On the minimum quantum requirement of photosynthesis.
Zeinalov, Yuzeir
2009-01-01
An analysis of the shape of photosynthetic light curves is presented and the existence of the initial non-linear part is shown as a consequence of the operation of the non-cooperative (Kok's) mechanism of oxygen evolution or the effect of dark respiration. The effect of nonlinearity on the quantum efficiency (yield) and quantum requirement is reconsidered. The essential conclusions are: 1) The non-linearity of the light curves cannot be compensated using suspensions of algae or chloroplasts with high (>1.0) optical density or absorbance. 2) The values of the maxima of the quantum efficiency curves or the values of the minima of the quantum requirement curves cannot be used for estimation of the exact value of the maximum quantum efficiency and the minimum quantum requirement. The estimation of the maximum quantum efficiency or the minimum quantum requirement should be performed only after extrapolation of the linear part at higher light intensities of the quantum requirement curves to "0" light intensity.
Determination of the Quantum Efficiency of a Light Detector
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2008-01-01
The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Dongwei; Guo, Fengyun, E-mail: guowen@hit.edu.cn; Li, Xiaochao
2016-03-21
The authors report the dependence of the quantum efficiency on beryllium concentration in the active region of type-II InAs/GaSb superlattice infrared detector with a cutoff wavelength around 21 μm. It is found that the quantum efficiency and responsivity show a clear delineation in comparison to the doping concentration. The quantum efficiency is further improved by gradually doping in the absorbing region. At 77 K, the 50% cutoff wavelength of the VLWIR detector is 18 μm, and the R{sub 0}A is kept at a stable value of 6 Ω cm{sup 2}. Different beryllium concentration leads to an increase of an average quantum efficiency in the 8–15 μmmore » window from 35% to 55% with a π-region thickness of 3.0 μm, for U{sub bias} = −0.3 V, and no anti-reflection coating. As for a further result, the quantum efficiency reaches at a maximum value of 66% by gradually doping in the absorbing region with the peak detectivity of 3.33 × 10{sup 10 }cm Hz{sup 1/2}/W at 15 μm.« less
Eddy, Nnabuk O; Ibok, Udo J; Ebenso, Eno E; El Nemr, Ahmed; El Ashry, El Sayed H
2009-09-01
The inhibition efficiency of some antibiotics against mild steel corrosion was studied using weight loss and quantum chemical techniques. Values of inhibition efficiency obtained from weight loss measurements correlated strongly with theoretical values obtained through semi empirical calculations. High correlation coefficients were also obtained between inhibition efficiency of the antibiotics and some quantum chemical parameters, including frontier orbital (E (HOMO) and E (LUMO)), dipole moment, log P, TNC and LSER parameters (critical volume and dipolar-polarisability factor), which indicated that these parameters affect the inhibition efficiency of the compounds. It was also found that quantitative structure activity relation can be used to adequately predict the inhibition effectiveness of these compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Huang, H.
2015-11-09
This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carriermore » populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.« less
Nd/sup 3 +/ fluorescence quantum-efficiency measurements with photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosencwaig, A.; Hildum, E.A.
1981-04-01
We have investigated the use of photoacoustic techniques for obtaining absolute values of fluorescence quantum efficiencies in lightly doped Nd/sup 3 +/ laser materials. We have found that surface absorptions play an important role in gas-microphone measurements, and that thermal profiles are important in piezoelectric measurements. We have obtained fluorescence quantum efficiencies for Nd/sup 3 +/ in yttrium aluminum garnet, and in silicate and borate glasses that are in good agreement with lifetime measurements and Judd-Ofelt calculations.
Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.
Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene
2015-07-27
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.
NASA Astrophysics Data System (ADS)
Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.
2011-03-01
High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH3-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.
NbN single-photon detectors with saturated dependence of quantum efficiency
NASA Astrophysics Data System (ADS)
Smirnov, Konstantin; Divochiy, Alexander; Vakhtomin, Yury; Morozov, Pavel; Zolotov, Philipp; Antipov, Andrey; Seleznev, Vitaliy
2018-07-01
The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of R s300/R s20. The decreasing of R s300/R s20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at I b /I c ∼ 0.8 and wavelength 1310 nm.
Primary quantum yields of NO2 photodissociation
NASA Technical Reports Server (NTRS)
Gardner, Edward P.; Sperry, Paul D.; Calvert, Jack G.
1987-01-01
The quantum yields of formation of NO, O2, and NO2 loss are measured for NO2 vapor at low pressures (0.13-0.30 torr) irradiated at 334-405 nm wavelengths and temperature in the range 273-370 K in order to study the primary quantum efficiencies of NO2 photodecomposition. The temperature and wavelength dependences of the primary quantum efficiencies are examined. It is observed that the primary quantum efficiencies increase rapidly from near zero at 424 nm to near unity for excitation at wavelengths less than 394 nm. The theory of Pitts et al. (1964) that the energy deficiency for photodissociation of NO2 excited at wavelengths greater than 397.9 nm is due to the rotational and vibrational energy of the NO2 molecules is confirmed by the data. Values for the primary quantum yields of NO2 photodecomposition as a function of wavelength are presented.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian
2018-06-01
In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Siopsis, George; Weedbrook, Christian
2018-02-01
With the significant advancement in quantum computation during the past couple of decades, the exploration of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum systems that can be realized with technology based on photonic quantum computers under certain assumptions regarding distribution of data and availability of efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic speedup in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value decomposition method of nonsparse low rank matrices and forms an important subroutine in our Gaussian process regression algorithm.
Reduced graphene oxide film based highly responsive infrared detector
NASA Astrophysics Data System (ADS)
Khan, Mustaque A.; Nanda, Karuna K.; Krupanidhi, Saluru B.
2017-08-01
Due to the unique optical properties, graphene can effectively be used for the detection of infrared light. In this regard, reduced graphene oxide (RGO) has drawn considerable attention in scientific society because of simplicity of preparation and tunable properties. Here, we report the synthesis of RGO by solvothermal reduction of graphene oxide (GO) in ethanol and the detection of infrared light (1064 and 1550 nm) with metal—RGO—metal configuration. We have observed that photocurrent, responsivity as well as the external quantum efficiency increase with C/O ratio. The responsivity value in near-infrared region can be as high as 1.34 A · W-1 and the external quantum efficiency is more than 100%. Response times of these devices are in the order of few seconds. Overall, the responsivity of our device is found to be better than many of the already reported values where graphene or reduced graphene oxide is the only active material. The high value of quantum efficiency is due to strong light absorption and the presence of mid-gap states band in RGOs.
Infrared heterodyne spectroscopy for astronomical purposes. [laser applications
NASA Technical Reports Server (NTRS)
Townes, C. H.
1978-01-01
Heterodyne infrared astronomy was carried out using CO2 lasers and some solid state tunable lasers. The best available detectors are mercury cadmium telluride photodiodes. Their quantum efficiencies reach values near 0.5 and in an overall system an effective quantum efficiency, taking into account optical losses and amplifier noise, of about 0.25 was demonstrated. Initial uses of 10 micron heterodyne spectroscopy were for the study of planetary molecular spectra.
Extremely high absolute internal quantum efficiency of photoluminescence in co-doped GaN:Zn,Si
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Willyard, A. G.; Behrends, A.; Bakin, A.; Waag, A.
2011-10-01
We report on the fabrication of GaN co-doped with silicon and zinc by metalorganic vapor phase epitaxy and a detailed study of photoluminescence in this material. We observe an exceptionally high absolute internal quantum efficiency of blue photoluminescence in GaN:Zn,Si. The value of 0.93±0.04 has been obtained from several approaches based on rate equations.
Emission efficiency limit of Si nanocrystals
Limpens, Rens; Luxembourg, Stefan L.; Weeber, Arthur W.; Gregorkiewicz, Tom
2016-01-01
One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use of a low-temperature hydrogen passivation treatment we demonstrate a maximum emission quantum efficiency of approximately 35%. This is the highest value ever reported for this type of material. By cross-correlating PL lifetime with EQE values, we obtain a comprehensive understanding of the efficiency limiting processes induced by Pb-defects. We establish that the observed record efficiency corresponds to an interface density of Pb-centers of 1.3 × 1012 cm12, which is 2 orders of magnitude higher than for the best Si/SiO2 interface. This result implies that Si nanocrystals with up to 100% emission efficiency are feasible. PMID:26786062
Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results
NASA Technical Reports Server (NTRS)
Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.
1999-01-01
The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.
Hajdok, G; Battista, J J; Cunningham, I A
2008-07-01
A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.
Anonymous voting for multi-dimensional CV quantum system
NASA Astrophysics Data System (ADS)
Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee
2016-06-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).
Study of the thermal-optics parameters of Nd3+-doped phosphate glass as a function of temperature
NASA Astrophysics Data System (ADS)
Filho, J. C.; Pilla, V.; Messias, D. N.; Lourenço, S. A.; Silva, A. C. A.; Dantas, N. O.; Andrade, A. A.
2017-02-01
The spectroscopic properties of rare earth ions in many different hosts have been investigated, including surveys of Nd3+ in silicate, phosphate, fluorophosphates and fluoride glasses. Some of the thermal-optical properties of materials are influenced by temperature change, such as thermal diffusivity, specific heat and luminescence quantum efficiency. In this work the luminescence quantum efficiency of PANK: Nd3+, as a function of temperature (80- 480 K), was investigated using the normalized lifetime thermal lens technique. This system presents high quantum efficiency at low Nd3+ concentration and at ambient temperature, 100%, which decrease as temperature increase. Below room temperature the effects are not in accord with the maximum value of η, which must be unity.
Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogyan, A.
We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.
NASA Astrophysics Data System (ADS)
Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.; Burke, Sven; Ziffer, Mark E.; Ginger, David S.; Hillhouse, Hugh W.
2018-06-01
Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in light-emitting and photovoltaic applications. Here, we characterize both external and internal photoluminescence quantum efficiency and quasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NH3PbI3) thin films. With respect to the material bandgap, these passivated films exhibit the highest quasi-Fermi-level splitting measured to date, reaching 97.1 ± 0.7% of the radiative limit, approaching that of the highest performing GaAs solar cells. We confirm these values with independent measurements of internal photoluminescence quantum efficiency of 91.9 ± 2.7% under 1 Sun illumination intensity, setting a new benchmark for these materials. These results suggest hybrid perovskite solar cells are inherently capable of further increases in power conversion efficiency if surface passivation can be combined with optimized charge carrier selective interfaces.
Disorder-assisted quantum transport in suboptimal decoherence regimes
Novo, Leonardo; Mohseni, Masoud; Omar, Yasser
2016-01-01
We investigate quantum transport in binary tree structures and in hypercubes for the disordered Frenkel-exciton Hamiltonian under pure dephasing noise. We compute the energy transport efficiency as a function of disorder and dephasing rates. We demonstrate that dephasing improves transport efficiency not only in the disordered case, but also in the ordered one. The maximal transport efficiency is obtained when the dephasing timescale matches the hopping timescale, which represent new examples of the Goldilocks principle at the quantum scale. Remarkably, we find that in weak dephasing regimes, away from optimal levels of environmental fluctuations, the average effect of increasing disorder is to improve the transport efficiency until an optimal value for disorder is reached. Our results suggest that rational design of the site energies statistical distributions could lead to better performances in transport systems at nanoscale when their natural environments are far from the optimal dephasing regime. PMID:26726133
NASA Astrophysics Data System (ADS)
Romanov, I. S.; Prudaev, I. A.; Kopyev, V. V.
2018-06-01
The results of studying the effect of the thickness of GaN barrier layers in the active region of LED structures with InGaN/GaN quantum wells on the internal quantum efficiency (IQE) of photoluminescence are presented. It is shown that a decrease in the thickness of the GaN barrier layers from 15 to 3 nm leads to an increase in the maximum value of IQE and to a shift of the maximum to the region of high excitation powers. The result obtained is explained with consideration for the decrease in the Auger recombination rate due to a more uniform distribution of charge carriers over the active region in structures with a barrier thickness of 3 nm.
Enhancing light absorption within the carrier transport length in quantum junction solar cells.
Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene
2015-09-10
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31 mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.
Work Measurement as a Generalized Quantum Measurement
NASA Astrophysics Data System (ADS)
Roncaglia, Augusto J.; Cerisola, Federico; Paz, Juan Pablo
2014-12-01
We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P (w ). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P (w ). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.
NASA Astrophysics Data System (ADS)
Gusev, A. A.; Chuluunbaatar, O.; Vinitsky, S. I.; Derbov, V. L.; Hai, L. L.; Kazaryan, E. M.; Sarkisyan, H. A.
2018-04-01
We present new calculation schemes using high-order finite element method implemented on unstructured grids with triangle elements for solving boundary-value problems that describe axially symmetric quantum dots. The efficiency of the algorithms and software is demonstrated by benchmark calculations of the energy spectrum, the envelope eigenfunctions of electron, hole and exciton states, and the direct interband light absorption in conical and spheroidal impenetrable quantum dots.
Ultrashort electromagnetic pulse control of intersubband quantum well transitions
2012-01-01
We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956
Ultrashort electromagnetic pulse control of intersubband quantum well transitions.
Paspalakis, Emmanuel; Boviatsis, John
2012-08-23
: We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.
Kaya, Mine; Hajimirza, Shima
2018-05-25
This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.
Kirch, Jeremy D; Chang, Chun-Chieh; Boyle, Colin; Mawst, Luke J; Lindberg, Don; Earles, Tom; Botez, Dan
2016-10-17
8.4 μm-emitting quantum cascade lasers (QCLs) have been designed to have, right from threshold, both carrier-leakage suppression and miniband-like carrier extraction. The slope-efficiency characteristic temperature T1, the signature of carrier-leakage suppression, is found to be 665 K. Resonant-tunneling carrier extraction from both the lower laser level (ll) and the level below it, coupled with highly effective ll-depopulation provide a very short ll lifetime (~0.12 ps). As a result the laser-transition differential efficiency reaches 89%, and the internal differential efficiency ηid, derived from a variable mirror-loss study, is found to be 86%, in good agreement with theory. A study of 8.8 μm-emitting QCLs also provides an ηid value of 86%. A corrected equation for the external differential efficiency is derived which leads to a fundamental limit of ~90% for the ηid values of mid-infrared QCLs. In turn, the fundamental wallplug-efficiency limits become ~34% higher than previously predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirch, J. D.; Chang, C.-C.; Boyle, C.
2015-04-13
By stepwise tapering, both the barrier heights and quantum-well depths in the active regions of 8.7–8.8 μm-emitting quantum-cascade-laser (QCL) structures, virtually complete carrier-leakage suppression is achieved. Such step-taper active-region-type QCLs possess, for 3 mm-long devices with high-reflectivity-coated back facets, threshold-current characteristic temperature coefficients, T{sub 0}, as high as 283 K and slope-efficiency characteristic temperature coefficients, T{sub 1}, as high as 561 K, over the 20–60 °C heatsink-temperature range. These high T{sub 0} and T{sub 1} values reflect at least a factor of four reduction in carrier-leakage current compared to conventional 8–9 μm-emitting QCLs. Room temperature, pulsed, threshold-current densities are 1.58 kA/cm{sup 2}; values comparable to those formore » 35-period conventional QCLs of similar injector-region doping level. Superlinear behavior of the light-current curves is shown to be the result of the onset of resonant extraction from the lower laser level at a drive level of ∼1.3× threshold. Maximum room-temperature slope efficiencies are 1.23 W/A; that is, slope efficiency per period values of 35 mW/A, which are 37%–40% higher than for same-geometry conventional 8–9 μm-emitting QCLs. Since the waveguide-loss coefficients are very similar, we estimate that the internal differential efficiency is at least 30% higher than in conventional QCLs. Such high internal differential efficiency values reflect the combined effect of nearly complete carrier-leakage suppression and high differential efficiency of the laser transition (∼90%), due to resonant extraction from the lower laser level.« less
Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen
2013-11-04
A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunhui; Wu, Huijue; Zhu, Lifeng
2014-02-15
Recently, negative signals are frequently observed during the measuring process of monochromatic incident photon-to-electron conversion efficiency (IPCE) for sensitized solar cells by DC method. This phenomenon is confusing and hindering the reasonable evaluation of solar cells. Here, cause of negative IPCE values is studied by taking quantum dot-sensitized solar cell (QDSC) as an example, and the accurate measurement method to avoid the negative value is suggested. The negative background signals of QDSC without illumination are found the direct cause of the negative IPCE values by DC method. Ambient noise, significant capacitance characteristics, and uncontrolled electrochemical reaction all can lead tomore » the negative background signals. When the photocurrent response of device under monochromatic light illumination is relatively weak, the actual photocurrent signals will be covered by the negative background signals and the resulting IPCE values will appear negative. To improve the signal-to-noise ratio, quasi-AC method is proposed for IPCE measurement of solar cells with weak photocurrent response based on the idea of replacing the absolute values by the relative values.« less
Secure detection in quantum key distribution by real-time calibration of receiver
NASA Astrophysics Data System (ADS)
Marøy, Øystein; Makarov, Vadim; Skaar, Johannes
2017-12-01
The single-photon detectionefficiency of the detector unit is crucial for the security of common quantum key distribution protocols like Bennett-Brassard 1984 (BB84). A low value for the efficiency indicates a possible eavesdropping attack that exploits the photon receiver’s imperfections. We present a method for estimating the detection efficiency, and calculate the corresponding secure key generation rate. The estimation is done by testing gated detectors using a randomly activated photon source inside the receiver unit. This estimate gives a secure rate for any detector with non-unity single-photon detection efficiency, both inherit or due to blinding. By adding extra optical components to the receiver, we make sure that the key is extracted from photon states for which our estimate is valid. The result is a quantum key distribution scheme that is secure against any attack that exploits detector imperfections.
Teleportation-based continuous variable quantum cryptography
NASA Astrophysics Data System (ADS)
Luiz, F. S.; Rigolin, Gustavo
2017-03-01
We present a continuous variable (CV) quantum key distribution (QKD) scheme based on the CV quantum teleportation of coherent states that yields a raw secret key made up of discrete variables for both Alice and Bob. This protocol preserves the efficient detection schemes of current CV technology (no single-photon detection techniques) and, at the same time, has efficient error correction and privacy amplification schemes due to the binary modulation of the key. We show that for a certain type of incoherent attack, it is secure for almost any value of the transmittance of the optical line used by Alice to share entangled two-mode squeezed states with Bob (no 3 dB or 50% loss limitation characteristic of beam splitting attacks). The present CVQKD protocol works deterministically (no postselection needed) with efficient direct reconciliation techniques (no reverse reconciliation) in order to generate a secure key and beyond the 50% loss case at the incoherent attack level.
Entanglement-Assisted Weak Value Amplification
NASA Astrophysics Data System (ADS)
Pang, Shengshi; Dressel, Justin; Brun, Todd A.
2014-07-01
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value requires a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting n ancillas, the postselection probability can be increased by a factor of n while keeping the weak value fixed (compared to n uncorrelated attempts with one ancilla), which is the optimal scaling with n that is expected from quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive estimation to approximately saturate the relevant quantum Cramér-Rao bound. To illustrate this protocol we provide simple quantum circuits that can be implemented using current experimental realizations of three entangled qubits.
Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron
2017-01-01
Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics. PMID:28287167
Liu, Wei; Poelker, Matt; Peng, Xincun; ...
2017-07-19
Here, the degree of polarization of photoemitted electrons extracted from bulk unstrained GaAs photocathodes is usually considerably less than the theoretical maximum value of 50%, as a result of depolarization mechanisms that originate within the photocathode material and at the vacuum surface interface. This paper provides a comprehensive review of depolarization mechanisms and presents a systematic experimental evaluation of polarization sensitivities to temperature, dopant density, quantum efficiency, and crystal orientation. The highest measured polarization was similar to 50%, consistent with the maximum theoretical value, obtained from a photocathode sample with relatively low dopant concentration and cooled to 77 K. Inmore » general, measurements indicate electron spin polarization can be enhanced at the expense of photoelectron yield (or quantum efficiency).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Poelker, Matt; Peng, Xincun
Here, the degree of polarization of photoemitted electrons extracted from bulk unstrained GaAs photocathodes is usually considerably less than the theoretical maximum value of 50%, as a result of depolarization mechanisms that originate within the photocathode material and at the vacuum surface interface. This paper provides a comprehensive review of depolarization mechanisms and presents a systematic experimental evaluation of polarization sensitivities to temperature, dopant density, quantum efficiency, and crystal orientation. The highest measured polarization was similar to 50%, consistent with the maximum theoretical value, obtained from a photocathode sample with relatively low dopant concentration and cooled to 77 K. Inmore » general, measurements indicate electron spin polarization can be enhanced at the expense of photoelectron yield (or quantum efficiency).« less
Work extremum principle: structure and function of quantum heat engines.
