these limitations.

  13. Towards communication-efficient quantum oblivious key distribution

    NASA Astrophysics Data System (ADS)

    Panduranga Rao, M. V.; Jakobi, M.

    2013-01-01

    Symmetrically private information retrieval, a fundamental problem in the field of secure multiparty computation, is defined as follows: A database D of N bits held by Bob is queried by a user Alice who is interested in the bit Db in such a way that (1) Alice learns Db and only Db and (2) Bob does not learn anything about Alice's choice b. While solutions to this problem in the classical domain rely largely on unproven computational complexity theoretic assumptions, it is also known that perfect solutions that guarantee both database and user privacy are impossible in the quantum domain. Jakobi [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.022301 83, 022301 (2011)] proposed a protocol for oblivious transfer using well-known quantum key device (QKD) techniques to establish an oblivious key to solve this problem. Their solution provided a good degree of database and user privacy (using physical principles like the impossibility of perfectly distinguishing nonorthogonal quantum states and the impossibility of superluminal communication) while being loss-resistant and implementable with commercial QKD devices (due to the use of the Scarani-Acin-Ribordy-Gisin 2004 protocol). However, their quantum oblivious key distribution (QOKD) protocol requires a communication complexity of O(NlogN). Since modern databases can be extremely large, it is important to reduce this communication as much as possible. In this paper, we first suggest a modification of their protocol wherein the number of qubits that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum communication complexity even further in such a way that only a few hundred qubits are needed to be transferred even for very large databases.

  14. NiP₂ nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions.

    PubMed

    Jiang, Ping; Liu, Qian; Sun, Xuping

    2014-11-21

    Designing efficient and stable hydrogen evolution catalysts made from earth-abundant elements is essential to the development of solar-driven water-splitting devices. In this communication, we develop a two-step strategy for constructing NiP2 nanosheet arrays on carbon cloth (NiP2 NS/CC). As a novel 3D hydrogen evolution cathode, the NiP2 NS/CC electrode is highly active in acidic solutions and needs an overpotential of 75 and 204 mV to achieve current densities of 10 and 100 mA cm(-2), respectively, and it preserves its catalytic activity for at least 57 h. Moreover, it also operates efficiently under alkaline conditions.

  15. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  16. Physically adsorbed fullerene layer on positively charged sites on zinc oxide cathode affords efficiency enhancement in inverted polymer solar cell.

    PubMed

    Cheng, Yu-Shan; Liao, Sih-Hao; Li, Yi-Lun; Chen, Show-An

    2013-07-24

    We present a novel idea for overcoming the drawback of poor contact between the ZnO cathode and active layer interface in an inverted polymer solar cell (i-PSC), simply by incorporating an electron-acceptor self-assembled monolayer (SAM)--tetrafluoroterephthalic acid (TFTPA)--on the ZnO cathode surface to create an electron-poor surface of TFTPA on ZnO. The TFTPA molecules on ZnO are anchored on the ZnO surface by reacting its carboxyl groups with hydroxyl groups on the ZnO surface, such that the tetrafluoroterephthalate moieties lay on the surface with plane-on electron-poor benzene rings acting as positive charge centers. Upon coating a layer of fullerenes on top of it, the fullerene molecules can be physically adsorbed by Coulombic interaction and facilitate a promoted electron collection from the bulk. The active layer is composed of the mid bandgap polymer poly(3-hexylthiophene) (P3HT) or low bandgap polymer, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl

  17. Enhancing Otto-Mobile Efficiency via Addition of a Quantum Carnot Cycle

    NASA Astrophysics Data System (ADS)

    Opatrný, Tomáš; Scully, Marlan O.

    2003-09-01

    It was shown recently that one can improve the efficiency of the Otto cycle by taking advantage of the internal degrees of freedom of an ideal gas [M. O. Scully, “The Quantum Afterburner”, Phys. Rev. Lett., to be published]. Here we discuss the limiting improvement of the efficiency by considering reversible cycles with both internal and external degrees of freedom.

  18. Efficient numerical simulation of electron states in quantum wires

    NASA Technical Reports Server (NTRS)

    Kerkhoven, Thomas; Galick, Albert T.; Ravaioli, Umberto; Arends, John H.; Saad, Youcef

    1990-01-01

    A new algorithm is presented for the numerical simulation of electrons in a quantum wire as described by a two-dimensional eigenvalue problem for Schroedinger's equation coupled with Poisson's equation. Initially, the algorithm employs an underrelaxed fixed point iteration to generate an approximation which is reasonably close to the solution. Subsequently, this approximate solution is employed as an initial guess for a Jacobian-free implementation of an approximate Newton method. In this manner the nonlinearity in the model is dealt with effectively. The effectiveness of this approach is demonstrated in a set of numerical experiments which study the electron states on the cross section of a quantum wire structure based on III-V semiconductors at 4.2 and 77 K.

  19. Efficient measurement of quantum gate error by interleaved randomized benchmarking.

    PubMed

    Magesan, Easwar; Gambetta, Jay M; Johnson, B R; Ryan, Colm A; Chow, Jerry M; Merkel, Seth T; da Silva, Marcus P; Keefe, George A; Rothwell, Mary B; Ohki, Thomas A; Ketchen, Mark B; Steffen, M

    2012-08-24

    We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates X(π/2) and Y(π/2). These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

  20. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    growth using metalorganic chemical vapor deposition (MOCVD). These methods allowed us to realize quantum dot active regions in which the injected carriers...on a higher energy (excited state) QD transition. Further improvements in QD growth and pre-etching are expected to lead to ground state emission...significantly better diffusion and chemical barrier than SiOx. Therefore, SiNx deposited by PECVD has been chosen as a dielectric mask. Also, in order to

  1. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance

    NASA Astrophysics Data System (ADS)

    Tuong Ly, Kiet; Chen-Cheng, Ren-Wu; Lin, Hao-Wu; Shiau, Yu-Jeng; Liu, Shih-Hung; Chou, Pi-Tai; Tsao, Cheng-Si; Huang, Yu-Ching; Chi, Yun

    2017-01-01

    Bright and efficient organic emitters of near-infrared light would be of use in applications ranging from biological imaging and medical therapy to night-vision devices. Here we report how a new class of Pt(II) complex phosphors have enabled the fabrication of organic light-emitting diodes that emit light at 740 nm with very high efficiency and radiance due to a high photoluminescence quantum yield of ∼81% and a highly preferred horizontal dipole orientation. The best devices exhibited an external quantum efficiency of 24 ± 1% in a normal planar organic light-emitting diode structure. The incorporation of a light out-coupling hemisphere structure further boosts the external quantum efficiency up to 55 ± 3%.

  2. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

    PubMed Central

    Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.

    2015-01-01

    Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  3. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.

    PubMed

    Davis, Nathaniel J L K; Böhm, Marcus L; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C

    2015-09-28

    Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.

  4. Photoemission experiments of a large area scandate dispenser cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Huang; Liu, Xing-guang; Chen, Yi; Chen, De-biao; Jiang, Xiao-guo; Yang, An-min; Xia, Lian-sheng; Zhang, Kai-zhi; Shi, Jin-shui; Zhang, Lin-wen

    2010-09-01

    A 100-mm-diameter scandate dispenser cathode was tested as a photocathode with a 10 ns Nd:YAG laser (266 nm) on an injector test stand for linear induction accelerators. This thermionic dispenser cathode worked at temperatures ranging from room temperature to 930 °C (below or near the thermionic emission threshold) while the vacuum was better than 4×10 -7 Torr. The laser pulse was synchronized with a 120 ns diode voltage pulse stably and they were in single pulse mode. Emission currents were measured by a Faraday cup. The maximum peak current collected at the anode was about 100 A. The maximum quantum efficiency measured at low laser power was 2.4×10 -4. Poisoning effect due to residual gas was obvious and uninterrupted heating was needed to keep cathode's emission capability. The cathode was exposed to air one time between experiments and recovered after being reconditioned. Photoemission uniformity of the cathode was also explored by changing the laser spot's position.

  5. Efficient optimal minimum error discrimination of symmetric quantum states

    NASA Astrophysics Data System (ADS)

    Assalini, Antonio; Cariolaro, Gianfranco; Pierobon, Gianfranco

    2010-01-01

    This article deals with the quantum optimal discrimination among mixed quantum states enjoying geometrical uniform symmetry with respect to a reference density operator ρ0. It is well known that the minimal error probability is given by the positive operator-valued measure obtained as a solution of a convex optimization problem, namely a set of operators satisfying geometrical symmetry, with respect to a reference operator Π0 and maximizing Tr(ρ0Π0). In this article, by resolving the dual problem, we show that the same result is obtained by minimizing the trace of a semidefinite positive operator X commuting with the symmetry operator and such that X⩾ρ0. The new formulation gives a deeper insight into the optimization problem and allows to obtain closed-form analytical solutions, as shown by a simple but not trivial explanatory example. In addition to the theoretical interest, the result leads to semidefinite programming solutions of reduced complexity, allowing to extend the numerical performance evaluation to quantum communication systems modeled in Hilbert spaces of large dimension.

  6. Quantum Dots Promise to Significantly Boost Solar Cell Efficiencies (Fact Sheet)

    SciTech Connect

    Not Available

    2013-08-01

    In the search for a third generation of solar-cell technologies, a leading candidate is the use of 'quantum dots' -- tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots have the potential to dramatically increase the efficiency of converting sunlight into energy -- perhaps even doubling it in some devices -- because of their ability to generate more than one bound electron-hole pair, or exciton, per incoming photon. NREL has produced quantum dots using colloidal suspensions; then, using molecular self-assembly, they have been fabricated into the first-ever quantum-dot solar cells. While these devices operate with only 4.4% efficiency, they demonstrate the capability for low-cost manufacturing.

  7. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage.

    PubMed

    Kano, Shinya; Fujii, Minoru

    2017-03-03

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  8. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage

    NASA Astrophysics Data System (ADS)

    Kano, Shinya; Fujii, Minoru

    2017-03-01

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  9. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    PubMed

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.

  10. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode.

    PubMed

    Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-04-01

    Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm(-3) could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm(-3)d(-1), and stable electricity production over 13.7Wm(-3) could be produced in a NB loading range of 1.2-14.7molm(-3)d(-1). The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm(-3)d(-1). The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy.

  11. Dibenzothiophene-S,S-dioxide and Bispyridinium-Based Cationic Polyfluorene Derivative as an Efficient Cathode Modifier for Polymer Solar Cells.

    PubMed

    Chen, Guiting; Liu, Sha; Xu, Jin; He, Ruifeng; He, Zhicai; Wu, Hong-Bin; Yang, Wei; Zhang, Bin; Cao, Yong

    2017-02-08

    A novel n-type conjugated polymer containing dibenzothiophene-S,S-dioxide (FSO), bispyridinium, and fluorene scaffolds in the backbone (PFSOPyCl) was synthesized and used in the cathode interfacial layers (CILs) of conventional polymer solar cells (PSCs). The high electron affinities and large planar structures of the FSO and bispyridinium units endowed this polymer with good energy level alignments with [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) and metal cathode, and excellent electron transport and extraction properties. Polymer solar cells (PSCs) based on the poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):PC71BM system with PFSOPyCl CIL exhibited simultaneous enhancement in open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), while the power conversion efficiency increased from 5.47% to 6.79%, relative to the bare Al device. Besides, PSC based on the poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno [3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7):PC71BM system achieved a PCE of 8.43% when using PFSOPyCl as CIL. Hence, PFSOPyCl is a promising candidate CIL for PSCs.

  12. Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction.

    PubMed

    Panomsuwan, Gasidit; Saito, Nagahiro; Ishizaki, Takahiro

    2016-03-23

    Metal-free nitrogen-doped carbon materials are currently considered at the forefront of potential alternative cathode catalysts for the oxygen reduction reaction (ORR) in fuel cell technology. Despite numerous efforts in this area over the past decade, rational design and development of a new catalyst system based on nitrogen-doped carbon materials via an innovative approach still present intriguing challenges in ORR catalysis research. Herein, a new kind of nitrogen-doped carbon nanoparticle-carbon nanofiber (NCNP-CNF) composite with highly efficient and stable ORR catalytic activity has been developed via a new approach assisted by a solution plasma process. The integration of NCNPs and CNFs by the solution plasma process can lead to a unique morphological feature and modify physicochemical properties. The NCNP-CNF composite exhibits a significantly enhanced ORR activity through a dominant four-electron pathway in an alkaline solution. The enhancement in ORR activity of NCNP-CNF composite can be attributed to the synergistic effects of good electron transport from highly graphitized CNFs as well as abundance of exposed catalytic sites and meso/macroporosity from NCNPs. More importantly, NCNP-CNF composite reveals excellent long-term durability and high tolerance to methanol crossover compared with those of a commercial 20 wt % supported on Vulcan XC-72. We expect that NCNP-CNF composite prepared by this synthetic approach can be a promising metal-free cathode catalyst candidate for ORR in fuel cells and metal-air batteries.

  13. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization.

    PubMed

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-07-18

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current.

  14. A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization

    NASA Astrophysics Data System (ADS)

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-07-01

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current.

  15. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.

    2015-03-01

    We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.

  16. A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization

    PubMed Central

    Han, Hau-Vei; Lin, Chien-Chung; Tsai, Yu-Lin; Chen, Hsin-Chu; Chen, Kuo-Ju; Yeh, Yun-Ling; Lin, Wen-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-01-01

    This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current. PMID:25034623

  17. Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord.

    PubMed

    Piani, Marco

    2016-08-19

    Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum correlations: their lack of shareability. Our approach emphasizes how the difference between entanglement and discord depends on whether shareability is intended as a static property or as a dynamical process.

  18. Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

    NASA Astrophysics Data System (ADS)

    England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J.

    2014-02-01

    The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.

  19. Efficient quantum dialogue using entangled states and entanglement swapping without information leakage

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu

    2016-06-01

    We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.

  20. Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

    SciTech Connect

    England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J.

    2014-02-03

    The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.

  1. An efficient quantum scheme for Private Set Intersection

    NASA Astrophysics Data System (ADS)

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    Private Set Intersection allows a client to privately compute set intersection with the collaboration of the server, which is one of the most fundamental and key problems within the multiparty collaborative computation of protecting the privacy of the parties. In this paper, we first present a cheat-sensitive quantum scheme for Private Set Intersection. Compared with classical schemes, our scheme has lower communication complexity, which is independent of the size of the server's set. Therefore, it is very suitable for big data services in Cloud or large-scale client-server networks.

  2. An efficient (t,n) threshold quantum secret sharing without entanglement

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Dai, Yuewei

    2016-04-01

    An efficient (t,n) threshold quantum secret sharing (QSS) scheme is proposed. In our scheme, the Hash function is used to check the eavesdropping, and no particles need to be published. So the utilization efficiency of the particles is real 100%. No entanglement is used in our scheme. The dealer uses the single particles to encode the secret information, and the participants get the secret through measuring the single particles. Compared to the existing schemes, our scheme is simpler and more efficient.

  3. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  4. An efficient quantum mechanical method for radical pair recombination reactions

    NASA Astrophysics Data System (ADS)

    Lewis, Alan M.; Fay, Thomas P.; Manolopoulos, David E.

    2016-12-01

    The standard quantum mechanical expressions for the singlet and triplet survival probabilities and product yields of a radical pair recombination reaction involve a trace over the states in a combined electronic and nuclear spin Hilbert space. If this trace is evaluated deterministically, by performing a separate time-dependent wavepacket calculation for each initial state in the Hilbert space, the computational effort scales as O (Z2log ⁡Z ) , where Z is the total number of nuclear spin states. Here we show that the trace can also be evaluated stochastically, by exploiting the properties of spin coherent states. This results in a computational effort of O (M Z log ⁡Z ) , where M is the number of Monte Carlo samples needed for convergence. Example calculations on a strongly coupled radical pair with Z >106 show that the singlet yield can be converged to graphical accuracy using just M =200 samples, resulting in a speed up by a factor of >5000 over a standard deterministic calculation. We expect that this factor will greatly facilitate future quantum mechanical simulations of a wide variety of radical pairs of interest in chemistry and biology.

  5. Quantum efficiency coefficient for photogeneration of carriers in SbSI nanowires

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Bober, Ł.; Borkowski, B.; Kępińska, M.; Szperlich, P.; Stróż, D.; Sozańska, M.

    2013-10-01

    This paper presents investigations of the quantum efficiency coefficient for the photogeneration of carriers in aligned antimony sulfoiodide (SbSI) nanowires. Therefore the spectral dependences (between 488 and 700 nm) of photoconductivity current (IPC) were measured for temperatures from 263 to 323 K and for different light intensities. The least squares method was applied to fit the experimental IPC data with appropriate theoretical dependence. From this fitting, diffusion length and surface recombination velocity of carriers as well as spectral dependences of quantum efficiency coefficients for different temperatures and different light intensities were obtained. A comparison of the values of absorption coefficient obtained from the measurements of optical diffusive reflectance and from evaluation of the quantum efficiency coefficient is presented.

  6. Modeling of dilute nitride cascaded quantum well solar cells for high efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Vijaya, G.; Alemu, A.; Freundlich, A.

    2013-03-01

    III-V Dilute Nitride multi-quantum well structures are currently promising candidates to achieve 1 sun efficiencies of <40% with multi-junction design (InGaP/ GaAs/ GaAsN/ Ge). Previously under the assumption of complete carrier collection from wells, we have shown that III-V Dilute Nitride GaAsN multi-quantum well (MQW) structures included in the intrinsic region of the third cell in a 4 junction configuration could yield 1 sun efficiencies greater than 40%. However for a conventional deep well design the characteristic carrier escape times could exceed that of radiative recombination hence limiting the current output of the cell, as has been indicated by prior experiments. In order to increase the current extraction here we evaluate the performance of a cascaded quantum well design whereby a thermally assisted resonant tunneling process is used to accelerate the carrier escape process (<30ps lifetime) and hence improve the photo generated carrier collection efficiency. The quantum efficiency of a p-i-n subcell where a periodic sequence of quantum wells with well and barrier thicknesses adjusted for the sequential extraction operation is calculated using a 2D drift diffusion model and taking into account absorption properties of resulting MQWs. The calculation also accounts for the E-field induced modifications of absorption properties and quantization in quantum wells. The results are then accounted for to calculate efficiencies for the proposed 4 junction design, and indicate potential for reaching efficiencies in excess of this structure is above 42% (1 sun) and above 50% (500 sun) AM1.5.

  7. The effects of different quantum feedback operator types on the parameter precision of detection efficiency in optimal quantum estimation

    NASA Astrophysics Data System (ADS)

    Ma, Shao-Qiang; Zhu, Han-Jie; Zhang, Guo-Feng

    2017-04-01

    The effects of different quantum feedback types on the estimation precision of the detection efficiency are studied. It is found that the precision can be more effective enhanced by a certain feedback type through comparing these feedbacks and the precision has a positive relation with detection efficiency for the optimal feedback when the system reach the state of dynamic balance. In addition, the bigger the proportion of |1> is the higher the precision is and we will not obtain any information about the parameter to be estimated if |0> is chosen as initial state for the feedback type λσz.

  8. High Efficiency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires.

    PubMed

    Dutta, Mrinal; Thirugnanam, Lavanya; Trinh, Pham Van; Fukata, Naoki

    2015-07-28

    We report on an efficient hybrid Si nanocrystal quantum dot modified radial p-n junction thinner Si solar cell that utilizes the advantages of effective exciton collection by energy transfer from nanocrystal-Si (nc-Si) quantum dots to underlying radial p-n junction Si nanowire arrays with excellent carrier separation and propagation via the built-in electric fields of radial p-n junctions. Minimization of recombination, optical, and spectrum losses in this hybrid structure led to a high cell efficiency of 12.9%.

  9. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction.

    PubMed

    Kim, Byung-Sung; Neo, Darren C J; Hou, Bo; Park, Jong Bae; Cho, Yuljae; Zhang, Nanlin; Hong, John; Pak, Sangyeon; Lee, Sanghyo; Sohn, Jung Inn; Assender, Hazel E; Watt, Andrew A R; Cha, SeungNam; Kim, Jong Min

    2016-06-08

    Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows that graphene quenches emission from the quantum dot suggesting spontaneous charge transfer to graphene. CQD photodetectors exhibit increased photoresponse and improved transport properties. We propose that the CQD/SG hybrid structure is a route to make CQD thin films with improved charge extraction, therefore resulting in improved solar cell efficiency.

  10. A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis

    NASA Astrophysics Data System (ADS)

    Zeller, Luke

    In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.

  11. Towards a highly efficient quantum spin-photon interface for an NV centre based quantum network

    NASA Astrophysics Data System (ADS)

    Bogdanovic, Stefan; Bonato, Cristian; van Dam, Suzanne; Reiserer, Andreas; Zwerver, Anne-Marije; Hanson, Ronald; Quantum Transport Team

    Nitrogen-vacancy (NV) centers in diamond recently emerged as promising candidates for realizing quantum information algorithms due to their remarkable versatility. The spin of these optically active defects can be entangled with their emitted photons, making them an excellent optical interface from the perspective of quantum communication.Recently, we have demonstrated the first building blocks of such networks, performing kilometer scale entanglement of two NV centers and teleportation of quantum information.(1) However, our current protocols are inefficient due to the low emission of NV center's resonant photons into the zero phonon line (ZPL).Here we present our efforts of coupling a single NV center emitter in a diamond membrane to a fiber-based Fabry-Perot microcavity with high finesse (F >104) at cryogenic temperatures. This approach allows spectral tuning of the cavity resonance to the ZPL emission of the NV center, thereby significantly enhancing the resonant photon emission via Purcell effect. Furthermore, the bulk environment of the NV centers protects their spin properties against surface proximity effects, which is of crucial importance for quantum information processing applications. (1) B.Hensen et al., Nature 526, 682 (2015)

  12. Virtual cathode microwave devices -- Basics

    SciTech Connect

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  13. Cost-efficient design of a quantum multiplier-accumulator unit

    NASA Astrophysics Data System (ADS)

    Babu, Hafiz Md. Hasan

    2017-01-01

    This paper proposes a cost-efficient quantum multiplier-accumulator unit. The paper also presents a fast multiplication algorithm and designs a novel quantum multiplier device based on the proposed algorithm with the optimum time complexity as multiplier is the major device of a multiplier-accumulator unit. We show that the proposed multiplication technique has time complexity O((3 log2n)+1), whereas the best known existing technique has O(n log2 n), where n is the number of qubits. In addition, our design proposes three new quantum circuits: a circuit representing a quantum full-adder, a circuit known as quantum ANDing circuit, which performs the ANDing operation and a circuit presenting quantum accumulator. Moreover, the proposed quantum multiplier-accumulator unit is the first ever quantum multiplier-accumulator circuit in the literature till now, which has reduced garbage outputs and ancillary inputs to a great extent. The comparative study shows that the proposed quantum multiplier performs better than the existing multipliers in terms of depth, quantum gates, delays, area and power with the increasing number of qubits. Moreover, we design the proposed quantum multiplier-accumulator unit, which performs better than the existing ones in terms of hardware and delay complexities, e.g., the proposed (n× n)—qubit quantum multiplier-accumulator unit requires O(n2) hardware and O(log2n) delay complexities, whereas the best known existing quantum multiplier-accumulator unit requires O(n3) hardware and O((n-1)2 +1+n) delay complexities. In addition, the proposed design achieves an improvement of 13.04, 60.08 and 27.2% for 4× 4, 7.87, 51.8 and 27.1% for 8× 8, 4.24, 52.14 and 27% for 16× 16, 2.19, 52.15 and 27.26% for 32 × 32 and 0.78, 52.18 and 27.28% for 128 × 128-qubit multiplications over the best known existing approach in terms of number of quantum gates, ancillary inputs and garbage outputs, respectively. Moreover, on average, the proposed design gains an

  14. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-10-27

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  15. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  16. Step-by-step magic state encoding for efficient fault-tolerant quantum computation.

    PubMed

    Goto, Hayato

    2014-12-16

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

  17. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency.

    PubMed

    Nikiforov, Alexander; Gamez, Jose A; Thiel, Walter; Filatov, Michael

    2016-01-07

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor.

  18. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency

    PubMed Central

    2015-01-01

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor. PMID:26670164

  19. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.

  20. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    PubMed

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  1. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  2. Confidence and efficiency scaling in variational quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Delyon, F.; Bernu, B.; Holzmann, Markus

    2017-02-01

    Based on the central limit theorem, we discuss the problem of evaluation of the statistical error of Monte Carlo calculations using a time-discretized diffusion process. We present a robust and practical method to determine the effective variance of general observables and show how to verify the equilibrium hypothesis by the Kolmogorov-Smirnov test. We then derive scaling laws of the efficiency illustrated by variational Monte Carlo calculations on the two-dimensional electron gas.

  3. Increasing the quantum efficiency of GaAs solar cells by embedding InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Salii, R. A.; Mintairov, S. A.; Nadtochiy, A. M.; Payusov, A. S.; Brunkov, P. N.; Shvarts, M. Z.; Kalyuzhnyy, N. A.

    2016-11-01

    Development of Metalorganic Vapor Phase Epitaxy (MOVPE) technology of InAs quantum dots (QDs) in GaAs for photovoltaic applications is presented. The growth peculiarities in InAs-GaAs lattice-mismatched system were considered. The photoluminescence (PL) intensity dependences on different growth parameters were obtained. The multimodal distribution of QDs by sizes was found using AFM and PL methods. GaAs solar cell nanoheterostructures with imbedded QD arrays were designed and obtained. Ones have been demonstrated a significant increase of quantum efficiency and photogenerated current of QD solar cells due to photo effect in InAs QD array (0.59 mA/cm2 for AM1.5D and 82 mA/cm2 for AM0).

  4. Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries.

    PubMed

    Chen, Tao; Cheng, Baorui; Zhu, Guoyin; Chen, Renpeng; Hu, Yi; Ma, Lianbo; Lv, Hongling; Wang, Yanrong; Liang, Jia; Tie, Zuoxiu; Jin, Zhong; Liu, Jie

    2017-01-11

    Despite high theoretical energy density, the practical deployment of lithium-sulfur (Li-S) batteries is still not implemented because of the severe capacity decay caused by polysulfide shuttling and the poor rate capability induced by low electrical conductivity of sulfur. Herein, we report a novel sulfur host material based on "sea urchin"-like cobalt nanoparticle embedded and nitrogen-doped carbon nanotube/nanopolyhedra (Co-NCNT/NP) superstructures for Li-S batteries. The hierarchical micromesopores in Co-NCNT/NP can allow efficient impregnation of sulfur and block diffusion of soluble polysulfides by physical confinement, and the incorporation of embedded Co nanoparticles and nitrogen doping (∼4.6 at. %) can synergistically improve the adsorption of polysulfides, as evidenced by beaker cell tests. Moreover, the conductive networks of Co-NCNT/NP interconnected by nitrogen-doped carbon nanotubes (NCNTs) can facilitate electron transport and electrolyte infiltration. Therefore, the specific capacity, rate capability, and cycle stability of Li-S batteries are significantly enhanced. As a result, the Co-NCNT/NP based cathode (loaded with 80 wt % sulfur) delivers a high discharge capacity of 1240 mAh g(-1) after 100 cycles at 0.1 C (based on the weight of sulfur), high rate capacity (755 mAh g(-1) at 2.0 C), and ultralong cycling life (a very low capacity decay of 0.026% per cycle over 1500 cycles at 1.0 C). Remarkably, the composite cathode with high areal sulfur loading of 3.2 mg cm(-2) shows high rate capacities and stable cycling performance over 200 cycles.

  5. Determination of nonradiative recombination in high quantum efficiency GaAs/InGaP heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Chia-Yeh; Wang, Chengao; Hasselbeck, Michael P.; Sheik-Bahae, Mansoor; Malloy, Kevin J.

    2010-02-01

    We characterize high quantum efficiency double GaAs/InGaP heterostructures used in semiconductor laser cooling. To identify potential samples for laser cooling, measuring the nonradiative recombination rate coefficient is necessary. We describe a technique called power dependent photoluminescence measurement, which when combined with timeresolved photoluminescence lifetime determines the nonradiative recombination coefficient.

  6. Design Rules for High-Efficiency Quantum-Dot-Sensitized Solar Cells: A Multilayer Approach.

    PubMed

    Shalom, Menny; Buhbut, Sophia; Tirosh, Shay; Zaban, Arie

    2012-09-06

    The effect of multilayer sensitization in quantum-dot (QD)-sensitized solar cells is reported. A series of electrodes, consisting of multilayer CdSe QDs were assembled on a compact TiO2 layer. Photocurrent measurements along with internal quantum efficiency calculation reveal similar electron collection efficiency up to a 100 nm thickness of the QD layers. Moreover, the optical density and the internal quantum efficiency measurements reveal that the desired surface area of the TiO2 electrode should be increased only by a factor of 17 compared with a compact electrode. We show that the sensitization of low-surface-area TiO2 electrode with QD layers increases the performance of the solar cell, resulting in 3.86% efficiency. These results demonstrate a conceptual difference between the QD-sensitized solar cell and the dye-based system in which dye multilayer decreases the cell performance. The utilization of multilayer QDs opens new opportunities for a significant improvement of quantum-dot-sensitized solar cells via innovative cell design.

  7. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    SciTech Connect

    Davis, Robert F.

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  8. Area laws and efficient descriptions of quantum many-body states

    NASA Astrophysics Data System (ADS)

    Ge, Yimin; Eisert, Jens

    2016-08-01

    It is commonly believed that area laws for entanglement entropies imply that a quantum many-body state can be faithfully represented by efficient tensor network states—a conjecture frequently stated in the context of numerical simulations and analytical considerations. In this work, we show that this is in general not the case, except in one-dimension. We prove that the set of quantum many-body states that satisfy an area law for all Renyi entropies contains a subspace of exponential dimension. We then show that there are states satisfying area laws for all Renyi entropies but cannot be approximated by states with a classical description of small Kolmogorov complexity, including polynomial projected entangled pair states or states of multi-scale entanglement renormalisation. Not even a quantum computer with post-selection can efficiently prepare all quantum states fulfilling an area law, and we show that not all area law states can be eigenstates of local Hamiltonians. We also prove translationally and rotationally invariant instances of these results, and show a variation with decaying correlations using quantum error-correcting codes.

  9. Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors

    NASA Astrophysics Data System (ADS)

    Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.

    2016-12-01

    The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.

  10. Efficient method for calculating electronic bound states in arbitrary one-dimensional quantum wells

    NASA Astrophysics Data System (ADS)

    de Aquino, V. M.; Iwamoto, H.; Dias, I. F. L.; Laureto, E.; da Silva, M. A. T.; da Silva, E. C. F.; Quivy, A. A.

    2017-01-01

    In the present paper it is demonstrated that the bound electronic states of multiple quantum wells structures may be calculated very efficiently by expanding their eigenstates in terms of the eigenfunctions of a particle in a box. The bound states of single and multiple symmetric or nonsymmetric wells are calculated within the single-band effective mass approximation. A comparison is then made between the results obtained for simple cases with exact calculations. We also apply our approach to a GaAs/AlGaAs multiple quantum well structure composed of forty periods each one with seven quantum wells. The method may be very useful to design narrow band quantum cascade photodetectors to work without applied bias in a photovoltaic mode. With the presented method the effects of a electric field may also be easily included which is very important if one desires study quantum well structures for application to the development of quantum cascade lasers. The advantages of the method are also presented.

  11. Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy

    SciTech Connect

    Gacevic, Z.; Kehagias, Th.; Koukoula, T.; Komninou, Ph.

    2011-05-15

    We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities ({approx}10{sup 10} cm{sup -3}). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.

  12. Highly Efficient Storage of Pulse Energy Produced by Triboelectric Nanogenerator in Li3V2(PO4)3/C Cathode Li-Ion Batteries.

    PubMed

    Nan, Xihui; Zhang, Changkun; Liu, Chaofeng; Liu, Mengmeng; Wang, Zhong Lin; Cao, Guozhong

    2016-01-13

    Triboelectric nanogenerator (TENG) has been considered as a new type of energy harvesting technology, which employs the coupling effects of triboelectrification and electrostatic induction. One key factor having limited its application is the energy storage. In this work, a high performance Li3V2(PO4)3/C material synthesized by low-cost hydrothermal method followed with subsequent annealing treatment was studied to efficiently store the power generated by a radial-arrayed rotary TENG. Not only does the Li3V2(PO4)3/C exhibit a discharge capacity of 128 mAh g(-1) at 1 C with excellent cyclic stability (capacity retention is 90% after 1000 cycles at a rate of 5 C) in Li-ion battery, but also shows outstanding energy conversion efficiency (83.4%) compared with the most popular cathodic materials: LiFePO4 (74.4%), LiCoO2 (66.1%), and LiMn2O4 (73.6%) when it was charged by high frequency and large current electricity directly from by TENG.

  13. Hydrophilic Conjugated Polymers with Large Bandgaps and Deep-Lying HOMO Levels as an Efficient Cathode Interlayer in Inverted Polymer Solar Cells.

    PubMed

    Kan, Yuanyuan; Zhu, Yongxiang; Liu, Zhulin; Zhang, Lianjie; Chen, Junwu; Cao, Yong

    2015-08-01

    Two hydrophilic conjugated polymers, PmP-NOH and PmP36F-NOH, with polar diethanol-amine on the side chains and main chain structures of poly(meta-phenylene) and poly(meta-phenylene-alt-3,6-fluorene), respectively, are successfully synthesized. The films of PmP-NOH and PmP36F-NOH show absorption edges at 340 and 343 nm, respectively. The calculated optical bandgaps of the two polymers are 3.65 and 3.62 eV, respectively, the largest ones so far reported for hydrophilic conjugated polymers. PmP-NOH and PmP36F-NOH also possess deep-lying highest occupied molecular orbital levels of -6.19 and -6.15 eV, respectively. Inserting PmP-NOH and PmP36F-NOH as a cathode interlayer in inverted polymer solar cells with a PTB7/PC71 BM blend as the active layer, high power conversion efficiencies of 8.58% and 8.33%, respectively, are achieved, demonstrating that the two hydrophilic polymers are excellent interlayers for efficient inverted polymer solar cells.

  14. Negentropy as a source of efficiency: a nonequilibrium quantum Otto cycle

    NASA Astrophysics Data System (ADS)

    Li, Hai; Zou, Jian; Yu, Wen-Li; Li, Lin; Xu, Bao-Ming; Shao, Bin

    2013-07-01

    We consider a single quantum mechanical particle confined to an one-dimensional (1D) infinite square well, and propose a nonequilibrium quantum Otto cycle (NQOC). Compared with the conventional quantum Otto engine (CQOE) investigated by [T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004); T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)], due to the effects of negentropy produced in the NQOC, many interesting features appear: (1) in general, the NQOC is capable of extracting more work, so it is more efficient; (2) the NQOC can operate even when T 1 = T 2 or T 1 < T 2, where T 1 ( T 2) represents the temperature of hot (cold) bath; (3) in some cases, the NQOC can absorb heat from both baths and completely transforms them into work. These results demonstrate that the negentropy can be understood as an effective source of efficiency in quantum heat engines (QHEs) and meanwhile it is shown that the second law of thermodynamics is not violated. At last, we also show that the efficiency of NQOC reduces to that of classical Otto cycle in the classical limit.

  15. III-nitride quantum dots for ultra-efficient solid-state lighting

    SciTech Connect

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of higher spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.

  16. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGES

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  17. Highly efficient CdS-quantum-dot-sensitized GaAs solar cells.

    PubMed

    Lin, Chien-Chung; Chen, Hsin-Chu; Tsai, Yu Lin; Han, Hau-Vei; Shih, Huai-Shiang; Chang, Yi-An; Kuo, Hao-Chung; Yu, Peichen

    2012-03-12

    We demonstrate a hybrid design of traditional GaAs-based solar cell combined with colloidal CdS quantum dots. With anti-reflective feature at long wavelength and down-conversion at UV regime, the CdS quantum dot effectively enhance the overall power conversion efficiency by as high as 18.9% compared to traditional GaAs-based device. A more detailed study showed an increase of surface photoconductivity due to UV presence, and the fill factor of the solar cell can be improved accordingly.

  18. Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters.

    PubMed

    Mutlugun, Evren; Guzelturk, Burak; Abiyasa, Agus Putu; Gao, Yuan; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-08-21

    Nonradiative energy transfer (NRET) is an alternative excitation mechanism in colloidal quantum dot (QD) based electroluminescent devices (QLEDs). Here, we develop hybrid highly spectrally pure QLEDs that facilitate energy transfer pumping via NRET from a phosphorescent small organic molecule-codoped charge transport layer to the adjacent QDs. A partially codoped exciton funnelling electron transport layer is proposed and optimized for enhanced QLED performance while exhibiting very high color purity of 99%. These energy transfer pumped hybrid QLEDs demonstrate a 6-fold enhancement factor in the external quantum efficiency over the conventional QLED structure, in which energy transfer pumping is intrinsically weak.

  19. Enhancement of thermoelectric efficiency by quantum interference effects in trilayer silicene flakes

    NASA Astrophysics Data System (ADS)

    Cortés, Natalia; Rosales, L.; Chico, Leonor; Pacheco, M.; Orellana, P. A.

    2017-01-01

    In recent years, the enhancement of thermoelectric efficiencies has been accomplished in nanoscale systems by making use of quantum effects. We exploit the presence of quantum interference phenomena such as bound states in the continuum and Fano antiresonances in trilayer silicene flakes to produce sharp changes in the electronic transmission of the system. By applying symmetric gate voltages the thermoelectric properties can be tuned and, for particular flake lengths, a great enhancement of the figure of merit can be achieved. We show that the most favorable configurations are those in which the electronic transmission is dominated by the coupling of bound states to the continuum, tuned by an external gate.

  20. Energy and matter-efficient size-selective growth of thin quantum wires in a plasma

    SciTech Connect

    Ostrikov, K.; Mehdipour, H.

    2011-01-17

    It is shown that plasmas can minimize the adverse Gibbs-Thompson effect in thin quantum wire growth. The model of Si nanowire nucleation includes the unprecedented combination of the plasma sheath, ion- and radical-induced species creation and heating effects on the surface and within an Au catalyst nanoparticle. Compared to neutral gas thermal processes, much thinner, size-selective wires can nucleate at the same temperature and pressure while much lower energy and matter budget is needed to grow same-size wires. This explains the experimental observations and may lead to energy- and matter-efficient synthesis of a broader range of one-dimensional quantum structures.

  1. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  2. Further investigation of CsI-coated microchannel plate quantum efficiencies

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1988-01-01

    Previously, pulse-counting detection efficiencies measured for CsI-coated microchannel plate (MCP) detectors (two-stage chevron configuration with a single collecting anode) have been reported to be 15-20 percent near Lyman-alpha (1216 A), compared to typical 65 percent quantum yields of opaque CsI photocathodes. To investigate the possibility that an improvement in quantum yield could result from use of MCPs with a bias angle of about 25 deg instead of 8 deg as used previously, the previous measurements were reported with new MCPs having the larger bias angle. No significant improvement in detection efficiency was achieved; the new detector tests still yielded maximum efficiencies of the order of 20 percent near 1216 A.

  3. Quantum efficiencies of the photo-Fenton degradation of atrazine in water.

    PubMed

    Benzaquén, T B; Isla, M A; Alfano, O M

    2012-01-01

    An experimental work in a well-stirred batch recycling reactor for the photo-Fenton degradation of atrazine in water is presented. A study of the quantum efficiency is performed to assess the effectiveness of the photo-Fenton process on the atrazine degradation and total organic carbon (TOC) mineralization. Apparent and absolute quantum efficiencies of degradation and mineralization of an atrazine-based commercial herbicide are determined under different experimental conditions. Higher apparent efficiencies were found for both atrazine degradation and TOC mineralization when the ferric ion and hydrogen peroxide concentrations are increased. Because of the well known stability of the triazine ring, atrazine was not completely mineralized by the photo-Fenton process. However, a TOC reduction of 40% was achieved, being 62.5% of the maximum value that can be reached.

  4. Engineering Efficiency Droop in InGaN/GaN Multiple Quantum Well LEDs

    NASA Astrophysics Data System (ADS)

    Puttaswamy, Yashvanth; Sundaresan, Sasi; Yalavarthi, Krishna; Ahmed, Shaikh

    2012-02-01

    In this work, we address the technologically important issue of efficiency droop pronounced in InGaN/GaN multiple quantum well (QW) LEDs. A two-fold modeling approach is employed where: 1) the NEMO 3-D tool is used to compute the atomistic strain fields and associated polarization potentials in the active region, and 2) the outputs from NEMO 3-D are then coupled to the Synopsys TCAD tool to determine the terminal electrical and optical properties of the device. Next, a series of numerical experiments are performed that mainly aims to improve the efficiency droop without compromising the internal quantum efficiency (IQE) of the device. These include:1) varying the QW thickness, 2) employing different configurations of tri-material barriers, 3) varying the molar concentration of the barrier materials, and 4) varying the doping density in the barrier region.

  5. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NASA Astrophysics Data System (ADS)

    ten Kate, O. M.; de Jong, M.; Hintzen, H. T.; van der Kolk, E.

    2013-08-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge solar cells with and without an integrated spectral shifting, quantum cutting, or quantum tripling layer using their measured internal quantum efficiency (IQE) curves. Our detailed balance limit calculations not only take into account light in-coupling efficiency of the direct AM1.5 spectral irradiance but also wavelength dependence of the refractive index and the IQEs of the cells and the angular dependent light in-coupling of the indirect spectral irradiance. An ideal quantum cutting layer enhances all cell efficiencies ranging from a modest 2.9% for c-Si to much larger values of 4.0%, 7.7%, and 11.2% for CIGS, Ge, and GaSb, respectively. A quantum tripling layer also enhances cell efficiencies, but to a lesser extent. These efficiency enhancements are largest for small band gap cells like GaSb (7.5%) and Ge (3.8%). Combining a quantum tripling and a quantum cutting layer would enhance efficiency of these cells by a factor of two. Efficiency enhancement by a simple spectral shifting layer is limited to less than 1% in case the IQE is high for blue and UV lights. However, for CdTe and GaSb solar cells, efficiency enhancements are as high as 4.6% and 3.5%, respectively. A shifting layer based on available red LED phosphors like Sr2Si5N8:Eu will raise CdTe efficiency by 3.0%.

  6. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  7. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    SciTech Connect

    Keller, Sebastian Reiher, Markus; Dolfi, Michele Troyer, Matthias

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  8. Efficient Solvability of Hamiltonians and Limits on the Power of Some Quantum Computational Models

    NASA Astrophysics Data System (ADS)

    Somma, Rolando; Barnum, Howard; Ortiz, Gerardo; Knill, Emanuel

    2006-11-01

    One way to specify a model of quantum computing is to give a set of control Hamiltonians acting on a quantum state space whose initial state and final measurement are specified in terms of the Hamiltonians. We formalize such models and show that they can be simulated classically in a time polynomial in the dimension of the Lie algebra generated by the Hamiltonians and logarithmic in the dimension of the state space. This leads to a definition of Lie-algebraic “generalized mean-field Hamiltonians.” We show that they are efficiently (exactly) solvable. Our results generalize the known weakness of fermionic linear optics computation and give conditions on control needed to exploit the full power of quantum computing.

  9. An efficient matrix product operator representation of the quantum chemical Hamiltonian.

    PubMed

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  10. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    SciTech Connect

    Gao, Bing; Shen, Chao; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia E-mail: grchen@ecust.edu.cn; Chen, Guorong E-mail: grchen@ecust.edu.cn; Zhang, Bo

    2014-05-21

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO{sub 2} electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO{sub 2}'s to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO{sub 2}. The resulting green synthesized CdSe QDSCs with Cu{sub 2}S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  11. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    SciTech Connect

    Price, J. S.; Giebink, N. C.

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

  12. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum systems are bounded from the upper side by the same expression ηmp≤η+≡ηC2/[ηC-(1 -ηC) ln(1 -ηC) ] with ηC=1 -Tc/Th as the Carnot efficiency. This expression ηmp possesses the same universality of the CA efficiency ηCA=1 -√{1 -ηC } at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of ηCA is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  13. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.