Allahverdyan, Armen E; Johal, Ramandeep S; Mahler, Guenter
2008-04-01
We consider a class of quantum heat engines consisting of two subsystems interacting with a work-source and coupled to two separate baths at different temperatures Th>Tc. The purpose of the engine is to extract work due to the temperature difference. Its dynamics is not restricted to the near equilibrium regime. The engine structure is determined by maximizing the extracted work under various constraints. When this maximization is carried out at finite power, the engine dynamics is described by well-defined temperatures and satisfies the local version of the second law. In addition, its efficiency is bounded from below by the Curzon-Ahlborn value 1-radical Tc/Th and from above by the Carnot value 1-(Tc/Th). The latter is reached-at finite power--for a macroscopic engine, while the former is achieved in the equilibrium limit Th-->Tc . The efficiency that maximizes the power is strictly larger than the Curzon-Ahloborn value. When the work is maximized at a zero power, even a small (few-level) engine extracts work right at the Carnot efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, G.; Nagai, M., E-mail: mnagai@mp.es.osaka-u.ac.jp, E-mail: ashida@mp.es.osaka-u.ac.jp; Ashida, M., E-mail: mnagai@mp.es.osaka-u.ac.jp, E-mail: ashida@mp.es.osaka-u.ac.jp
We estimated the carrier multiplication efficiency in the most common solar-cell material, Si, by using optical-pump/terahertz-probe spectroscopy. Through close analysis of time-resolved data, we extracted the exact number of photoexcited carriers from the sheet carrier density 10 ps after photoexcitation, excluding the influences of spatial diffusion and surface recombination in the time domain. For incident photon energies greater than 4.0 eV, we observed enhanced internal quantum efficiency due to carrier multiplication. The evaluated value of internal quantum efficiency agrees well with the results of photocurrent measurements. This optical method allows us to estimate the carrier multiplication and surface recombination of carriersmore » quantitatively, which are crucial for the design of the solar cells.« less
Quantum algorithm for support matrix machines
NASA Astrophysics Data System (ADS)
Duan, Bojia; Yuan, Jiabin; Liu, Ying; Li, Dan
2017-09-01
We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image classification problem by introducing a least-squares reformulation. This algorithm consists of two core subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer with complexity O[log(npq) ] and O[log(pq)], respectively, where n is the number of the training data and p q is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over their classical counterparts.
Fidelity Witnesses for Fermionic Quantum Simulations
NASA Astrophysics Data System (ADS)
Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.
2018-05-01
The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.
Fuzzy Matching Based on Gray-scale Difference for Quantum Images
NASA Astrophysics Data System (ADS)
Luo, GaoFeng; Zhou, Ri-Gui; Liu, XingAo; Hu, WenWen; Luo, Jia
2018-05-01
Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.
Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xingsheng, E-mail: xsxu@semi.ac.cn
For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less
Spectral analysis of fundamental signal and noise performances in photoconductors for mammography.
Kim, Ho Kyung; Lim, Chang Hwy; Tanguay, Jesse; Yun, Seungman; Cunningham, Ian A
2012-05-01
This study investigates the fundamental signal and noise performance limitations imposed by the stochastic nature of x-ray interactions in selected photoconductor materials, such as Si, a-Se, CdZnTe, HgI(2), PbI(2), PbO, and TlBr, for x-ray spectra typically used in mammography. It is shown how Monte Carlo simulations can be combined with a cascaded model to determine the absorbed energy distribution for each combination of photoconductor and x-ray spectrum. The model is used to determine the quantum efficiency, mean energy absorption per interaction, Swank noise factor, secondary quantum noise, and zero-frequency detective quantum efficiency (DQE). The quantum efficiency of materials with higher atomic number and density demonstrates a larger dependence on convertor thickness than those with lower atomic number and density with the exception of a-Se. The mean deposited energy increases with increasing average energy of the incident x-ray spectrum. HgI(2), PbI(2), and CdZnTe demonstrate the largest increase in deposited energy with increasing mass loading and a-Se and Si the smallest. The best DQE performances are achieved with PbO and TlBr. For mass loading greater than 100 mg cm(-2), a-Se, HgI(2), and PbI(2) provide similar DQE values to PbO and TlBr. The quantum absorption efficiency, average deposited energy per interacting x-ray, Swank noise factor, and detective quantum efficiency are tabulated by means of graphs which may help with the design and selection of materials for photoconductor-based mammography detectors. Neglecting the electrical characteristics of photoconductor materials and taking into account only x-ray interactions, it is concluded that PbO shows the strongest signal-to-noise ratio performance of the materials investigated in this study.
Optimal power and efficiency of quantum Stirling heat engines
NASA Astrophysics Data System (ADS)
Yin, Yong; Chen, Lingen; Wu, Feng
2017-01-01
A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.
Quantum knots and the number of knot mosaics
NASA Astrophysics Data System (ADS)
Oh, Seungsang; Hong, Kyungpyo; Lee, Ho; Lee, Hwa Jeong
2015-03-01
Lomonaco and Kauffman developed a knot mosaic system to introduce a precise and workable definition of a quantum knot system. This definition is intended to represent an actual physical quantum system. A knot -mosaic is an matrix of mosaic tiles ( through depicted in the introduction) representing a knot or a link by adjoining properly that is called suitably connected. is the total number of all knot -mosaics. This value indicates the dimension of the Hilbert space of these quantum knot system. is already found for by the authors. In this paper, we construct an algorithm producing the precise value of for that uses recurrence relations of state matrices that turn out to be remarkably efficient to count knot mosaics. where matrices and are defined by for , with matrices and . Here denotes the sum of all entries of a matrix . For , means the identity matrix of size.
Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload
NASA Astrophysics Data System (ADS)
Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun
2018-06-01
An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.
Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload
NASA Astrophysics Data System (ADS)
Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun
2018-03-01
An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.
Quantum speedup of Monte Carlo methods.
Montanaro, Ashley
2015-09-08
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Quantum speedup of Monte Carlo methods
Montanaro, Ashley
2015-01-01
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079
Superradiant Quantum Heat Engine.
Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E
2015-08-11
Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.
Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities
NASA Astrophysics Data System (ADS)
Demory, Brandon; Hill, Tyler A.; Teng, Chu-Hsiang; Deng, Hui; Ku, P. C.
2018-01-01
A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.
Demory, Brandon; Hill, Tyler A; Teng, Chu-Hsiang; Deng, Hui; Ku, P C
2018-01-05
A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1995-01-01
Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.
Reconstructing quantum entropy production to probe irreversibility and correlations
NASA Astrophysics Data System (ADS)
Gherardini, Stefano; Müller, Matthias M.; Trombettoni, Andrea; Ruffo, Stefano; Caruso, Filippo
2018-07-01
One of the major goals of quantum thermodynamics is the characterization of irreversibility and its consequences in quantum processes. Here, we discuss how entropy production provides a quantification of the irreversibility in open quantum systems through the quantum fluctuation theorem. We start by introducing a two-time quantum measurement scheme, in which the dynamical evolution between the measurements is described by a completely positive, trace-preserving (CPTP) quantum map (forward process). By inverting the measurement scheme and applying the time-reversed version of the quantum map, we can study how this backward process differs from the forward one. When the CPTP map is unital, we show that the stochastic quantum entropy production is a function only of the probabilities to get the initial measurement outcomes in correspondence of the forward and backward processes. For bipartite open quantum systems we also prove that the mean value of the stochastic quantum entropy production is sub-additive with respect to the bipartition (except for product states). Hence, we find a method to detect correlations between the subsystems. Our main result is the proposal of an efficient protocol to determine and reconstruct the characteristic functions of the stochastic entropy production for each subsystem. This procedure enables to reconstruct even others thermodynamical quantities, such as the work distribution of the composite system and the corresponding internal energy. Efficiency and possible extensions of the protocol are also discussed. Finally, we show how our findings might be experimentally tested by exploiting the state of-the-art trapped-ion platforms.
Sun, Haiya; Liu, Dongzhi; Wang, Tianyang; Lu, Ting; Li, Wei; Ren, Siyao; Hu, Wenping; Wang, Lichang; Zhou, Xueqin
2017-03-22
Effective charge separation is one of the key determinants for the photovoltaic performance of the dye-sensitized solar cells (DSSCs). Herein, two charge-separated (CS) sensitizers, MTPA-Pyc and YD-Pyc, have been synthesized and applied in DSSCs to investigate the effect of the CS states of the sensitizers on the device's efficiency. The CS states with lifetimes of 64 and 177 ns for MTPA-Pyc and YD-Pyc, respectively, are formed via the photoinduced electron transfer (PET) from the 4-styryltriphenylamine (MTPA) or 4-styrylindoline (YD) donor to the pyrimidine cyanoacrylic acid (Pyc) acceptor. DSSCs based on MTPA-Pyc and YD-Pyc exhibit high internal quantum efficiency (IQE) values of over 80% from 400 to 600 nm. In comparison, the IQEs of the charge transfer (CT) sensitizer cells are 10-30% lower in the same wavelength range. The enhanced IQE values in the devices based on the CS sensitizers are ascribed to the higher electron injection efficiencies and slower charge recombination. The results demonstrate that taking advantage of the CS states in the sensitizers can be a promising strategy to improve the IQEs and further enhance the overall efficiencies of the DSSCs.
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Claudia, E-mail: c.filippi@utwente.nl; Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr; Moroni, Saverio, E-mail: moroni@democritos.it
2016-05-21
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, inmore » both all-electron and pseudopotential calculations.« less
100-period InGaAsP/InGaP superlattice solar cell with sub-bandgap quantum efficiency approaching 80%
Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.; ...
2017-08-25
Here, InGaAsP/InGaP quantum well (QW) structures are promising materials for next generation photovoltaic devices because of their tunable bandgap (1.50-1.80 eV) and being aluminum-free. However, the strain-balance limitations have previously limited light absorption in the QW region and constrained the external quantum efficiency (EQE) values beyond the In 0.49Ga 0.51P band-edge to less than 25%. In this work, we show that implementing a hundred period lattice matched InGaAsP/InGaP superlattice solar cell with more than 65% absorbing InGaAsP well resulted in more than 2x improvement in EQE values than previously reported strain balanced approaches. In addition, processing the devices with amore » rear optical reflector resulted in strong Fabry-Perot resonance oscillations and the EQE values were highly improved in the vicinity of these peaks, resulting in a short circuit current improvement of 10% relative to devices with a rear optical filter. These enhancements have resulted in an InGaAsP/InGaP superlattice solar cell with improved peak sub-bandgap EQE values exceeding 75% at 700 nm, an improvement in the short circuit current of 26% relative to standard InGaP devices, and an enhanced bandgap-voltage offset (W oc) of 0.4 V.« less
NASA Astrophysics Data System (ADS)
Saito, Terubumi; Tatsuta, Muneaki; Abe, Yamato; Takesawa, Minato
2018-02-01
We have succeeded in the direct measurement for solar cell/module internal conversion efficiency based on a calorimetric method or electrical substitution method by which the absorbed radiant power is determined by replacing the heat absorbed in the cell/module with the electrical power. The technique is advantageous in that the reflectance and transmittance measurements, which are required in the conventional methods, are not necessary. Also, the internal quantum efficiency can be derived from conversion efficiencies by using the average photon energy. Agreements of the measured data with the values estimated from the nominal values support the validity of this technique.
Li, Xiaoyue; Zhang, Juanye; Zhao, Zifeng; Wang, Liding; Yang, Hannan; Chang, Qiaowen; Jiang, Nan; Liu, Zhiwei; Bian, Zuqiang; Liu, Weiping; Lu, Zhenghong; Huang, Chunhui
2018-03-01
Organic light-emitting diodes (OLEDs) based on red and green phosphorescent iridium complexes are successfully commercialized in displays and solid-state lighting. However, blue ones still remain a challenge on account of their relatively dissatisfactory Commission International de L'Eclairage (CIE) coordinates and low efficiency. After analyzing the reported blue iridium complexes in the literature, a new deep-blue-emitting iridium complex with improved photoluminescence quantum yield is designed and synthesized. By rational screening host materials showing high triplet energy level in neat film as well as the OLED architecture to balance electron and hole recombination, highly efficient deep-blue-emission OLEDs with a CIE at (0.15, 0.11) and maximum external quantum efficiency (EQE) up to 22.5% are demonstrated. Based on the transition dipole moment vector measurement with a variable-angle spectroscopic ellipsometry method, the ultrahigh EQE is assigned to a preferred horizontal dipole orientation of the iridium complex in doped film, which is beneficial for light extraction from the OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum demultiplexer of quantum parameter-estimation information in quantum networks
NASA Astrophysics Data System (ADS)
Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang
2018-05-01
The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.
Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Kastoryano, Michael J.
2018-05-01
Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.
Efficient free energy calculations of quantum systems through computer simulations
NASA Astrophysics Data System (ADS)
Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo
2009-03-01
In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)
Li, Hongzhi; Zhong, Ziyan; Li, Lin; Gao, Rui; Cui, Jingxia; Gao, Ting; Hu, Li Hong; Lu, Yinghua; Su, Zhong-Min; Li, Hui
2015-05-30
A cascaded model is proposed to establish the quantitative structure-activity relationship (QSAR) between the overall power conversion efficiency (PCE) and quantum chemical molecular descriptors of all-organic dye sensitizers. The cascaded model is a two-level network in which the outputs of the first level (JSC, VOC, and FF) are the inputs of the second level, and the ultimate end-point is the overall PCE of dye-sensitized solar cells (DSSCs). The model combines quantum chemical methods and machine learning methods, further including quantum chemical calculations, data division, feature selection, regression, and validation steps. To improve the efficiency of the model and reduce the redundancy and noise of the molecular descriptors, six feature selection methods (multiple linear regression, genetic algorithms, mean impact value, forward selection, backward elimination, and +n-m algorithm) are used with the support vector machine. The best established cascaded model predicts the PCE values of DSSCs with a MAE of 0.57 (%), which is about 10% of the mean value PCE (5.62%). The validation parameters according to the OECD principles are R(2) (0.75), Q(2) (0.77), and Qcv2 (0.76), which demonstrate the great goodness-of-fit, predictivity, and robustness of the model. Additionally, the applicability domain of the cascaded QSAR model is defined for further application. This study demonstrates that the established cascaded model is able to effectively predict the PCE for organic dye sensitizers with very low cost and relatively high accuracy, providing a useful tool for the design of dye sensitizers with high PCE. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta
2015-03-02
We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less
An efficient matrix product operator representation of the quantum chemical Hamiltonian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less
Encapsulation efficiency of CdSe/ZnS quantum dots by liposomes determined by thermal lens microscopy
Batalla, Jessica; Cabrera, Humberto; San Martín-Martínez, Eduardo; Korte, Dorota; Calderón, Antonio; Marín, Ernesto
2015-01-01
In this study the encapsulation of core shell carboxyl CdSe/ZnS quantum dots (QDs) by phospholipids liposome complexes is presented. It makes the quantum dots water soluble and photo-stable. Fluorescence self-quenching of the QDs inside the liposomes was observed. Therefore, the thermal lens microscopy (TLM) was found to be an useful tool for measuring the encapsulation efficiency of the QDs by the liposomes, for which an optimum value of 36% was determined. The obtained limit of detection (LOD) for determining QDs concentration by TLM was 0.13 nM. Moreover, the encapsulated QDs showed no prominent cytotoxicity toward Breast cancer cells line MDA-MB-231. This study was supported by UV-visible spectroscopy, high resolution transmission electron microscopy (HRTEM) and dynamic light scattering measurements (DLS). PMID:26504640
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.
2012-04-01
The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.
Decentralized Routing and Diameter Bounds in Entangled Quantum Networks
NASA Astrophysics Data System (ADS)
Gyongyosi, Laszlo; Imre, Sandor
2017-04-01
Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.
Zheng, Jinjian; Li, Shuiqing; Chou, Chilun; Lin, Wei; Xun, Feilin; Guo, Fei; Zheng, Tongchang; Li, Shuping; Kang, Junyong
2015-12-04
Light-emitting diode (LED) efficiency has attracted considerable interest because of the extended use of solid-state lighting. Owing to lack of direct measurement, identification of the reasons for efficiency droop has been restricted. A direct measurement technique is developed in this work for characterization of biaxial stress in GaN-based blue LEDs under electrical injection. The Raman shift of the GaN E2 mode evidently decreases by 4.4 cm(-1) as the driving current on GaN-based LEDs increases to 700 mA. Biaxial compressive stress is released initially and biaxial tensile stress builds up as the current increases with respect to the value of stress-free GaN. First-principles calculations reveal that electron accumulation is responsible for the stress variation in InxGa1-xN/GaN quantum wells, and then reduces the transition probability among quantum levels. This behavior is consistent with the measured current-dependent external quantum efficiency. The rule of biaxial stress-dependent efficiency is further validated by controlling the biaxial stress of GaN-based LEDs with different sapphire substrate thicknesses. This work provides a method for direct observation of the biaxial stress effect on efficiency droop in LEDs under electrical injection.
Zheng, Jinjian; Li, Shuiqing; Chou, Chilun; Lin, Wei; Xun, Feilin; Guo, Fei; Zheng, Tongchang; Li, Shuping; Kang, Junyong
2015-01-01
Light-emitting diode (LED) efficiency has attracted considerable interest because of the extended use of solid-state lighting. Owing to lack of direct measurement, identification of the reasons for efficiency droop has been restricted. A direct measurement technique is developed in this work for characterization of biaxial stress in GaN-based blue LEDs under electrical injection. The Raman shift of the GaN E2 mode evidently decreases by 4.4 cm−1 as the driving current on GaN-based LEDs increases to 700 mA. Biaxial compressive stress is released initially and biaxial tensile stress builds up as the current increases with respect to the value of stress-free GaN. First-principles calculations reveal that electron accumulation is responsible for the stress variation in InxGa1−xN/GaN quantum wells, and then reduces the transition probability among quantum levels. This behavior is consistent with the measured current-dependent external quantum efficiency. The rule of biaxial stress-dependent efficiency is further validated by controlling the biaxial stress of GaN-based LEDs with different sapphire substrate thicknesses. This work provides a method for direct observation of the biaxial stress effect on efficiency droop in LEDs under electrical injection. PMID:26634816
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots
NASA Astrophysics Data System (ADS)
Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.
2017-11-01
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M
2017-11-08
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W.; Morozov, P.
Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels withmore » counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.« less
Optical storage with electromagnetically induced transparency in cold atoms at a high optical depth
NASA Astrophysics Data System (ADS)
Zhang, Shanchao; Zhou, Shuyu; Liu, Chang; Chen, J. F.; Wen, Jianming; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang
2012-06-01
We report experimental demonstration of efficient optical storage with electromagnetically induced transparency (EIT) in a dense cold ^85Rb atomic ensemble trapped in a two-dimensional magneto-optical trap. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency for coherent optical pulses has a saturation value of 50% as OD > 50. Our result is consistent with that obtained from hot vapor cell experiments which suggest that a four-wave mixing nonlinear process degrades the EIT storage coherence and efficiency. We apply this EIT quantum memory for narrow-band single photons with controllable waveforms, and obtain an optimal storage efficiency of 49±3% for single-photon wave packets. This is the highest single-photon storage efficiency reported up to today and brings the EIT atomic quantum memory close to practical application because an efficiency of above 50% is necessary to operate the memory within non-cloning regime and beat the classical limit.
Quantum anonymous voting with unweighted continuous-variable graph states
NASA Astrophysics Data System (ADS)
Guo, Ying; Feng, Yanyan; Zeng, Guihua
2016-08-01
Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.
Trade-off between information and disturbance in qubit thermometry
NASA Astrophysics Data System (ADS)
Seveso, Luigi; Paris, Matteo G. A.
2018-03-01
We address the trade-off between information and disturbance in qubit thermometry from the perspective of quantum estimation theory. Given a quantum measurement, we quantify information via the Fisher information of the measurement and disturbance via four different figures of merit, which capture different aspects (statistical, thermodynamical, geometrical) of the trade-off. For each disturbance measure, the efficient measurements, i.e., the measurements that introduce a disturbance not greater than any other measurement extracting the same amount of information, are determined explicitly. The family of efficient measurements varies with the choice of the disturbance measure. On the other hand, commutativity between the elements of the probability operator-valued measure (POVM) and the equilibrium state of the thermometer is a necessary condition for efficiency with respect to any figure of disturbance.
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
NASA Astrophysics Data System (ADS)
Tabia, Gelo Noel M.
2012-12-01
It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.
Quantum Biometrics with Retinal Photon Counting
NASA Astrophysics Data System (ADS)
Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.
2017-10-01
It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.
Highly Efficient Room Temperature Spin Injection Using Spin Filtering in MgO
NASA Astrophysics Data System (ADS)
Jiang, Xin
2007-03-01
Efficient electrical spin injection into GaAs/AlGaAs quantum well structures was demonstrated using CoFe/MgO tunnel spin injectors at room temperature. The spin polarization of the injected electron current was inferred from the circular polarization of electroluminescence from the quantum well. Polarization values as high as 57% at 100 K and 47% at 290 K were obtained in a perpendicular magnetic field of 5 Tesla. The interface between the tunnel spin injector and the GaAs interface remained stable even after thermal annealing at 400 ^oC. The temperature dependence of the electron-hole recombination time and the electron spin relaxation time in the quantum well was measured using time-resolved optical techniques. By taking into account of these properties of the quantum well, the intrinsic spin injection efficiency can be deduced. We conclude that the efficiency of spin injection from a CoFe/MgO spin injector is nearly independent of temperature and, moreover, is highly efficient with an efficiency of ˜ 70% for the temperature range studied (10 K to room temperature). Tunnel spin injectors are thus highly promising components of future semiconductor spintronic devices. Collaborators: Roger Wang^1, 3, Gian Salis^2, Robert Shelby^1, Roger Macfarlane^1, Seth Bank^3, Glenn Solomon^3, James Harris^3, Stuart S. P. Parkin^1 ^1 IBM Almaden Research Center, San Jose, CA 95120 ^2 IBM Zurich Research Laboratory, S"aumerstrasse 4, 8803 R"uschlikon, Switzerland ^3 Solid States and Photonics Laboratory, Stanford University, Stanford, CA 94305
Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen
2016-12-01
Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.
Giant Kerr response of ultrathin gold films from quantum size effect.
Qian, Haoliang; Xiao, Yuzhe; Liu, Zhaowei
2016-10-10
With the size of plasmonic devices entering into the nanoscale region, the impact of quantum physics needs to be considered. In the past, the quantum size effect on linear material properties has been studied extensively. However, the nonlinear aspects have not been explored much so far. On the other hand, much effort has been put into the field of integrated nonlinear optics and a medium with large nonlinearity is desirable. Here we study the optical nonlinear properties of a nanometre scale gold quantum well by using the z-scan method and nonlinear spectrum broadening technique. The quantum size effect results in a giant optical Kerr susceptibility, which is four orders of magnitude higher than the intrinsic value of bulk gold and several orders larger than traditional nonlinear media. Such high nonlinearity enables efficient nonlinear interaction within a microscopic footprint, making quantum metallic films a promising candidate for integrated nonlinear optical applications.