    PubMed

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum systems are bounded from the upper side by the same expression η(mp)≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))] with η(C)=1-T(c)/T(h) as the Carnot efficiency. This expression η(mp) possesses the same universality of the CA efficiency η(CA)=1-√(1-η(C)) at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  14. Highly efficient visual detection of trace copper(II) and protein by the quantum photoelectric effect.

    PubMed

    Wang, Peng; Lei, Jianping; Su, Mengqi; Liu, Yueting; Hao, Qing; Ju, Huangxian

    2013-09-17

    This work presented a photocurrent response mechanism of quantum dots (QDs) under illumination with the concept of a quantum photoelectric effect. Upon irradiation, the photoelectron could directly escape from QDs. By using nitro blue tetrazolium (NBT) to capture the photoelectron, a new visual system was proposed due to the formation of an insoluble reduction product, purple formazan, which could be used to visualize the quantum photoelectric effect. The interaction of copper(II) with QDs could form trapping sites to interfere with the quantum confinement and thus blocked the escape of photoelectron, leading to a "signal off" visual method for sensitive copper(II) detection. Meanwhile, by using QDs as a signal tag to label antibody, a "signal on" visual method was also proposed for immunoassay of corresponding protein. With meso-2,3-dimercaptosuccinic-capped CdTe QDs and carcino-embryonic antigen as models, the proposed visual detection methods showed high sensitivity, low detection limit, and wide detectable concentration ranges. The visualization of quantum photoelectric effect could be simply extended for the detection of other targets. This work opens a new visual detection way and provides a highly efficient tool for bioanalysis.

  15. An efficient numerical progressive diagonalization scheme for the quantum Rabi model revisited

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Bao, Lina; Dai, Lianrong; Draayer, Jerry P.

    2017-02-01

    An efficient numerical progressive diagonalization scheme for the quantum Rabi model is revisited. The advantage of the scheme lies in the fact that the quantum Rabi model can be solved almost exactly by using the scheme that only involves a finite set of one variable polynomial equations. The scheme is especially efficient for a specified eigenstate of the model, for example, the ground state. Some low-lying level energies of the model for several sets of parameters are calculated, of which one set of the results is compared to that obtained from the Braak’s exact solution proposed recently. It is shown that the derivative of the entanglement measure defined in terms of the reduced von Neumann entropy with respect to the coupling parameter does reach the maximum near the critical point deduced from the classical limit of the Dicke model, which may provide a probe of the critical point of the crossover in finite quantum many-body systems, such as that in the quantum Rabi model.

  16. The effect of surface cleaning on quantum efficiency in AlGaN photocathode

    NASA Astrophysics Data System (ADS)

    Hao, Guanghui; Zhang, Yijun; Jin, Muchun; Feng, Cheng; Chen, Xinlong; Chang, Benkang

    2015-01-01

    To improve the quantum efficiency of AlGaN photocathode, various surfaces cleaning techniques for the removal of alumina and carbon from AlGaN photocathode surface were investigated. The atomic compositions of AlGaN photocathode structure and surface were measured by the X-ray photoelectron spectroscopy and Ar+ ion sputtering. It is found that the boiling KOH solution and the mixture of sulfuric acid and hydrogen peroxide, coupled with the thermal cleaning at 850 °C can effectively remove the alumina and carbon from the AlGaN photocathode surface. The quantum efficiency of AlGaN photocathode is improved to 35.1% at 240 nm, an increase of 50% over the AlGaN photocathode chemically cleaned by only the mixed solution of sulfuric acid and hydrogen peroxide and thermally cleaned at 710 °C.

  17. Highly efficient multifunctional MnSe/ZnSeS quantum dots for biomedical applications

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Akins, Brian A.; Plumley, John B.; Rivera, Antonio C.; Withers, Nathan J.; Cook, Nathaniel C.; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D. C.; Osińki, Marek

    2013-03-01

    Colloidal quantum dots (QDs) are of interest for a variety of biomedical applications, including bioimaging, drug targeting, and photodynamic therapy. However, a significant limitation is that highly efficient photoluminescent QDs available commercially contain cadmium. Recent research has focused on cadmium-free QDs, which are anticipated to exhibit significantly lower cytotoxicity. Previous work has focused on InP and ZnO as alternative semiconductor materials for QDs. However, these nanoparticles have been shown to be cytotoxic. Recently, we have synthesized high quantum efficiency (exceeding 90%), color tunable MnSe/ZnSeS nanoparticles, as potentially attractive QDs for biomedical applications. Additionally, the manganese imparts magnetic properties on the QDs, which are important for magnetic field-guided transport, hyperthermia, and potentially magnetic resonance imaging (MRI). The QDs can be further biofunctionalized via conjugation to a ligand or a biomarker of disease, allowing combination of drug delivery with visual verification and colocalization due to the color tunability of the QDs.

  18. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    SciTech Connect

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  19. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain

    PubMed Central

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  20. Atomic thermal motion effect on efficiency of a high-speed quantum memory

    NASA Astrophysics Data System (ADS)

    Tikhonov, Kirill; Golubeva, Tania; Golubev, Yuri

    2015-11-01

    We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

  1. Quantum Efficiency Characterization and Optimization of a Tungsten Transition-Edge Sensor for ALPS II

    NASA Astrophysics Data System (ADS)

    Bastidon, Noëmie; Horns, Dieter; Lindner, Axel

    2016-07-01

    The ALPS II experiment, Any Light Particle Search II at DESY in Hamburg, will look for sub-eV mass new fundamental bosons (e.g., axion-like particles, hidden photons, and other weakly interacting sub-eV particles) in the next years by means of a light-shining-through-wall setup. The ALPS II photosensor is a tungsten transition-edge sensor (W-TES) optimized for 1064 nm photons. This TES, operated at 80 mK, has already allowed single infrared photon detections as well as non-dispersive spectroscopy with very low background rates. The demonstrated quantum efficiency for such TES is up to 95 % (1064 nm) as has been already demonstrated by the US National Institute of Standards and Technology. A back-to-back measurement of the ALPS TES quantum efficiency using a calibrated charge-coupled device camera has lead to a first estimation of 30 %. Improvement methods are discussed.

  2. General and Efficient C-C Bond Forming Photoredox Catalysis with Semiconductor Quantum Dots.

    PubMed

    Caputo, Jill A; Frenette, Leah C; Zhao, Norman; Sowers, Kelly L; Krauss, Todd D; Weix, Daniel J

    2017-03-29

    Photoredox catalysis has become an essential tool in organic synthesis because it enables new routes to important molecules. However, the best available molecular catalysts suffer from high catalyst loadings and rely on precious metals. Here we show that colloidal nanocrystal quantum dots (QDs) can serve as efficient and robust, precious-metal free, photoassisted redox catalysts. A single-sized CdSe quantum dot (3.0 ± 0.2 nm) can replace several different dye catalysts needed for five different photoredox reactions (β-alkylation, β-aminoalkylation, dehalogenation, amine arylation, and decarboxylative radical formation). Even without optimization of the QDs or the reaction conditions, efficiencies rivaling those of the best available metal dyes were obtained.

  3. QE Tests with Nb-Pb SRF Photoinjector and Arc Deposited Cathodes

    SciTech Connect

    J.K. Sekutowicz, P. Kneisel, R. Nietubyc, T. Rao, J. Smedley

    2010-05-01

    In this contribution, we report Quantum Efficiency (QE) test results with a hybrid lead/niobium superconducting RF (SRF) photoinjector at 2K and new Pb arc deposited cathodes at 300K. The ultimate goal of our effort is to build a Nb injector with the superconducting cathode made of lead, which, as reported in the past, demonstrated superior QE compared to other metallic superconducting elements. At first, we present the test results obtained with a 1.6-cell high purity Nb cavity with the emitting lead spot in the center of the back plate. The QE test results at room temperature and the SEM surface analysis of eight Pb cathodes, deposited recently under various conditions, are discussed in the second part of this contribution.

  4. Design parameters of a resonant infrared photoconductor with unity quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mcmurray, Robert E., Jr.

    1991-01-01

    This paper proposes a concept of a resonant infrared photoconductor that has characteristics of 100 percent quantum efficiency, high photoconductive gain, and very low noise equivalent power. Central to this concept is an establishment of a high-finesse absorption cavity internal to the detector element. A theoretical analysis is carried out, demonstrating this concept and providing some design guidelines. A Ge:Ga FIR detector is presently being fabricated using this approach.

  5. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  6. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.

    PubMed

    Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K

    2012-12-03

    We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.

  7. Enhanced quantum efficiency of photoelectron emission, through surface textured metal electrodes

    SciTech Connect

    Alexander, Anna; Bandaru, Prabhakar R.; Moody, Nathan A.

    2016-03-15

    It is predicted that the quantum efficiency (QE) of photoelectron emission from metals may be enhanced, possibly by an order of magnitude, through optimized surface texture. Through extensive computational simulations, it is shown that the absorption enhancement in select surface groove geometries may be a dominant contributor to enhanced QE and corresponds to localized Fabry–Perot resonances. The inadequacy of extant analytical models in predicting the QE increase, and suggestions for further improvement, are discussed.

  8. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  9. Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Chang, Jun Hyuk; Kim, Younghoon; Char, Kookheon; Lee, Doh C; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2017-01-24

    We present multifunctional dendrimer ligands that serve as the charge injection controlling layer as well as the adhesive layer at the interfaces between quantum dots (QDs) and the electron transport layer (ETL) in quantum dot light-emitting diodes (QLEDs). Specifically, we use primary amine-functionalized dendrimer ligands (e.g., a series of poly(amidoamine) dendrimers (PADs, also referred to PAMAM)) that bind to the surface of QDs by replacing the native ligands (oleic acids) and also to the surface of ZnO ETL. PAD ligands control the electron injection rate from ZnO ETL into QDs by altering the electronic energy levels of the surface of ZnO ETL and thereby improve the charge balance within QDs in devices, leading to the enhancement of the device efficiency. As an ultimate achievement, the device efficiency (peak external quantum efficiency) improves by a factor of 3 by replacing the native ligands (3.86%) with PAD ligands (11.36%). In addition, multibranched dendrimer ligands keep the QD emissive layer intact during subsequent solution processing, enabling us to accomplish solution-processed QLEDs. The approach and results in the present study emphasize the importance of controlling the ligands of QDs to enhance QLED performance and also offer simple yet effective chemical mean toward all-solution-processed QLEDs.

  10. Heterogeneous photocatalysis for air and water treatment: Fundamental needs for quantum efficiency enhancement

    SciTech Connect

    Ollis, D.F.

    1996-09-01

    In the remediation industries, a useful treatment technology must be {open_quotes}general, robust, and cheap{close_quotes}. Among oxidation processes, heterogeneous photocatalysis is now broadly demonstrated to destroy common water and air contaminants. The potential process uses of highly stable titania, long lived lamps (one year), and room temperature operation, indicating a simple and robust process. We are left to address the third criterion: Can photocatalysis be {open_quotes}cheap{close_quotes}? In both liquid phase and gas phase treatment and purification by photocatalysis, it is established that the primary barrier to commercialization is often cost. Cost in return is dominated by the efficiency with which solar or lamp photons are harvested for productive light, and subsequent dark, reactions. This paper therefore defines fundamental needs in photocatalysis for pollution control in terms of activities which could lead to quantum efficiency enhancement. We first recall three related definitions. The quantum yield (QY) is the ratio of molecules of reactant converted per photon absorbed, a fundamental quantity. A less fundamental, but more easily measured variable is the quantum efficiency (QE), the ratio of molecules converted per photon entering the reactor. A third variable is the energy required per order of magnitude pollutant reduction, or EEO, a definition which provides for easy energy cost comparisons among different technologies. Each measure cited here reflects the photon, and thus the electrical, cost of this photochemistry.

  11. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  12. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  13. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices.

    PubMed

    Lee, Ki-Heon; Lee, Jeong-Hoon; Song, Woo-Seuk; Ko, Heejoo; Lee, Changho; Lee, Jong-Hyuk; Yang, Heesun

    2013-08-27

    For colloidal quantum dot light-emitting diodes (QD-LEDs), blue emissive device has always been inferior to green and red counterparts with respect to device efficiency, primarily because blue QDs possess inherently unfavorable energy levels relative to green and red ones, rendering hole injection to blue QDs from neighboring hole transport layer (HTL) inefficient. Herein, unprecedented synthesis of blue CdZnS/ZnS core/shell QDs that exhibit an exceptional photoluminescence (PL) quantum yield of 98%, extraordinarily large size of 11.5 nm with a shell thickness of 2.6 nm, and high stability against a repeated purification process is reported. All-solution-processed, multilayered blue QD-LEDs, consisting of an HTL of poly(9-vinlycarbazole), emissive layer of CdZnS/ZnS QDs, and electron transport layer of ZnO nanoparticles, are fabricated. Our best device displays not only a maximum luminance of 2624 cd/m(2), luminous efficiency of 2.2 cd/A, and external quantum efficiency of 7.1%, but also no red-shift and broadening in electroluminescence (EL) spectra with increasing voltage as well as a spectral match between PL and EL.

  14. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites.

    PubMed

    Kumar, Sudhir; Jagielski, Jakub; Yakunin, Sergii; Rice, Peter; Chiu, Yu-Cheng; Wang, Mingchao; Nedelcu, Georgian; Kim, Yeongin; Lin, Shangchao; Santos, Elton J G; Kovalenko, Maksym V; Shih, Chih-Jen

    2016-10-03

    Solution-processed hybrid organic-inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7-10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

  15. Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms

    SciTech Connect

    Master, Cyrus P.; Yamaguchi, Fumiko; Yamamoto, Yoshihisa

    2003-03-01

    Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coefficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size.

  16. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  17. Rotating dipole and quadrupole field for a multiple cathode system

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.

  18. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    PubMed Central

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-01-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073

  19. Enhanced Conversion Efficiency of III-V Triple-junction Solar Cells with Graphene Quantum Dots.

    PubMed

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng-An J; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-12-16

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell.

  20. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng-An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-12-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell.

  1. Enhanced efficiency of inverted polymer solar cells by using solution-processed TiOx/CsOx cathode buffer layer.

    PubMed

    Zhou, Xiaodong; Fan, Xi; Sun, Xianke; Zhang, Yunli; Zhu, Ziqiang

    2015-01-01

    In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10(-3) cm(2) V(-1)·s(-1). Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

  2. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xu, M.; Wang, H.

    2016-01-01

    In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called "green gap". This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.

  3. Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells.

    PubMed

    Peng, Wenxiang; Du, Jun; Pan, Zhenxiao; Nakazawa, Naoki; Sun, Jiankun; Du, Zhonglin; Shen, Gencai; Yu, Juan; Hu, Jin-Song; Shen, Qing; Zhong, Xinhua

    2017-02-15

    I-III-VI2 group "green" quantum dots (QDs) are attracting increasing attention in photoelectronic conversion applications. Herein, on the basis of the "simultaneous nucleation and growth" approach, Cu-In-Ga-Se (CIGSe) QDs with light harvesting range of about 1000 nm were synthesized and used as sensitizer to construct quantum dot sensitized solar cells (QDSCs). Inductively coupled plasma atomic emission spectrometry (ICP-AES), wild-angle X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses demonstrate that the Ga element was alloyed in the Cu-In-Se (CISe) host. Ultraviolet photoelectron spectroscopy (UPS) and femtosecond (fs) resolution transient absorption (TA) measurement results indicate that the alloying strategy could optimize the electronic structure in the obtained CIGSe QD material, thus matching well with TiO2 substrate and favoring the photogenerated electron extraction. Open circuit voltage decay (OCVD) and impedance spectroscopy (IS) tests indicate that the intrinsic recombination in CIGSe QDSCs was well suppressed relative to that in CISe QDSCs. As a result, CIGSe based QDSCs with use of titanium mesh supported mesoporous carbon counter electrode exhibited a champion efficiency of 11.49% (Jsc = 25.01 mA/cm(2), Voc = 0.740 V, FF = 0.621) under the irradiation of full one sun in comparison with 9.46% for CISe QDSCs.

  4. Efficiency, Power and Period of a model quantum heat engine working in a finite time

    NASA Astrophysics Data System (ADS)

    Bekele, Mulugeta; Dima, Tolasa A.; Alemye, Mekuannent; Chegeno, Warga

    We take a spin-half quantum particle undergoing Carnot type cyclic process in a finite time assisted by two heat reservoirs and an external magnetic field. We find that the power of the heat engine is maximum at a particular period of the cyclic process and efficiency at the maximum power is at least half of the Carnot efficiency. We further apply the Omega-criterion for a figure of merit representing a compromise between useful power and lost power determining the corresponding efficiency for the optimization criterion to be at least three fourth of the Carnot efficiency. The authers are thankful to the International Science programme, IPS, Uppsala, Sweden for their support to our research lab.

  5. Efficiency at maximum power output of quantum heat engines under finite-time operation

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; He, Jizhou; Wu, Zhaoqi

    2012-03-01

    We study the efficiency at maximum power, ηm, of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), ηm becomes identical to the Carnot efficiency ηC=1-Tc/Th. For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency ηm at maximum power output is bounded from above by ηC/(2-ηC) and from below by ηC/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency ηCA=1-Tc/Th is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.

  6. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    PubMed Central

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-01-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin–tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis. PMID:27585984

  7. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  8. Rb based alkali antimonide high quantum efficiency photocathodes for bright electron beam sources and photon detection applications

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2017-02-01

    High quantum efficiency alkali antimonide photocathodes have been grown over both stainless steel and glass substrates using sequential evaporation of Sb, K, Rb, and Cs. Quantum efficiencies well above 25% have been measured at 400 nm. A bi-alkali Rb-K-Sb photocathode grown on a stainless steel substrate has been installed in a high voltage DC gun at Cornell University and the intrinsic electron beam emittance was measured at different photon energies.

  9. Elastomeric Cathode Binder

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. S.; Somoano, R. B.

    1985-01-01

    Soluble copolymer binder mixed with cathode material and solvent forms flexible porous cathode used in lithium and Ni/Cd batteries. Cathodes prepared by this process have lower density due to expanding rubbery binder and greater flexibility than conventional cathodes. Fabrication procedure readily adaptable to scaled-up processes.

  10. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    PubMed

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.

  11. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    PubMed

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  12. Analysis of the scatter effect on detective quantum efficiency of digital mammography

    NASA Astrophysics Data System (ADS)

    Park, Jiwoong; Yun, Seungman; Kim, Dong Woon; Baek, Cheol-Ha; Youn, Hanbean; Jeon, Hosang; Kim, Ho Kyung

    2016-03-01

    The scatter effect on detective quantum efficiency (DQE) of digital mammography is investigated using the cascaded-systems model. The cascaded-systems model includes a scatter-reduction device as a binomial selection stage. Quantum-noise-limited operation approximates the system DQE into the multiplication form of the scatter-reduction device DQE and the conventional detector DQE. The developed DQE model is validated in comparisons with the measured results using a CMOS flat-panel detector under scatter environments. For various scatter-reduction devices, the slot-scan method shows the best scatter-cleanup performance in terms of DQE, and the scatter-cleanup performance of the conventional one-dimensional grid is rather worse than the air gap. The developed model can also be applied to general radiography and will be very useful for a better design of imaging chain.

  13. Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency.

    PubMed

    Kamat, Prashant V; Christians, Jeffrey A; Radich, James G

    2014-05-27

    Semiconductor nanostructures are attractive for designing low-cost solar cells with tunable photoresponse. The recent advances in size- and shape-selective synthesis have enabled the design of quantum dot solar cells with photoconversion efficiencies greater than 5%. To make them competitive with other existing thin film or polycrystalline photovoltaic technologies, it is important to overcome kinetic barriers for charge transfer at semiconductor interfaces. This feature article focuses on the limitations imposed by slow hole transfer in improving solar cell performance and its role in the stability of metal chalcogenide solar cells. Strategies to improve the rate of hole transfer through surface-modified redox relays offer new opportunities to overcome the hole-transfer limitation. The mechanistic and kinetic aspects of hole transfer in quantum dot solar cells (QDSCs), nanowire solar cells (NWSCs), and extremely thin absorber (ETA) solar cells are discussed.

  14. FragBuilder: an efficient Python library to setup quantum chemistry calculations on peptides models.

    PubMed

    Christensen, Anders S; Hamelryck, Thomas; Jensen, Jan H

    2014-01-01

    We present a powerful Python library to quickly and efficiently generate realistic peptide model structures. The library makes it possible to quickly set up quantum mechanical calculations on model peptide structures. It is possible to manually specify a specific conformation of the peptide. Additionally the library also offers sampling of backbone conformations and side chain rotamer conformations from continuous distributions. The generated peptides can then be geometry optimized by the MMFF94 molecular mechanics force field via convenient functions inside the library. Finally, it is possible to output the resulting structures directly to files in a variety of useful formats, such as XYZ or PDB formats, or directly as input files for a quantum chemistry program. FragBuilder is freely available at https://github.com/jensengroup/fragbuilder/ under the terms of the BSD open source license.

  15. An efficient controlled quantum secure direct communication and authentication by using four particle cluster states

    NASA Astrophysics Data System (ADS)

    Nanvakenari, Milad; Houshmand, Monireh

    In this paper, a three-party controlled quantum secure direct communication and authentication (QSDCA) protocol is proposed by using four particle cluster states via a quantum one-time pad and local unitary operations. In the present scheme, only under the permission of the controller, the sender and the receiver can implement secure direct communication successfully. But under any circumstances, Charlie cannot obtain the secret message. Eavesdropping detection and identity authentication are achieved with the help of the previously shared reusable base identity strings of users. This protocol is unconditionally secure in both ideal and practical noisy cases. In one transmission, a qubit of each four particle cluster state is used as controller’s permission and the same qubit with another qubit are used to recover two classical bits of information. In the proposed scheme, the efficiency is improved compared with the previous works.

  16. Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output

    NASA Astrophysics Data System (ADS)

    Whitney, Robert

    2016-05-01

    We consider the nonlinear scattering theory for three-terminal thermoelectric devices, used for power generation or refrigeration. Such a system is a quantum phase-coherent version of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. We consider an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. We show that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot's bound. The bound is exactly the same as previously found for two-terminal devices, and can be achieved by three-terminal systems with or without broken time-reversal symmetry. Thus the bound appears to be universal for two-terminal and three-terminal (chiral and non-chiral) thermoelectrics.

  17. Multidentate Polymer Coatings for Compact and Homogeneous Quantum Dots with Efficient Bioconjugation.

    PubMed

    Ma, Liang; Tu, Chunlai; Le, Phuong; Chitoor, Shweta; Lim, Sung Jun; Zahid, Mohammad U; Teng, Kai Wen; Ge, Pinghua; Selvin, Paul R; Smith, Andrew M

    2016-03-16

    Quantum dots are fluorescent nanoparticles used to detect and image proteins and nucleic acids. Compared with organic dyes and fluorescent proteins, these nanocrystals have enhanced brightness, photostability, and wavelength tunability, but their larger size limits their use. Recently, multidentate polymer coatings have yielded stable quantum dots with small hydrodynamic dimensions (≤10 nm) due to high-affinity, compact wrapping around the nanocrystal. However, this coating technology has not been widely adopted because the resulting particles are frequently heterogeneous and clustered, and conjugation to biological molecules is difficult to control. In this article we develop new polymeric ligands and optimize coating and bioconjugation methodologies for core/shell CdSe/Cd(x)Zn(1-x)S quantum dots to generate homogeneous and compact products. We demonstrate that "ligand stripping" to rapidly displace nonpolar ligands with hydroxide ions allows homogeneous assembly with multidentate polymers at high temperature. The resulting aqueous nanocrystals are 7-12 nm in hydrodynamic diameter, have quantum yields similar to those in organic solvents, and strongly resist nonspecific interactions due to short oligoethylene glycol surfaces. Compared with a host of other methods, this technique is superior for eliminating small aggregates identified through chromatographic and single-molecule analysis. We also demonstrate high-efficiency bioconjugation through azide-alkyne click chemistry and self-assembly with hexa-histidine-tagged proteins that eliminate the need for product purification. The conjugates retain specificity of the attached biomolecules and are exceptional probes for immunofluorescence and single-molecule dynamic imaging. These results are expected to enable broad utilization of compact, biofunctional quantum dots for studying crowded macromolecular environments such as the neuronal synapse and cellular cytoplasm.

  18. Testing a GaAs cathode in SRF gun

    SciTech Connect

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    accelerating gradient of the RF guns, potentially offering a long lived cathode with very low emittance. Testing this concept requires preparation of the cathode, transportation to the SRF gun and evaluation of the performance of the cathode and the gun at cryogenic temperatures. In our work at BNL, we successfully activated the bulk GaAs in the preparation chamber. The highest quantum efficient was 10% at 532 nm that fell to 0.5% after 100 hours. We explored three different ways to activate the GaAs. We verified that the GaAs photocathode remains stable for 30 hours in a 10{sup -11} Torr vacuum. Passing the photocathode through the low 10{sup -9} Torr transfer section in several seconds caused the QE to drop to 0.8%. The photocathode with 0.8% QE can be tested for the SRF gun. The gun and beam pipe were prepared and assembled. After baking at 200 C baking, the vacuum of the gun and beam pipe can sustain a low 10{sup -11} Torr at room temperature. The final test to extract electrons from the gun is ongoing. In this paper, we discuss our progress with this SRF gun and the results of the photocathode in preparation chamber and in magnet transfer line.

  19. A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations.

    PubMed

    Nukala, Phani K V V; Kent, P R C

    2009-05-28

    We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N(2)) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N(2)) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction-type trial wave functions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN(2)) work and O(MN(2)) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions.

  20. High efficiency in Mode Selective Frequency Conversion for Optical Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Quesada, Nicolas; Sipe, J. E.

    Mode selective Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this contribution we show that these limits can be understood as time ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore we show, using a simple scaling argument, that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as ``attenuators'' of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric down-conversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode selective FC.

  1. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters.

    PubMed

    Tsai, Meng-Lin; Tu, Wei-Chen; Tang, Libin; Wei, Tzu-Chiao; Wei, Wan-Rou; Lau, Shu Ping; Chen, Lih-Juann; He, Jr-Hau

    2016-01-13

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm(2) and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultrahigh efficiency photovoltaic cells in the future.

  2. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    SciTech Connect

    Huffaker, Diana; Hubbard, Seth; Norman, Andrew

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  3. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).

    PubMed

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.

  4. Enhancement of external quantum efficiency in GaN based LEDs

    NASA Astrophysics Data System (ADS)

    Son, Jun Ho; Lee, Jong-Lam

    2011-02-01

    We present a review of the recent developments to enhance the external quantum efficiency (EQE) in GaN based vertical light-emitting diodes (V-LEDs). The combined use of quasi-photonic crystal and photochemical etching significantly improved the light extraction efficiency (LEE) of V-LEDs by a factor of 5. The enhancement of light output power by the nanotexturing of n-face n-GaN was remarkably influenced by reflectance of the p-contact. The enhanced LEE was also demonstrated by depositing a spontaneously formed MgO nano-pyramids and ZnO refractive-index modulation layer on the surface of V-LEDs, resulting in the increase of output power by 49 %, comparing with the V-LEDs with a flat n-GaN surface. The thermal stability of Ag-based p-type ohmic contact was siginficantly enhanced by addition of Cu, In, and Mg atoms to Ag layer, leading to high light reflectance and low contact resisitivity. Finally, we present a method of increasing light output power and suppressing efficiency droop in V-LEDs without modifying the epitaxial layers. These improvements are achieved by reducing the quantum-confined Stark effect by reducing piezoelectric polarization that results from compressive stress in GaN epilayer. This compressive stress is relaxed due to the external stress induced by an electro-plated Ni metal substrate.

  5. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers.

    PubMed

    Kim, Gi-Hwan; García de Arquer, F Pelayo; Yoon, Yung Jin; Lan, Xinzheng; Liu, Mengxia; Voznyy, Oleksandr; Jagadamma, Lethy Krishnan; Abbas, Abdullah Saud; Yang, Zhenyu; Fan, Fengjia; Ip, Alexander H; Kanjanaboos, Pongsakorn; Hoogland, Sjoerd; Kim, Jin Young; Sargent, Edward H

    2015-11-11

    The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

  6. Necessary detection efficiencies for secure quantum key distribution and bound randomness

    NASA Astrophysics Data System (ADS)

    Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul

    2016-01-01

    In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.

  7. Efficient quantum secret sharing scheme with two-particle entangled states

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Chao; Zhang, Yu-Qing; Fu, An-Min

    2011-04-01

    This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.

  8. A one-dimensional model for the quantum efficiency of front-surface-field solar cells

    NASA Astrophysics Data System (ADS)

    Yernaux, M. I.; Battochio, C.; Verlinden, P.; van de Wiele, F.

    1984-11-01

    A one-dimensional analytical model is proposed to calculate the photocurrent generated in interdigitated back contact solar cells with a high-low junction at the front illuminated surface. The high-low junction is simulated by constant doping levels, mobilities and lifetimes. A study of the quantum efficiency of front-surface-field (FSF) solar cells is made and the computer results are compared with experimental results. A method of determining the real and the effective surface recombination velocity of FSF solar cells is proposed.

  9. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Srinivasa Rao, S.; Punnoose, Dinah; Kim, Hee-Je

    2016-03-01

    Yttrium-doped ZnO nanorod arrays were applied to photoanodes of quantum dot-sensitized solar cells (QDSCs). The introduction of yttrium to ZnO nanostructures facilitates the growth of ZnO nanorods and increases the amount of QD deposition with a large surface area. Furthermore, lower electrical resistance and longer electron lifetime were achieved with yttrium-doping owing to fewer defects and trap sites on the surface of yttrium-doped ZnO nanorods. As a result, the conversion efficiency of 3.3% was achieved with the optimized concentration of yttrium.

  10. Quantum Efficiency and Topography of Heated and Plasma-Cleaned Copper Photocathode Surfaces

    SciTech Connect

    Palmer, Dennis T.; Kirby, R.E.; King, F.K.; /SLAC

    2005-08-04

    We present measurements of photoemission quantum efficiency (QE) for copper photocathodes heated and cleaned by low energy argon and hydrogen ion plasma. The QE and surface roughness parameters were measured before and after processing and surface chemical composition was tracked in-situ with x-ray photoelectron spectroscopy (XPS). Thermal annealing at 230 C was sufficient to improve the QE by 3-4 orders of magnitude, depending on the initial QE. Exposure to residual gas slowly reduced the QE but it was easily restored by argon ion cleaning for a few minutes. XPS showed that the annealing or ion bombardment removed surface water and hydrocarbons.

  11. III-V photocathode with nitrogen doping for increased quantum efficiency

    NASA Technical Reports Server (NTRS)

    James, L. W. (Inventor)

    1976-01-01

    An increase in the quantum efficiency of a 3-5 photocathode is achieved by doping its semiconductor material with an acceptor and nitrogen, a column-5 isoelectronic element, that introduces a spatially localized energy level just below the conduction band similar to a donor level to which optical transitions can occur. This increases the absorption coefficient, alpha without compensation of the acceptor dopant. A layer of a suitable 1-5, 1-6 or 1-7 compound is included as an activation layer on the electron emission side to lower the work function of the photocathode.

  12. In-Situ Cleaning of Metal Cathodes Using a Hydrogen Ion Beam

    SciTech Connect

    Dowell, D.H.; King, F.K.; Kirby, R.E.; Schmerge, J.F.; /SLAC

    2005-09-01

    Improving and maintaining the quantum efficiency (QE) of a metal photocathode in an s-band RF gun requires a process for cleaning the surface. In this type of gun, the cathode is typically installed and the system is vacuum baked to {approx}200 degrees C. If the QE is too low, the cathode is usually cleaned with the UV-drive laser. While laser cleaning does increase the cathode QE, it requires fluences close to the damage threshold and rastering the small diameter beam, both of which can produce nonuniform electron emission and potentially damage the cathode. This paper investigates the efficacy of a low energy hydrogen ion beam to produce high-QE metal cathodes. Measurements of the QE vs. wavelength, surface contaminants using x-ray photoelectron spectroscopy and surface roughness were performed on a copper sample, and the results showed a significant increase in QE after cleaning with a 1keV hydrogen ion beam. The H-ion beam cleaned an area approximately 1cm in diameter and had no effect on the surface roughness while significantly increasing the QE. These results and a comparison with theory as well as a scheme for installing an H-ion cleaner on an s-band gun are presented.

  13. Cathodic protection

    SciTech Connect

    Pfalser, I.L.; Brannan, M.S.

    1991-08-20

    This patent describes a cathodic protection system for protecting a metallic structure in contact with the earth from corrosion. It comprises at least one electrically conductive member positioned in a borehole in the earth which is defined by an earthen sidewall: a quantity of a particulate mixture of a clay and a carbonaceous solid which at least partially fills the borehole around the at least one conductive member such that the mixture contacts the earthen sidewall and the at least one conductive member, wherein the mixture has a clay to carbonaceous solid weight ratio of at least about 0.1:1; means for applying a DC electrical voltage to the metallic structure and the at least one conductive member such that the metallic structure is at a negative polarity and the at least one conductive member is at a positive polarity, whereby a current is established between the metallic structure and the at least one conductive member through the earth and the mixture.

  14. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  15. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  16. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  17. Practical expressions describing detective quantum efficiency in flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Kim, H. K.

    2011-11-01

    In radiology, image quality excellence is a balance between system performance and patient dose, hence x-ray systems must be designed to ensure the maximum image quality is obtained for the lowest consistent dose. The concept of detective quantum efficiency (DQE) is widely used to quantify, understand, measure, and predict the performance of x-ray detectors and imaging systems. Cascaded linear-systems theory can be used to estimate DQE based on the system design parameters and this theoretical DQE can be utilized for determining the impact of various physical processes, such as secondary quantum sinks, noise aliasing, reabsorption noise, and others. However, the prediction of DQE usually requires tremendous efforts to determine each parameter consisting of the cascaded linear-systems model. In this paper, practical DQE formalisms assessing both the photoconductor- and scintillator-based flat-panel detectors under quantum-noise-limited operation are described. The developed formalisms are experimentally validated and discussed for their limits. The formalisms described in this paper would be helpful for the rapid prediction of the DQE performances of developing systems as well as the optimal design of systems.

  18. The cathode plasma simulation

    NASA Astrophysics Data System (ADS)

    Suksila, Thada

    Since its invention at the University of Stuttgart, Germany in the mid-1960, scientists have been trying to understand and explain the mechanism of the plasma interaction inside the magnetoplasmadynamics (MPD) thruster. Because this thruster creates a larger level of efficiency than combustion thrusters, this MPD thruster is the primary cadidate thruster for a long duration (planetary) spacecraft. However, the complexity of this thruster make it difficult to fully understand the plasma interaction in an MPD thruster while operating the device. That is, there is a great deal of physics involved: the fluid dynamics, the electromagnetics, the plasma dynamics, and the thermodynamics. All of these physics must be included when an MPD thruster operates. In recent years, a computer simulation helped scientists to simulate the experiments by programing the physics theories and comparing the simulation results with the experimental data. Many MPD thruster simulations have been conducted: E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol et al.[7]. All of these MPD computer simulations helped the scientists to see how quickly the system responds to the new design parameters. For this work, a 1D MPD thruster simulation was developed to find the voltage drop between the cathode and the plasma regions. Also, the properties such as thermal conductivity, electrical conductivity and heat capacity are temperature and pressure dependent. These two conductivity and heat capacity are usually definded as constant values in many other models. However, this 1D and 2D cylindrical symmetry MPD thruster simulations include both temperature and pressure effects to the electrical, thermal conductivities and heat capacity values interpolated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant; however, in this study the pressure at 66 Pa was set as a baseline. The 1D MPD thruster simulation includes the sheath region, which is the

  19. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  20. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  1. Graphene oxide electrocatalyst on MnO₂ air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution.

    PubMed

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-13

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  2. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    PubMed

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  3. Efficient molecular quantum dynamics in coordinate and phase space using pruned bases.

    PubMed

    Larsson, H R; Hartke, B; Tannor, D J

    2016-11-28

    We present an efficient implementation of dynamically pruned quantum dynamics, both in coordinate space and in phase space. We combine the ideas behind the biorthogonal von Neumann basis (PvB) with the orthogonalized momentum-symmetrized Gaussians (Weylets) to create a new basis, projected Weylets, that takes the best from both methods. We benchmark pruned time-dependent dynamics using phase-space-localized PvB, projected Weylets, and coordinate-space-localized DVR bases, with real-world examples in up to six dimensions. For the examples studied, coordinate-space localization is the most important factor for efficient pruning and the pruned dynamics is much faster than the unpruned, exact dynamics. Phase-space localization is useful for more demanding dynamics where many basis functions are required. There, projected Weylets offer a more compact representation than pruned DVR bases.

  4. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo.

    PubMed

    Filippi, Claudia; Assaraf, Roland; Moroni, Saverio

    2016-05-21

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations.

  5. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs

    NASA Astrophysics Data System (ADS)

    Hwang, David; Mughal, Asad; Pynn, Christopher D.; Nakamura, Shuji; DenBaars, Steven P.

    2017-03-01

    Ultrasmall blue InGaN micro-light-emitting diodes (µLEDs) with areas from 10‑4 to 0.01 mm2 were fabricated to study their optical and electrical properties. The peak external quantum efficiencies (EQEs) of the smallest and largest µLEDs were 40.2 and 48.6%, respectively. The difference in EQE was from nonradiative recombination originating from etching damage. This decrease is less severe than that in red AlInGaP LEDs. The efficiency droop at 900 A/cm2 of the smallest µLED was 45.7%, compared with 56.0% for the largest, and was lower because of improved current spreading. These results show that ultrasmall µLEDs may be fabricated without a significant loss in optical or electrical performance.

  6. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  7. Efficient and universal quantum key distribution based on chaos and middleware

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun

    2017-01-01

    Quantum key distribution (QKD) promises unconditionally secure communications, however, the low bit rate of QKD cannot meet the requirements of high-speed applications. Despite the many solutions that have been proposed in recent years, they are neither efficient to generate the secret keys nor compatible with other QKD systems. This paper, based on chaotic cryptography and middleware technology, proposes an efficient and universal QKD protocol that can be directly deployed on top of any existing QKD system without modifying the underlying QKD protocol and optical platform. It initially takes the bit string generated by the QKD system as input, periodically updates the chaotic system, and efficiently outputs the bit sequences. Theoretical analysis and simulation results demonstrate that our protocol can efficiently increase the bit rate of the QKD system as well as securely generate bit sequences with perfect statistical properties. Compared with the existing methods, our protocol is more efficient and universal, it can be rapidly deployed on the QKD system to increase the bit rate when the QKD system becomes the bottleneck of its communication system.

  8. Maximizing the quantum efficiency of microchannel plate detectors - The collection of photoelectrons from the interchannel web using an electric field

    NASA Technical Reports Server (NTRS)

    Taylor, R. C.; Hettrick, M. C.; Malina, R. F.

    1983-01-01

    High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.

  9. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  10. Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots.

    PubMed

    Shen, Huaibin; Lin, Qinli; Wang, Hongzhe; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Zheng, Ying; Li, Lin Song

    2013-11-27

    In this paper, we use a simple device architecture based on solution-processed ZnO nanoparticles (NPs) as the electron injection/transport layer and bilayer structure of poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB) as the hole injection/transport layer to assess the effect of shell thickness on the properties of quantum-dot-based light emitting diodes (QD-LEDs), comprising CdSe/CdS/ZnS core-shell QDs as the emitting layer. QDs with varying shell thickness were assessed to determine the best option of shell thickness, and the best improvement in device performance was observed when the shell thickness was 2.1 nm. Thereafter, different emissions of QDs, but with optimized same shell thickness (∼2.1 nm), were selected as emitters to be fabricated into same structured QD-LEDs. Highly bright orange-red and green QD-LEDs with peak luminances up to ∼30 000 and ∼52 000 cd m(-2), and power efficiencies of 16 and 19.7 lm W(-1), respectively, were demonstrated successfully. These results may demonstrate a striking basic prototype for the commercialization of QD-based displays and solid-state lightings.

  11. Photosynthetic protein complexes as bio-photovoltaic building blocks retaining a high internal quantum efficiency.

    PubMed

    Kamran, Muhammad; Delgado, Juan D; Friebe, Vincent; Aartsma, Thijs J; Frese, Raoul N

    2014-08-11

    Photosynthetic compounds have been a paradigm for biosolar cells and biosensors and for application in photovoltaic and photocatalytic devices. However, the interconnection of proteins and protein complexes with electrodes, in terms of electronic contact, structure, alignment and orientation, remains a challenge. Here we report on a deposition method that relies on the self-organizing properties of these biological protein complexes to produce a densely packed monolayer by using Langmuir-Blodgett technology. The monolayer is deposited onto a gold electrode with defined orientation and produces the highest light-induced photocurrents per protein complex to date, 45 μA/cm(2) (with illumination power of 23 mW/cm(2) at 880 nm), under ambient conditions. Our work shows for the first time that a significant portion of the intrinsic quantum efficiency of primary photosynthesis can be retained outside the biological cell, leading to an internal quantum efficiency (absorbed photon to electron injected into the electrode) of the metal electrode-protein complex system of 32%.

  12. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    NASA Astrophysics Data System (ADS)

    Malasi, A.; Taz, H.; Ehrsam, M.; Goodwin, J.; Garcia, H.; Kalyanaraman, R.

    2016-10-01

    Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag), its nanoparticles have amongst the highest radiative quantum efficiencies (η), i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  13. Quantum efficiency of PAG decomposition in different polymer matrices at advanced lithographic wavelengths

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Sinta, Roger F.; Mowers, William A.; Cabral, Alberto

    2003-06-01

    The Dill ABC parameters for optical resists are typically determined by measuring the change in the intensity of transmitted light at the wavelength of interest as a function of incident energy. The effectiveness of the experiment rests with the fact that the resist optical properties change with exposure and that the optical properties are directly related to the concentration of PAG compound. These conditions are not typically satisfied in CA resists and thus C is unobtainable by this method. FT-IR spectroscopy can directly measure changes in the photoactive species by isolating and measuring absorbance peaks unique to the photoactive species. We employed the ProABC software, specially modified to allow FT-IR absorbance input, to extract ABS parameters through a best fit of the lithography model to experimental data. The quantum efficiency of PAG decomposition at 157-, 193-, and 248-nm was determined for four diazomethane type PAGs in four different polymer matrices. It was found that both the Dill C parameter and the quantum efficiency for all PAGs increased as wavelength decreased, but that the magnitude of the increase was strongly dependent on the polymer matrix.

  14. Sensitive fluorescence response of ZnSe(S) quantum dots: an efficient fluorescence probe

    NASA Astrophysics Data System (ADS)

    Saikia, K.; Deb, P.; Kalita, E.

    2013-06-01

    An efficient fluorescence probe based on ZnSe(S) alloyed quantum dots (QDs) has been reported here. The alloyed QDs were prepared through an aqueous route, where 3-mercaptopropionic acid (MPA) was employed as the effective precursor for both the sulfur source and stabilizer in the development of the alloyed system. Five-fold quantum yield (QY) enhancement was obtained for the ZnSe(S) QDs compared to the ZnSe QDs, formed in the initial stage of the refluxing process. The ultimate alloyed systems retained their high biocompatibility characteristics similar to the conventional ZnSe QDs. The photoluminescence of the ZnSe(S) QDs showed pH dependence, which was also evidenced in mammalian lymphocyte cells suspended in biological buffer over a wide pH range of 4.00-12.00. These characteristics make our prepared ZnSe(S) an efficient system for development of cell tracking, monitoring and sensing intracellular nanoprobes and devices.