Experimental violation of a Bell's inequality with efficient detection.
Rowe, M A; Kielpinski, D; Meyer, V; Sackett, C A; Itano, W M; Monroe, C; Wineland, D J
2001-02-15
Local realism is the idea that objects have definite properties whether or not they are measured, and that measurements of these properties are not affected by events taking place sufficiently far away. Einstein, Podolsky and Rosen used these reasonable assumptions to conclude that quantum mechanics is incomplete. Starting in 1965, Bell and others constructed mathematical inequalities whereby experimental tests could distinguish between quantum mechanics and local realistic theories. Many experiments have since been done that are consistent with quantum mechanics and inconsistent with local realism. But these conclusions remain the subject of considerable interest and debate, and experiments are still being refined to overcome 'loopholes' that might allow a local realistic interpretation. Here we have measured correlations in the classical properties of massive entangled particles (9Be+ ions): these correlations violate a form of Bell's inequality. Our measured value of the appropriate Bell's 'signal' is 2.25 +/- 0.03, whereas a value of 2 is the maximum allowed by local realistic theories of nature. In contrast to previous measurements with massive particles, this violation of Bell's inequality was obtained by use of a complete set of measurements. Moreover, the high detection efficiency of our apparatus eliminates the so-called 'detection' loophole.
Multistate and multihypothesis discrimination with open quantum systems
NASA Astrophysics Data System (ADS)
Kiilerich, Alexander Holm; Mølmer, Klaus
2018-05-01
We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide three realistic examples of multihypothesis testing with open quantum systems.
Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing
2015-05-11
Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor andmore » RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.« less
Slanina, Tomáš; Shrestha, Pradeep; Palao, Eduardo; Kand, Dnyaneshwar; Peterson, Julie A; Dutton, Andrew S; Rubinstein, Naama; Weinstain, Roy; Winter, Arthur H; Klán, Petr
2017-10-25
A detailed investigation of the photophysical parameters and photochemical reactivity of meso-methyl BODIPY photoremovable protecting groups was accomplished through systematic variation of the leaving group (LG) and core substituents as well as substitutions at boron. Efficiencies of the LG release were evaluated using both steady-state and transient absorption spectroscopies as well as computational analyses to identify the optimal structural features. We find that the quantum yields for photorelease with this photocage are highly sensitive to substituent effects. In particular, we find that the quantum yields of photorelease are improved with derivatives with higher intersystem crossing quantum yields, which can be promoted by core heavy atoms. Moreover, release quantum yields are dramatically improved by boron alkylation, whereas alkylation in the meso-methyl position has no effect. Better LGs are released considerably more efficiently than poorer LGs. We find that these substituent effects are additive, for example, a 2,6-diiodo-B-dimethyl BODIPY photocage features quantum yields of 28% for the mediocre LG acetate and a 95% quantum yield of release for chloride. The high chemical and quantum yields combined with the outstanding absorption properties of BODIPY dyes lead to photocages with uncaging cross sections over 10 000 M -1 cm -1 , values that surpass cross sections of related photocages absorbing visible light. These new photocages, which absorb strongly near the second harmonic of an Nd:YAG laser (532 nm), hold promise for manipulating and interrogating biological and material systems with the high spatiotemporal control provided by pulsed laser irradiation, while avoiding the phototoxicity problems encountered with many UV-absorbing photocages. More generally, the insights gained from this structure-reactivity relationship may aid in the development of new highly efficient photoreactions.
NASA Astrophysics Data System (ADS)
Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.
2018-04-01
We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.
High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Norman, Justin; Kennedy, M. J.; Shang, Chen; Shin, Bongki; Wan, Yating; Gossard, Arthur C.; Bowers, John E.
2017-09-01
We demonstrate highly efficient, low threshold InAs quantum dot lasers epitaxially grown on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Electron channeling contrast imaging measurements show a threading dislocation density of 7.3 × 106 cm-2 from an optimized GaAs template grown on GaP/Si. The high-quality GaAs templates enable as-cleaved quantum dot lasers to achieve a room-temperature continuous-wave (CW) threshold current of 9.5 mA, a threshold current density as low as 132 A/cm2, a single-side output power of 175 mW, and a wall-plug-efficiency of 38.4% at room temperature. As-cleaved QD lasers show ground-state CW lasing up to 80 °C. The application of a 95% high-reflectivity coating on one laser facet results in a CW threshold current of 6.7 mA, which is a record-low value for any kind of Fabry-Perot laser grown on Si.
NASA Astrophysics Data System (ADS)
Rao, Jianguo; Delande, D.; Taylor, K. T.
2001-06-01
The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits. Excellent agreement has been found with all peaks assigned.
Tritiated amorphous silicon for micropower applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kherani, N.P.; Kosteski, T.; Zukotynski, S.
1995-10-01
The application of tritiated amorphous silicon as an intrinsic energy conversion semiconductor for radioluminescent structures and betavoltaic devices is presented. Theoretical analysis of the betavoltaic application shows an overall efficiency of 18% for tritiated amorphous silicon. This is equivalent to a 330 Ci intrinsic betavoltaic device producing 1 mW of power for 12 years. Photoluminescence studies of hydrogenated amorphous silicon, a-Si:H, show emission in the infra-red with a maximum quantum efficiency of 7.2% at 50 K; this value drops by 3 orders of magnitude at a temperature of 300 K. Similar studies of hydrogenated amorphous carbon show emission in themore » visible with an estimated quantum efficiency of 1% at 300 K. These results suggest that tritiated amorphous carbon may be the more promising candidate for room temperature radioluminescence in the visible. 18 refs., 5 figs.« less
NASA Technical Reports Server (NTRS)
Gordon, H. R.
1979-01-01
The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean's diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.
NASA Astrophysics Data System (ADS)
Ros Barcelò, A.; Zapata, J. M.
1996-11-01
Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-07-15
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
NASA Astrophysics Data System (ADS)
Molotkov, S. N.
2008-07-01
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).
Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment
NASA Astrophysics Data System (ADS)
Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; Li, Jun; Zhang, Kechao; Lin, Xingcheng; Wang, Zhehui; Luo, Zhihuang; Zheng, Wenqiang; Li, Jianzhong; Zhao, Meisheng; Peng, Xinhua; Suter, Dieter
2017-07-01
Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission, and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.
Lyman alpha SMM/UVSP absolute calibration and geocoronal correction
NASA Technical Reports Server (NTRS)
Fontenla, Juan M.; Reichmann, Edwin J.
1987-01-01
Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.
Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.
Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young
2013-05-08
We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.
Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iida, Daisuke; Department of Photonics Engineering, Technical University of Denmark, 2800 Lyngby; Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi Tempaku, 468-8502 Nagoya
2015-09-15
We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.
NASA Astrophysics Data System (ADS)
Richings, Gareth W.; Habershon, Scott
2018-04-01
We present significant algorithmic improvements to a recently proposed direct quantum dynamics method, based upon combining well established grid-based quantum dynamics approaches and expansions of the potential energy operator in terms of a weighted sum of Gaussian functions. Specifically, using a sum of low-dimensional Gaussian functions to represent the potential energy surface (PES), combined with a secondary fitting of the PES using singular value decomposition, we show how standard grid-based quantum dynamics methods can be dramatically accelerated without loss of accuracy. This is demonstrated by on-the-fly simulations (using both standard grid-based methods and multi-configuration time-dependent Hartree) of both proton transfer on the electronic ground state of salicylaldimine and the non-adiabatic dynamics of pyrazine.
Two-party quantum key agreement with five-particle entangled states
NASA Astrophysics Data System (ADS)
He, Ye-Feng; Ma, Wen-Ping
A two-party quantum key agreement protocol is proposed with five-particle entangled states and the delayed measurement technique. According to the measurement correlation property of five-particle entangled states, two participants can deduce the measurement results of each other’s initial quantum states. As a result, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. Thus, a shared key is fairly established. Since each particle is transmitted only once in quantum channel, the protocol is congenitally free from the Trojan horse attacks. It is shown that the protocol not only is secure against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.
NASA Astrophysics Data System (ADS)
Kaul, T.; Erbert, G.; Maaßdorf, A.; Knigge, S.; Crump, P.
2018-03-01
Broad area lasers with novel extreme double asymmetric structure (EDAS) vertical designs featuring increased optical confinement in the quantum well, Γ, are shown to have improved temperature stability without compromising series resistance, internal efficiency or losses. Specifically, we present here vertical design considerations for the improved continuous wave (CW) performance of devices operating at 940 nm, based on systematically increasing Γ from 0.26% to 1.1%, and discuss the impact on power saturation mechanisms. The results indicate that key power saturation mechanisms at high temperatures originate in high threshold carrier densities, which arise in the quantum well at low Γ. The characteristic temperatures, T 0 and T 1, are determined under short pulse conditions and are used to clarify the thermal contribution to power limiting mechanisms. Although increased Γ reduces thermal power saturation, it is accompanied by increased optical absorption losses in the active region, which has a significant impact on the differential external quantum efficiency, {η }{{diff}}. To quantify the impact of internal optical losses contributed by the quantum well, a resonator length-dependent simulation of {η }{{diff}} is performed and compared to the experiment, which also allows the estimation of experimental values for the light absorption cross sections of electrons and holes inside the quantum well. Overall, the analysis enables vertical designs to be developed, for devices with maximized power conversion efficiency at high CW optical power and high temperatures, in a trade-off between absorption in the well and power saturation. The best balance to date is achieved in devices using EDAS designs with {{Γ }}=0.54 % , which deliver efficiencies of 50% at 14 W optical output power at an elevated junction temperature of 105 °C.
NASA Astrophysics Data System (ADS)
Li, Pei-Ni; Ghule, Anil V.; Chang, Jia-Yaw
2017-06-01
Compared to the use of an organic system, a synthetic method based on aqueous solutions offers the potential for simple, environmentally friendly, low-cost fabrication with high synthetic reproducibility and easy upscaling. Here, AgInSe2 quantum dots (QDs) capped with different types of thiol molecules [thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), or glutathione (GSH)] are prepared within 15 min in aqueous media under microwave irradiation. The GSH-stabilized AgInSe2 QDs are demonstrated to be effective light harvesters in a QD-sensitized solar cell (QDSSC), showing ∼23% better efficiency than cells using TGA- and MPA-stabilized AgInSe2 QDs. The performance enhancement is attributed to the multidentate chelating effect of the GSH stabilizer, which provides efficient charge injection from QDs into the conduction band of TiO2 in the photoanode. Electrochemical impedance spectroscopy and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy measurements are adopted for more detailed study of the interfacial properties and electron transport characteristics of these AgInSe2 QDSSCs. More importantly, the GSH-stabilized AgInSe2 QDSSC with TiCl4 treatment exhibits an excellent power conversion efficiency of 5.69% with an average value of 5.48 ± 0.19% under 100 mW cm-2 illumination, which is one of the highest values observed for a QDSSC sensitized with a Ag-based metal chalcogenide.
The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires
NASA Astrophysics Data System (ADS)
Hoffmann, Eric A.
State of the art semiconductor materials engineering provides the possibility to fabricate devices on the lower end of the mesoscopic scale and confine only a handful of electrons to a region of space. When the thermal energy is reduced below the energetic quantum level spacing, the confined electrons assume energy levels akin to the core-shell structure of natural atoms. Such "artificial atoms", also known as quantum dots, can be loaded with electrons, one-by-one, and subsequently unloaded using source and drain electrical contacts. As such, quantum dots are uniquely tunable platforms for performing quantum transport and quantum control experiments. Voltage-biased electron transport through quantum dots has been studied extensively. Far less attention has been given to thermoelectric effects in quantum dots, that is, electron transport induced by a temperature gradient. This dissertation focuses on the efficiency of direct thermal-to-electric energy conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of thermoelectric heat engines is bounded by the same maximum efficiency as cyclic heat engines; namely, by Carnot efficiency. The efficiency of bulk thermoelectric materials suffers from their inability to transport charge carriers selectively based on energy. Owing to their three-dimensional momentum quantization, quantum dots operate as electron energy filters---a property which can be harnessed to minimize entropy production and therefore maximize efficiency. This research was motivated by the possibility to realize experimentally a thermodynamic heat engine operating with near-Carnot efficiency using the unique behavior of quantum dots. To this end, a microscopic heating scheme for the application of a temperature difference across a quantum dot was developed in conjunction with a novel quantum-dot thermometry technique used for quantifying the magnitude of the applied temperature difference. While pursuing high-efficiency thermoelectric performance, many mesoscopic thermoelectric effects were observed and studied, including Coulomb-blockade thermovoltage oscillations, thermoelectric power generation, and strong nonlinear behavior. In the end, a quantum-dot-based thermoelectric heat engine was achieved and demonstrated an electronic efficiency of up to 95% Carnot efficiency.
Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells.
Ravishankar, Sandheep; Aranda, Clara; Boix, Pablo P; Anta, Juan A; Bisquert, Juan; Garcia-Belmonte, Germà
2018-06-07
Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, identifying the evolution of the EQE over a range of frequencies, displaying a singular reduction at very low frequencies. This reduction in EQE is ascribed to additional resistive contributions hindering charge extraction in the perovskite solar cell at short-circuit conditions, which are delayed because of the concomitant large low-frequency capacitance.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Universal programmable quantum circuit schemes to emulate an operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daskin, Anmer; Grama, Ananth; Kollias, Giorgos
Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantummore » complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.« less
Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot.
Zheng, Jun; Chi, Feng; Lu, Xiao-Dong; Zhang, Kai-Cheng
2012-02-28
Thermoelectric effect is studied in an Aharonov-Bohm interferometer with an embedded quantum dot (QD) in the Coulomb blockade regime. The electrical conductance, electron thermal conductance, thermopower, and thermoelectric figure-of-merit are calculated by using the Keldysh Green's function method. It is found that the figure-of-merit ZT of the QD ring may be quite high due to the Fano effect originated from the quantum interference effect. Moreover, the thermoelectric efficiency is sensitive to the magnitude of the dot-lead and inter-lead coupling strengthes. The effect of intradot Coulomb repulsion on ZT is significant in the weak-coupling regime, and then large ZT values can be obtained at rather high temperature.
Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSexTe1-x quantum dots
NASA Astrophysics Data System (ADS)
Szeremeta, Janusz; Lamch, Lukasz; Wawrzynczyk, Dominika; Wilk, Kazimiera A.; Samoc, Marek; Nyk, Marcin
2015-07-01
Hydrophobic CdSexTe1-x quantum dots with near infrared emission in the 700-750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSexTe1-x quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.
Sufficient condition for a quantum state to be genuinely quantum non-Gaussian
NASA Astrophysics Data System (ADS)
Happ, L.; Efremov, M. A.; Nha, H.; Schleich, W. P.
2018-02-01
We show that the expectation value of the operator \\hat{{ \\mathcal O }}\\equiv \\exp (-c{\\hat{x}}2)+\\exp (-c{\\hat{p}}2) defined by the position and momentum operators \\hat{x} and \\hat{p} with a positive parameter c can serve as a tool to identify quantum non-Gaussian states, that is states that cannot be represented as a mixture of Gaussian states. Our condition can be readily tested employing a highly efficient homodyne detection which unlike quantum-state tomography requires the measurements of only two orthogonal quadratures. We demonstrate that our method is even able to detect quantum non-Gaussian states with positive–definite Wigner functions. This situation cannot be addressed in terms of the negativity of the phase-space distribution. Moreover, we demonstrate that our condition can characterize quantum non-Gaussianity for the class of superposition states consisting of a vacuum and integer multiples of four photons under more than 50 % signal attenuation.
Free-Space Quantum Signatures Using Heterodyne Measurements
NASA Astrophysics Data System (ADS)
Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia
2016-09-01
Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.
NASA Astrophysics Data System (ADS)
Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.
2018-01-01
The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.
NASA Astrophysics Data System (ADS)
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-03-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
NASA Astrophysics Data System (ADS)
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-06-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
Orbital Battleship: A Guessing Game to Reinforce Atomic Structure
ERIC Educational Resources Information Center
Kurushkin, Mikhail; Mikhaylenko, Maria
2016-01-01
A competitive educational guessing game "Orbital Battleship" which reinforces Madelung's and Hund's rules, values of quantum numbers, and understanding of periodicity was designed. The game develops strategic thinking, is not time-consuming, requires minimal preparation and supervision, and is an efficient and fun alternative to more…
Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston
NASA Astrophysics Data System (ADS)
Upadhyaya, Pramey; Tserkovnyak, Yaroslav
2016-07-01
We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.
High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergren, Matthew R.; Makarov, Nikolay S.; Ramasamy, Karthik
Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within themore » existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.« less
Efficient classical simulation of the Deutsch-Jozsa and Simon's algorithms
NASA Astrophysics Data System (ADS)
Johansson, Niklas; Larsson, Jan-Åke
2017-09-01
A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch-Jozsa and Simon's problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch-Jozsa problem with probability 1 using only one oracle query, and Simon's problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch-Jozsa and Simon's problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation.
Spectral analysis of fundamental signal and noise performances in photoconductors for mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ho Kyung; Lim, Chang Hwy; Tanguay, Jesse
2012-05-15
Purpose: This study investigates the fundamental signal and noise performance limitations imposed by the stochastic nature of x-ray interactions in selected photoconductor materials, such as Si, a-Se, CdZnTe, HgI{sub 2}, PbI{sub 2}, PbO, and TlBr, for x-ray spectra typically used in mammography. Methods: It is shown how Monte Carlo simulations can be combined with a cascaded model to determine the absorbed energy distribution for each combination of photoconductor and x-ray spectrum. The model is used to determine the quantum efficiency, mean energy absorption per interaction, Swank noise factor, secondary quantum noise, and zero-frequency detective quantum efficiency (DQE). Results: The quantummore » efficiency of materials with higher atomic number and density demonstrates a larger dependence on convertor thickness than those with lower atomic number and density with the exception of a-Se. The mean deposited energy increases with increasing average energy of the incident x-ray spectrum. HgI{sub 2}, PbI{sub 2}, and CdZnTe demonstrate the largest increase in deposited energy with increasing mass loading and a-Se and Si the smallest. The best DQE performances are achieved with PbO and TlBr. For mass loading greater than 100 mg cm{sup -2}, a-Se, HgI{sub 2}, and PbI{sub 2} provide similar DQE values to PbO and TlBr. Conclusions: The quantum absorption efficiency, average deposited energy per interacting x-ray, Swank noise factor, and detective quantum efficiency are tabulated by means of graphs which may help with the design and selection of materials for photoconductor-based mammography detectors. Neglecting the electrical characteristics of photoconductor materials and taking into account only x-ray interactions, it is concluded that PbO shows the strongest signal-to-noise ratio performance of the materials investigated in this study.« less
Efficiency and formalism of quantum games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.F.; Johnson, Neil F.
We show that quantum games are more efficient than classical games and provide a saturated upper bound for this efficiency. We also demonstrate that the set of finite classical games is a strict subset of the set of finite quantum games. Our analysis is based on a rigorous formulation of quantum games, from which quantum versions of the minimax theorem and the Nash equilibrium theorem can be deduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baykara, N. A.
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraicmore » equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.« less
The application of high efficient yellow phosphorescent material to white OLEDs
NASA Astrophysics Data System (ADS)
Lin, Jin-Sheng; Ku, Chun-Neng; Huang, Pang-Chi; Wu, Cheng-An; Chang, Meng-Hao; Liou, Jia-Lun; Tseng, Mei-Rurng
2014-10-01
A new type of thiopyridinyl-based iridium molecule (POT) was used as the yellow phosphorescent material in our research. On fabricating a yellow PHOLED by doping POT-02 with host as the emitter, the device achieved a high power efficiency of 66.0 lm/W and an external quantum efficiency of 23.2%. On the other hand, a white organic lightemitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in-between double blue phosphorescent emitters. In this study, we introduce a simple process for generating yellow emission of a WOLED by using the B/Y/B EML configuration. The B/Y/B EML configuration can achieve a higher efficiency and a smaller color shift with various operational brightness values. Based on the concept of this device, the molecular engineering of the blue phosphorescent host material as well as the light-extraction film, a WOLED with a power efficiency of 103 lm/W and an external quantum efficiency of 38.2% at a practical brightness of 1000 cd/m2 with CIE coordinates (CIEx, y) of (0.36, 0.48) can be achieved.
Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment
NASA Astrophysics Data System (ADS)
Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin
2017-10-01
Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.
The analytical approach to optimization of active region structure of quantum dot laser
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2014-10-01
Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value.
Optical characterization of Nd (3+):AgBr.
Bunimovich, D; Nagli, L; Katzir, A
1997-10-20
The luminescence of silver bromide crystals, doped with neodymium, was investigated over the visible and near-infrared spectral ranges. The emission, excitation, and absorption spectra were measured over a broad temperature range. The absolute luminescence quantum yield was estimated by comparing the luminescence with that of a neodymium-doped phosphate glass, for which the manufacturer gives a value of 0.4. The Judd-Ofelt analysis was applied to both materials, and transition rates, branching ratios, and quantum efficiencies were calculated for all the observed bands. Good agreement was obtained between theory and experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damtie, Fikeraddis A., E-mail: Fikeraddis.Damtie@teorfys.lu.se; Wacker, Andreas, E-mail: Andreas.Wacker@fysik.lu.se; Karki, Khadga J., E-mail: Khadga.Karki@chemphys.lu.se
Multiple exciton generation (MEG) is a process in which more than one electron hole pair is generated per absorbed photon. It allows us to increase the efficiency of solar energy harvesting. Experimental studies have shown the multiple exciton generation yield of 1.2 in isolated colloidal quantum dots. However real photoelectric devices require the extraction of electron hole pairs to electric contacts. We provide a systematic study of the corresponding quantum coherent processes including extraction and injection and show that a proper design of extraction and injection rates enhances the yield significantly up to values around 1.6.