  15. Characterization of pixel crosstalk and impact of Bayer patterning by quantum efficiency measurement

    NASA Astrophysics Data System (ADS)

    Vaillant, Jérôme; Mornet, Clémence; Decroux, Thomas; Hérault, Didier; Schanen, Isabelle

    2011-01-01

    Development of small pixels for high resolution image sensors implies a lot of challenges. A high level of performance should be guaranteed whereas the overall size must be reduced and so the degree of freedom in design and process. One key parameter of this constant improvement is the knowledge and the control of the crosstalk between pixels. In this paper, we present an advance in crosstalk characterization method based on the design of specific color patterns and the measurement of quantum efficiency. In a first part, we describe the color patterns designed to isolate one pixel or to simulate un-patterned colored pixels. These patterns have been implemented on test-chip and characterized. The second part deals with the characterization setup for quantum efficiency. Indeed, the use of spectral measurements allows us to discriminate pixels based on the color filter placed on top of them and to probe the crosstalk as a function of the depth in silicon, thanks to the photon absorption length variation with the wavelength. In the last part, results are presented showing the impact of color filters patterning, i.e. pixels in a Bayer pattern versus un-patterned pixels. The crosstalk directions and amplitudes are also analyzed in relation to pixel layout.

  16. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Welser, Roger E. (Inventor); Sood, Ashok K. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  17. Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.

    2016-07-01

    Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.

  18. Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency

    NASA Technical Reports Server (NTRS)

    Larsson, Anders; Cody, Jeffrey; Lang, Robert J.

    1989-01-01

    Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.

  19. Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Zhi, Chunyi; Zhai, Tianyou; Wang, Xi; Liao, Meiyong; Li, Songlin; Chen, Shimou; Golberg, Dmitri; Bando, Yoshio

    2012-09-01

    Although there has been significant progress in the fabrication and performance optimization of 1-D nanostructure-based deep-ultraviolet photodetectors, it is still a challenge to develop an effective device with high performance characteristics, such as high photocurrent-dark current ratio and high quantum efficiency. Herein, an efficient and simple method to fabricate high performance CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors is presented. A CuO coated In2Ge2O7 nanobelt based photodetector showed very high responsivity (7.34 × 105 A W-1) and high quantum efficiency (3.5 × 106). The underlying mechanism is proposed to be the formation of p-n heterojunctions between decorated nanoparticles and nanobelts, which enhances the spatial separation of photogenerated electrons and holes. This study opens up a new horizon for creation of novel photodetectors with high quantum efficiency.Although there has been significant progress in the fabrication and performance optimization of 1-D nanostructure-based deep-ultraviolet photodetectors, it is still a challenge to develop an effective device with high performance characteristics, such as high photocurrent-dark current ratio and high quantum efficiency. Herein, an efficient and simple method to fabricate high performance CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors is presented. A CuO coated In2Ge2O7 nanobelt based photodetector showed very high responsivity (7.34 × 105 A W-1) and high quantum efficiency (3.5 × 106). The underlying mechanism is proposed to be the formation of p-n heterojunctions between decorated nanoparticles and nanobelts, which enhances the spatial separation of photogenerated electrons and holes. This study opens up a new horizon for creation of novel photodetectors with high quantum efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31791e

  20. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas.

    PubMed

    Mutlugun, Evren; Samarskaya, Olga; Ozel, Tuncay; Cicek, Neslihan; Gaponik, Nikolai; Eychmüller, Alexander; Demir, Hilmi Volkan

    2010-05-10

    We present light harvesting of aqueous colloidal quantum dots to nonradiatively transfer their excitonic excitation energy efficiently to dye molecules in water, without requiring ligand exchange. These as-synthesized CdTe quantum dots that are used as donors to serve as light-harvesting antennas are carefully optimized to match the electronic structure of Rhodamine B molecules used as acceptors for light harvesting in aqueous medium. By varying the acceptor to donor concentration ratio, we measure the light harvesting factor, along with substantial lifetime modifications of these water-soluble quantum dots, from 25.3 ns to 7.2 ns as a result of their energy transfer with efficiency levels up to 86%. Such nonradiative energy transfer mediated light harvesting in aqueous medium holds great promise for future quantum dot multiplexed dye biodetection systems.

  1. Long term operation of high quantum efficiency GaAs(Cs,O) photocathodes using multiple recleaning by atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; Krantz, C.; Wolf, A.; Jaroshevich, A. S.; Kosolobov, S. N.; Scheibler, H. E.; Terekhov, A. S.

    2009-09-01

    Atomic hydrogen, produced by thermal dissociation of H2 molecules inside a hot tungsten capillary, is shown to be an efficient tool for multiple recleaning of degraded surfaces of high quantum efficiency transmission-mode GaAs photocathodes within an ultrahigh vacuum (UHV) multichamber photoelectron gun. Ultraviolet quantum yield photoemission spectroscopy has been used to study the removal of surface pollutants and the degraded (Cs,O)-activation layer during the cleaning procedure. For photocathodes grown by the liquid-phase epitaxy technique, the quantum efficiency is found to be stable at about 20% over a large number of atomic hydrogen cleaning cycles. A slow degradation of the quantum efficiency is observed for photocathodes grown by metal-organic chemical vapor deposition, although they reached a higher initial quantum efficiency of about 30%-35%. Study of the spatial distributions of photoluminescence intensity on these photocathodes proved that this overall degradation is likely due to insertion of a dislocation network into the mechanically strained photocathode heterostructures during multiple heating cycles and is not due to the atomic hydrogen treatment itself.

  2. The quantum efficiency of HgCdTe photodiodes in relation to the direction of illumination and to their geometry

    NASA Technical Reports Server (NTRS)

    Rosenfeld, D.; Bahir, G.

    1993-01-01

    A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.

  3. Obstacles toward unity efficiency of LiNi1-2xCoxMnxO2 (x = 0 ∼ 1/3) (NCM) cathode materials: Insights from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Liang, Chaoping; Longo, Roberto C.; Kong, Fantai; Zhang, Chenxi; Nie, Yifan; Zheng, Yongping; Kim, Jeom-Soo; Jeon, Sanghoon; Choi, SuAn; Cho, Kyeongjae

    2017-02-01

    In this work, we perform a comprehensive study of five phenomena of LiNi1-2xCoxMnxO2 (NCM) (x = 0-1/3) cathodes at the end of charge (phase reaction, crack propagation, Li-Ni exchange, phase transition, and oxygen evolution), using first-principle calculations within the DFT + U framework. Based on our results, we have located the obstacles toward unity efficiency and revealed that the degradation strongly depends on the Ni concentration and the depth of charge. The threshold capacities for degradation of LiyNi1-2xCoxMnxO2 are 130-140 mA·hg-1 (y < 0.5) for 1/4 ≤ x = 1/3 (33.33-50% of Ni), and 200-210 mA·hg-1 (y < 0.25) for 0 ≤ x = 1/4 (50-100% of Ni), respectively. For 1/4 ≤ x = 1/3, our results show that the origin of the degradation is the oxidation of O2-, which is the result of the pining of O-p and Ni-d bands at the valence band edge. For 0 ≤ x = 1/4, lattice distortion and Li-Ni exchange are the mechanisms responsible for the degradation of the cathode material, leading to severe structural instabilities in the Ni-rich region (x = 0.1). Our findings will help to rationally design NCM cathode materials with high-energy density, also providing possible solution mechanisms to the degradation factors, such as doping, coating or novel nanostructures, like core-shell or concentration gradient cathodes.

  4. Enhanced photoluminescence efficiency in AlGaN quantum wells with gradient-composition AlGaN barriers

    NASA Astrophysics Data System (ADS)

    Shevchenko, E. A.; Nechaev, D. V.; Jmerik, V. N.; Kaibyshev, V. Kh; Ivanov, S. V.; Toropov, A. A.

    2016-08-01

    We present photoluminescence studies of AIxGa1-xN/AlyGa1-yN (y = x+0.3) quantum well (QW) heterostructures with graded AI content in barrier layers, emitting in the range 285-315 nm. The best-established internal quantum efficiency of the QW emission is as high as 81% at 300 K, owing to enhanced activation energy of charge carriers and exciton binding energy in the QW heterostructure with optimized design.

  5. An experiment to test the viability of a gallium-arsenide cathode in a SRF electron gun

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Wu, Q.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2009-05-04

    Strained gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10{sup -11} Torr or better, so that the cathode is not destroyed by ion back bombardment or through contamination with residual gases. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun with normal GaAs-Cs crystals.

  6. Efficient recycling strategies for preparing large Fock states from single-photon sources: Applications to quantum metrology

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Mann, Ryan L.; Olson, Jonathan P.; Studer, Nicholas M.; Bergeron, E. Annelise; Gilchrist, Alexei; Dowling, Jonathan P.; Berry, Dominic W.; Rohde, Peter P.

    2016-07-01

    Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with a large photon number remains challenging. We present and analyze a bootstrapped approach for nondeterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photodetectors, fast-feedforward, and an optical quantum memory.

  7. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  8. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-01

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  9. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    SciTech Connect

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  10. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a

  11. Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid.

    PubMed

    Lin, Ting-An; Chatterjee, Tanmay; Tsai, Wei-Lung; Lee, Wei-Kai; Wu, Meng-Jung; Jiao, Min; Pan, Kuan-Chung; Yi, Chih-Lung; Chung, Chin-Lung; Wong, Ken-Tsung; Wu, Chung-Chih

    2016-08-01

    Extremely efficient sky-blue organic electroluminescence with external quantum efficiency of ≈37% is achieved in a conventional planar device structure, using a highly efficient thermally activated delayed fluorescence emitter based on the spiroacridine-triazine hybrid and simultaneously possessing nearly unitary (100%) photoluminescence quantum yield, excellent thermal stability, and strongly horizontally oriented emitting dipoles (with a horizontal dipole ratio of 83%).

  12. Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement.

    PubMed

    Castañeda, Juan A; Nagamine, Gabriel; Yassitepe, Emre; Bonato, Luiz G; Voznyy, Oleksandr; Hoogland, Sjoerd; Nogueira, Ana F; Sargent, Edward H; Cruz, Carlos H Brito; Padilha, Lazaro A

    2016-09-27

    Cesium lead halide perovskite quantum dots (PQDs) have emerged as a promising new platform for lighting applications. However, to date, light emitting diodes (LED) based on these materials exhibit limited efficiencies. One hypothesized limiting factor is fast nonradiative multiexciton Auger recombination. Using ultrafast spectroscopic techniques, we investigate multicarrier interaction and recombination mechanisms in cesium lead halide PQDs. By mapping the dependence of the biexciton Auger lifetime and the biexciton binding energy on nanomaterial size and composition, we find unusually strong Coulomb interactions among multiexcitons in PQDs. This results in weakly emissive biexcitons and trions, and accounts for low light emission efficiencies. We observe that, for strong confinement, the biexciton lifetime depends linearly on the PQD volume. This dependence becomes sublinear in the weak confinement regime as the PQD size increases beyond the Bohr radius. We demonstrate that Auger recombination is faster in PQDs compared to CdSe nanoparticles having the same volume, suggesting a stronger Coulombic interaction in the PQDs. We confirm this by demonstrating an increased biexciton binding energy, which reaches a maximum of about 100 meV, fully three times larger than in CdSe quantum dots. The biexciton shift can lead to low-threshold optical gain in these materials. These findings also suggest that materials engineering to reduce Coulombic interaction in cesium lead halide PQDs could improve prospects for high efficiency optoelectronic devices. Core-shell structures, in particular type-II nanostructures, which are known to reduce the bandedge Coulomb interaction in CdSe/CdS, could beneficially be applied to PQDs with the goal of increasing their potential in lighting applications.

  13. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.

    PubMed

    Kolay, Ankita; Kumar, P Naresh; Kumar, Sarode Krishna; Deepa, Melepurath

    2017-02-08

    Charge transfer at the TiO2/quantum dots (QDs) interface, charge collection at the TiO2/QDs/current collector (FTO or SnO2:F) interface, and back electron transfer at the TiO2/QDs/S(2-) interface are processes controlled by the electron transport layer or TiO2. These key processes control the power conversion efficiencies (PCEs) of quantum dot solar cells (QDSCs). Here, four TiO2 morphologies, porous nanoparticles (PNPs), nanowires (NWs), nanosheets (NSHs) and nanoparticles (NPs), were sensitized with CdS and the photovoltaic performances were compared. The marked differences in the cell parameters on going from one morphology to the other have been explained by correlating the shape, structure and the above-described interfacial properties of a given TiO2 morphology to the said parameters. The average magnitudes of PCEs follow the order: NWs (5.96%) > NPs (4.95%) > PNPs (4.85%) > NSHs (2.5%), with the champion cell based on NWs exhibiting a PCE of 6.29%. For NWs, an optimal balance between the fast photo-excited electron injection to NWs at the NW/CdS interface, the high resistance offered at the TiO2 NW/CdS/S(2-) interfaces to electron recombination with the oxidized electrolyte or with the holes in CdS, the low electron transport resistance in NWs, and low dark currents, yields the highest efficiency due to directional unhindered transport of electrons afforded by the NWs. For NSHs, electron trapping in the two dimensional sheets, and a high electron recombination rate prevent the effective transfer of electrons to FTO, thus reducing short circuit current density significantly, resulting in a poor performance. This study provides a deep understanding of charge transfer, transport and collection processes necessary for the design of efficient QDSCs.

  14. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.

    PubMed

    Kamat, Prashant V

    2012-11-20

    The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (solar cells). Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in these nanostructures. This Account focuses on photoinduced electron transfer processes in quantum dot sensitized solar cells (QDSCs) and discusses strategies to overcome the limitations of various interfacial electron transfer processes. The heterojunction of two semiconductor nanocrystals with matched band energies (e.g., TiO(2) and CdSe) facilitates charge separation. The rate at which these separated charge carriers are driven toward opposing electrodes is a major factor that dictates the overall photocurrent generation efficiency. The hole transfer at the semiconductor remains a major bottleneck in QDSCs. For example, the rate constant for hole transfer is 2-3 orders of magnitude lower than the electron injection from excited CdSe into oxide (e.g., TiO(2)) semiconductor. Disparity between the electron and hole scavenging rate leads to further accumulation of holes within the CdSe QD and increases the rate of electron-hole recombination. To overcome the losses due to charge recombination processes at the interface, researchers need to accelerate electron and hole transport. The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5-6%, represents a significant advance toward effective utilization of nanomaterials for solar cells. The design of new semiconductor architectures could address many of the issues related to modulation of various charge transfer steps. With the resolution of those problems, the efficiencies of QDSCs could approach those of dye

  15. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  16. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    SciTech Connect

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre; Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  17. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  18. Efficient Light-driven Long Distance Charge Separation and H2 Generation in Semiconductor Quantum Rods and Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Lian, Tianquan

    Quantum confined semiconductor nanocrystals (0D quantum dots, 1D quantum rods and 2D quantum platlets) have been intensively investigated as light harvesting and charge separation materials for photovoltaic and photocatalytic applications. The efficiency of these semiconductor nanocrystal-based devices depends on many fundamental processes, including light harvesting, carrier relaxation, exciton localization and transport, charge separation and charge recombination. The competition between these processes determines the overall solar energy conversion (solar to electricity or fuel) efficiency. Semiconductor nano-heterostructures, combining two or more material components, offer unique opportunities to control their charge separation properties by tailoring their compositions, dimensions and spatial arrangement. Further integration of catalysts (heterogeneous or homogeneous) to these materials form multifunctional nano-heterostructures. Using 0D, 1D and 2D CdSe/CdS/Pt heterostructures as model systems, we directly probe the above-mentioned fundamental exciton and carrier processes by transient absorption and time-resolved fluorescence spectroscopy. We are examining how to control these fundamental processes through the design of heterostructures to achieve long-lived charge separation and efficient H2 generation. In this talk, we will discuss a new model for exciton dissociation by charge transfer in quantum dots (i.e. Auger assisted electron transfer), mechanism of 1D and 2D exciton transport and dissociation in nanorods, and key factors limiting H2 generation efficiency in CdSe/CdS/Pt nanorod heterostructures.

  19. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  20. Numerical simulation study on quantum efficiency characteristics of InP/InGaAs/InP infrared photocathode

    NASA Astrophysics Data System (ADS)

    Xu, Junkai; Xu, Xiangyan; Tian, Jinshou; Luo, Duan; Hui, Dandan

    2016-10-01

    The quantum efficiency characteristics of InP/In0.53Ga0.47As/InP photocathode which is one of the field-assisted negative electron affinity photocathodes with III-V compound semiconductor and works at transmission mode with a wide1 spectral response range from 1.0-1.7 μm were studied in this paper. Under certain field-assisted bias voltage, internal quantum efficiency at different wavelength versus structure parameters and doping concentration of the photocathode was simulated by the APSYS program. Results show that: First, internal quantum efficiency of the photocathode rises with the increasing of the field-assisted bias voltage. Second, the internal quantum efficiency gradually increases to a maximum at thickness=0.2um of P-InGaAs photo-absorbing layer and then reduces with the increasing of thickness. However, doping concentration of P-InGaAs photo-absorbing layer has little influence on it. Third, the internal quantum efficiency reduces with the increasing of thickness and doping concentration of P-InP photoelectron-emitting layer. The optimization results show that when the thickness of the photo-absorbing layer and the photoelectron-emitting layer are both 0.2 μm, and the doping concentration of the photo-absorbing layer and the photoelectron-emitting layer are about 1.5×1015 cm-3 and 1.0×1016 cm-3 respectively, under a certain field-assisted bias voltage, the line of the external quantum efficiency versus wavelength is ideal. Besides, the response time of photocathode can be reduced to less than 50 ps.

  1. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    SciTech Connect

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  2. A novel and efficient water-based composite binder for LiCoO 2 cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jyh-Tsung; Chu, Yung-Ju; Peng, Xing-Wei; Wang, Fu-Ming; Yang, Chang-Rung; Li, Chia-Chen

    The dispersion, adhesion strength, electrical, and electrochemical properties of LiCoO 2 cathodes in lithium-ion batteries with the addition of a new composite binder composed of two acrylic emulsions, poly(butyl acrylate)-based (PBA) and polyacrylonitrile-based (PA) latex in a ratio of 3:7, were evaluated. PBA binder has a low-glass transition temperature of 10 °C, which can improve the flexibility of the electrode. This new composite binder has a very good binding ability as same as the typical organic solvent-based binder, poly(vinylidene fluoride). The dispersions of the water-based cathode slurries with the composite binder were measured by analyzing the viscosity and sedimentation behaviors. The results show that the new composite binder can well disperse the LiCoO 2. Moreover, using the new composite binder could greatly improve the rate capabilities and the cycle stability of water-based LiCoO 2 cathodes.

  3. An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Martín, F.; Ramos-Barrado, J. R.; Losilla, E. R.; Marrero-López, D.

    2016-07-01

    A novel electrode preparation method based on the spray-pyrolysis deposition of metal nitrate solutions onto a porous electrolyte scaffold is proposed. This method has been proved with different cathode materials, usually used in Solid Oxide Fuel Cells, such as La0.8Sr0.2MnO3-δ and La0.6Sr0.4Co1-xFexO3-δ (x = 0, 0.2, 0.8 and 1). The electrode microstructure is composed by two layers; the inner layer is a porous electrolyte scaffold homogeneously coated by cathode nanoparticles, providing an increased number of triple phase boundary sites for oxygen reduction, whereas, the top layer is formed by only cathode nanoparticles and acts mainly as a current collector. Polarization resistance values as low as 0.07 and 1.0 Ω cm2 at 600 and 450 °C, respectively, are obtained at open circuit voltage. This alternative approach has several advantages with respect to the traditional wet infiltration method for large area electrode fabrication, such as higher reproducibility, shorter preparation time in a single thermal deposition step, and easy implementation at industrial scale as a continuous process.

  4. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3-δ

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Ni, Meng; He, Wei; Chen, Yubo; Yang, Guangming; Chen, Dengjie; Shao, Zongping

    2016-09-01

    The B-site substitution with the minor amount of tin in BaFeO3-δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3-δ (BFS) as a new cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized and characterized. Special attention is paid to the exploration of some basic properties including phase structure, oxygen non-stoichiometry, electrical conductivity, oxygen bulk diffusion coefficient, and surface exchange coefficient, which are of significant importance to the electrochemical activity of cathode materials. BFS holds a single cubic perovskite structure over temperature range of cell operation, determined by in-situ X-ray diffraction and scanning transmission electron microscope. A high oxygen vacancy concentration at cell operating temperatures is observed by combining thermo-gravimetric data and iodometric titration result. Furthermore, electrical conductivity relaxation measurement illustrates the fast oxygen bulk diffusion and surface exchange kinetics. Accordingly, testing cells based on BFS cathode material demonstrate the low polarization resistance of 0.033 Ω cm2 and high peak power density of 1033 mW cm-2 at 700 °C, as well as a relatively stable long-term operation for ∼300 h. The results obtained suggest that BFS perovskite oxide holds a great promise as an oxygen reduction electrocatalyst for IT-SOFCs.

  5. Spectral-gap analysis for efficient tunneling in quantum adiabatic optimization

    NASA Astrophysics Data System (ADS)

    Brady, Lucas T.; van Dam, Wim

    2016-09-01

    We investigate the efficiency of quantum adiabatic optimization when overcoming potential barriers to get from a local to a global minimum. Specifically we look at n qubit systems with symmetric cost functions f :{0,1 } n→R , where the ground state must tunnel through a potential barrier of width nα and height nβ. By the quantum adiabatic theorem the time delay sufficient to ensure tunneling grows quadratically with the inverse spectral gap during this tunneling process. We analyze barrier sizes with 1 /2 ≤α +β and α <1 /2 and show that the minimum gap scales polynomially as n1 /2 -α -β when 2 α +β ≤1 and exponentially as n-β /2exp(-C n(2 α +β -1 )/2) when 1 <2 α +β . Our proof uses elementary techniques and confirms and extends an unpublished folklore result by Goldstone from 2002, which used large spin and instanton methods. Parts of our result also refine recent results by Kong and Crosson [arXiv:1511.06991] and Jiang et al. [arXiv:1603.01293] about the exponential gap scaling.

  6. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Au, Giang H. T.; Y Shih, Wan; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control.

  7. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    NASA Astrophysics Data System (ADS)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  8. Synchrotron measurements of the absolute x-ray quantum efficiency of CsI-coated microchannel plates

    NASA Astrophysics Data System (ADS)

    Rideout, Rob M.; Pearson, James F.; Fraser, George W.; Lees, John E.; Brunton, Adam N.; Bannister, N. P.; Kenter, Almus T.; Kraft, Ralph P.

    1998-11-01

    Two identical CsI-coated, low noise microchannel plate (MCP) detectors were taken to the Daresbury Synchrotron Radiation Source (SRS) to measure their quantum efficiencies over two different energy ranges - 450 eV to 1200 eV and 4.5 eV to 9.5 eV. The SRS was run in low ring current with the beam flux monitored using single wire gas proportional counters. We present accurate measurements of edge-related absolute quantum efficiency features due to the CsI photocathodes. This data will be incorporated into the calibration program of the Advanced X-ray Astrophysical Facility High Resolution Camera.

  9. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction

    NASA Astrophysics Data System (ADS)

    Juntunen, Mikko A.; Heinonen, Juha; Vähänissi, Ville; Repo, Päivikki; Valluru, Dileep; Savin, Hele

    2016-12-01

    Ideal photodiodes can detect all incoming photons independently of the wavelength, angle or intensity of the incident light. Present-day photodiodes notably suffer from optical losses and generated charge carriers are often lost via recombination. Here, we demonstrate a device with an external quantum efficiency above 96% over the wavelength range 250-950 nm. Instead of a conventional p-n junction, we use negatively charged alumina to form an inversion layer that generates a collecting junction extending to a depth of 30 µm in n-type silicon with bulk resistivity larger than 10 kΩ cm. We enhance the collection efficiency further by nanostructuring the photodiode surface, which results in higher effective charge density and increased charge-carrier concentration in the inversion layer. Additionally, nanostructuring and efficient surface passivation allow for a reliable device response with incident angles up to 70°. We expect the considered device to improve data quality, reduce the area of photodiodes as well as decrease the cost per pixel.

  10. Photoluminescence quantum efficiency of Er optical centers in GaN epilayers

    PubMed Central

    Ho, V. X.; Dao, T. V.; Jiang, H. X.; Lin, J. Y.; Zavada, J. M.; McGill, S. A.; Vinh, N. Q.

    2017-01-01

    We report the quantum efficiency of photoluminescence processes of Er optical centers as well as the thermal quenching mechanism in GaN epilayers prepared by metal-organic chemical vapor deposition. High resolution infrared spectroscopy and temperature dependence measurements of photoluminescence intensity from Er ions in GaN under resonant excitation excitations were performed. Data provide a picture of the thermal quenching processes and activation energy levels. By comparing the photoluminescence from Er ions in the epilayer with a reference sample of Er-doped SiO2, we find that the fraction of Er ions that emits photon at 1.54 μm upon a resonant optical excitation is approximately 68%. This result presents a significant step in the realization of GaN:Er epilayers as an optical gain medium at 1.54 μm. PMID:28054672

  11. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  12. Efficient bit sifting scheme of post-processing in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Le, Dan; Wu, Xianyan; Niu, Xiamu; Guo, Hong

    2015-10-01

    Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.

  13. Efficient Implementation of Many-body Quantum Chemical Methods on the Intel Xeon Phi Coprocessor

    SciTech Connect

    Apra, Edoardo; Klemm, Michael; Kowalski, Karol

    2014-12-01

    This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors.

  14. High-resolution mapping of quantum efficiency of silicon photodiode via optical-feedback laser microthermography

    SciTech Connect

    Cemine, Vernon Julius; Blanca, Carlo Mar; Saloma, Caesar

    2006-09-20

    We map the external quantum efficiency (QE) distribution of a silicon photodiode (PD) sample via a thermographic imaging technique based on optical-feedback laser confocal microscopy. An image pair consisting of the confocal reflectance image and the 2D photocurrent map is simultaneously acquired to delineate the following regions of interest on the sample: the substrate, the n-type region, the pn overlay, and the bonding pad. The 2D QE distribution is derived from the photocurrent map to quantify the optical performance of these sites. The thermal integrity of the sample is then evaluated by deriving the rate of change of QE with temperature T at each point on the silicon PD. These gradient maps function not only as stringent measures of local thermal QE activity but they also expose probable defect locations on the sample at high spatial resolution - a capability that is not feasible with existing bulk measurement techniques.

  15. Radiative quantum efficiency in an InAs/AlSb intersubband transition

    NASA Astrophysics Data System (ADS)

    Faugeras, C.; Wade, A.; Leuliet, A.; Vasanelli, A.; Sirtori, C.; Fedorov, G.; Smirnov, D.; Teissier, R.; Baranov, A. N.; Barate, D.; Devenson, J.

    2006-09-01

    The quantum efficiency of an electroluminescent intersubband emitter based on InAs/AlSb has been measured as a function of the magnetic field up to 20T . Two series of oscillations periodic in 1/B are observed, corresponding to the elastic and inelastic scattering of electrons of the upper state of the radiative transitions. Experimental results are accurately reproduced by a calculation of the excited-state lifetime as a function of the applied magnetic field. The interpretation of these data gives an exact measure of the relative weight of the scattering mechanisms and allows the extraction of material parameters such as the energy-dependent electron effective mass and the optical phonon energy.

  16. Design of efficient full adder in quantum-dot cellular automata.

    PubMed

    Sen, Bibhash; Rajoria, Ayush; Sikdar, Biplab K

    2013-01-01

    Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA), a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters) for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock) with high compaction (0.01 μ m(2)) for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches.

  17. Design of Efficient Full Adder in Quantum-Dot Cellular Automata

    PubMed Central

    Sen, Bibhash; Sikdar, Biplab K.

    2013-01-01

    Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA), a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters) for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock) with high compaction (0.01 μm2) for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches. PMID:23844385

  18. Photoluminescence quantum efficiency of Er optical centers in GaN epilayers

    NASA Astrophysics Data System (ADS)

    Ho, V. X.; Dao, T. V.; Jiang, H. X.; Lin, J. Y.; Zavada, J. M.; McGill, S. A.; Vinh, N. Q.

    2017-01-01

    We report the quantum efficiency of photoluminescence processes of Er optical centers as well as the thermal quenching mechanism in GaN epilayers prepared by metal-organic chemical vapor deposition. High resolution infrared spectroscopy and temperature dependence measurements of photoluminescence intensity from Er ions in GaN under resonant excitation excitations were performed. Data provide a picture of the thermal quenching processes and activation energy levels. By comparing the photoluminescence from Er ions in the epilayer with a reference sample of Er-doped SiO2, we find that the fraction of Er ions that emits photon at 1.54 μm upon a resonant optical excitation is approximately 68%. This result presents a significant step in the realization of GaN:Er epilayers as an optical gain medium at 1.54 μm.

  19. RE 3+ emission in garnets: multisites, energy transfer and quantum efficiency

    NASA Astrophysics Data System (ADS)

    Lupei, V.

    2002-02-01

    The connection between the high-resolution spectral disordering of the rare earth-doped garnets and the manifestation of the energy transfer in the global or selective emission decay is discussed. It is shown that the identification of the pair satellites and the investigation of their decay properties are important for determination or verification of the mechanisms of interaction that determine the energy transfer in simply activated or in sensitized crystals. The competition of various energy transfer processes in de-excitation of the metastable levels such as down-conversion and up-conversion in Nd: YAG under high intensity pump is discussed. It is shown that the energy transfer parameters determined from the emission decay could give a consistent description of data on quantum efficiency or heating effects.

  20. Measuring the fluorescent quantum efficiency of indocyanine green encapsulated in nanocomposite particulates.

    PubMed

    Russin, T J; Altınoğlu, E İ; Adair, J H; Eklund, P C

    2010-08-25

    We present results of a fluorescent quantum efficiency (Φ(F)) study on the encapsulation of the near-infrared dye indocyanine green (ICG) in bioresorbable calcium phosphate nanoparticles (CPNPs). The Φ(F) (described as the ratio of photons emitted to photons absorbed) provides a quantitative means of describing the fluorescence of an arbitrary molecule. However, standard quantum efficiency measurement techniques provide only the Φ(F) of the smallest fluorescing unit-in the case of a nanoparticle suspension, the nanoparticle itself. This presents a problem in accurately describing the Φ(F) of fluorophores embedded in an inorganic nanoparticle. Combining the incidence of scattering with an evaluation of the differences in local electric field and photochemical environment, we have developed a method to determine the Φ(F) of the constituent fluorescent molecules embedded in such a nanoparticle, which provides a more meaningful comparison with the unencapsulated fluorophore. While applicable to generic systems, we present results obtained by our method for the ICG-CPNP in a phosphate buffered 0.15 M saline solution (PBS, pH 7.4)--specifically, Φ(F, free dye) = 0.027 ± 0.001, Φ(F, particle) = 0.053 ± 0.003, and for the individual encapsulated molecules, Φ(F, molecule) = 0.066 ± 0.004. The method developed also provides insight into the influences of encapsulation and key parameters to engineer resonant enhancement effects from the emission of the encapsulated fluorophores corresponding to an eigenmode of the embedding particle for tailored optical properties.

  1. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots.

    PubMed

    Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco; Colombo, Annalisa; Velizhanin, Kirill A; Makarov, Nikolay S; Simonutti, Roberto; Klimov, Victor I; Brovelli, Sergio

    2015-10-01

    Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

  2. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco; Colombo, Annalisa; Velizhanin, Kirill A.; Makarov, Nikolay S.; Simonutti, Roberto; Klimov, Victor I.; Brovelli, Sergio

    2015-10-01

    Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

  3. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  4. Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures

    NASA Astrophysics Data System (ADS)

    Hopfmann, Caspar; Musiał, Anna; Maier, Sebastian; Emmerling, Monika; Schneider, Christian; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan

    2016-09-01

    Within this work we propose and demonstrate a technological approach to efficiently suppress excitation laser stray-light in resonance fluorescence experiments on quantum dot micropillars. To ensure efficient stray-light suppression, their fabrication process includes a planarization step and subsequent covering with a titanium mask to fabricate self-aligned apertures at the micropillar positions. These apertures aim to limit laser stray-light in the side-excitation vertical-detection configuration, while enabling detection of the optical signal through the top facet of the micropillars. The beneficial effects of these apertures are proven and quantitatively evaluated within a statistical study in which we determine and compare the stray-light suppression of 48 micropillars with and without metal apertures. Actual resonance fluorescence experiments on single quantum dots coupled to the cavity mode prove the relevance of the proposed approach and demonstrate that it will foster further studies on cavity quantum electrodynamics phenomena under coherent optical excitation.

  5. Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes.

    PubMed

    Erdem, Talha; Nizamoglu, Sedat; Demir, Hilmi Volkan

    2012-01-30

    We present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of ≥90 (with R9 at least 70), a luminous efficacy of optical radiation of ≥380 lm/W(opt) a correlated color temperature of ≤4000 K, and a chromaticity difference dC <0.0054. We computationally find that the device LE levels of 100, 150, and 200 lm/W(elect) can be achieved with QD quantum efficiency of 43%, 61%, and 80% in film, respectively, using state-of-the-art blue LED chips (81.3% PCE). Furthermore, our computational analyses suggest that QD-LEDs can be both photometrically and electrically more efficient than phosphor based LEDs when state-of-the-art QDs are used.

  6. Theory and mitigation of electron back-bombardment in thermionic cathode radio frequency guns

    NASA Astrophysics Data System (ADS)

    Edelen, Jonathan Paul

    Photocathode RF guns are currently the standard for high- power, low-emittance beam generation in free-electron lasers. These devices require the use of high-power lasers (which are bulky and expensive to operate) and high-quantum-efficiency cathodes (which have limited lifetimes requiring frequent replacement). The use of RF-gated thermionic cathodes enables operation without a large drive laser and with long lifetimes. One major limitation of RF-gated thermionic cathodes is that electrons emitted late in the RF period will not gain enough energy to exit the gun before being accelerated back towards the cathode by the change in sign of the RF field. These electrons deposit their kinetic energy on the cathode surface in the form of heat, limiting the ability to control the output current from the cathode. This dissertation is aimed at understanding the fundamental design factors that drive the back-bombardment process and at exploring novel techniques to reduce its impact on a high-current system. This begins with the development of analytic models that predict the back-bombardment process in single-cell guns. These models are compared with simulation and with a measurement taken at a specific facility. This is followed by the development of analytic models that predict the effects of space-charge on back-bombardment. These models are compared with simulations. This is followed by an analysis of how the addition of multiple cells will impact the back-bombardment process. Finally, a two-frequency gun is studied for its ability to mitigate the back-bombardment process. This dissertation provides new insight on how the back-bombardment process scales as a function of the beam parameters and how space-charge affects this process. Additionally this dissertation shows how a second frequency can be used to mitigate the back-bombardment effect.

  7. A mulitple cathode gun design for the eRHIC polarized electron source

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skaritka, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    The future electron-ion collider eRHIC requires a high average current ({approx}50 mA), short bunch ({approx}3 mm), low emittance ({approx}20 {micro}m) polarized electron source. The maximum average current of a polarized electron source so far is more than 1 mA, but much less than 50 mA, from a GaAs:Cs cathode. One possible approach to overcome the average current limit and to achieve the required 50 mA beam for eRHIC, is to combine beamlets from multiple cathodes to one beam. In this paper, we present the feasibility studies of this technique. The future eRHIC project, next upgrade of RHIC, will be the first electron-heavy ion collider in the world. It requires polarized electron source with a high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the low quantum efficiency, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and funnel the multiple bunched beams from cathodes to the same axis. Fig.1 illustrates schematically the concept of combining the multiple beams. We name it as 'Gatling gun' because it bears functional similarity to a Gatling gun. Laser beams strike the cathodes sequentially with revolution frequency of 700 kHz. Each beam bunch is focused by a solenoid and is bent toward the combiner. The combiner with rotating bending field bends all bunches arriving the combiner with a rotational pattern to the same axis. The energy of each bunch is modified by a bunching cavity (112MHz) and a 3rd harmonic cavity (336MHz). The bunch length is compressed ballistically in the drift space and is frozen after energy has been boosted to 10 MeV by the Booster linac. Each beam bunch contains 3.5 nC charge. The

  8. Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition.

    PubMed

    Han, Hee-Sun; Devaraj, Neal K; Lee, Jungmin; Hilderbrand, Scott A; Weissleder, Ralph; Bawendi, Moungi G

    2010-06-16

    We present a bioorthogonal and modular conjugation method for efficient coupling of organic dyes and biomolecules to quantum dots (QDs) using a norbornene-tetrazine cycloaddition. The use of noncoordinating functional groups combined with the rapid rate of the cycloaddition leads to highly efficient conjugation. We have applied this method to the in situ targeting of norbornene-coated QDs to live cancer cells labeled with tetrazine-modified proteins.

  9. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells

    SciTech Connect

    Chang, Chiao-Yun; Li, Hen; Lu, Tien-Chang

    2014-03-03

    In this study, we demonstrated high efficiency InGaN/GaN light emitting diodes (LEDs) with asymmetric triangular multiple quantum wells (MQWs). Asymmetric triangular MQWs not only contribute to uniform carrier distribution in InGaN/GaN MQWs but also yield a low Auger recombination rate. In addition, asymmetric triangular MQWs with gallium face-oriented inclination band profiles can be immune from the polarization charge originating from typical c-plane InGaN/GaN quantum well structures. In the experiment, LEDs incorporated with asymmetric triangular MQWs with gallium face-oriented inclination band profiles exhibited a 60.0% external quantum efficiency at 20 mA and a 27.0% efficiency droop at 100 mA (corresponding to a current density of 69 A/cm{sup 2}), which accounted for an 11.7% efficiency improvement and a 31.1% droop reduction compared with symmetric square quantum well structure LEDs.

  10. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency.

    PubMed

    Albrecht, Ken; Matsuoka, Kenichi; Yokoyama, Daisuke; Sakai, Yoshiya; Nakayama, Akira; Fujita, Katsuhiko; Yamamoto, Kimihisa

    2017-02-21

    New solution processable and laminatable terminally modified carbazole-triazine thermally activated delayed fluorescence (TADF) dendrimers are reported. An OLED device with fully solution processed organic layers exhibited an external quantum efficiency of up to 9.4% at 100 cd m(-2).

  11. Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis.

    PubMed

    Wu, Jianlan; Liu, Fan; Ma, Jian; Silbey, Robert J; Cao, Jianshu

    2012-11-07

    Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order "classical" hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time or in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.

  12. Efficient and robust quantum random number generation by photon number detection

    SciTech Connect

    Applegate, M. J.; Thomas, O.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Ritchie, D. A.

    2015-08-17

    We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. We extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.

  13. Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11.

    PubMed

    Du, Zhonglin; Pan, Zhenxiao; Fabregat-Santiago, Francisco; Zhao, Ke; Long, Donghui; Zhang, Hua; Zhao, Yixin; Zhong, Xinhua; Yu, Jong-Sung; Bisquert, Juan

    2016-08-18

    The mean power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs) is mainly limited by the low photovoltage and fill factor (FF), which are derived from the high redox potential of polysulfide electrolyte and the poor catalytic activity of the counter electrode (CE), respectively. Herein, we report that this problem is overcome by adopting Ti mesh supported mesoporous carbon (MC/Ti) CE. The confined area in Ti mesh substrate not only offers robust carbon film with submillimeter thickness to ensure high catalytic capacity, but also provides an efficient three-dimension electrical tunnel with better conductivity than state-of-art Cu2S/FTO CE. More importantly, the MC/Ti CE can down shift the redox potential of polysulfide electrolyte to promote high photovoltage. In all, MC/Ti CEs boost PCE of CdSe0.65Te0.35 QDSCs to a certified record of 11.16% (Jsc = 20.68 mA/cm(2), Voc = 0.798 V, FF = 0.677), an improvement of 24% related to previous record. This work thus paves a way for further improvement of performance of QDSCs.

  14. "Click" on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging.

    PubMed

    Gao, Ming Xuan; Yang, Lin; Zheng, Yi; Yang, Xiao Xi; Zou, Hong Yan; Han, Jing; Liu, Ze Xi; Li, Yuan Fang; Huang, Cheng Zhi

    2017-02-10

    Surface functionalization is an essential pre requisite for wide and specific applications of nanoparticles such as photoluminescent (PL) carbon quantum dots (CQDs), but it remains a major challenge. In this report, alkynylated CQDs, prepared from carboxyl-rich CQDs through amidation with propargylamine in the presence of 1,1'-carbonyldiimidazole, were modified efficiently with azido molecular beacon DNA through a copper(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC). As a proof-of-concept, the DNA-modified CQDs are then bonded with gold nanoparticles (AuNPs, 5 nm) through a gold-sulfur bond. Owing to the emission enhancement, this complex can then be applied to the recognition of a single-base- mismatched target. The same functionalizing strategy applied to click the alkynylated CQDs with a nuclear localization sequence (NLS) peptide showed that the NLS-modified CQDs could target the nuclei specifically. These results indicate that surface functionalization of CQDs through a nonstoichiometric copper chalcogenide nanocrystal- (nsCuCNC-) catalyzed click reaction is efficient, and has significant potential in the fields of biosensing and bioimaging.

  15. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.

    PubMed

    Wang, Jianhui; Ye, Zhuolin; Lai, Yiming; Li, Weisheng; He, Jizhou

    2015-06-01

    We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is embedded in two heat reservoirs at constant temperatures T(h) and T(c)(quantum heat engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric processes, and we find the upper bound of efficiency at maximum power (EMP) η* to be a function of the Carnot efficiency η(C)(=1-T(c)/T(h)): η*≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))], identical to those previously derived from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems.

  16. Enhancing the power conversion efficiency of solar cells employing down-shifting silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Lopez-Delgado, R.; Higuera-Valenzuela, H. J.; Zazueta-Raynaud, A.; Ramos, A.; Pelayo, J. E.; Berman, D.; Álvarez-Ramos, M. E.; Ayon, Arturo

    2016-11-01

    We report the synthesis and characterization of silicon quantum dots that exhibit down-shifting, photo luminescent characteristics. We also discuss the fabrication and characterization of single crystal Silicon (c-Si) Solar cells with and without the influence of the previously mentioned QDs. The incorporation of these nanostructures triggers improvements in the performance of the fabricated photovoltaic devices, especially in the open circuit voltage (Voc) and short circuit current density (Jsc). Specifically, the experimental results showed increments in the Voc from 532.6 to 536.2 mV and in the Jsc from 33.4 to 38.3 mA/cm2. The combined effect of those improved Voc and Jsc values led to an increment in the power conversion efficiency (PCE) from 11.90 to 13.37%. This increment represents an improvement of the order of 12.4% on the power conversion efficiency of this type of solar cells. The observed results could be conducive to promoting the proliferation of photovoltaic structures.

  17. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Ye, Zhuolin; Lai, Yiming; Li, Weisheng; He, Jizhou

    2015-06-01

    We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is embedded in two heat reservoirs at constant temperatures Th and Tc(quantum heat engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric processes, and we find the upper bound of efficiency at maximum power (EMP) η* to be a function of the Carnot efficiency ηC(=1 -Tc/Th) : η*≤η+≡ηC2/[ηC-(1 -ηC) ln(1 -ηC) ] , identical to those previously derived from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems.

  18. Efficient and robust quantum random number generation by photon number detection

    NASA Astrophysics Data System (ADS)

    Applegate, M. J.; Thomas, O.; Dynes, J. F.; Yuan, Z. L.; Ritchie, D. A.; Shields, A. J.

    2015-08-01

    We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. We extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.