Highly temperature insensitive quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Y.; Bandyopadhyay, N.; Tsao, S.
2010-12-20
An InP based quantum cascade laser (QCL) heterostructure emitting around 5 {mu}m is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T{sub 0} and T{sub 1}, for operations above room temperature. A T{sub 0} value of 383 K and a T{sub 1} value of 645 K are obtained within a temperature range of 298-373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mmmore » and a ridge width of 8 {mu}m.« less
Balloonborne Lidar Experiment.
1980-12-24
predictable. 1he balloon will be launched with the lidar in standby mode. When an altitude of ib km has been attained, the baroswitch will be opened ...loon will be vaiveo cown to lower altitudes (-bU,0UU ft) and the balloon ruptured on command. lhe payload parachute will open ano the payloac will...values of the quantum efficiencies of the photomultipliers were used, as well as transmission and reflection efficiencies of the optics. The field of
High-Efficiency and High-Power Mid-Wave Infrared Cascade Lasers
2012-10-01
internal quantum efficiency () and factor (2) is usually called the optical extraction efficiency (). The optical extraction efficiency ... quantum efficiency involves more fundamental parameters corresponding to the microscopic processes of the device operation, nevertheless, it can be...deriving parameters such as the internal quantum efficiency of a QC laser, the entire injector miniband can be treated as a single virtual state
Regression relation for pure quantum states and its implications for efficient computing.
Elsayed, Tarek A; Fine, Boris V
2013-02-15
We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.
Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D
NASA Astrophysics Data System (ADS)
Lin, Qianglu
Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum confinement features. The reaction can be explained by a soft-template assisted process, in which the lamellar lead-thiolate precursor transforms into rod-shape micelle in the existence of telluride anions by electrostatic attraction. Fine tuning the reaction condition by changing the solvent to oleylamine, lead telluride nanowires with length up to 200 nm can be prepared, which bundled together because of the strong dipole-dipole attraction between nanowires. Decreasing the amount of surfactant dodecanethiol in the synthesis produces lead telluride nanorings, which formed by attaching four small particles together, leaving the center void. To prepare two-dimensional nanoplatelets, mixture ligands containing two amines with different carbon chain length were used, which initiate oriented attachment of the nanoparticles to form square-shape nanoplatelets. By further adopting stronger binding ligands such as phosphonic acid, PbTe nanoplatelets with micrometer lateral dimension were prepared with extremely sharp near infrared photoluminescence (less than 40 meV), which has never be achieved in quantum dots and other nanostructures.
Weak values in continuous weak measurements of qubits
NASA Astrophysics Data System (ADS)
Qin, Lupei; Liang, Pengfei; Li, Xin-Qi
2015-07-01
For continuous weak measurements of qubits, we obtain exact expressions for weak values (WVs) from the postselection restricted average of measurement outputs, by using both the quantum-trajectory equation (QTE) and the quantum Bayesian approach. The former is applicable to short-time weak measurement, while the latter can relax the measurement strength to finite. We find that even in the "very" weak limit the result can be essentially different from the one originally proposed by Aharonov, Albert, and Vaidman (AAV), in the sense that our result incorporates nonperturbative correction which could be important when the AAV WV is large. Within the Bayesian framework, we obtain also elegant expressions for finite measurement strength and find that the amplifier's noise in quantum measurement has no effect on the WVs. In particular, we obtain very useful results for homodyne measurement in a circuit-QED system, which allows for measuring the real and imaginary parts of the AAV WV by simply tuning the phase of the local oscillator. This advantage can be exploited as an efficient state-tomography technique.
Entanglement routers via a wireless quantum network based on arbitrary two qubit systems
NASA Astrophysics Data System (ADS)
Metwally, N.
2014-12-01
A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.
An efficient quantum circuit analyser on qubits and qudits
NASA Astrophysics Data System (ADS)
Loke, T.; Wang, J. B.
2011-10-01
This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Karoly F.; Vertesi, Tamas
2010-08-15
The I{sub 3322} inequality is the simplest bipartite two-outcome Bell inequality beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three two-outcome measurements per party. In the case of the CHSH inequality the maximal quantum violation can already be attained with local two-dimensional quantum systems; however, there is no such evidence for the I{sub 3322} inequality. In this paper a family of measurement operators and states is given which enables us to attain the maximum quantum value in an infinite-dimensional Hilbert space. Further, it is conjectured that our construction is optimal in the sense that measuring finite-dimensional quantum systems is not enoughmore » to achieve the true quantum maximum. We also describe an efficient iterative algorithm for computing quantum maximum of an arbitrary two-outcome Bell inequality in any given Hilbert space dimension. This algorithm played a key role in obtaining our results for the I{sub 3322} inequality, and we also applied it to improve on our previous results concerning the maximum quantum violation of several bipartite two-outcome Bell inequalities with up to five settings per party.« less
Error modelling of quantum Hall array resistance standards
NASA Astrophysics Data System (ADS)
Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa
2018-04-01
Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.
Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot
2012-01-01
Thermoelectric effect is studied in an Aharonov-Bohm interferometer with an embedded quantum dot (QD) in the Coulomb blockade regime. The electrical conductance, electron thermal conductance, thermopower, and thermoelectric figure-of-merit are calculated by using the Keldysh Green's function method. It is found that the figure-of-merit ZT of the QD ring may be quite high due to the Fano effect originated from the quantum interference effect. Moreover, the thermoelectric efficiency is sensitive to the magnitude of the dot-lead and inter-lead coupling strengthes. The effect of intradot Coulomb repulsion on ZT is significant in the weak-coupling regime, and then large ZT values can be obtained at rather high temperature. PMID:22369454
Practical quantum key distribution protocol without monitoring signal disturbance.
Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato
2014-05-22
Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.
High-efficiency frequency doubling of continuous-wave laser light.
Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman
2011-09-01
We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.
A universal quantum information processor for scalable quantum communication and networks
Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao
2014-01-01
Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks. PMID:25316514
Guo, Qiang; Liu, Hao; Shi, Zhenzhen; Wang, Fuzhi; Zhou, Erjun; Bian, Xingming; Zhang, Bing; Alsaedi, Ahmed; Hayat, Tasawar; Tan, Zhan'ao
2018-02-15
Enhancing the light-harvesting activity is an effective way to improve the power conversion efficiency of solar cells. Although rapid enhancement in the PCE up to a value of 22.1% has been achieved for perovskite solar cells, only part of the sunlight, i.e., with wavelengths below 800-850 nm is utilized due to the limited bandgap of the perovskite materials, resulting in most of the near infrared light being wasted. To broaden the photoresponse of perovskite solar cells, we demonstrate an efficient perovskite/organic integrated solar cell containing both CH 3 NH 3 PbI 3 perovskite and PBDTTT-E-T:IEICO organic photoactive layers. By integrating a low band gap PBDTTT-E-T:IEICO active layer on a perovskite layer, the maximum wavelength for light harvesting of the ISC increased to 930 nm, sharply increasing the utilization of near infrared radiation. In addition, the external quantum efficiency of the integrated device exceeded 50% in the near infrared range. The MAPbI 3 /PBDTTT-E-T:IEICO ISCs show an enhanced short-circuit current density of over 24 mA cm -2 , which is the highest existing value among perovskite/organic integrated solar cells and much higher than the traditional MAPbI 3 based perovskite solar cells. The results reveal that a perovskite/organic integrated structure is a promising strategy to extend and enhance sunlight utilization for perovskite solar cells.
Al-Azawi, Khalida F; Al-Baghdadi, Shaimaa B; Mohamed, Ayad Z; Al-Amiery, Ahmed A; Abed, Talib K; Mohammed, Salam A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2016-01-01
The acid corrosion inhibition process of mild steel in 1 M HCl by 4-[(2-amino-1, 3, 4-thiadiazol-5-yl)methoxy]coumarin (ATC), has been investigated using weight loss technique and scanning electron microscopy (SEM). ATC was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared and nuclear magnetic resonance spectroscopy). The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The adsorption equilibrium constant (K) and standard free energy of adsorption (ΔGads) were calculated. Quantum chemical parameters such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in both the EHOMO and μ values but with a decrease in the ELUMO value. Our research show that the synthesized macromolecule represents an excellent inhibitor for materials in acidic solutions. The efficiency of this macromolecule had maximum inhibition efficiency up to 96 % at 0.5 mM and diminishes with a higher temperature degree, which is revealing of chemical adsorption. An inhibitor molecule were absorbed by metal surface and follow Langmuir isotherms low and establishes an efficient macromolecule inhibitor having excellent inhibitive properties due to entity of S (sulfur) atom, N (nitrogen) atom and O (oxygen) atom.
Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A
2015-06-01
To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Direct quantum process tomography via measuring sequential weak values of incompatible observables.
Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook
2018-01-15
The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.
Quantum Linear System Algorithm for Dense Matrices.
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-02
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.
Quantum nonlinear optics without photons
NASA Astrophysics Data System (ADS)
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
High efficiency coherent optical memory with warm rubidium vapour
Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.
2011-01-01
By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952
High efficiency coherent optical memory with warm rubidium vapour.
Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C
2011-02-01
By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.
Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.
Walther, T; Krysa, A B
2017-12-01
Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Noisy metrology: a saturable lower bound on quantum Fisher information
NASA Astrophysics Data System (ADS)
Yousefjani, R.; Salimi, S.; Khorashad, A. S.
2017-06-01
In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cramér-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the optimal initial state and optimal measurement. The bound is based on the underling dynamics, and its calculation is straightforward and requires only the matrix representation of the quantum maps responsible for encoding the parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision limit are demonstrated by three main examples.
NASA Astrophysics Data System (ADS)
Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.
2018-02-01
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.
Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Sugimoto, Noriaki; Ichiki, Akihisa
2015-09-28
Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs)more » and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.« less
[Definition of quantum efficiency of X-ray detectors].
Zelikman, M I
2001-01-01
Different definitions available in the literature on the quantum efficiency of X-ray detectors are presented and compared. The relationship of this parameter to spatial frequencies for quantum accounting receivers and energy accumulating ones is analyzed. A procedure is proposed for evaluating the quantum efficiency of the detectors in the area of zero spatial frequencies, which is rather simple and requires no special testing equipment.
Free-Space Quantum Signatures Using Heterodyne Measurements.
Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia
2016-09-02
Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.
Jin, Xiao; Chang, Chun; Zhao, Weifeng; Huang, Shujuan; Gu, Xiaobing; Zhang, Qin; Li, Feng; Zhang, Yubao; Li, Qinghua
2018-05-09
The electron-blocking layer (EBL) is important to balance the charge carrier transfer and achieve highly efficient quantum dot light-emitting diodes (QLEDs). Here, we report the utilization of a soluble tert-butyldimethylsilyl chloride-modified poly( p-phenylene benzobisoxazole) (TBS-PBO) as an EBL for simultaneous good charge carrier transfer balance while maintaining a high current density. We show that the versatile TBS-PBO blocks excess electron injection into the quantum dots (QDs), thus leading to better charge carrier transfer balance. It also restricts the undesired QD-to-EBL electron-transfer process, which preserves the superior emission capabilities of the emitter. As a consequence, the TBS-PBO device delivers an external quantum efficiency (EQE) maximum of 16.7% along with a remarkable current density as high as 139 mA/cm 2 with a brightness of 5484 cd/m 2 . The current density of our device is higher than those of insulator EBL-based devices because of the higher conductivity of the TBS-PBO versus insulator EBL, thus helping achieve high luminance values ranging from 1414 to 20 000 cd/cm 2 with current densities ranging from 44 to 648 mA/cm 2 and EQE > 14%. We believe that these unconventional features of the present TBS-PBO-based QLEDs will expand the wide use of TBS-PBO as buffer layers in other advanced QLED applications.
An efficient quantum algorithm for spectral estimation
NASA Astrophysics Data System (ADS)
Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth
2017-03-01
We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.
NASA Astrophysics Data System (ADS)
Schuster, Jonathan; Bellotti, Enrico
2013-06-01
We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.
Variational Quantum Tomography with Incomplete Information by Means of Semidefinite Programs
NASA Astrophysics Data System (ADS)
Maciel, Thiago O.; Cesário, André T.; Vianna, Reinaldo O.
We introduce a new method to reconstruct unknown quantum states out of incomplete and noisy information. The method is a linear convex optimization problem, therefore with a unique minimum, which can be efficiently solved with Semidefinite Programs. Numerical simulations indicate that the estimated state does not overestimate purity, and neither the expectation value of optimal entanglement witnesses. The convergence properties of the method are similar to compressed sensing approaches, in the sense that, in order to reconstruct low rank states, it needs just a fraction of the effort corresponding to an informationally complete measurement.
Type II GaSb quantum ring solar cells under concentrated sunlight.
Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-chung
2014-03-10
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Liu, Shishen; Yu, Zhihua; Liu, Li; Jin, Xing
2017-07-01
In this study, the blue light hazard performances of phosphor converted-light-emitting diodes (pc-LEDs) with red phosphor and red quantum dots (QDs) were compared and analyzed by spectral optimization, which boosts the minimum attainable blue light hazard efficiency of radiation (BLHER) at high values of color rendering index (CRI) and luminous efficacy of radiation (LER) when the correlated color temperature (CCT) value changes from 1800 to 7800 K. It is found that the minimal BLHER value increases with the increase in the CCT value, and the minimal BLHER values of the two spectral models are nearly the same. Note that the QDs' model has advantages at CCT coverage under the same constraints of CRI and LER. Then, the relationships between minimal BLHER, CRI, CCT, and LER of pc-LEDs with QDs' model were analyzed. It is found that the minimal BLHER values are nearly the same when the CRI value changes from 50 to 90. Therefore, the influence of CRI on minimal BLHER is insignificant. Minimal BLHER increases with the increase in the LER value from 240 to 360 lm/W.
Wang, Shunfeng; Wang, Junyong; Zhao, Weijie; Giustiniano, Francesco; Chu, Leiqiang; Verzhbitskiy, Ivan; Zhou Yong, Justin; Eda, Goki
2017-08-09
We report on efficient carrier-to-exciton conversion and planar electroluminescence from tunnel diodes based on a metal-insulator-semiconductor (MIS) van der Waals heterostack consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer tungsten disulfide (WS 2 ). These devices exhibit excitonic electroluminescence with extremely low threshold current density of a few pA·μm -2 , which is several orders of magnitude lower compared to the previously reported values for the best planar EL devices. Using a reference dye, we estimate the EL quantum efficiency to be ∼1% at low current density limit, which is of the same order of magnitude as photoluminescence quantum yield at the equivalent excitation rate. Our observations reveal that the efficiency of our devices is not limited by carrier-to-exciton conversion efficiency but by the inherent exciton-to-photon yield of the material. The device characteristics indicate that the light emission is triggered by injection of hot minority carriers (holes) to n-doped WS 2 by Fowler-Nordheim tunneling and that hBN serves as an efficient hole-transport and electron-blocking layer. Our findings offer insight into the intelligent design of van der Waals heterostructures and avenues for realizing efficient excitonic devices.
Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbin, Christopher R.; Maier, Stefan A.; Kéna-Cohen, Stéphane, E-mail: s.kena-cohen@polymtl.ca
2014-06-09
We demonstrate electroluminescence from Frenkel molecular excitons ultrastrongly coupled to photons of a metal-clad microcavity containing a 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene emissive layer. Thin layers of molybdenum oxide and 4,7-diphenyl-1,10-phenanthroline are used as hole and electron injection layers, respectively. The fabricated devices exhibit an electroluminescence threshold of 3.1 V, a value that is below the bare exciton energy. This result is found to be independent of detuning and consistent with a two-step process for polariton formation. Moreover, we investigate the quantum efficiency of carrier to polariton to photon conversion and obtain an external quantum efficiency of 0.1% for the fabricated structures, an improvement ofmore » 5 orders of magnitude over previous reports.« less
Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.
Sato, Yoshihiro; Doolittle, Brian
2014-11-14
We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.
NASA Technical Reports Server (NTRS)
Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John
1991-01-01
We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.
NASA Astrophysics Data System (ADS)
Gaikwad, Akshay; Rehal, Diksha; Singh, Amandeep; Arvind, Dorai, Kavita
2018-02-01
We present the NMR implementation of a scheme for selective and efficient quantum process tomography without ancilla. We generalize this scheme such that it can be implemented efficiently using only a set of measurements involving product operators. The method allows us to estimate any element of the quantum process matrix to a desired precision, provided a set of quantum states can be prepared efficiently. Our modified technique requires fewer experimental resources as compared to the standard implementation of selective and efficient quantum process tomography, as it exploits the special nature of NMR measurements to allow us to compute specific elements of the process matrix by a restrictive set of subsystem measurements. To demonstrate the efficacy of our scheme, we experimentally tomograph the processes corresponding to "no operation," a controlled-NOT (CNOT), and a controlled-Hadamard gate on a two-qubit NMR quantum information processor, with high fidelities.
NASA Astrophysics Data System (ADS)
Toropov, A. A.; Shevchenko, E. A.; Shubina, T. V.; Jmerik, V. N.; Nechaev, D. V.; Evropeytsev, E. A.; Kaibyshev, V. Kh.; Pozina, G.; Rouvimov, S.; Ivanov, S. V.
2017-07-01
We present theoretical optimization of the design of a quantum well (QW) heterostructure based on AlGaN alloys, aimed at achievement of the maximum possible internal quantum efficiency of emission in the mid-ultraviolet spectral range below 300 nm at room temperature. A sample with optimized parameters was fabricated by plasma-assisted molecular beam epitaxy using the submonolayer digital alloying technique for QW formation. High-angle annular dark-field scanning transmission electron microscopy confirmed strong compositional disordering of the thus-fabricated QW, which presumably facilitates lateral localization of charge carriers in the QW plane. Stress evolution in the heterostructure was monitored in real time during growth using a multibeam optical stress sensor intended for measurements of substrate curvature. Time-resolved photoluminescence spectroscopy confirmed that radiative recombination in the fabricated sample dominated in the whole temperature range up to 300 K. This leads to record weak temperature-induced quenching of the QW emission intensity, which at 300 K does not exceed 20% of the low-temperature value.
Jogenfors, Jonathan; Elhassan, Ashraf Mohamed; Ahrens, Johan; Bourennane, Mohamed; Larsson, Jan-Åke
2015-12-01
Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type.
NASA Astrophysics Data System (ADS)
Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo
2016-04-01
Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A-1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.
Near-infrared quantum cutting in Yb3+ ion doped strontium vanadate
NASA Astrophysics Data System (ADS)
Sawala, N. S.; Bajaj, N. S.; Omanwar, S. K.
2016-05-01
The materials Sr3-x(VO4)2:xYb were successfully synthesized by co-precipitation method varying the concentration of Yb3+ ions from 0 to 0.06 mol. It was characterize by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Yb3+ ion doped tristrontium vanadate (Sr3(VO4)2) phosphors that can convert a photon of UV region (349 nm) into photons of NIR region (978, 996 and 1026 nm). Hence this phosphor could be used as a quantum cutting (QC) luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss due to spectral mismatch of the solar cells. The theoretical value of quantum efficiency (QE) was calculated from steady time decay measurement and the maximum efficiency approached up to 144.43%. The Sr(3-x) (VO4)2:xYb can be potentiality used for betterment of photovoltaic (PV) technology.
Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency
NASA Astrophysics Data System (ADS)
Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng
2018-05-01
Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.
Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency.
Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A; Chen, Ying-Cheng
2018-05-04
Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.
Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Kaji, Hironori; Duan, Lian
2018-02-01
Maintaining high efficiency at high brightness levels is an exigent challenge for real-world applications of thermally activated delayed fluorescent organic light-emitting diodes (TADF-OLEDs). Here, versatile indolocarbazole-isomer derivatives are developed as highly emissive emitters and ideal hosts for TADF-OLEDs to alleviate efficiency roll-off. It is observed that photophysical and electronic properties of these compounds can be well modulated by varying the indolocarbazole isomers. A photoluminescence quantum yield (η PL ) approaching unity and a maximum external quantum efficiency (EQE max ) of 25.1% are obtained for the emitter with indolo[3,2-a]carbazolyl subunit. Remarkably, record-high EQE/power efficiency of 26.2%/69.7 lm W -1 at the brightness level of 5000 cd m -2 with a voltage of only 3.74 V are also obtained using the same isomer as the host in a green TADF-OLED. It is evident that TADF hosts with high η PL values, fast reverse intersystem crossing processes, and balanced charge transport properties may open the path toward roll-off-free TADF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
6.5% efficient perovskite quantum-dot-sensitized solar cell.
Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu
2011-10-05
Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH(3)NH(3))PbI(3) nanocrystal. Spin-coating of the equimolar mixture of CH(3)NH(3)I and PbI(2) in γ-butyrolactone solution (perovskite precursor solution) leads to (CH(3)NH(3))PbI(3) quantum dots (QDs) on nanocrystalline TiO(2) surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.
2007-07-06
quantum efficiency . In AlGaN-based UV LEDs, an electron-blocking layer (EBL) is frequently inserted between the p-type cladding layer and the active...me). This limits the hole injection efficiency into the active region, and hence internal quantum efficiency . Figure 1: (a) Schematic band...less efficient than along the lateral direction because most of the holes ionized from the acceptors are localized inside the quantum wells which are
NASA Astrophysics Data System (ADS)
Sahin, Mehmet
2018-05-01
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Direct state tomography using continuous variable measuring device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuanmin, E-mail: zhuxuanmin@xidian.edu.cn; Wei, Qun
Compared with the conventional quantum state tomography (QST), the efficiency of the direct state tomography (DST) using weak value is very low. However, DST is easily manipulated in experiments. We modify the direct state tomography by using coupling-deformed observables. The modified direct state measurement is valid for arbitrarily large measurement strength. The optimal measurement strengths are obtained to attain the highest efficiency. The efficiency of DST is significantly improved in the modified strategy, and the reconstructed state has no inherent bias. The state reconstruction strategy investigated in this paper might be useful in actual experiments.
Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells.
Pimachev, Artem; Poudyal, Uma; Proshchenko, Vitaly; Wang, Wenyong; Dahnovsky, Yuri
2016-09-29
We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn 2 SnO 4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.
Wang, Xingmei; Hao, Wenqian; Li, Qiming
2017-12-18
This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.
Simulation and optimization of deep violet InGaN double quantum well laser
NASA Astrophysics Data System (ADS)
Alahyarizadeh, Gh.; Ghazai, A. J.; Rahmani, R.; Mahmodi, H.; Hassan, Z.
2012-03-01
The performance characteristics of a deep violet InGaN double quantum well laser diode (LD) such as threshold current ( Ith), external differential quantum efficiency (DQE) and output power have been investigated using the Integrated System Engineering Technical Computer Aided Design (ISE-TCAD) software. As well as its operating parameters such as internal quantum efficiency ( ηi), internal loss ( αi) and transparency threshold current density ( J0) have been studied. Since, we are interested to investigate the mentioned characteristics and parameters independent of well and barrier thickness, therefore to reach a desired output wavelength, the indium mole fraction of wells and barriers has been varied consequently. The indium mole fractions of well and barrier layers have been considered 0.08 and 0.0, respectively. Some important parameters such as Al mole fraction of the electronic blocking layer (EBL) and cavity length which affect performance characteristics were also investigated. The optimum values of the Al mole fraction and cavity length in this study are 0.15 and 400 μm, respectively. The lowest threshold current, the highest DQE and output power which obtained at the emission wavelength of 391.5 nm are 43.199 mA, 44.99% and 10.334 mW, respectively.
Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking
NASA Astrophysics Data System (ADS)
Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.
Practical quantum coin flipping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pappa, Anna; Diamanti, Eleni; Chailloux, Andre
2011-11-15
We show that in the unconditional security model, a single quantum strong coin flip with security guarantees that are strictly better than in any classical protocol is possible to implement with current technology. Our protocol takes into account all aspects of an experimental implementation, including losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts, and finite quantum efficiency. We calculate the abort probability when both players are honest, as well as the probability of one player forcing his desired outcome. For a channel length up to 21 km and commonly used parameter values, we can achievemore » honest abort and cheating probabilities that are better than in any classical protocol. Our protocol is, in principle, implementable using attenuated laser pulses, with no need for entangled photons or any other specific resources.« less
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective
Bylicka, B.; Chruściński, D.; Maniscalco, S.
2014-01-01
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763
Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Stefan, E-mail: stefan.kuhn84@googlemail.com; Tiegel, Mirko; Herrmann, Andreas
2015-09-14
In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information aboutmore » the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.« less
Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien
2018-01-25
Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.
NASA Astrophysics Data System (ADS)
Kohn, Alexander W.; Lin, Zhou; Shepherd, James J.; Van Voorhis, Troy
2016-06-01
For a fluorescent dye, the quantum yield characterizes the efficiency of energy transfer from the absorbed light to the emitted fluorescence. In the screening among potential families of dyes, those with higher quantum yields are expected to have more advantages. From the perspective of theoreticians, an efficient prediction of the quantum yield using a universal excited state electronic structure theory is in demand but still challenging. The most representative examples for such excited state theory include time-dependent density functional theory (TDDFT) and restricted open-shell Kohn-Sham (ROKS). In the present study, we explore the possibility of predicting the quantum yields for conventional and new families of organic dyes using a combination of TDDFT and ROKS. We focus on radiative (kr) and nonradiative (knr) rates for the decay of the first singlet excited state (S_1) into the ground state (S_0) in accordance with Kasha's rule. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950). For each dye compound, kr is calculated with the S_1-S_0 energy gap and transition dipole moment obtained using ROKS and TDDFT respectively at the relaxed S_1 geometry. Our predicted kr agrees well with the experimental value, so long as the order of energy levels is correctly predicted. Evaluation of knr is less straightforward as multiple processes are involved. Our study focuses on the S_1-T_1 intersystem crossing (ISC) and the S_1-S_0 internal conversion (IC): we investigate the properties that allow us to model the knr value using a Marcus-like expression, such as the Stokes shift, the reorganization energy, and the S_1-T_1 and S_1-S_0 energy gaps. Taking these factors into consideration, we compare our results with those obtained using the actual Marcus theory and provide explanation for discrepancy. T. Kowalczyk, T. Tsuchimochi, L. Top, P.-T. Chen, and T. Van Voorhis, J. Chem. Phys., 138, 164101 (2013). M. Kasha, Discuss. Faraday Soc., 9, 14 (1950).
NASA Astrophysics Data System (ADS)
Yang, YuGuang; Zhang, YuChen; Xu, Gang; Chen, XiuBo; Zhou, Yi-Hua; Shi, WeiMin
2018-03-01
Li et al. first proposed a quantum hash function (QHF) in a quantum-walk architecture. In their scheme, two two-particle interactions, i.e., I interaction and π-phase interaction are introduced and the choice of I or π-phase interactions at each iteration depends on a message bit. In this paper, we propose an efficient QHF by dense coding of coin operators in discrete-time quantum walk. Compared with existing QHFs, our protocol has the following advantages: the efficiency of the QHF can be doubled and even more; only one particle is enough and two-particle interactions are unnecessary so that quantum resources are saved. It is a clue to apply the dense coding technique to quantum cryptographic protocols, especially to the applications with restricted quantum resources.
Efficient quantum transmission in multiple-source networks.
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-04-02
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.
NASA Astrophysics Data System (ADS)
Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming
2018-03-01
Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.
Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical-Phonon Scattering
2009-06-01
emit many photons, which allows for differential quantum efficiencies greater than unity and hence higher power output. QCLs have been successfully...maintained. The step in the well allows for high injection efficiency due to the spatial separation of the wavefunctions. A step quantum well, in which at...III.D.34), the photon density is determined to be ( )thiphotonphoton IILeAn − Γ = ητ (III.D.35) where the internal quantum efficiency
Mahall, Bruce E; Tyler, Claudia M; Cole, E Shelly; Mata, Catarina
2009-04-01
Natural recruitment of oaks appears to be declining throughout the northern hemisphere. Summer drought poses a potentially important barrier to oak recruitment in southern California. To evaluate this barrier, we grew evergreen Quercus agrifolia and deciduous Q. lobata from seeds near parental trees. We measured water relations, chlorophyll fluorescence, and gas exchange during these seedlings' fourth and fifth summers and compared them to neighboring adults. Most seedlings had substantially lower values for predawn xylem pressure potential (Ψ(pd)), minimum photosystem II (PSII) quantum efficiency (Φ(PSIIMIN)), maximum quantum efficiency for PSII under dark-adapted leaf conditions (Fv/Fm), and maximum photosynthetic assimilation (Amax), and higher values for maximum nonphotochemical quenching (NPQmax) than did conspecific adults. The high, unvarying Ψ(pd) values of the adults suggest they use perennially available groundwater. Quercus lobata seedlings commonly had lower values for Ψ(pd) than did Q. agrifolia, and values for Ψ(pd) and Φ(PSIIMIN) were significantly related to size in Q. lobata but not in Q. agrifolia. These data suggest important interspecific differences in root architecture. Lower values for Φ(PSIIMIN), Fv/Fm, and higher NPQmax in Q. agrifolia indicate that Q. agrifolia seedlings were usually under more stress than Q. lobata, which typically had higher Amax rates than did Q. agrifolia seedlings. Diurnal photosynthesis curves were quite flat for Q. agrifolia, but they peaked in the morning for Q. lobata. Established seedlings appeared to be under more stress than adults, but this stress did not appear severe enough to cause death. Access to perennially available groundwater may be crucial for the seedling to sapling transition.
Probing finite coarse-grained virtual Feynman histories with sequential weak values
NASA Astrophysics Data System (ADS)
Georgiev, Danko; Cohen, Eliahu
2018-05-01
Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal quantum histories is unity, complete sets of weak values could be interpreted in agreement with the standard quantum mechanical picture. We also elucidate the relationship between sequential weak values of quantum histories with different coarse graining in time and establish the incompatibility of weak values for nonorthogonal quantum histories in history Hilbert space. Bridging theory and experiment, the presented results may enhance our understanding of both weak values and quantum histories.
White organic light-emitting diodes with fluorescent tube efficiency.
Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl
2009-05-14
The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
Counterfactual quantum key distribution with high efficiency
NASA Astrophysics Data System (ADS)
Sun, Ying; Wen, Qiao-Yan
2010-11-01
In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.
Counterfactual quantum key distribution with high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Ying; Beijing Electronic Science and Technology Institute, Beijing 100070; Wen Qiaoyan
2010-11-15
In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.
Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors
NASA Astrophysics Data System (ADS)
Steiner, M. A.; Perl, E. E.; Geisz, J. F.; Friedman, D. J.; Jain, N.; Levi, D.; Horner, G.
2017-04-01
We demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important the bandgap be determined from the external quantum efficiency.
Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors
Steiner, Myles A.; Perl, E. E.; Geisz, J. F.; ...
2017-04-28
Here, we demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important that the bandgap be determined from the external quantum efficiency.
Pate, S. F.; Wester, T.; Bugel, L.; ...
2018-02-28
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pate, S. F.; Wester, T.; Bugel, L.
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
Plasmonic enhancement of electroluminescence
NASA Astrophysics Data System (ADS)
Guzatov, D. V.; Gaponenko, S. V.; Demir, H. V.
2018-01-01
Here plasmonic effect specifically on electroluminescence (EL) is studied in terms of radiative and nonradiative decay rates for a dipole near a metal spherical nanoparticle (NP). Contribution from scattering is taken into account and is shown to play a decisive role in EL enhancement owing to pronounced size-dependent radiative decay enhancement and weak size effect on non-radiative counterpart. Unlike photoluminescence where local incident field factor mainly determines the enhancement possibility and level, EL enhancement is only possible by means of quantum yield rise, EL enhancement being feasible only for an intrinsic quantum yield Q0 < 1. The resulting plasmonic effect is independent of intrinsic emitter lifetime but is exclusively defined by the value of Q0, emission spectrum, NP diameter and emitter-metal spacing. For 0.1< Q0 < 0.25, Ag nanoparticles are shown to enhance LED/OLED intensity by several times over the whole visible whereas Au particles feature lower effect within the red-orange range only. Independently of positive effect on quantum yield, metal nanoparticles embedded in an electroluminescent device will improve its efficiency at high currents owing to enhanced overall recombination rate which will diminish manifestation of Auger processes. The latter are believed to be responsible for the known undesirable efficiency droop in semiconductor commercial quantum well based LEDs at higher current. For the same reason plasmonics can diminish quantum dot photodegradation from Auger process induced non-radiative recombination and photoionization thus opening a way to avoid negative Auger effects in emerging colloidal semiconductor LEDs.
Calculation of key reduction for B92 QKD protocol
NASA Astrophysics Data System (ADS)
Mehic, Miralem; Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav
2015-05-01
It is well known that Quantum Key Distribution (QKD) can be used with the highest level of security for distribution of the secret key, which is further used for symmetrical encryption. B92 is one of the oldest QKD protocols. It uses only two non-orthogonal states, each one coding for one bit-value. It is much faster and simpler when compared to its predecessors, but with the idealized maximum efficiencies of 25% over the quantum channel. B92 consists of several phases in which initial key is significantly reduced: secret key exchange, extraction of the raw key (sifting), error rate estimation, key reconciliation and privacy amplification. QKD communication is performed over two channels: the quantum channel and the classical public channel. In order to prevent a man-in-the-middle attack and modification of messages on the public channel, authentication of exchanged values must be performed. We used Wegman-Carter authentication because it describes an upper bound for needed symmetric authentication key. We explained the reduction of the initial key in each of QKD phases.
Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.
Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao
2013-09-10
Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.
Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.
Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon
2013-01-01
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.
Chen, Cong; Cheng, Yu; Jin, Junjie; Dai, Qilin; Song, Hongwei
2016-10-15
Co-sensitization by using two or more sensitizers with complementary absorption spectra to expand the spectral response range is an effective approach to enhance device performance of quantum dot sensitized solar cells (QDSSCs). To improve the light-harvesting in the visible/near-infrared (NIR) region, organic dye zinc phthalocyanine (ZnPc) was combined with CdS/CdSe quantum dots (QDs) for co-sensitized solar cells based on ZnO inverse opals (IOs) as photoanode. The resulting co-sensitized device shows an efficient panchromatic spectral response feature to ∼750nm and presents an overall conversion efficiency of 4.01%, which is superior to that of the individual ZnPc-sensitized solar cells and CdS/CdSe-sensitized solar cells. Meanwhile, an Au nanoparticles/graphene oxide (Au NPs/GO) composite layer was successfully prepared to modify Cu2S counter electrode for the co-sensitized solar cells. Reducing the carrier recombination process by GO and catalytic process of Au NPs leads to increased power conversion efficiency(PCE) from 4.01 to 4.60% and sustainable stability remains ∼85% of its original value after 60min light exposure. In this paper, introduction of the organic dyes as co-sensitizer and Au NPs/GO as counter electrode modified layer has been proved to be an effective route to improve the performance of QDSSCs. Copyright © 2016 Elsevier Inc. All rights reserved.
Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli
2012-08-01
We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
Wide-Band, High-Quantum-Efficiency Photodetector
NASA Technical Reports Server (NTRS)
Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey
2007-01-01
A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-
Quantum transport in the FMO photosynthetic light-harvesting complex.
Karafyllidis, Ioannis G
2017-06-01
The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.
A Biomimetic-Computational Approach to Optimizing the Quantum Efficiency of Photovoltaics
NASA Astrophysics Data System (ADS)
Perez, Lisa M.; Holzenburg, Andreas
The most advanced low-cost organic photovoltaic cells have a quantum efficiency of 10%. This is in stark contrast to plant/bacterial light-harvesting systems which offer quantum efficiencies close to unity. Of particular interest is the highly effective quantum coherence-enabled energy transfer (Fig. 1). Noting that quantum coherence is promoted by charged residues and local dielectrics, classical atomistic simulations and time-dependent density functional theory (DFT) are used to identify charge/dielectric patterns and electronic coupling at exactly defined energy transfer interfaces. The calculations make use of structural information obtained on photosynthetic protein-pigment complexes while still in the native membrane making it possible to establish a link between supramolecular organization and quantum coherence in terms of what length scales enable fast energy transport and prevent quenching. Calculating energy transfer efficiencies between components based on different proximities will permit the search for patterns that enable defining material properties suitable for advanced photovoltaics.
Highly efficient frequency conversion with bandwidth compression of quantum light
Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine
2017-01-01
Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prudaev, I. A., E-mail: funcelab@gmail.com; Kopyev, V. V.; Romanov, I. S.
The dependences of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes on the temperature and excitation level are studied. The experiment is performed for two luminescence excitation modes. A comparison of the results obtained during photo- and electroluminescence shows an additional (to the loss associated with Auger recombination) low-temperature loss in the high-density current region. This causes inversion of the temperature dependence of the quantum efficiency at temperatures lower than 220–300 K. Analysis shows that the loss is associated with electron leakage from the light-emitting-diode active region. The experimental data are explained using the ballistic-overflow model. The simulationmore » results are in qualitative agreement with the experimental dependences of the quantum efficiency on temperature and current density.« less
Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng
2015-12-30
We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.
Quantum autoencoders for efficient compression of quantum data
NASA Astrophysics Data System (ADS)
Romero, Jonathan; Olson, Jonathan P.; Aspuru-Guzik, Alan
2017-12-01
Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.
Efficient Quantum Transmission in Multiple-Source Networks
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammersley, S.; Dawson, P.; Kappers, M. J.
2015-09-28
InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nmmore » and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.« less
Zhang, Xian-Fu; Feng, Nan
2017-09-19
Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso-aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady-state and time-resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron-donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl-BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T 1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H
2016-01-01
The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.
NASA Astrophysics Data System (ADS)
Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing
2017-08-01
Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.
The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.
Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant
NASA Astrophysics Data System (ADS)
Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.
2017-11-01
We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.
Quantum Linear System Algorithm for Dense Matrices
NASA Astrophysics Data System (ADS)
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-01
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .
Efficient multiuser quantum cryptography network based on entanglement.
Xue, Peng; Wang, Kunkun; Wang, Xiaoping
2017-04-04
We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.
Efficient multiuser quantum cryptography network based on entanglement
Xue, Peng; Wang, Kunkun; Wang, Xiaoping
2017-01-01
We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory. PMID:28374854
Efficient multiuser quantum cryptography network based on entanglement
NASA Astrophysics Data System (ADS)
Xue, Peng; Wang, Kunkun; Wang, Xiaoping
2017-04-01
We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.
Quantum entanglement helps in improving economic efficiency
NASA Astrophysics Data System (ADS)
Du, Jiangfeng; Ju, Chenyong; Li, Hui
2005-02-01
We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.
Single-hidden-layer feed-forward quantum neural network based on Grover learning.
Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min
2013-09-01
In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Highly efficient and stable ultraviolet photocathode based on nanodiamond particles
NASA Astrophysics Data System (ADS)
Velardi, L.; Valentini, A.; Cicala, G.
2016-02-01
Nanodiamond (ND) layers on silicon substrate are deposited by the pulsed spray technique starting from nanoparticles of about 250 nm dispersed in 1,2-dichloroethane solvent. The aim of this letter is to investigate the quantum efficiency (QE) of photocathodes based on ND particles in the vacuum ultraviolet spectral range. Various ND layers are examined employing as-received and hydrogenated nanoparticles. As expected, the hydrogen plasma treatment improves strongly the photoemission of the layer giving a QE of 22% at 146 nm. Indeed, this efficiency value is achieved only if the particles are treated in H2 microwave plasma before the growth of the sprayed layer rather than to hydrogenate the already formed one. These QE values are higher than those of photocathodes based on plasma chemical vapor deposition diamond films, but with the advantage of being much stable, too. The highest QE values are explained to be due to the intrinsic chemical and structural features of utilized ND particles.
Hybrid quantum computing with ancillas
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Kendon, Viv
2016-10-01
In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.
NASA Astrophysics Data System (ADS)
Behzadi, Naghi; Ahansaz, Bahram
2018-04-01
We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.
Efficiency and its bounds for a quantum Einstein engine at maximum power.
Yan, H; Guo, Hao
2012-11-01
We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.
Light storage in a cold atomic ensemble with a high optical depth
NASA Astrophysics Data System (ADS)
Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho
2017-06-01
A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.
NASA Technical Reports Server (NTRS)
Rosenfeld, D.; Bahir, G.
1993-01-01
A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.
Preparation of reflective CsI photocathodes with reproducible high quantum efficiency
NASA Astrophysics Data System (ADS)
Maier-Komor, P.; Bauer, B. B.; Friese, J.; Gernhäuser, R.; Kienle, P.; Körner, H. J.; Montermann, G.; Zeitelhack, K.
1995-02-01
CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 μg/cm 2. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated.
Multiple-state quantum Otto engine, 1D box system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latifah, E., E-mail: enylatifah@um.ac.id; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission
Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik
2015-01-01
Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442
Engineering the quantum anomalous Hall effect in graphene with uniaxial strains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, G. S., E-mail: ginetom@gmail.com; Guassi, M. R.; Qu, F.
2013-12-28
We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of themore » exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.« less
Applying Quantum Monte Carlo to the Electronic Structure Problem
NASA Astrophysics Data System (ADS)
Powell, Andrew D.; Dawes, Richard
2016-06-01
Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).
NASA Astrophysics Data System (ADS)
Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl
2012-10-01
We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.
Improved separability criteria via some classes of measurements
NASA Astrophysics Data System (ADS)
Shen, Shu-Qian; Li, Ming; Li-Jost, Xianqing; Fei, Shao-Ming
2018-05-01
The entanglement detection via local measurements can be experimentally implemented. Based on mutually unbiased measurements and general symmetric informationally complete positive-operator-valued measures, we present separability criteria for bipartite quantum states, which, by theoretical analysis, are stronger than the related existing criteria via these measurements. Two detailed examples are supplemented to show the efficiency of the presented separability criteria.
NASA Astrophysics Data System (ADS)
Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo
2014-10-01
We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.
Santra, Pralay K; Kamat, Prashant V
2013-01-16
Photon management in solar cells is an important criterion as it enables the capture of incident visible and infrared photons in an efficient way. Highly luminescent CdSeS quantum dots (QDs) with a diameter of 4.5 nm were prepared with a gradient structure that allows tuning of absorption and emission bands over the entire visible region without varying the particle size. These crystalline ternary cadmium chalcogenides were deposited within a mesoscopic TiO(2) film by electrophoretic deposition with a sequentially-layered architecture. This approach enabled us to design tandem layers of CdSeS QDs of varying band gap within the photoactive anode of a QD solar cell (QDSC). An increase in power conversion efficiency of 1.97-2.81% with decreasing band gap was observed for single-layer CdSeS, thus indicating varying degrees of photon harvesting. In two- and three-layered tandem QDSCs, we observed maximum power conversion efficiencies of 3.2 and 3.0%, respectively. These efficiencies are greater than the values obtained for the three individually layered photoanodes. The synergy of using tandem layers of the ternary semiconductor CdSeS in QDSCs was systematically evaluated using transient spectroscopy and photoelectrochemistry.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai; ...
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.
McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
NASA Astrophysics Data System (ADS)
McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.
2017-11-01
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Sahin, Mehmet
2018-05-23
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Fundamental rate-loss trade-off for the quantum internet
NASA Astrophysics Data System (ADS)
Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong
2016-11-01
The quantum internet holds promise for achieving quantum communication--such as quantum teleportation and quantum key distribution (QKD)--freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result--putting a practical but general limitation on the quantum internet--enables us to grasp the potential of the future quantum internet.
Fundamental rate-loss trade-off for the quantum internet
Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong
2016-01-01
The quantum internet holds promise for achieving quantum communication—such as quantum teleportation and quantum key distribution (QKD)—freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka–Guha–Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result—putting a practical but general limitation on the quantum internet—enables us to grasp the potential of the future quantum internet. PMID:27886172
Fundamental rate-loss trade-off for the quantum internet.
Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong
2016-11-25
The quantum internet holds promise for achieving quantum communication-such as quantum teleportation and quantum key distribution (QKD)-freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result-putting a practical but general limitation on the quantum internet-enables us to grasp the potential of the future quantum internet.
Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je
2015-01-14
This article describes the effect of manganese (Mn) doping in CdS to improve the photovoltaic performance of quantum dot sensitized solar cells (QDSSCs). The performances of the QDSSCs are examined in detail using a polysulfide electrolyte with a copper sulfide (CuS) counter electrode. Under the illumination of one sun (AM 1.5 G, 100 mW cm(-2)), 10 molar% Mn-doped CdS QDSSCs exhibit a power conversion efficiency (η) of 2.85%, which is higher than the value of 2.11% obtained with bare CdS. The improved photovoltaic performance is due to the impurities from Mn(2+) doping of CdS, which have an impact on the structure of the host material and decrease the surface roughness. The surface roughness and morphology of Mn-doped CdS nanoparticles can be characterised from atomic force microscopy images. Furthermore, the cell device based on the Mn-CdS electrode shows superior stability in the sulfide/polysulfide electrolyte in a working state for over 10 h, resulting in a highly reproducible performance, which is a serious challenge for the Mn-doped solar cell. Our finding provides an effective method for the fabrication of Mn-doped CdS QDs, which can pave the way to further improve the efficiency of future QDSSCs.
Photoluminescence Spectra From The Direct Energy Gap of a-SiQDs
NASA Astrophysics Data System (ADS)
Abdul-Ameer, Nidhal M.; Abdulrida, Moafak C.; Abdul-Hakeem, Shatha M.
2018-05-01
A theoretical model for radiative recombination in amorphous silicon quantum dots (a-SiQDs) was developed. In this model, for the first time, the coexistence of both spatial and quantum confinements were considered. Also, it is found that the photoluminescence exhibits significant size dependence in the range (1-4) nm of the quantum dots. a-SiQDs show visible light emission peak energies and high radiative quantum efficiency at room temperature,in contrast to bulk a-Si structures. The quantum efficiency is sensitive to any change in defect density (the volume nonradiative centers density and/or the surface nonradiative centers density) but, with small dots sizes, the quantum efficiency is insensitive to such defects. Our analysis shows that the photoluminescence intensity increases or decreases by the effect of radiative quantum efficiency. By controlling the size of a-SiQDs, we note that the energy of emission can be tuned. The blue shift is attributed to quantum confinement effect. Meanwhile, the spatial confinement effect is clearly observed in red shift in emission spectra. we found a good agreement with the experimental published data. Therefore, we assert that a-SiQDs material is a promising candidate for visible, tunable, and high performance devices of light emitting.
NASA Astrophysics Data System (ADS)
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-03-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-12-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle
NASA Astrophysics Data System (ADS)
Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui
2014-03-01
The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.
Reliable quantum communication over a quantum relay channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu; Imre, Sandor
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.
2018-05-01
In the experimental determination of the population transfer efficiency between discrete states of a coherently driven quantum system it is often inconvenient to measure the population of the target state. Instead, after the interaction that transfers the population from the initial state to the target state, a second interaction is applied which brings the system back to the initial state, the population of which is easy to measure and normalize. If the transition probability is p in the forward process, then classical intuition suggests that the probability to return to the initial state after the backward process should be p2. However, this classical expectation is generally misleading because it neglects interference effects. This paper presents a rigorous theoretical analysis based on the SU(2) and SU(3) symmetries of the propagators describing the evolution of quantum systems with two and three states, resulting in explicit analytic formulas that link the two-step probabilities to the single-step ones. Explicit examples are given with the popular techniques of rapid adiabatic passage and stimulated Raman adiabatic passage. The present results suggest that quantum-mechanical probabilities degrade faster in repeated processes than classical probabilities. Therefore, the actual single-pass efficiencies in various experiments, calculated from double-pass probabilities, might have been greater than the reported values.
Thermoelectric properties of an interacting quantum dot based heat engine
NASA Astrophysics Data System (ADS)
Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio
2017-06-01
We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.
Direct determination of quantum efficiency of semiconducting films
Faughnan, Brian W.; Hanak, Joseph J.
1986-01-01
Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.
Direct determination of quantum efficiency of semiconducting films
Faughnan, B.W.; Hanak, J.J.
Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.
Communications: quantum teleportation across the Danube.
Ursin, Rupert; Jennewein, Thomas; Aspelmeyer, Markus; Kaltenbaek, Rainer; Lindenthal, Michael; Walther, Philip; Zeilinger, Anton
2004-08-19
Efficient long-distance quantum teleportation is crucial for quantum communication and quantum networking schemes. Here we describe the high-fidelity teleportation of photons over a distance of 600 metres across the River Danube in Vienna, with the optimal efficiency that can be achieved using linear optics. Our result is a step towards the implementation of a quantum repeater, which will enable pure entanglement to be shared between distant parties in a public environment and eventually on a worldwide scale.
Perfect quantum excitation energy transport via single edge perturbation in a complete network
NASA Astrophysics Data System (ADS)
Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad; Ala-Nissila, Tapio
2017-06-01
We consider quantum excitation energy transport (EET) in a network of two-state nodes in the Markovian approximation by employing the Lindblad formulation. We find that EET from an initial site, where the excitation is inserted to the sink, is generally inefficient due to the inhibition of transport by localization of the excitation wave packet in a symmetric, fully-connected network. We demonstrate that the EET efficiency can be significantly increased up to ≈100% by perturbing hopping transport between the initial node and the one connected directly to the sink, while the rate of energy transport is highest at a finite value of the hopping parameter. We also show that prohibiting hopping between the other nodes which are not directly linked to the sink does not improve the efficiency. We show that external dephasing noise in the network plays a constructive role for EET in the presence of localization in the network, while in the absence of localization it reduces the efficiency of EET. We also consider the influence of off-diagonal disorder in the hopping parameters of the network.
Song, Hooyoung; Kim, Jin Soak; Kim, Eun Kyu; Seo, Yong Gon; Hwang, Sung-Min
2010-04-02
The potential of nonpolar a-plane InGaN/GaN multi-quantum wells (MQWs), which are free from a strong piezoelectric field, was demonstrated. An a-GaN template grown on an r-plane sapphire substrate by the multi-buffer layer technique showed high structural quality with an omega full width at half maximum value along the c-axis of 418 arcsec obtained from high-resolution x-ray diffraction analysis. From barrier analysis by deep level transient spectroscopy, it appeared that a-plane InGaN/GaN MQWs can solve the efficiency droop problem as they have a lower electron capture barrier than the c-plane sample. The peak shift of the temperature-dependent photoluminescence signal for the nonpolar InGaN/GaN MQWs was well fitted by Varshni's empirical equation with zero-internal fields. A high photoluminescence efficiency of 0.27 from this sample also showed that nonpolar MQWs can be the key factor to solve the efficiency limitation in conventional c-plane GaN based light emitting diodes.
NASA Astrophysics Data System (ADS)
Guerrero, J. Pablo; Cerdán Pasarán, Andrea; López-Luke, Tzarara; Ramachari, D.; Esparza, Diego; De la Rosa Cruz, Elder; Romero Arellano, Victor Hugo
2016-09-01
In this work are presented the results obtained with solar cells sensitized with quantum dots of cadmium sulphide (CdS) incorporating luminescent materials (NaYF4:Yb/Er). The study revealed that through using a bifunctional layer of NaYF4:Yb/Er submicron rods, the infrared radiation is absorbed in 980nm to generate luminescence in the visible region to 530nm, under the UP-conversion process, in the same way simultaneously, NaYF4:Yb/Er layer causes scattering toward the quantum dots, the emission and scattering generated by this material is reabsorbed by the QD-CdS, and these in turn are absorbing in its range of solar radiation absorption, Thus generates an increase in the electron injection into the semiconductor of TiO2. The results of a cell incorporating NaYF4: Yb/Er at 0.07M shown photoconversion efficiencies of 3.39% improving efficiency with respect to the reference solar cell without using NaYF4: Yb/Er of 1.99%. The obtained values of current and voltage showed a strong dependence of the percentage of NaYF4 Yb/Er, and the mechanism of incorporation of this material.
Kim, Jong-Hoon; Yang, Heesun
2014-09-01
While significant progress of electroluminescent (EL) quantum dot light-emitting diodes (QD-LEDs) that rely exclusively on Cd-containing II-VI quantum dots (QDs) has been reported over the past two decades with respect to device processing and performance, devices based on non-Cd QDs as an active emissive layer (EML) remain at the early stage of development. In this work, utilizing highly luminescent colloidal CuInS2 (CIS)/ZnS QDs, all-solution-processed multilayered QD-LEDs are fabricated by sequentially spin depositing a hole transport layer of poly(9-vinlycarbazole), an EML of CIS/ZnS QDs, and an electron transport layer of ZnO nanoparticles. Our focus in device fabrication is to vary the thickness of the QD EML, which is one of the primary determinants in EL performance but has not been addressed in earlier reports. The device with an optimal EML thickness exhibits a peak luminance of 1564 cd/m2 and current efficiency of 2.52 cd/A. This record value in efficiency is higher by 3-4 times that of CIS QD-LEDs reported previously.
Teleportation of entanglement over 143 km
Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton
2015-01-01
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel. PMID:26578764
Teleportation of entanglement over 143 km.
Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton
2015-11-17
As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.
Efficient entanglement distillation without quantum memory.
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman
2016-05-31
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.
Efficient entanglement distillation without quantum memory
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman
2016-01-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946
High Storage Efficiency and Large Fractional Delay of EIT-Based Memory
NASA Astrophysics Data System (ADS)
Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite
2013-05-01
In long-distance quantum communication and optical quantum computation, an efficient and long-lived quantum memory is an important component. We first experimentally demonstrated that a time-space-reversing method plus the optimum pulse shape can improve the storage efficiency (SE) of light pulses to 78% in cold media based on the effect of electromagnetically induced transparency (EIT). We obtain a large fractional delay of 74 at 50% SE, which is the best record so far. The measured classical fidelity of the recalled pulse is higher than 90% and nearly independent of the storage time, implying that the optical memory maintains excellent phase coherence. Our results suggest the current result may be readily applied to single-photon quantum states due to quantum nature of the EIT light-matter inference. This study advances the EIT-based quantum memory in practical quantum information applications.
Qu, Yuanyuan; Li, Feng; Zhao, Mingwen
2017-05-03
Isotopes separation through quantum sieving effect of membranes is quite promising for industrial applications. For the light hydrogen isotopologues (eg. H 2 , D 2 ), the confinement of potential wells in porous membranes to isotopologues was commonly regarded to be crucial for highly efficient separation ability. Here, we demonstrate from first-principles that a potential barrier is also favorable for efficient hydrogen isotopologues separation. Taking an already-synthesized two-dimensional carbon nitride (C 2 N-h2D) as an example, we predict that the competition between quantum tunneling and zero-point-energy (ZPE) effects regulated by the tensile strain leads to high selectivity and permeance. Both kinetic quantum sieving and equilibrium quantum sieving effects are considered. The quantum effects revealed in this work offer a prospective strategy for highly efficient hydrogen isotopologues separation.
Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination
NASA Astrophysics Data System (ADS)
Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.
2018-03-01
The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.
Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo
2017-12-13
Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.
Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre
2015-09-21
We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigler, C.; Kirch, J. D.; Mawst, L. J.
2014-03-31
Resonant coupling of the transverse-magnetic polarized (guided) optical mode of a quantum-cascade laser (QCL) to the antisymmetric surface-plasmon modes of 2nd-order distributed-feedback (DFB) metal/semiconductor gratings results in strong antisymmetric-mode absorption. In turn, lasing in the symmetric mode, that is, surface emission in a single-lobe far-field beam pattern, is strongly favored over controllable ranges in grating duty cycle and tooth height. By using core-region characteristics of a published 4.6 μm-emitting QCL, grating-coupled surface-emitting (SE) QCLs are analyzed and optimized for highly efficient single-lobe operation. For infinite-length devices, it is found that when the antisymmetric mode is resonantly absorbed, the symmetric mode hasmore » negligible absorption loss (∼0.1 cm{sup −1}) while still being efficiently outcoupled, through the substrate, by the DFB grating. For finite-length devices, 2nd-order distributed Bragg reflector (DBR) gratings are used on both sides of the DFB grating to prevent uncontrolled reflections from cleaved facets. Equations for the threshold-current density and the differential quantum efficiency of SE DFB/DBR QCLs are derived. For 7 mm-long, 8.0 μm-wide, 4.6 μm-emitting devices, with an Ag/InP grating of ∼39% duty cycle, and ∼0.22 μm tooth height, threshold currents as low as 0.45 A are projected. Based on experimentally obtained internal efficiency values from high-performance QCLs, slope efficiencies as high as 3.4 W/A are projected; thus, offering a solution for watt-range, single-lobe CW operation from SE, mid-infrared QCLs.« less
Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan; Liao, Tianjun; Zhang, Yanchao
2016-01-28
A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less
2015-01-22
applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum
All-photonic quantum repeaters
Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong
2015-01-01
Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153
NASA Astrophysics Data System (ADS)
Kuramoto, Masaru; Kobayashi, Seiichiro; Akagi, Takanobu; Tazawa, Komei; Tanaka, Kazufumi; Saito, Tatsuma; Takeuchi, Tetsuya
2018-03-01
We have achieved a high output power of 6 mW from a 441 nm GaN-based vertical-cavity surface-emitting laser (VCSEL) under continuous wave (CW) operation, by reducing both the internal loss and the reflectivity of the front cavity mirror. A preliminary analysis of the internal loss revealed an enormously high transverse radiation loss in a conventional GaN-based VCSEL without lateral optical confinement (LOC). Introducing an LOC structure enhanced the slope efficiency by a factor of 4.7, with a further improvement to a factor of 6.7 upon reducing the front mirror reflectivity. The result was a slope efficiency of 0.87 W/A and an external differential quantum efficiency of 32% under pulsed operation. A flip-chip-bonded VCSEL also exhibited a high slope efficiency of 0.64 W/A and an external differential quantum efficiency of 23% for the front-side output under CW operation. The reflectivity of the cavity mirror was adjusted by varying the number of AlInN/GaN distributed Bragg reflector pairs from 46 to 42, corresponding to reflectivity values from 99.8% to 99.5%. These results demonstrate that a combination of internal loss reduction and cavity mirror control is a very effective way of obtaining a high output GaN-based VCSEL.
Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay
NASA Astrophysics Data System (ADS)
Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I.-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A.
2013-02-01
A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.
Coherent optical memory with high storage efficiency and large fractional delay.
Chen, Yi-Hsin; Lee, Meng-Jung; Wang, I-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A
2013-02-22
A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency. At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of electromagnetically induced transparency-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.
iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit
NASA Astrophysics Data System (ADS)
Huang, Li
2017-12-01
In this paper, we present a new version of the iQIST software package, which is capable of solving various quantum impurity models by using the hybridization expansion (or strong coupling expansion) continuous-time quantum Monte Carlo algorithm. In the revised version, the software architecture is completely redesigned. New basis (intermediate representation or singular value decomposition representation) for the single-particle and two-particle Green's functions is introduced. A lot of useful physical observables are added, such as the charge susceptibility, fidelity susceptibility, Binder cumulant, and autocorrelation time. Especially, we optimize measurement for the two-particle Green's functions. Both the particle-hole and particle-particle channels are supported. In addition, the block structure of the two-particle Green's functions is exploited to accelerate the calculation. Finally, we fix some known bugs and limitations. The computational efficiency of the code is greatly enhanced.
NASA Astrophysics Data System (ADS)
Wang, Hong; Ren, Bao-Cang; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo
2017-10-01
Hyperentanglement has significant applications in quantum information processing. Here we present an efficient hyperentanglement concentration protocol (hyper-ECP) for partially hyperentangled Bell states simultaneously entangled in polarization, spatial-mode and time-bin degrees of freedom (DOFs) with the parameter-splitting method, where the parameters of the partially hyperentangled Bell states are known to the remote parties. In this hyper-ECP, only one remote party is required to perform some local operations on the three DOFs of a photon, only the linear optical elements are considered, and the success probability can achieve the maximal value. Our hyper-ECP can be easily generalized to concentrate the N-photon partially hyperentangled Greenberger-Horne-Zeilinger states with known parameters, where the multiple DOFs have largely improved the channel capacity of long-distance quantum communication. All of these make our hyper-ECP more practical and useful in high-capacity long-distance quantum communication.
An algorithmic approach to solving polynomial equations associated with quantum circuits
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Zinin, M. V.
2009-12-01
In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.
Spectral gain profile of a multi-stack terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.
2014-11-03
The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less
Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials
NASA Astrophysics Data System (ADS)
Guz, Nataliia
In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.
Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction
NASA Astrophysics Data System (ADS)
Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong
2017-08-01
We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.
NASA Astrophysics Data System (ADS)
Motta, Mario; Zhang, Shiwei
2018-05-01
We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.
NASA Astrophysics Data System (ADS)
Mortezapour, Ali; Ahmadi Borji, Mahdi; Lo Franco, Rosario
2017-05-01
Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.
Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots.
Huang, Yaxin; Cheng, Huhu; Shi, Gaoquan; Qu, Liangti
2017-11-08
A high-performance moisture triggered nanogenerator is fabricated by using graphene quantum dots (GQDs) as the active material. GQDs are prepared by direct oxidation and etching of natural graphite powder, which have small sizes of 2-5 nm and abundant oxygen-containing functional groups. After the treatment by electrochemical polarization, the GQDs-based moisture triggered nanogenerator can deliver a high voltage up to 0.27 V under 70% relative humidity variation, and a power density of 1.86 mW cm -2 with an optimized load resistor. The latter value is much higher than the moisture-electric power generators reported previously. The GQD moisture triggered nanogenerator is promising for self-power electronics and miniature sensors.
High efficiency quantum cascade laser frequency comb.
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-03-06
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm -1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.
High efficiency quantum cascade laser frequency comb
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-01-01
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834
Understanding/Modelling of Thermal and Radiation Benefits of Quantum Dot Solar Cells
2008-07-11
GaAs solar cells have been investigated. Strain compensation is a key step in realizing high- efficiency quantum dots solar cells (QDSC). InAs...factor. A strong correlation between the temperature dependent quantum dot electroluminescence peak emission wavelength and the sub-GaAs bandgap...increased efficiency and radiation resistance devices. The incorporation of quantum dots (QDs) into traditional single or multi-junction crystalline solar
NASA Astrophysics Data System (ADS)
Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.
2016-05-01
We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (<3 nm ), the blueshift is almost absent in agreement with the negligible QCSE at such sizes. For QDisks of intermediate sizes there exists a current threshold above which the energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.
Efficiency of quantum vs. classical annealing in nonconvex learning problems
Zecchina, Riccardo
2018-01-01
Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764
Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency
NASA Technical Reports Server (NTRS)
Larsson, Anders; Cody, Jeffrey; Lang, Robert J.
1989-01-01
Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.
Highly retrievable spin-wave-photon entanglement source.
Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei
2015-05-29
Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2016-01-15
Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.
Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despres, Philippe; Beaudoin, Gilles; Gravel, Pierre
2005-04-01
A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected bymore » the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm{sup -1}) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 {mu}Gy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.« less
Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.
Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W
2012-05-06
Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.
Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing
NASA Astrophysics Data System (ADS)
Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta
2017-08-01
This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.
Optimization of top coupling grating for very long wavelength QWIP based on surface plasmon
NASA Astrophysics Data System (ADS)
Wang, Guodong; Shen, Junling; Liu, Xiaolian; Ni, Lu; Wang, Saili
2017-09-01
The relative coupling efficiency of two-dimensional (2D) grating based on surface plasmon for very long wavelength quantum well infrared detector is analyzed by using the three-dimensional finite-difference time domain (3D-FDTD) method algorithm. The relative coupling efficiency with respect to the grating parameters, such as grating pitch, duty ratio, and grating thickness, is analyzed. The calculated results show that the relative coupling efficiency would reach the largest value for the 14.5 μm incident infrared light when taking the grating pitch as 4.4 μm, the duty ratio as 0.325, and the grating thickness as 0.07 μm, respectively.
Magnetic field induced optical gain in a dilute nitride quaternary semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo
2016-10-01
Effects of magnetic field strength on the electronic and optical properties are brought out in a Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot for the applications of desired wavelength in opto-electronic devices. The band alignment is obtained using band anticrossing model and the model solid theory. The magnetic field dependent electron-heavy hole transition energies with the dot radius in a GaInNAs/GaAs quantum dot are investigated. The magnetic field induced oscillator strength as a function of dot radius is studied. The resonant peak values of optical absorption coefficients and the changes of refractive index with the application of magnetic field strength in a GaInNAs/GaAs quantum dot are obtained. The magnetic field induced threshold current density and the maximum optical gain are found in a GaInNAs/GaAs quantum dot. The results show that the optimum wavelength for fibre optical communication networks can be obtained with the variation of applied magnetic field strength and the outcomes may be useful for the design of efficient lasers based on the group III-N-V semiconductors.
Fast and simple high-capacity quantum cryptography with error detection
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.
2017-01-01
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth. PMID:28406240
Fast and simple high-capacity quantum cryptography with error detection.
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A
2017-04-13
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.
Simple procedure for phase-space measurement and entanglement validation
NASA Astrophysics Data System (ADS)
Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.
2017-08-01
It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.
Richings, Gareth W; Habershon, Scott
2017-09-12
We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
Fast and simple high-capacity quantum cryptography with error detection
NASA Astrophysics Data System (ADS)
Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.
2017-04-01
Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.
Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots
NASA Astrophysics Data System (ADS)
Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.
2018-04-01
Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.
Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%
2015-01-01
Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847
Energy efficient quantum machines
NASA Astrophysics Data System (ADS)
Abah, Obinna; Lutz, Eric
2017-05-01
We investigate the performance of a quantum thermal machine operating in finite time based on shortcut-to-adiabaticity techniques. We compute efficiency and power for a paradigmatic harmonic quantum Otto engine by taking the energetic cost of the shortcut driving explicitly into account. We demonstrate that shortcut-to-adiabaticity machines outperform conventional ones for fast cycles. We further derive generic upper bounds on both quantities, valid for any heat engine cycle, using the notion of quantum speed limit for driven systems. We establish that these quantum bounds are tighter than those stemming from the second law of thermodynamics.
NASA Astrophysics Data System (ADS)
Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius
2018-06-01
We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.
Quantum teleportation and information splitting via four-qubit cluster state and a Bell state
NASA Astrophysics Data System (ADS)
Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai
2017-10-01
Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.
Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.
Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Murali, Banavoth; Sarmah, Smritakshi P; Yuan, Mingjian; Sinatra, Lutfan; Alyami, Noktan M; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N; Mohammed, Omar F; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H; Bakr, Osman M
2016-10-01
A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX 3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J. S.; Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117542; Wei, L. F.
We propose a high-efficiency scheme to tomographically reconstruct an unknown quantum state by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the stationary transmissions through a driven dispersively coupled resonator. It is shown that only one kind of QND measurement is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining nondiagonal elements can be similarly determined by transferring them to the diagonal locations after a series of unitary operations. Compared with the tomographic reconstructions based on the usual destructive projectivemore » measurements (wherein one such measurement can determine only one diagonal element of the density matrix), the present reconstructive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.« less
Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B
2016-06-15
Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.
Quantum communication for satellite-to-ground networks with partially entangled states
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that ismore » capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.« less
NASA Astrophysics Data System (ADS)
Whitney, Robert S.
2015-03-01
We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.
Quantum efficiency measurements of eROSITA pnCCDs
NASA Astrophysics Data System (ADS)
Ebermayer, Stefanie; Andritschke, Robert; Elbs, Johannes; Meidinger, Norbert; Strüder, Lothar; Hartmann, Robert; Gottwald, Alexander; Krumrey, Michael; Scholze, Frank
2010-07-01
For the eROSITA X-ray telescope, which is planned to be launched in 2012, detectors were developed and fabricated at the MPI Semiconductor Laboratory. The fully depleted, back-illuminated pnCCDs have an ultrathin pn-junction to improve the low-energy X-ray response function and quantum efficiency. The device thickness of 450 μm is fully sensitive to X-ray photons yielding high quantum efficiency of more than 90% at photon energies of 10 keV. An on-chip filter is deposited on top of the entrance window to suppress visible and UV light which would interfere with the X-ray observations. The pnCCD type developed for the eROSITA telescope was characterized in terms of quantum efficiency and spectral response function. The described measurements were performed in 2009 at the synchrotron radiation sources BESSY II and MLS as cooperation between the MPI Semiconductor Laboratory and the Physikalisch-Technische Bundesanstalt (PTB). Quantum efficiency measurements over a wide range of photon energies from 3 eV to 11 keV as well as spectral response measurements are presented. For X-ray energies from 3 keV to 10 keV the quantum efficiency of the CCD including on-chip filter is shown to be above 90% with an attenuation of visible light of more than five orders of magnitude. A detector response model is described and compared to the measurements.
Recommender engine for continuous-time quantum Monte Carlo methods
NASA Astrophysics Data System (ADS)
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn
2015-03-15
Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less
Simple and Efficient Single Photon Filter for a Rb-based Quantum Memory
NASA Astrophysics Data System (ADS)
Stack, Daniel; Li, Xiao; Quraishi, Qudsia
2015-05-01
Distribution of entangled quantum states over significant distances is important to the development of future quantum technologies such as long-distance cryptography, networks of atomic clocks, distributed quantum computing, etc. Long-lived quantum memories and single photons are building blocks for systems capable of realizing such applications. The ability to store and retrieve quantum information while filtering unwanted light signals is critical to the operation of quantum memories based on neutral-atom ensembles. We report on an efficient frequency filter which uses a glass cell filled with 85Rb vapor to attenuate noise photons by an order of magnitude with little loss to the single photons associated with the operation of our cold 87Rb quantum memory. An Ar buffer gas is required to differentiate between signal and noise photons or similar statement. Our simple, passive filter requires no optical pumping or external frequency references and provides an additional 18 dB attenuation of our pump laser for every 1 dB loss of the single photon signal. We observe improved non-classical correlations and our data shows that the addition of a frequency filter increases the non-classical correlations and readout efficiency of our quantum memory by ~ 35%.
NASA Astrophysics Data System (ADS)
Gruska, Jozef
2012-06-01
One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.
Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2018-02-23
An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.
Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell
NASA Astrophysics Data System (ADS)
Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2018-02-01
An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.
Thermodynamic universality of quantum Carnot engines
Gardas, Bartłomiej; Deffner, Sebastian
2015-10-12
The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less
Efficient quantum circuits for dense circulant and circulant like operators
Zhou, S. S.
2017-01-01
Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed. PMID:28572988
Quantum engine efficiency bound beyond the second law of thermodynamics.
Niedenzu, Wolfgang; Mukherjee, Victor; Ghosh, Arnab; Kofman, Abraham G; Kurizki, Gershon
2018-01-11
According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.
Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.
2015-01-01
Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283
Solving search problems by strongly simulating quantum circuits
Johnson, T. H.; Biamonte, J. D.; Clark, S. R.; Jaksch, D.
2013-01-01
Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in P this would imply that all problems in NP and #P could be solved in polynomial time. PMID:23390585
Quantum efficiency and dark current evaluation of a backside illuminated CMOS image sensor
NASA Astrophysics Data System (ADS)
Vereecke, Bart; Cavaco, Celso; De Munck, Koen; Haspeslagh, Luc; Minoglou, Kyriaki; Moore, George; Sabuncuoglu, Deniz; Tack, Klaas; Wu, Bob; Osman, Haris
2015-04-01
We report on the development and characterization of monolithic backside illuminated (BSI) imagers at imec. Different surface passivation, anti-reflective coatings (ARCs), and anneal conditions were implemented and their effect on dark current (DC) and quantum efficiency (QE) are analyzed. Two different single layer ARC materials were developed for visible light and near UV applications, respectively. QE above 75% over the entire visible spectrum range from 400 to 700 nm is measured. In the spectral range from 260 to 400 nm wavelength, QE values above 50% over the entire range are achieved. A new technique, high pressure hydrogen anneal at 20 atm, was applied on photodiodes and improvement in DC of 30% for the BSI imager with HfO2 as ARC as well as for the front side imager was observed. The entire BSI process was developed 200 mm wafers and evaluated on test diode structures. The knowhow is then transferred to real imager sensors arrays.
Enhancing the absorption and energy transfer process via quantum entanglement
NASA Astrophysics Data System (ADS)
Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang
2018-07-01
The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.
NASA Astrophysics Data System (ADS)
Lin, Yibing; Lin, Yu; Wu, Jihuai; Zhang, Xiaolong; Fang, Biaopeng
2017-03-01
The composite photoanodes based on the ZnO/SnO2 hierarchical structures with high photoelectricity properties have been successfully synthesized, and used in the CdS and CdSe quantum dots co-sensitized solar cells (QDSSCs). In this experiment, the ZnO/SnO2 nanoparticles (ZS-NP) and hierarchical nanosheets-based microflowers (ZS-MF) were prepared by the one-step hydrothermal route and the morphologies of the products were controlled by the solvent variation. An improved power conversion efficiency of 4.98% was achieved for the cell based on the ZS-MF composite photoanodes, which showed an increase of 21.8% compared to the ZS-NP photoanodes (4.09%). This result is mainly connected to the unique superiority of the three-dimensional hierarchical microflower nanostructures for light scattering and quantum dots loading, which is responsible for the increase of photocurrent values and eventual PCE.
Yu, Xinghua; Cai, Xingke; Cui, Haodong; Lee, Seung-Wuk; Yu, Xue-Feng; Liu, Bilu
2017-11-23
Titanium carbide MXene quantum dots (QDs) were synthesized using an effective fluorine-free method as a biocompatible and highly efficient nanoagent for photothermal therapy (PTT) applications. In contrast to the traditional, hazardous and time-consuming process of HF pretreatment, our fluorine-free method is safe and simple. More importantly, abundant Al oxoanions were found to be modified on the MXene QD surface by the fluorine-free method, which endowed the QDs with strong and broad absorption in the NIR region. As a result, the as-prepared MXene QDs exhibited an extinction coefficient as large as 52.8 Lg -1 cm -1 at 808 nm and a photothermal conversion efficiency as high as 52.2%. Both the values are among the best reported so far. The as-prepared MXene QDs achieved simultaneous photoacoustic (PA) imaging and the remarkable PTT effect of tumors. Moreover, MXene QDs showed great biocompatibility without causing noticeable toxicity in vitro and in vivo, indicating their high potential for clinical applications.
Quantum Strategies and Local Operations
NASA Astrophysics Data System (ADS)
Gutoski, Gus
2010-02-01
This thesis is divided into two parts. In Part I we introduce a new formalism for quantum strategies, which specify the actions of one party in any multi-party interaction involving the exchange of multiple quantum messages among the parties. This formalism associates with each strategy a single positive semidefinite operator acting only upon the tensor product of the input and output message spaces for the strategy. We establish three fundamental properties of this new representation for quantum strategies and we list several applications, including a quantum version of von Neumann's celebrated 1928 Min-Max Theorem for zero-sum games and an efficient algorithm for computing the value of such a game. In Part II we establish several properties of a class of quantum operations that can be implemented locally with shared quantum entanglement or classical randomness. In particular, we establish the existence of a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. The existence of this ball is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. We also provide characterizations of local operations in terms of linear functionals that are positive and "completely" positive on a certain cone of Hermitian operators, under a natural notion of complete positivity appropriate to that cone. We end the thesis with a discussion of the properties of no-signaling quantum operations.
General Quantum Meet-in-the-Middle Search Algorithm Based on Target Solution of Fixed Weight
NASA Astrophysics Data System (ADS)
Fu, Xiang-Qun; Bao, Wan-Su; Wang, Xiang; Shi, Jian-Hong
2016-10-01
Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is \\sumj = 0d {(O(\\sqrt {Cn - k + 1d - j }) + O(C_kj log C_k^j))} with Σd i =0 Ck i memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm. Supported by the National Basic Research Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant No. 61502526
Coherent spin control of a nanocavity-enhanced qubit in diamond
Li, Luozhou; Lu, Ming; Schroder, Tim; ...
2015-01-28
A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less
III-nitride quantum dots for ultra-efficient solid-state lighting
Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; ...
2016-05-23
III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less
The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanguay, Jesse; Yun, Seungman; School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735
Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondarymore » quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.« less
Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav
2014-12-04
A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.
Quantum computation with classical light: Implementation of the Deutsch-Jozsa algorithm
NASA Astrophysics Data System (ADS)
Perez-Garcia, Benjamin; McLaren, Melanie; Goyal, Sandeep K.; Hernandez-Aranda, Raul I.; Forbes, Andrew; Konrad, Thomas
2016-05-01
We propose an optical implementation of the Deutsch-Jozsa Algorithm using classical light in a binary decision-tree scheme. Our approach uses a ring cavity and linear optical devices in order to efficiently query the oracle functional values. In addition, we take advantage of the intrinsic Fourier transforming properties of a lens to read out whether the function given by the oracle is balanced or constant.
Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement
NASA Astrophysics Data System (ADS)
Liao, Xiang-Ping; Zhou, Xin; Fang, Mao-Fa
2018-03-01
An efficient method is proposed to improve qubit phase estimation in amplitude-damping channel by partial-collapse measurement in this paper. It is shown that the quantum Fisher information (QFI) can be distinctly enhanced under amplitude-damping decoherence with partial-collapse measurement. Moreover, the optimal QFI is approximately close to the maximum value 1 regardless of the decoherence parameter by choosing the appropriate measurement strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitez, Juan A.; Sanchez, Morella; Ruette, Fernando
Application of simulated annealing (SA) and simplified GSA (SGSA) techniques for parameter optimization of parametric quantum chemistry method (CATIVIC) was performed. A set of organic molecules were selected for test these techniques. Comparison of the algorithms was carried out for error function minimization with respect to experimental values. Results show that SGSA is more efficient than SA with respect to computer time. Accuracy is similar in both methods; however, there are important differences in the final set of parameters.
On the security of semi-device-independent QKD protocols
NASA Astrophysics Data System (ADS)
Chaturvedi, Anubhav; Ray, Maharshi; Veynar, Ryszard; Pawłowski, Marcin
2018-06-01
While fully device-independent security in (BB84-like) prepare-and-measure quantum key distribution (QKD) is impossible, it can be guaranteed against individual attacks in a semi-device-independent (SDI) scenario, wherein no assumptions are made on the characteristics of the hardware used except for an upper bound on the dimension of the communicated system. Studying security under such minimal assumptions is especially relevant in the context of the recent quantum hacking attacks wherein the eavesdroppers can not only construct the devices used by the communicating parties but are also able to remotely alter their behavior. In this work, we study the security of a SDIQKD protocol based on the prepare-and-measure quantum implementation of a well-known cryptographic primitive, the random access code (RAC). We consider imperfect detectors and establish the critical values of the security parameters (the observed success probability of the RAC and the detection efficiency) required for guaranteeing security against eavesdroppers with and without quantum memory. Furthermore, we suggest a minimal characterization of the preparation device in order to lower the requirements for establishing a secure key.
Single-photon quantum key distribution in the presence of loss
NASA Astrophysics Data System (ADS)
Curty, Marcos; Moroder, Tobias
2007-05-01
We investigate two-way and one-way single-photon quantum key distribution (QKD) protocols in the presence of loss introduced by the quantum channel. Our analysis is based on a simple precondition for secure QKD in each case. In particular, the legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or that there exists no quantum state having a symmetric extension (one-way QKD), that is compatible with the available measurements results. We show that both criteria can be formulated as a convex optimization problem known as a semidefinite program, which can be efficiently solved. Moreover, we prove that the solution to the dual optimization corresponds to the evaluation of an optimal witness operator that belongs to the minimal verification set of them for the given two-way (or one-way) QKD protocol. A positive expectation value of this optimal witness operator states that no secret key can be distilled from the available measurements results. We apply such analysis to several well-known single-photon QKD protocols under losses.
Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%
NASA Astrophysics Data System (ADS)
Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Bagaev, T. A.; Andreev, A. Yu.; Telegin, K. Yu.; Lobintsov, A. V.; Davydova, E. I.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Ivanova, E. B.; Simakov, V. A.
2017-05-01
The results of the development and fabrication of laser diode bars (λ = 800 - 810 nm) based on AlGaAs/GaAs quantum-well heterostructures with a high efficiency are presented. An increase in the internal quantum and external differential efficiencies together with a decrease in the working voltage and the series resistance allowed us to improve the output parameters of the semiconductor laser under quasi-cw pumping. The output power of the laser diode bars with a 5-mm transverse length reached 210 W, and the efficiency was ~70%.
Hybrid Molecule-Nanocrystal Photon Upconversion Across the Visible and Near-Infrared
2015-07-10
applications in solar energy, biological imaging , and data storage. In this Letter, CdSe and PbSe semiconductor nanocrystals are combined with molecular...Goldschmidt, J. C. Absolute Upconversion Quantum Yield of β-NaYF4 Doped with Er3+ and External Quantum Efficiency of Upconverter Solar Cell Devices...C. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell . Science 2011, 334, 1530−1533. (37) Choi, J.-H
Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.
Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A
2012-06-29
Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.
2007-12-01
realized with silicon due to its indirect band gap that results in poor quantum efficiency . The first LEDs and laser diodes were developed with...deep UV (λ < 340 nm) still face many challenges and have low internal quantum efficiency . Jong Kyu Kim et al. have developed a light emitting triode...LET) to try to overcome some of the challenges and 16 have produced a lighting device with increased quantum efficiency (16). AlxGa1-xN has been
How to squeeze high quantum efficiency and high time resolution out of a SPAD
NASA Technical Reports Server (NTRS)
Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.
1993-01-01
We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.
Tandem luminescent solar concentrators based on engineered quantum dots
NASA Astrophysics Data System (ADS)
Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.
2018-02-01
Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.
Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide.
Bock, Matthias; Lenhard, Andreas; Chunnilall, Christopher; Becher, Christoph
2016-10-17
We present the realization of a highly efficient photon pair source based on spontaneous parametric downconversion (SPDC) in a periodically poled lithium niobate (PPLN) ridge waveguide. The source is suitable for long distance quantum communication applications as the photon pairs are located at the centers of the telecommunication O- and C- band at 1312 nm and 1557 nm. The high efficiency is confirmed by a conversion efficiency of 4 × 10-6 - which is to our knowledge among the highest conversion efficiencies reported so far - and a heralding efficiency of 64.1 ± 2.1%. The heralded single-photon properties are confirmed by the measurement of the photon statistics with a Click/No-Click method as well as the heralded g(2)-function. A minimum value for g(2)(0) of 0.001 ± 0.0003 indicating clear antibunching has been observed.
NASA Astrophysics Data System (ADS)
Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla
2018-02-01
In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.
A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.
Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin
2014-06-01
The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.
Mihalache, Iuliana; Radoi, Antonio; Pascu, Razvan; Romanitan, Cosmin; Vasile, Eugenia; Kusko, Mihaela
2017-08-30
In this work, a significant improvement of the classical silicon nanowire (SiNW)-based photodetector was achieved through the realization of core-shell structures using newly designed GQD PEI s via simple solution processing. The poly(ethyleneimine) (PEI)-assisted synthesis successfully tuned both optical and electrical properties of graphene quantum dots (GQDs) to fulfill the requirements for strong yellow photoluminescence emission along with large band gap formation and the introduction of electronic states inside the band gap. The fabrication of a GQD PEI -based device was followed by systematic structural and photoelectronic investigation. Thus, the GQD PEI /SiNW photodetector exhibited a large photocurrent to dark current ratio (I ph /I dark up to ∼0.9 × 10 2 under 4 V bias) and a remarkable improvement of the external quantum efficiency values that far exceed 100%. In this frame, GQD PEI s demonstrate the ability to arbitrate both charge-carrier photogeneration and transport inside a heterojunction, leading to simultaneous attendance of various mechanisms: (i) efficient suppression of the dark current governed by the type I alignment in energy levels, (ii) charge photomultiplication determined by the presence of the PEI-induced electron trap levels, and (iii) broadband ultraviolet-to-visible downconversion effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chichibu, S. F., E-mail: chichibulab@yahoo.co.jp; Hazu, K.; Furusawa, K.
2014-12-07
Structural and optical qualities of half-a-μm-thick m-plane Al{sub 1−x}In{sub x}N epilayers grown by metalorganic vapor phase epitaxy were remarkably improved via coherent growth on a low defect density m-plane freestanding GaN substrate prepared by hydride vapor phase epitaxy. All the epilayers unexceptionally suffer from uniaxial or biaxial anisotropic in-plane stress. However, full-width at half-maximum values of the x-ray ω-rocking curves were nearly unchanged as the underlayer values being 80 ∼ 150 arc sec for (101{sup ¯}0) and (101{sup ¯}2) diffractions with both 〈0001〉 and 〈112{sup ¯}0〉 azimuths, as long as pseudomorphic structure was maintained. Such Al{sub 1−x}In{sub x}N epilayers commonly exhibited a broadmore » but predominant luminescence peak in ultraviolet (x ≤ 0.14) to green (x = 0.30) wavelengths. Its equivalent value of the internal quantum efficiency at room temperature was as high as 67% for x = 0.14 and 44% for x = 0.30. Because its high-energy cutoff commonly converged with the bandgap energy, the emission peak is assigned to originate from the extended near-band-edge states with strong carrier localization.« less
Searching for low-workfunction phases in the Cs-Te system: The case of Cs2Te5
NASA Astrophysics Data System (ADS)
Ruth, Anthony; Németh, Károly; Harkay, Katherine C.; Terdik, Joseph Z.; Spentzouris, Linda; Terry, Jeff
2013-05-01
We have computationally explored workfunction values of Cs2Te5 surfaces, an existing crystalline phase of the Cs-Te system and a small bandgap semiconductor, in order to search for reduced workfunction alternatives of Cs2Te that preserve the exceptionally high quantum efficiency of the Cs2Te seasoned photoemissive material. We have found that the Cs2Te5(010) surface exhibits a workfunction value of ≈1.9 eV when it is covered by Cs atoms. Cs2Te5 is analogous to our recently proposed low-workfunction materials, Cs2TeC2, and other ternary acetylides [J. Z. Terdik et al., Phys. Rev. B 86, 035142 (2012)], in as much as it also contains quasi one-dimensional substructures embedded in a Cs-matrix, forming the foundation for anomalous workfunction anisotropy and low workfunction values. The one-dimensional substructures in Cs2Te5 are polytelluride ions in a tetragonal rod-like packing. Cs2Te5 has the advantage of simpler composition and availability as compared to Cs2TeC2; however, its low workfunction surface is less energetically favored to the other surfaces than in Cs2TeC2. A significant and remarkable advantage of Cs2Te5 as compared to Cs2Te is its high optical absorption of visible photons that can allow for high quantum efficiency electron emission at visible photon energies.
Quantum Correlations in Nonlocal Boson Sampling.
Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C
2017-09-22
Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.
Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.
Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2016-02-19
The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.
High-efficiency wavefunction updates for large scale Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed
Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.
Optoelectronic response of a WS2 tubular p-n junction
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Onga, M.; Qin, F.; Shi, W.; Zak, A.; Tenne, R.; Smet, J.; Iwasa, Y.