  19. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Ghosal, Partha

    2015-06-24

    Quantum dot solar cells (QDSCs) were fabricated using low-cost Cu nanostructures and a carbon fabric as a counter electrode for the first time. Cu nanoparticles (NPs) and nanoneedles (NNs) with a face-centered cubic structure were synthesized by a hydrothermal method and electrophoretically deposited over a CdS QD sensitized titania (TiO2) electrode. Compared to Cu NPs, which increase the light absorption of a TiO2/CdS photoanode via scattering effects only in the visible region, Cu NNs are more effective for efficient far-field light scattering; they enhance the light absorption of the TiO2/CdS assembly beyond the visible to near-infrared (NIR) regions as well. The highest fluorescence quenching, lowest excited electron lifetime, and a large surface potential (deduced from Kelvin probe force microscopy (KPFM)) observed for the TiO2/CdS/Cu NN electrode compared to TiO2/CdS and TiO2/CdS/Cu NP electrodes confirm that Cu NNs also facilitate charge transport. KPFM studies also revealed a larger shift of the apparent Fermi level to more negative potentials in the TiO2/CdS/Cu NN electrode, compared to the other two electrodes (versus NHE), which results in a higher open-circuit voltage for the Cu NN based electrode. The best performing QDSC based on the TiO2/CdS/Cu NN electrode delivers a stellar power conversion efficiency (PCE) of 4.36%, greater by 56.8% and 32.1% than the PCEs produced by the cells based on TiO2/CdS and TiO2/CdS/Cu NPs, respectively. A maximum external quantum efficiency (EQE) of 58% obtained for the cell with the TiO2/CdS/Cu NN electrode and a finite EQE in the NIR region which the other two cells do not deliver are clear indicators of the enormous promise this cheap, earth-abundant Cu nanostructure holds for amplifying the solar cell response in both the visible and near-infrared regions through scattering enhancements.

  20. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    SciTech Connect

    Kim, Hyo-Joong; Kim, Han-Ki; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  1. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies

    NASA Astrophysics Data System (ADS)

    Woods, Christopher J.; Manby, Frederick R.; Mulholland, Adrian J.

    2008-01-01

    The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.

  2. Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

    NASA Astrophysics Data System (ADS)

    Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel

    2013-04-01

    Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non

  3. Effects of a high energy particle environment on the quantum efficiency of spectrally selective photocathodes for the middle and vacuum ultraviolet.

    PubMed

    Heath, D F; McElaney, J H

    1968-10-01

    The quantum efficiences of spectrally selective photocathodes for the middle and vacuum uv (semitransparent depositions of CsI, CuI, and CsTe on Al(2)O(3) windows, a solid tungsten photocathode behind a MgF(2) window) were measured before their use as detectors in a rocket experiment, one year later, and after irradiation by high energy electrons. Only the CsI photodiode showed any change in quantum efficiency, a notable increase after irradiation. Two additional CsI diodes were then irradiated, one with high energy electrons, the other with gamma rays. However, these diodes showed no change in quantum efficiency. The quantum efficiencies of all the photodiodes appear stable with time. The CuI and CsTe diodes also remain stable under irradiation, while the CsI diode may exhibit an increase in quantum efficiency after irradiation.

  4. Polymer coatings as separator layers for microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production.

  5. Virtual Cathode Oscillator Study.

    DTIC Science & Technology

    1984-11-01

    emission region then con- sists of an array of fibers perpendicular to a conducting cathode surface . A surface flashover along the individual fibers...acts like the Corona electron source developed by Helionetics13 for laser pre-ioniza- tion. The axial surface flashover mechanism is more desirable than...the conventional cold cathode emission process, because production of plasma in this manner inhibits the formation of surface cathode spots. 7 75

  6. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    NASA Technical Reports Server (NTRS)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  7. A comparison of digital radiography systems in terms of effective detective quantum efficiency

    SciTech Connect

    Bertolini, Marco; Nitrosi, Andrea; Rivetti, Stefano; Lanconelli, Nico; Pattacini, Pierpaolo; Ginocchi, Vladimiro; Iori, Mauro

    2012-05-15

    Purpose: The purpose of this study is to compare digital radiography systems using the metric effective detective quantum efficiency (eDQE), which better reflects digital radiography imaging system performance under clinical operating conditions, in comparison with conventional metrics such as modulation transfer function (MTF), normalized noise power spectra (NNPS), and detective quantum efficiency (DQE). Methods: The eDQE was computed by the calculation of the MTF, the NNPS, the phantom attenuation and scatter, and estimation of x-ray flux. The physical characterization of the systems was obtained with the standard beam conditions RQA5 and RQA9, using the PA Chest phantom proposed by AAPM Report no. 31 simulating the attenuation and scatter characteristics of the adult human thorax. The MTF (eMTF) was measured by using an edge test placed at the frontal surface of the phantom, the NNPS (eNNPS) was calculated from images of the phantom acquired at three different exposure levels covering the operating range of the system (E{sub 0}, which is the exposure at which a system is normally operated, 1/3 E{sub 0}, and 3 E0), and scatter measurements were assessed by using a beam-stop technique. The integral of DQE (IDQE) and eDQE (IeDQE) was calculated over the whole spatial frequency range. Results: The eMTF results demonstrate degradation due to magnification and the presence of scattered radiation. The eNNPS was influenced by the grid presence, and in some systems, it contained structured noise. At typical clinical exposure levels, the magnitude of eDQE(0) with respect to DQE(0) at RQA9 beam conditions was 13%, 17%, 16%, 36%, and 24%, respectively, for Carestream DRX-1, Carestream DRX-1C, Carestream Direct View CR975, Philips Digital Diagnost VM, and GE Revolution XR/d. These results were confirmed by the ratio of IeDQE and IDQE in the same conditions. Conclusions: The authors confirm the robustness and reproducibility of the eDQE method. As expected, the DR systems

  8. Solid Confinement of Quantum Dots in ZIF-8 for Efficient and Stable Color-Conversion White LEDs.

    PubMed

    Ying, Wen; Mao, Yiyin; Wang, Xiaobing; Guo, Yi; He, Haiping; Ye, Zhizhen; Lee, Shuit-Tong; Peng, Xinsheng

    2017-03-13

    The powder form and low photoluminescence quantum yield (PLQY) of fluorescent metal-organic frameworks (MOFs) present a serious obstacle to fabricating high-efficiency film-like lighting devices. Here, we present a facile way to produce thin films of CdSex S1-x /ZnS quantum dots (QDs)@ZIF-8 with high PLQY by encapsulating red, green, and blue CdSex S1-x /ZnS QDs in ZIF-8 through a one-pot solid-confinement conversion process. The QDs@ZIF-8 thin film emits warm white light with good color quality and presents good thermal stability and long-term durability.

  9. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes.

    PubMed

    Liu, Che-Yu; Chen, Tzu-Pei; Kao, Tsung Sheng; Huang, Jhih-Kai; Kuo, Hao-Chung; Chen, Yang-Fang; Chang, Chun-Yen

    2016-08-22

    A large enhancement of color-conversion efficiency of colloidal quantum dots in light-emitting diodes (LEDs) with novel structures of nanorods embedded in microholes has been demonstrated. Via the integration of nano-imprint and photolithography technologies, nanorods structures can be fabricated at specific locations, generating functional nanostructured LEDs for high-efficiency performance. With the novel structured LED, the color-conversion efficiency of the existing quantum dots can be enhanced by up to 32.4%. The underlying mechanisms can be attributed to the enhanced light extraction and non-radiative energy transfer, characterized by conducting a series of electroluminescence and time-resolved photoluminescence measurements. This hybrid nanostructured device therefore exhibits a great potential for the application of multi-color lighting sources.

  10. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    SciTech Connect

    Chen, Dazheng; Zhang, Chunfu Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue

    2014-06-16

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  11. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Berr, Maximilian J.; Wagner, Peter; Fischbach, Stefan; Vaneski, Aleksandar; Schneider, Julian; Susha, Andrei S.; Rogach, Andrey L.; Jäckel, Frank; Feldmann, Jochen

    2012-05-01

    We use Pt-decorated CdS nanorods for photocatalytic hydrogen generation in the presence of sacrificial hole scavengers. Both the quantum efficiency for hydrogen generation and the stability of the colloidal nanocrystals in solution improve with increasing redox potential of the hole scavenger. The higher redox potential leads to faster hole scavenging, which increases quantum efficiency and stability since electron hole recombination and oxidation of the CdS become less important. The quantum efficiencies can be tuned over more than an order of magnitude. This finding is important for choosing hole scavengers and for comparing efficiencies and stabilities for different photocatalytic nanosystems.

  12. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation

    SciTech Connect

    Berr, Maximilian J.; Wagner, Peter; Fischbach, Stefan; Schneider, Julian; Jaeckel, Frank; Feldmann, Jochen; Vaneski, Aleksandar; Susha, Andrei S.; Rogach, Andrey L.

    2012-05-28

    We use Pt-decorated CdS nanorods for photocatalytic hydrogen generation in the presence of sacrificial hole scavengers. Both the quantum efficiency for hydrogen generation and the stability of the colloidal nanocrystals in solution improve with increasing redox potential of the hole scavenger. The higher redox potential leads to faster hole scavenging, which increases quantum efficiency and stability since electron hole recombination and oxidation of the CdS become less important. The quantum efficiencies can be tuned over more than an order of magnitude. This finding is important for choosing hole scavengers and for comparing efficiencies and stabilities for different photocatalytic nanosystems.

  13. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers

    NASA Astrophysics Data System (ADS)

    Crump, P.; Pietrzak, A.; Bugge, F.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2010-03-01

    For optimal coupled power into fiber, high power diode lasers should operate efficiently with smallest possible vertical far field emission angle. Although waveguide and cladding layers can be designed to achieve small angles, the refractive index profile of the active region itself restricts the minimum achievable value. We show that the use of low index quantum barrier layers leads to substantially reduced far field angles, while sustaining high power conversion efficiency. 90 μm stripe lasers that use such designs have narrow vertical far field angles of 30° (95% power content), power conversion efficiency of 58% and operate reliably at 10 W output.

  14. The theory of an auto-resonant field emission cathode relativistic electron accelerator for high efficiency microwave to direct current power conversion

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1990-01-01

    A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.

  15. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  16. A robust approach to measuring the detective quantum efficiency of radiographic detectors in a clinical setting

    NASA Astrophysics Data System (ADS)

    McDonald, Michael C.; Kim, H. K.; Henry, J. R.; Cunningham, I. A.

    2012-03-01

    The detective quantum efficiency (DQE) is widely accepted as a primary measure of x-ray detector performance in the scientific community. A standard method for measuring the DQE, based on IEC 62220-1, requires the system to have a linear response meaning that the detector output signals are proportional to the incident x-ray exposure. However, many systems have a non-linear response due to characteristics of the detector, or post processing of the detector signals, that cannot be disabled and may involve unknown algorithms considered proprietary by the manufacturer. For these reasons, the DQE has not been considered as a practical candidate for routine quality assurance testing in a clinical setting. In this article we described a method that can be used to measure the DQE of both linear and non-linear systems that employ only linear image processing algorithms. The method was validated on a Cesium Iodide based flat panel system that simultaneously stores a raw (linear) and processed (non-linear) image for each exposure. It was found that the resulting DQE was equivalent to a conventional standards-compliant DQE with measurement precision, and the gray-scale inversion and linear edge enhancement did not affect the DQE result. While not IEC 62220-1 compliant, it may be adequate for QA programs.

  17. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    PubMed Central

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-01-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307

  18. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    SciTech Connect

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy; Hacke, Peter

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC have low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.

  19. Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Hao, Xuqiang; Jin, Zhiliang; Xu, Jing; Min, Shixiong; Lu, Gongxuan

    2016-06-01

    Graphene quantum dots (GQDs) serve as a novel solid-state electron transfer reagent anchored on TiO2 by in situ photo-assisted strategy and greatly enhanced photocatalytic H2 evolution activity in methanol aqueous solution without the noble mental cocatalyst. The excellent photocatalytic activities were ascribed to the GQDs which act as an excellent electron transporters and acceptors, as well as photosensitizer. GQDs not only acted as efficient electron reservoirs and a solid-state electron transfer reagent from the conduction band of TiO2 to GQDs, but also acted as an excellent photosensitizer to sensitize TiO2, in which the photoinduced electrons transfer from excited GQDs to TiO2 to produce H2. In addition, GQDs is nanoscale fragments of graphene which can provide a larger active surface and greatly increase the contact area with the TiO2, which is conducive to rapidly transfer photo-generated electrons due to the large specific area and high carrier mobility of GQDs. Thus, GQDs improved the photocatalytic activity for H2 evolution.

  20. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.

    PubMed

    Kearns, F L; Hudson, P S; Boresch, S; Woodcock, H L

    2016-01-01

    Enzyme activity is inherently linked to free energies of transition states, ligand binding, protonation/deprotonation, etc.; these free energies, and thus enzyme function, can be affected by residue mutations, allosterically induced conformational changes, and much more. Therefore, being able to predict free energies associated with enzymatic processes is critical to understanding and predicting their function. Free energy simulation (FES) has historically been a computational challenge as it requires both the accurate description of inter- and intramolecular interactions and adequate sampling of all relevant conformational degrees of freedom. The hybrid quantum mechanical molecular mechanical (QM/MM) framework is the current tool of choice when accurate computations of macromolecular systems are essential. Unfortunately, robust and efficient approaches that employ the high levels of computational theory needed to accurately describe many reactive processes (ie, ab initio, DFT), while also including explicit solvation effects and accounting for extensive conformational sampling are essentially nonexistent. In this chapter, we will give a brief overview of two recently developed methods that mitigate several major challenges associated with QM/MM FES: the QM non-Boltzmann Bennett's acceptance ratio method and the QM nonequilibrium work method. We will also describe usage of these methods to calculate free energies associated with (1) relative properties and (2) along reaction paths, using simple test cases with relevance to enzymes examples.

  1. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Bragg Reflector

    SciTech Connect

    Zhang, Shukui; Poelker, Matthew; Stutzman, Marcy L.; Chen, Yiqiao; Moy, Aaron

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  2. Quantum-dot density dependence of power conversion efficiency of intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Sakamoto, Katsuyoshi; Kondo, Yasunori; Uchida, Keisuke; Yamaguchi, Koichi

    2012-12-01

    For intermediate-band solar cells containing GaAs/InAs quantum dots (QDs), the QD density dependence of the power conversion efficiency (PCE) was theoretically calculated for various sun concentrations under AM1.5 conditions based on detailed balance principles. A QD density of over 5 × 1013 cm-2 was required to achieve a PCE of more than 50% under 10 000 suns. However, under the photo-filled state and 1 sun, the PCE decreased over a wide total QD density range from about 3 × 1010 to 1 × 1013 cm-2. This reduction was attributed to the negative net carrier generation rate through the intermediate band, which was due to insufficient two-step optical absorption. The short-circuit current density increased as the QD density increased up to about 1 × 1011 cm-2 and it then saturated. In contrast, the open-circuit voltage decreased with increasing QD density. This reduction in the open-circuit voltage was suppressed at high sun concentrations.

  3. Quantum efficiency characterization of back-illuminated CCDs Part2: reflectivity measurements

    SciTech Connect

    Fabricius, Maximilian H.; Bebek, Chris J.; Groom, Donald E.; Karcher, Armin; Roe, Natalie A.

    2006-01-19

    The usual quantum efficiency (QE) measurement heavily relies on a calibrated photodiode (PD) and the knowledge of the CCDs gain. Either can introduce significant systematic errors. But reflectivity can also be used to verify QE measurements. 1 - R > QE, where R is the reflectivity, and over a significant wavelength range, 1 - R = QE. An unconventional reflectometer has been developed to make this measurement. R is measured in two steps, using light from the lateral monochromator port via an optical fiber. The beam intensity is measured directly with aPD, then both the PD and CCD are moved so that the optical path length is unchanged and the light reflects once from the CCD; the PD current ratio gives R. Unlike traditional schemes this approach makes only one reflection from the CCD surface. Since the reflectivity of the LBNL CCDs might be as low as 2 percent this increases the signal to noise ratio dramatically. The goal is a 1 percent accuracy. We obtain good agreement between 1 - R and the direct QE results.

  4. CHARACTERISING THE EOS SLOT-SCANNING SYSTEM WITH THE EFFECTIVE DETECTIVE QUANTUM EFFICIENCY.

    PubMed

    Clavel, A H; Monnin, P; Létang, J M; Verdun, F R; Darbon, A

    2016-06-01

    As opposed to the standard detective quantum efficiency (DQE), effective DQE (eDQE) is a figure of merit that allows comparing the performances of imaging systems in the presence of scatter rejection devices. The geometry of the EOS™ slot-scanning system is such that the detector is self-collimated and rejects scattered radiation. In this study, the EOS system was characterised using the eDQE in imaging conditions similar to those used in clinical practice: with phantoms of different widths placed in the X-ray beam, for various incident air kerma and tube voltages corresponding to the phantom thickness. Scatter fractions in EOS images were extremely low, around 2 % for all configurations. Maximum eDQE values spanned 9-14.8 % for a large range of air kerma at the detector plane from 0.01 to 1.34 µGy. These figures were obtained with non-optimised EOS setting but still over-performed most of the maximum eDQEs recently assessed for various computed radiology and digital radiology systems with antiscatter grids.

  5. High efficiency transport of quantum dots into plant roots with the aid of silwet L-77.

    PubMed

    Hu, Yong; Li, Jun; Ma, Lu; Peng, Qionglin; Feng, Wei; Zhang, Lu; He, Shibin; Yang, Fei; Huang, Jing; Li, Lijia

    2010-08-01

    Quantum dots (QDs) are a novel type of small, photostable and bright fluorophores that have been successfully applied to mammalian and human live cell imaging. In this study, highly dispersive water-soluble mercaptoacetic acid (MAA)-coated CdSe/ZnS QDs were synthesized, which were suitable for investigation as fluorescent probe labels. The treatment of maize seedling roots with QDs showed that the surfactant silwet L-77 aided the efficient transport of QDs into maize roots. Under a concentration ranging from 0.128 to 1.28 microM, QDs caused very low cytotoxicity on maize seed germination and root growth. The addition of mercuric chloride to the Hoagland solution resulted in a decrease of QD content in root tissues, and this decrease was reversed upon the addition of beta-mercaptoethanol, which suggests that mercury-sensitive processes play a significant role in regulating QD flow in the maize root system. We speculate that the apoplastic pathway can contribute substantially to the total quantity of QDs reaching the stele. Therefore, based on this transport approach, MAA-coated QDs can be utilized for live imaging in plant systems to verify known physiological processes.

  6. Mitigating the Impact of Large Intrapixel Quantum Efficiency Variations on Precision Stellar Photometry and Astrometry

    NASA Astrophysics Data System (ADS)

    Mighell, K. J.

    2005-12-01

    Current infrared detector technology can produce imagers with non-uniform intrapixel response functions. This can cause significant stellar flux loss (depending on where a star is centered within the central pixel) which is an observational fact in some existing space-based astronomical cameras. Large intrapixel quantum efficiency (QE) variations can also cause the observed (apparent) positions of stars to be significantly corrupted. With such ugly detectors, the observed stellar brightnesses and positions are neither precise or accurate. Excellent stellar photometry and astrometry is, fortunately, still achievable even in the presence of large intrapixel QE variations --- as long as the image formation process inside the detector is accurately modeled within the photometric reduction code. Detailed analysis of simulated space-based stellar observations are presented which demonstrate how the impact of large intrapixel QE variations can be mitigated using the MATPHOT algorithm with accurate discrete Point Spread functions and accurate Detector Response Functions. Source code and documentation for MATPHOT and support software is freely available at the following web site: http://www.noao.edu/staff/mighell/matphot K.J.M was supported by a grant from the National Aeronautics and Space Administration (NASA), Interagency Order No. NNG05EB61I, which was awarded by the Applied Information Systems Research (AISR) Program of NASA's Science Mission Directorate.

  7. The effects of x-ray beam hardening on detective quantum efficiency and radiation dose.

    PubMed

    Wong, Molly Donovan; Wu, Xizeng; Liu, Hong

    2011-01-01

    The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality.

  8. Internal quantum efficiency improvement in polysilicon solar cells with porous silicon layer on the rear side

    NASA Astrophysics Data System (ADS)

    Trabelsi, Abdessalem; Zouari, Abdelaziz

    2016-01-01

    The present paper reports on a simulation study carried out to determine and optimize the effect of porous silicon (PS) layer at the rear side on the performance of thin polysilicon solar cells. It analytically solved the complete set of equations necessary to determine the contribution that this material has with regard to the internal quantum efficiency (IQE) of the cell when acting as a backside reflector. The contribution of the different regions of the cell, the increase in IQE, and the effects of high porosity and number of PS layers were derived and compared to conventional BSF solar cells. The findings revealed that the IQE of the solar cell with a PS layer at the backside was higher than that of conventional BSF, particularly in terms of medium and long wavelength range λ > 0.5 μm. This improvement was more significant with thin cells, large grain widths, and well-passivated grain boundaries. Furthermore, while the use of the PS layer had a significant effect on the contribution of the base, it exerted no effect on the contribution of the emitter and depletion regions. Overall, the maximum level of IQE improvement was recorded with three double-porosity structures in the PS layer, reaching a high porosity value of about 80 %.

  9. Intercomparison of a correlated-photon-based method to measure detector quantum efficiency.

    PubMed

    Migdall, Alan; Castelletto, Stefania; Degiovanni, Ivo Pietro; Rastello, Maria Luisa

    2002-05-20

    We report on the absolute calibration of photodetector quantum efficiency by using correlated photon sources, performed independently at two laboratories, the National Institute of Standards and Technology and the Istituto Elettrotecnico Nazionale (IEN). The goal is to use an interlaboratory comparison to demonstrate the inherent absoluteness of the photon correlation technique by showing its independence from the particular experimental setup. We find that detector nonuniformity limited this comparison rather than uncertainty inherent in the method itself. The ultimate goal of these investigations is development of a robust measurement protocol that allows the uncertainties of individual measurements to be determined experimentally and verified operationally. Furthermore, to demonstrate the generality of the procedure, the IEN measurement setup was also used to calibrate a fiber-coupled avalanche photodiode module. Uncertainties are evaluated for the detector both with and without fiber coupling and differences are discussed. The current IEN setup using a thinner and higher transmittance nonlinear crystal for the generation of correlated photons shows a significant improvement in overall accuracy with respect to previously reported results from IEN [Metrologia 32, 501-503 (1996)].

  10. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  11. Efficient quantum key distribution with trines of reference-frame-free qubits

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo; Englert, Berthold-Georg

    2011-01-01

    We propose a rotationally-invariant quantum key distribution scheme that uses a pair of orthogonal qubit trines, realized as mixed states of three physical qubits. The measurement outcomes do not depend on how Alice and Bob choose their individual reference frames. The efficient key generation by two-way communication produces two independent raw keys, a bit key and a trit key. For a noiseless channel, Alice and Bob get a total of 0.573 key bits per trine state sent (98% of the Shannon limit). This exceeds by a considerable amount the yield of standard trine schemes, which ideally attain half a key bit per trine state. Eavesdropping introduces an ɛ-fraction of unbiased noise, ensured by twirling if necessary. The security analysis reveals an asymmetry in Eve's conditioned ancillas for Alice and Bob resulting from their inequivalent roles in the key generation. Upon simplifying the analysis by a plausible symmetry assumption, we find that a secret key can be generated if the noise is below the threshold set by ɛ=0.197.

  12. Effects of exciton localization on internal quantum efficiency of InGaN nanowires

    NASA Astrophysics Data System (ADS)

    Murotani, Hideaki; Yamada, Yoichi; Tabata, Takuya; Honda, Yoshio; Yamaguchi, Masahito; Amano, Hiroshi

    2013-10-01

    The optical properties of InGaN nanowires with different emission wavelengths of 485, 515, 555, and 580 nm have been studied by means of photoluminescence (PL) and time-resolved PL (TRPL) spectroscopy. The PL peak energy of the nanowires exhibited an anomalous shift to higher energy and then to lower energy with increasing temperature. Analysis of the temperature-dependent variations in the PL peak energy let us evaluate the localization energies of excitons, which increased with increasing indium composition. TRPL measurements also revealed that the PL decay time of the nanowires increased and then became constant with decreasing emission energy, which was typical of localized excitons and enabled us to evaluate the characteristic energies of localized states. The characteristic energy increased with increasing indium composition, indicating that the density of localized states broadened with increasing indium composition. In addition, a correlation was clearly observed between the internal quantum efficiency (IQE) and localization energy of the nanowire: the IQE increased with increasing localization energy. The increase in the IQE was attributed to the increase in the degree of exciton localization as the indium composition of the nanowire increased. Moreover, it was found that with increasing excitation power density, a reduction in the IQE occurred simultaneously with a PL blue shift. This indicated that the reduction in the IQE was associated with saturation of localized states.

  13. Detective quantum efficiency: a standard test to ensure optimal detector performance and low patient exposures

    NASA Astrophysics Data System (ADS)

    Escartin, Terenz R.; Nano, Tomi F.; Cunningham, Ian A.

    2016-03-01

    The detective quantum efficiency (DQE), expressed as a function of spatial frequency, describes the ability of an x-ray detector to produce high signal-to-noise ratio (SNR) images. While regulatory and scientific communities have used the DQE as a primary metric for optimizing detector design, the DQE is rarely used by end users to ensure high system performance is maintained. Of concern is that image quality varies across different systems for the same exposures with no current measures available to describe system performance. Therefore, here we conducted an initial DQE measurement survey of clinical x-ray systems using a DQE-testing instrument to identify their range of performance. Following laboratory validation, experiments revealed that the DQE of five different systems under the same exposure level (8.0 μGy) ranged from 0.36 to 0.75 at low spatial frequencies, and 0.02 to 0.4 at high spatial frequencies (3.5 cycles/mm). Furthermore, the DQE dropped substantially with decreasing detector exposure by a factor of up to 1.5x in the lowest spatial frequency, and a factor of 10x at 3.5 cycles/mm due to the effect of detector readout noise. It is concluded that DQE specifications in purchasing decisions, combined with periodic DQE testing, are important factors to ensure patients receive the health benefits of high-quality images for low x-ray exposures.

  14. Quantum propagation of electronic excitations in macromolecules: A computationally efficient multiscale approach

    NASA Astrophysics Data System (ADS)

    Schneider, E.; a Beccara, S.; Mascherpa, F.; Faccioli, P.

    2016-07-01

    We introduce a theoretical approach to study the quantum-dissipative dynamics of electronic excitations in macromolecules, which enables to perform calculations in large systems and cover long-time intervals. All the parameters of the underlying microscopic Hamiltonian are obtained from ab initio electronic structure calculations, ensuring chemical detail. In the short-time regime, the theory is solvable using a diagrammatic perturbation theory, enabling analytic insight. To compute the time evolution of the density matrix at intermediate times, typically ≲ps , we develop a Monte Carlo algorithm free from any sign or phase problem, hence computationally efficient. Finally, the dynamics in the long-time and large-distance limit can be studied combining the microscopic calculations with renormalization group techniques to define a rigorous low-resolution effective theory. We benchmark our Monte Carlo algorithm against the results obtained in perturbation theory and using a semiclassical nonperturbative scheme. Then, we apply it to compute the intrachain charge mobility in a realistic conjugated polymer.

  15. High quantum efficiency Type-II superlattice N-structure photodetectors with thin intrinsic layers

    NASA Astrophysics Data System (ADS)

    Ergun, Yuksel; Hostut, Mustafa; Tansel, Tunay; Muti, Abdullah; Kilic, Abidin; Turan, Rasit; Aydinli, Atilla

    2013-06-01

    We report on the development of InAs/AlSb/GaSb based N-structure superlattice pin photodiode. In this new design, AlSb layer in between InAs and GaSb layers acts as an electron barrier that pushes electron and hole wave functions towards the GaSb/InAs interface to perform strong overlap under reverse bias. Experimental results show that, with only 20 periods of intrinsic layers, dark current density and dynamic resistance at -50 mV bias are measured as 6x10-3 A/cm2 and 148 Ωcm2 at 77K, respectively. Under zero bias, high spectral response of 1.2A/W is obtained at 5 μm with 50% cut-off wavelengths (λc) of 6 μm. With this new design, devices with only 146 nm thick i-regions exhibit a quantum efficiency of 42% at 3 μm with front-side illimunation and no anti-reflection coatings.

  16. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    NASA Astrophysics Data System (ADS)

    Duun, Sune; Haahr, Rasmus G.; Hansen, Ole; Birkelund, Karen; Thomsen, Erik V.

    2010-07-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz-1/2 cm-1 are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is passivated with a layer of silicon nitride also serving as an optical filter. As the final process, after metallization, a hole in the center of the photodiode is etched using deep reactive ion etch.

  17. Sulfated Carbon Quantum Dots as Efficient Visible-Light Switchable Acid Catalysts for Room-Temperature Ring-Opening Reactions.

    PubMed

    Li, Haitao; Sun, Chenghua; Ali, Muataz; Zhou, Fengling; Zhang, Xinyi; MacFarlane, Douglas R

    2015-07-13

    Acid catalytic processes play a classic and important role in modern organic synthesis. How well the acid can be controlled often plays the key role in the controllable synthesis of the products with high conversion yield and selectivity. The preparation of a novel, photo-switchable solid-acid catalyst based on carbon quantum dots is described. The carbon quantum dots are decorated with small amounts of hydrogensulfate groups and thus exhibit a photogenerated acidity that produces a highly efficient acid catalysis of the ring opening of epoxides with methanol and other primary alcohols. This reversible, light-switchable acidity is shown to be due to photoexcitation and charge separation in the carbon quantum dots, which create an electron withdrawing effect from the acidic groups. The catalyst is easily separated by filtration, and we demonstrate multiple cycles of its recovery and reuse.

  18. GaN-based light emitting diodes using p-type trench structure for improving internal quantum efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Garam; Sun, Min-Chul; Kim, Jang Hyun; Park, Euyhwan; Park, Byung-Gook

    2017-01-01

    In order to improve the internal quantum efficiency of GaN-based LEDs, a LED structure featuring a p-type trench in the multi-quantum well (MQW) is proposed. This structure has effects on spreading holes into the MQW and reducing the quantum-confined stark effect (QCSE). In addition, two simple fabrication methods using electron-beam (e-beam) lithography or selective wet etching for manufacturing the p-type structure are also proposed. From the measurement results of the manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-beam lithography or selective wet etching shows improved light output power compared to the conventional structure because of more uniform hole distribution. It is also confirmed that the proposed structure formed by e-beam lithography has a significant effect on strain relaxation and reduction in the QCSE from the electro-luminescence measurement.

  19. Efficient bounds on quantum-communication rates via their reduced variants

    SciTech Connect

    Nowakowski, Marcin L.; Horodecki, Pawel

    2010-10-15

    We investigate one-way communication scenarios where Bob operating on his component can transfer some subsystem to the environment. We define reduced versions of quantum-communication rates and, further, prove upper bounds on a one-way quantum secret key, distillable entanglement, and quantum-channel capacity by means of their reduced versions. It is shown that in some cases they drastically improve their estimation.

  20. An approach to high efficiencies using GaAs/GaInNAs multiple quantum well and superlattice solar cell

    NASA Astrophysics Data System (ADS)

    Courel, Maykel; Rimada, Julio C.; Hernández, Luis

    2012-09-01

    A new type of photovoltaic device where GaAs/GaInNAs multiple quantum wells (MQW) or superlattice (SL) are inserted in the i-region of a GaAs p-i-n solar cell (SC) is presented. The results suggest the device can reach record efficiencies for single-junction solar cells. A theoretical model is developed to study the performance of this device. The conversion efficiency as a function of wells width and depth is modeled for MQW solar cells. It is shown that the MQW solar cells reach high conversion efficiency values. A study of the SL solar cell viability is also presented. The conditions for resonant tunneling are established by the matrix transfer method for a superlattice with variable quantum wells width. The effective density of states and the absorption coefficient for SL structure are calculated in order to determinate the J-V characteristic. The influence of superlattice length on the conversion efficiency is researched, showing a better performance when width and cluster numbers are increased. The SL solar cell conversion efficiency is compared with the maximum conversion efficiency obtained for the MQW solar cell and shows an efficiency enhancement.

  1. Liquid cathode primary batteries

    NASA Astrophysics Data System (ADS)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  2. Characterization of Quantum Efficiency and Robustness of Cesium-Based Photocathodes

    DTIC Science & Technology

    2010-01-01

    being an elemen- tal metal, such as copper, magnesium, lead, niobium , etc. Some cathodes are more suit- able for room temperature operation (Cu, Mg...res- onance) niobium cavities are also an engineering challenge. Nevertheless, high duty fac- tor/high gradient is a compelling combination that...photocathode [49]. Superconducting guns have investigated niobium [50] and lead Chapter 2: Historical Context 46 [51] because of the simplicity of having a

  3. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  4. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-03-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP.

  5. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    PubMed

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives.

  6. Analysis of the detective quantum efficiency of a developmental detector for digital mammography.

    PubMed

    Williams, M B; Simoni, P U; Smilowitz, L; Stanton, M; Phillips, W; Stewart, A

    1999-11-01

    We are developing a modular detector for applications in full field digital mammography and for diagnostic breast imaging. The detector is based on a design that has been refined over the past decade for applications in x-ray crystallography [Kalata et al., Proc. SPIE 1345, 270-279 (1990); Phillips et al. ibid. 2009, 133-138 (1993), Phillips et al., Nucl. Instrum. Methods Phys. Rev. A 334, 621-630 (1993)]. The full field mammographic detector, currently undergoing clinical evaluation, is formed from a 19 cm x 28 cm phosphor screen, read out by a 2 x 3 array of butted charge-coupled device (CCD) modules. Each 2k x 2k CCD is optically coupled to the phosphor via a fiber optic taper with dimensions of 9.4 cm x 9.4cm at the phosphor. This paper describes the imaging performance of a two-module prototype, built using a similar design. In this paper we use cascaded linear systems analysis to develop a model for calculating the spatial frequency dependent noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector using the measured modulation transfer function (MTF). We compare results of the calculation with the measured NPS and DQE of the prototype. Calculated and measured DQEs are compared over a range of clinically relevant x-ray exposures and kVps. We find that for x-ray photon energies between 10 and 28 keV, the detector gain ranges between 2.5 and 3.7 CCD electrons per incident x-ray, or approximately 5-8 electrons per absorbed x ray. Using a Mo/Mo beam and acrylic phantom, over a detector entrance exposure range of approximately 10 to 80 mR, the volume under the measured 2-d NPS of the prototype detector is proportional to the x-ray exposure, indicating quantum limited performance. Substantial agreement between the calculated and measured values was obtained for the frequency and exposure dependent NPS and DQE over a range of tube voltage from 25 to 30 kVp.

  7. Effective detective quantum efficiency for two mammography systems: Measurement and comparison against established metrics

    SciTech Connect

    Salvagnini, Elena; Bosmans, Hilde; Marshall, Nicholas W.; Struelens, Lara

    2013-10-15

    Purpose: The aim of this paper was to illustrate the value of the new metric effective detective quantum efficiency (eDQE) in relation to more established measures in the optimization process of two digital mammography systems. The following metrics were included for comparison against eDQE: detective quantum efficiency (DQE) of the detector, signal difference to noise ratio (SdNR), and detectability index (d′) calculated using a standard nonprewhitened observer with eye filter.Methods: The two systems investigated were the Siemens MAMMOMAT Inspiration and the Hologic Selenia Dimensions. The presampling modulation transfer function (MTF) required for the eDQE was measured using two geometries: a geometry containing scattered radiation and a low scatter geometry. The eDQE, SdNR, and d′ were measured for poly(methyl methacrylate) (PMMA) thicknesses of 20, 40, 60, and 70 mm, with and without the antiscatter grid and for a selection of clinically relevant target/filter (T/F) combinations. Figures of merit (FOMs) were then formed from SdNR and d′ using the mean glandular dose as the factor to express detriment. Detector DQE was measured at energies covering the range of typical clinically used spectra.Results: The MTF measured in the presence of scattered radiation showed a large drop at low spatial frequency compared to the low scatter method and led to a corresponding reduction in eDQE. The eDQE for the Siemens system at 1 mm{sup −1} ranged between 0.15 and 0.27, depending on T/F and grid setting. For the Hologic system, eDQE at 1 mm{sup −1} varied from 0.15 to 0.32, again depending on T/F and grid setting. The eDQE results for both systems showed that the grid increased the system efficiency for PMMA thicknesses of 40 mm and above but showed only small sensitivity to T/F setting. While results of the SdNR and d′ based FOMs confirmed the eDQE grid position results, they were also more specific in terms of T/F selection. For the Siemens system at 20 mm PMMA

  8. Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs2CO3 in the hollows

    NASA Astrophysics Data System (ADS)

    Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang

    2017-03-01

    Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ∼4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ∼1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O‑–Sm+ dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.

  9. Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs2CO3 in the hollows.

    PubMed

    Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang

    2017-03-10

    Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ∼4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ∼1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O(-)-Sm(+) dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.

  10. Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution.

    PubMed

    Liu, Mao Tong; Lim, Han Chuen

    2014-09-22

    When implementing O-band quantum key distribution on optical fiber transmission lines carrying C-band data traffic, noise photons that arise from spontaneous Raman scattering or insufficient filtering of the classical data channels could cause the quantum bit-error rate to exceed the security threshold. In this case, a photon heralding scheme may be used to reject the uncorrelated noise photons in order to restore the quantum bit-error rate to a low level. However, the secure key rate would suffer unless one uses a heralded photon source with sufficiently high heralding rate and heralding efficiency. In this work we demonstrate a heralded photon source that has a heralding efficiency that is as high as 74.5%. One disadvantage of a typical heralded photon source is that the long deadtime of the heralding detector results in a significant drop in the heralding rate. To counter this problem, we propose a passively spatial-multiplexed configuration at the heralding arm. Using two heralding detectors in this configuration, we obtain an increase in the heralding rate by 37% and a corresponding increase in the heralded photon detection rate by 16%. We transmit the O-band photons over 10 km of noisy optical fiber to observe the relation between quantum bit-error rate and noise-degraded second-order correlation function of the transmitted photons. The effects of afterpulsing when we shorten the deadtime of the heralding detectors are also observed and discussed.

  11. The Colloidal Stabilization of Quantum Dots: Towards Manufacturable, Efficient Solution-Processed Solar Cells

    NASA Astrophysics Data System (ADS)

    Rollny, Lisa

    Understanding colloidal stabilization can influence the design of optoelectronic devices and enable improvements to their performance and stability. For photovoltaics, important characteristics of the active layer material are high conductivity along with a minimum of recombination centers. In order to capitalize on the benefits of solution-processed materials, it is important to minimize the number of processing steps: ideally, to achieve a low-cost solution, materials would be deposited using a single process step compatible with roll-to-roll manufacturing. Prior to this work, the highest-performing colloidal quantum dots (CQD) solar cells have relied on several deposition steps that are repeated in a layer-by-layer (LBL) fashion. The purpose of these process steps has been to remove the long insulating ligands used in synthesis and replace them with short ligands that allow electrical conduction. The large number of steps combined, typically implemented via spin coating, leads to inefficient materials utilization and fails to show a path to a manufacturable solution. In this work, the first CQD solar cells were designed, built, and characterized combining state-of-art performance with scalable manufacture. Firstly, I report the first automated CQD synthesis to result in CQDs that form high-performance CQD solar cells. I analyze the CQD synthesis and by separating it into two phases---nucleation and growth phase---my insights are used to create higher-quality CQDs exhibiting enhanced monodispersity. I then proceed to develop a CQD ink: a CQD solution ready for direct deposition to form a semiconducting film exhibiting low trap state density. In early trials the CQD ink showed only limited power conversion efficiencies of 2%. I designed a new ink strategy, which I term cleavable hemiketal ligands. This novel two-component ligand strategy enables the combination of colloidal stabilization (via this longer two-component ligand) and cleavability (enabling excellent

  12. Effect of AlSb quantum dots on efficiency of GaAs solar cell (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mansoori, Ahmad; Addamane, Sadhvikas J.; Renteria, Emma J.; Shima, Darryl M.; Hains, Christopher P.; Balakrishnan, Ganesh

    2016-09-01

    Quantum Dots (QDs) have a broad applications in science and specifically in solar cell. Many research groups show that by adding QDs with lower bandgap respect to host material, the overall absorption of sun spectrum coverage will increase. Here, we propose using QDs with higher band gap respect to host material to improve efficiency of solar cell by improving quantum efficiency. GaAs solar cells have the highest efficiency in single junction solar cells. However, the absorption of GaAs is not good enough in wavelength lower than 550nm. AlSb can absorb shorter wavelength with higher absorption coefficient and also recombination rate should be lower because of higher bandgap of AlSb respect to GaAs. We embed AlSb QDs in GaAs solar cells and results show slight improvement in quantum efficiency and also in overall efficiency. Coverage of AlSb QDs has a direct impact on quality of AlSb QDs and efficiency of cell. In the higher coverage, intermixing between GaAs and AlSb causes to shift bandgap to lower value (having AlGaSb QDs instead of pure AlSb QDs). This intermixing decrease the Voc and overall efficiency of cell. In lower coverage, AlSb can survive from intermixing and overall performance of cell improves. Optimizing growth condition of AlSb QDs is a key point for this work. By using AlSb QDs, we can decrease the thickness of active layer of GaAs solar cells and have a thinner solar cell.

  13. A Silicon–Singlet Fission Tandem Solar Cell Exceeding 100% External Quantum Efficiency with High Spectral Stability

    PubMed Central

    2017-01-01

    After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon–pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene. PMID:28261671

  14. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    NASA Astrophysics Data System (ADS)

    Le Jeannic, Hanna; Verma, Varun B.; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D.; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-01

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6\\times10^4$ photons/(s$\\cdot$mW$\\cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  15. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared.

    PubMed

    Le Jeannic, Hanna; Verma, Varun B; Cavaillès, Adrien; Marsili, Francesco; Shaw, Matthew D; Huang, Kun; Morin, Olivier; Nam, Sae Woo; Laurat, Julien

    2016-11-15

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous tungsten silicide and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric downconversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×104 photons/(s·mW·MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  16. A Silicon-Singlet Fission Tandem Solar Cell Exceeding 100% External Quantum Efficiency with High Spectral Stability.

    PubMed

    Pazos-Outón, Luis M; Lee, Ju Min; Futscher, Moritz H; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H; Ehrler, Bruno

    2017-02-10

    After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon-pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene.

  17. Efficience quantique et efficience quantique de détection des photomultiplicateurs et des matériaux photographiques.

    PubMed

    Thiry, H

    1972-12-01

    The cathode quantum efficiency of several photomultipliers is evaluated at He-Ne laser wavelength from manufacturer's data. The quantum efficiency of the photographic process is defined as the ratio of developed grains (fog grains deduced) in an area A over the number of incident quanta. Five photographic materials were tested, and the quantum efficiency lies between 4 x 10(-4) and 1.1 x 10(-2); the quantum efficiency of photographic materials may be comparable to that of the cathode of photomultipliers. The detective quantum efficiency (EQD) of any detector is defined as the mean square of the SNR over the square of the same ratio obtained with a noiseless detector. The EQD of the photomultiplier 1P21 is equal to 1.4 x 10(-4). Following Shaw, the EQD of five photographic materials is evaluated at zero spatial frequency. The range of the EQD values is 3 x 10(-6) to 1.6 x 10(-4). The EQD values of photomul ipliers and photographic materials may thus be comparable.

  18. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    NASA Astrophysics Data System (ADS)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  19. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    PubMed Central

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-01-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells. PMID:27453530

  20. Energy resolution measurements of LaBr 3:Ce scintillating crystals with an ultra-high quantum efficiency photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Pani, R.; Cinti, M. N.; Scafè, R.; Pellegrini, R.; Vittorini, F.; Bennati, P.; Ridolfi, S.; Lo Meo, S.; Mattioli, M.; Baldazzi, G.; Pisacane, F.; Navarria, F.; Moschini, G.; Boccaccio, P.; Orsolini Cencelli, V.; Sacco, D.

    2009-10-01

    The performance of the new prototype of high quantum efficiency PMT (43% at 380 nm), Hamamatsu R7600U-200, was studied coupled to a LaBr 3:Ce crystal with the size of ∅12.5 mm×12.5 mm. The energy resolution results were compared with ones from two PMTs, Hamamatsu R7600U and R6231MOD, with 22% and 30% quantum efficiency (QE), respectively. Moreover, the photodetectors were equipped with tapered and un-tapered voltage dividers to study the non-linearity effects on pulse height distribution, due to very high peak currents induced in the PMT by the fast and intense light pulse of LaBr 3:Ce. The results show an energy resolution improvement with UBA PMT of about 20%, in the energy range of 80-662 keV, with respect to the BA one.