2018-07-01
Due to their favourable and rich electronic and optical properties, group-VI-B transition-metal dichalcogenides (TMDs) have attracted considerable interest. They have earned their position in the materials portfolio of the spintronics and valleytronics communities. The electrical performance of TMDs is enhanced by rolling up the two-dimensional (2D) sheets to form quasi-one-dimensional (1D) tubular structures. The fabrication of p-n junctions out of these tubular TMDs would boost their potential for optoelectronic devices as such junctions represent a fundamental building block. Here, we report the realization of a p-n junction out of a single, isolated WS2-nanotube (WS2-NT). Light-emitting diode operation and photovoltaic behaviour were observed based on such p-n junctions. The emitted light as well as the photovoltaic effect exhibit strong linear polarization characteristics due to the quasi-1D nature. The external quantum efficiency for the photovoltaic effect reaches a value as high as 4.8%, exceeding by far that of 2D TMDs and even approaching the internal quantum efficiency of the 2D TMDs. This efficiency improvement indicates that TMD nanotubes are superior candidates over 2D TMDs for optoelectronic applications.
Optimal architectures for long distance quantum communication.
Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D; Jiang, Liang
2016-02-15
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥ 1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.
Optimal architectures for long distance quantum communication
Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang
2016-01-01
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances. PMID:26876670
Optimal architectures for long distance quantum communication
NASA Astrophysics Data System (ADS)
Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang
2016-02-01
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.
Cavity-based quantum networks with single atoms and optical photons
NASA Astrophysics Data System (ADS)
Reiserer, Andreas; Rempe, Gerhard
2015-10-01
Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.
Efficient quantum circuits for one-way quantum computing.
Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco
2009-03-13
While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.
NASA Astrophysics Data System (ADS)
Kliesch, M.; Gogolin, C.; Kastoryano, M. J.; Riera, A.; Eisert, J.
2014-07-01
This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice systems with short-range interactions. We provide results leading to a local definition of temperature, thereby extending the notion of "intensivity of temperature" to interacting quantum models. More precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly given in terms of a generalized covariance. For this covariance, we prove exponential clustering of correlations above a universal critical temperature that upper bounds physical critical temperatures such as the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature, local expectation values can be approximated efficiently in the error and the system size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, H. P.; Kuhnelt, M.; Wenisch, H.
2001-06-15
We investigate exciton subband transitions in a ZnSe/Zn{sub 1{minus}x}Mg{sub x}S{sub y}Se{sub 1{minus}y} multiple-quantum-well grown by molecular beam epitaxy waveguide structure by photoluminescence excitation and two-photon excitation spectroscopy. A continuous-wave two-photon absorption is realized by an efficient waveguide coupling scheme within the cryostat. From the energetic position of the 1s and 2p exciton transitions exciton binding energies of 33 and 38 meV are deduced for heavy and light-hole excitons, respectively. With these values we are able to determine the strain free and dimensionless conduction-band-offset parameter to Q{sub c}=0.3{+-}0.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Xiaotong; Van den Nest, Maarten; Buerschaper, Oliver
We propose a non-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators drawn from the group 〈αI, X, S〉, where α = e{sup iπ/4} and S = diag(1, i). We provide techniques to efficiently compute various properties related to bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians, etc. We also highlight significant differences compared to the Pauli stabilizer formalism. In particular, we give examplesmore » of states in our formalism which cannot arise in the Pauli stabilizer formalism, such as topological models that support non-Abelian anyons.« less
High Performance Organic Materials and Devices
2006-03-31
on this material exhibited external quantum efficiency of 2.48% and electroluminescence efficiency as high as 3.33 cd/A. 15. SUBJECT TERMS 16...International de L’Eclairage coordinate at (0.164, 0.188). The external quantum efficiency of 2.48% and electroluminescence efficiency as high as 3.33 cd...more than 90% absorption in active layer, and highly balanced carrier transport. 4 5. High efficient blue- electroluminescence device shows maximum
Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.
Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen
2014-02-01
In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.
Low quantum defect laser performance
NASA Astrophysics Data System (ADS)
Bowman, Steven R.
2017-01-01
Low quantum defect lasers are possible using near-resonant optical pumping. This paper examines the laser material performance as the quantum defect of the laser is reduced. A steady-state model is developed, which incorporates the relevant physical processes in these materials and predicts extraction efficiency and waste heat generation. As the laser quantum defect is reduced below a few percent, the impact of fluorescence cooling must be included in the analysis. The special case of a net zero quantum defect laser is examined in detail. This condition, referred to as the radiation balance laser (RBL), is shown to provide two orders of magnitude lower heat generation at the cost of roughly 10% loss in extraction efficiency. Numerical examples are presented with the host materials Yb:YAG and Yb:Silica. The general conditions, which yield optimal laser efficiency, are derived and explored.
Efficient multiparty quantum-secret-sharing schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Li; Deng Fuguo; Key Laboratory for Quantum Information and Measurements, MOE, Beijing 100084
In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] wheremore » all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information.« less
Extreme Quantum Memory Advantage for Rare-Event Sampling
NASA Astrophysics Data System (ADS)
Aghamohammadi, Cina; Loomis, Samuel P.; Mahoney, John R.; Crutchfield, James P.
2018-02-01
We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r , for any large real number r . Then, for a sequence of processes each labeled by an integer size N , we compare how the classical and quantum required memories scale with N . In this setting, since both memories can diverge as N →∞ , the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N →∞ , but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.
Matroids and quantum-secret-sharing schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarvepalli, Pradeep; Raussendorf, Robert
A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previousmore » work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.« less
Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels
NASA Astrophysics Data System (ADS)
Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.
2018-05-01
Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.
NASA Astrophysics Data System (ADS)
Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.; Gross, David
2017-09-01
The outcomes of quantum mechanical measurements are inherently random. It is therefore necessary to develop stringent methods for quantifying the degree of statistical uncertainty about the results of quantum experiments. For the particularly relevant task of quantum state tomography, it has been shown that a significant reduction in uncertainty can be achieved by taking the positivity of quantum states into account. However—the large number of partial results and heuristics notwithstanding—no efficient general algorithm is known that produces an optimal uncertainty region from experimental data, while making use of the prior constraint of positivity. Here, we provide a precise formulation of this problem and show that the general case is NP-hard. Our result leaves room for the existence of efficient approximate solutions, and therefore does not in itself imply that the practical task of quantum uncertainty quantification is intractable. However, it does show that there exists a non-trivial trade-off between optimality and computational efficiency for error regions. We prove two versions of the result: one for frequentist and one for Bayesian statistics.
Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer.
Wang, Hai-Qiao; Li, Yong-Qiang; Wang, Jian-Hao; Xu, Qiao; Li, Xiu-Qing; Zhao, Yuan-Di
2008-03-03
The resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and quantum dots (QDs, emission at 593 nm) acceptors (CRET) was investigated. The resonance energy transfer efficiencies were compared while the oil soluble QDs, water soluble QDs (modified with thioglycolate) and QD-HRP conjugates were used as acceptor. The fluorescence of QD can be observed in the three cases, indicating that the CRET occurs while QD acceptor in different status was used. The highest CRET efficiency (10.7%) was obtained in the case of oil soluble QDs, and the lowest CRET efficiency (2.7%) was observed in the QD-HRP conjugates case. This result is coincident with the quantum yields of the acceptors (18.3% and 0.4%). The same result was observed in another similar set of experiment, in which the amphiphilic polymer modified QDs (emission at 675 nm) were used. It suggests that the quantum yield of the QD in different status is the crucial factor to the CRET efficiency. Furthermore, the multiplexed CRET between luminol donor and three different sizes QD acceptors was observed simultaneously. This work will offer useful support for improving the CRET studies based on quantum dots.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Loading a single photon into an optical cavity
NASA Astrophysics Data System (ADS)
Du, Shengwang; Liu, Chang; Sun, Yuan; Zhao, Luwei; Zhang, Shanchao; Loy, M. M. T.
2015-05-01
Confining and manipulating single photons inside a reflective optical cavity is an essential task of cavity quantum electrodynamics (CQED) for probing the quantum nature of light quanta. Such systems are also elementary building blocks for many protocols of quantum network, where remote cavity quantum nodes are coupled through flying photons. The connectivity and scalability of such a quantum network strongly depends on the efficiency of loading a single photon into cavity. In this work we demonstrate that a single photon with an optimal temporal waveform can be efficiently loaded into a cavity. Using heralded narrow-band single photons with exponential growth wave packet whose time constant matches the photon lifetime in the cavity, we demonstrate a loading efficiency of more than 87 percent from free space to a single-sided Fabry-Perot cavity. Our result and approach may enable promising applications in realizing large-scale CQED-based quantum networks. The work was supported by the Hong Kong RGC (Project No. 601411).
An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States
NASA Astrophysics Data System (ADS)
Liu, Wen-Jie; Xu, Yong; Yang, Ching-Nung; Gao, Pei-Pei; Yu, Wen-Bin
2018-01-01
Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391-2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245-4254, 2015). In this study, we will show Zhu et al.'s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations { I, Z, X, Y} to encode two bits instead of the original two operations { I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper's flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.
Modeling and simulation of InGaN/GaN quantum dots solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aissat, A., E-mail: sakre23@yahoo.fr; LASICOMLaboratory, Faculty of Sciences, University of Blida 1; Benyettou, F.
2016-07-25
Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In{sub 0.25}Ga{sub 0.75}N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In{sub 0.25}Ga{sub 0.75}N/GaN quantum dots with pin solar cell. The conversion efficiencymore » begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Feng; Ren, Yinghui; Bian, Wensheng, E-mail: bian@iccas.ac.cn
The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm{sup −1} is in excellent agreement with the benchmark value of 23.8 cm{sup −1}more » computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm{sup −1}. Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed.« less
High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna
We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.
Quantum discord and Maxwell's demons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurek, Wojciech Hubert
2003-01-01
Quantum discord was proposed as an information-theoretic measure of the 'quantumness' of correlations. I show that discord determines the difference between the efficiency of quantum and classical Maxwell's demons - that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum operations - in extracting work from collections of correlated quantum systems.
Entanglement and Weak Values: A Quantum Miracle Cookbook
NASA Astrophysics Data System (ADS)
Botero, Alonso
The concept of the weak value has proved to be a powerful and operationally grounded framework for the assignment of physical properties to a quantum system at any given time. More importantly, this framework has allowed us to identify a whole range of surprising quantum effects, or "miracles", which are readily testable but which lie buried "under the noise" when the results of measurements are not post-selected. In all cases, these miracles have to do with the fact that weak values can take values lying outside the conventional ranges of quantum expectation values. We explore the extent to which such miracles are possible within the weak value framework. As we show, given appropriate initial and final states, it is generally possible to produce any set of weak values that is consistent with the linearity of weak values, provided that the states are entangled states of the system with some external ancillary system. Through a simple constructive proof, we obtain a recipe for arbitrary quantum miracles, and give examples of some interesting applications. In particular, we show how the classical description of an infinitely-localized point in phase-space is contained in the weak-value framework augmented by quantum entanglement. [Editor's note: for a video of the talk given by Prof. Botero at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-27.
NASA Astrophysics Data System (ADS)
Tsvid, Gene
Semiconductor laser active regions are commonly characterized by photo- and electro-luminescence (PL, EL) and cavity length analysis. However quantitative spectral information is not readily extracted from PL and EL data and comparison of different active region materials can be difficult. More quantifiable spectral information is contained in the optical gain spectra. This work reports on spectral gain studies, using multi-segmented interband devices, of InGaAs quantum well and quantum dot active regions grown by metalorganic chemical vapor deposition (MOCVD). Using the fundamental connection between gain and spontaneous emission spectra, the spontaneous radiative current and spontaneous radiative efficiency is evaluated for these active regions. The spectral gain and spontaneous radiative efficiency measurements of 980 nm emitting InGaAs quantum well (QW) material provides a benchmark comparison to previous results obtained on highly-strained, 1200 nm emitting InGaAs QW material. These studies provide insight into carrier recombination and the role of the current injection efficiency in InGaAs QW lasers. The spectral gain of self-assembled MOCVD grown InGaAs quantum dots (QD) active regions are also investigated, allowing for comparison to InGaAs QW material. The second part of my talk will cover intersubband-transition QW and quantum-box (QB) lasers. Quantum cascade (QC) lasers have emerged as compact and technologically important light sources in the mid-infrared (IR) and far-IR wavelength ranges infringing on the near-IR and terahertz spectral regions respectively. However, the overall power conversion efficiency, so-called wallplug efficiency, of the best QC lasers, emitting around 5 microns, is ˜9% in CW operation and very unlikely to exceed 15%. In order to dramatically improve the wallplug efficiency of mid-IR lasers (i.e., to about 50%), intersubband QB (IQB) lasers have been proposed. The basic idea, the optimal design and the progress towards the fabrication of IQB lasers will be presented.
High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light.
Lee, Wook-Jae; Senanayake, Pradeep; Farrell, Alan C; Lin, Andrew; Hung, Chung-Hong; Huffaker, Diana L
2016-01-13
InAs1-xSbx nanowires have recently attracted interest for infrared sensing applications due to the small bandgap and high thermal conductivity. However, previous reports on nanowire-based infrared sensors required low operating temperatures in order to mitigate the high dark current and have shown poor sensitivities resulting from reduced light coupling efficiency beyond the diffraction limit. Here, InAsSb nanopillar photodiodes with high quantum efficiency are achieved by partially coating the nanopillar with metal that excites localized surface plasmon resonances, leading to quantum efficiencies of ∼29% at 2390 nm. These high quantum efficiency nanopillar photodiodes, with 180 nm diameters and 1000 nm heights, allow operation at temperatures as high as 220 K and exhibit a detection wavelength up to 3000 nm, well beyond the diffraction limit. The InAsSb nanopillars are grown on low cost GaAs (111)B substrates using an InAs buffer layer, making our device architecture a promising path toward low-cost infrared focal plane arrays with high operating temperature.
Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound
NASA Astrophysics Data System (ADS)
Shiraishi, Naoto; Tajima, Hiroyasu
2017-08-01
A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.
Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.
Shiraishi, Naoto; Tajima, Hiroyasu
2017-08-01
A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.
NASA Astrophysics Data System (ADS)
Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl
2018-04-01
In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.
NASA Technical Reports Server (NTRS)
Taylor, R. C.; Hettrick, M. C.; Malina, R. F.
1983-01-01
High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.
2010-02-23
reflection, thus increasing the quantum efficiency by one order of magnitude and improving the light extraction from the nano-roughened device surface by...respectively. At a biased current of 400 A, the highest external quantum efficiency is over 0.2% to obtain the maximum EL power of >1 W. In...processing techniques for improving the internal and external quantum efficiencies of Si MOSLEDs via detuning the size and density of high-aspect-ratio Si
How noise affects quantum detector tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q., E-mail: wang@physics.leidenuniv.nl; Renema, J. J.; Exter, M. P.van
2015-10-07
We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Myles A.; Perl, E. E.; Geisz, J. F.
Here, we demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important that the bandgap be determined from the external quantum efficiency.
Wang, Jianhao; Fan, Jie; Li, Jinchen; Liu, Li; Wang, Jianpeng; Jiang, Pengju; Liu, Xiaoqian; Qiu, Lin
2017-02-01
Herein, a Förster resonance energy transfer system was designed, which consisted of CdSe/ZnS quantum dots donor and mCherry fluorescent protein acceptor. The quantum dots and the mCherry proteins were conjugated to permit Förster resonance energy transfer. Capillary electrophoresis with fluorescence detection was used for the analyses for the described system. The quantum dots and mCherry were sequentially injected into the capillary, while the real-time fluorescence signal of donor and acceptor was simultaneously monitored by two channels with fixed wavelength detectors. An effective separation of complexes from free donor and acceptor was achieved. Results showed quantum dots and hexahistidine tagged mCherry had high affinity and the assembly was affected by His 6 -mCherry/quantum dot molar ratio. The kinetics of the self-assembly was calculated using the Hill equation. The microscopic dissociation constant values for out of- and in-capillary assays were 10.49 and 23.39 μM, respectively. The capillary electrophoresis with fluorescence detection that monitored ligands competition assay further delineated the different binding capacities of histidine containing peptide ligands for binding sites on quantum dots. This work demonstrated a novel approach for the improvement of Förster resonance energy transfer for higher efficiency, increased sensitivity, intuitionistic observation, and low sample requirements of the in-capillary probing system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonunitary quantum computation in the ground space of local Hamiltonians
NASA Astrophysics Data System (ADS)
Usher, Naïri; Hoban, Matty J.; Browne, Dan E.
2017-09-01
A central result in the study of quantum Hamiltonian complexity is that the k -local Hamiltonian problem is quantum-Merlin-Arthur-complete. In that problem, we must decide if the lowest eigenvalue of a Hamiltonian is bounded below some value, or above another, promised one of these is true. Given the ground state of the Hamiltonian, a quantum computer can determine this question, even if the ground state itself may not be efficiently quantum preparable. Kitaev's proof of QMA-completeness encodes a unitary quantum circuit in QMA into the ground space of a Hamiltonian. However, we now have quantum computing models based on measurement instead of unitary evolution; furthermore, we can use postselected measurement as an additional computational tool. In this work, we generalize Kitaev's construction to allow for nonunitary evolution including postselection. Furthermore, we consider a type of postselection under which the construction is consistent, which we call tame postselection. We consider the computational complexity consequences of this construction and then consider how the probability of an event upon which we are postselecting affects the gap between the ground-state energy and the energy of the first excited state of its corresponding Hamiltonian. We provide numerical evidence that the two are not immediately related by giving a family of circuits where the probability of an event upon which we postselect is exponentially small, but the gap in the energy levels of the Hamiltonian decreases as a polynomial.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Quantum Brownian motion model for the stock market
NASA Astrophysics Data System (ADS)
Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong
2016-06-01
It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.
NASA Astrophysics Data System (ADS)
Liu, Xiangming; Tomita, Yasuo; Oshima, Juro; Chikama, Katsumi; Matsubara, Koutatsu; Nakashima, Takuya; Kawai, Tsuyoshi
2009-12-01
We report on the fabrication of centimeter-size transmission Bragg gratings in semiconductor CdSe quantum dots dispersed 50 μm thick photopolymer films. This was done by holographic assembly of CdSe quantum dots in a photopolymerizable monomer blend. Periodic patterning of CdSe quantum dots in polymer was confirmed by a fluorescence microscope and confocal Raman imaging. The diffraction efficiency from the grating of 1 μm spacing was near 100% in the green with 0.34 vol % CdSe quantum dots, giving the refractive index modulation as large as 5.1×10-3.
Realizing Rec. 2020 color gamut with quantum dot displays.
Zhu, Ruidong; Luo, Zhenyue; Chen, Haiwei; Dong, Yajie; Wu, Shin-Tson
2015-09-07
We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.
Two-party quantum key agreement protocols under collective noise channel
NASA Astrophysics Data System (ADS)
Gao, Hao; Chen, Xiao-Guang; Qian, Song-Rong
2018-06-01
Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols' qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.
Optimal approach to quantum communication using dynamic programming.
Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D
2007-10-30
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.
Wong, Kin-Yiu; Gao, Jiali
2008-09-09
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of the KP theory is further examined in comparison with results from the traditional Rayleigh-Ritz variational approach and Rayleigh-Schrödinger perturbation theory in wave mechanics. The present method can be used for thermodynamic and quantum dynamic calculations, including to systematically determine the exact value of zero-point energy and to study kinetic isotope effects for chemical reactions in solution and in enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio
2005-09-15
We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.
Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng
2011-07-14
The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.
Quantum key distribution using basis encoding of Gaussian-modulated coherent states
NASA Astrophysics Data System (ADS)
Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua
2018-04-01
The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.
Mid-infrared coincidence measurements on twin photons at room temperature
Mancinelli, M.; Trenti, A.; Piccione, S.; Fontana, G.; Dam, J. S.; Tidemand-Lichtenberg, P.; Pedersen, C.; Pavesi, L.
2017-01-01
Quantum measurements using single-photon detectors are opening interesting new perspectives in diverse fields such as remote sensing, quantum cryptography and quantum computing. A particularly demanding class of applications relies on the simultaneous detection of correlated single photons. In the visible and near infrared wavelength ranges suitable single-photon detectors do exist. However, low detector quantum efficiency or excessive noise has hampered their mid-infrared (MIR) counterpart. Fast and highly efficient single-photon detectors are thus highly sought after for MIR applications. Here we pave the way to quantum measurements in the MIR by the demonstration of a room temperature coincidence measurement with non-degenerate twin photons at about 3.1 μm. The experiment is based on the spectral translation of MIR radiation into the visible region, by means of efficient up-converter modules. The up-converted pairs are then detected with low-noise silicon avalanche photodiodes without the need for cryogenic cooling. PMID:28504244
Dual-band quantum well infrared photodetector with metallic structure
NASA Astrophysics Data System (ADS)
Wu, Yang; Liu, Hongmei; Li, Pingzhou
2018-02-01
The quantum efficiency of the dual bands quantum well infrared photodetectors(QWIP) has been widely concerned in recent years. A novel structure for the dual-band quantum well infrared detectors which is based on GaAs/AlGaAs designed in this paper is aimed to improve the absorption efficiency. The structure replaces the conventional grating with a metallic grating based on surface plasmon polaritons(SPPS), and we further insert a metal structure in the periodic quantum well layer. The simulation result shows that the use of the different shapes of the metal holes can remarkably improve the optical coupling efficiency due to the surface plasmon effect. By optimizing parameters of the structure, it can work in the dual infrared bands of 3-5um and 8-12um. Moreover, the absorption rate increased by 20% compared with traditional structure of Dual-band QWIP.
Kano, Shinya; Fujii, Minoru
2017-03-03
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, M. J.; Dawson, P.; Hammersley, S.
We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10{sup 11 }cm{sup −2 }pulse{sup −1} per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar,more » and is a function, specifically, of carrier density.« less
Yan, Yong; Crisp, Ryan W.; Gu, Jing; ...
2017-04-03
Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na 2S solution with a peak external quantum efficiency exceeding 100%. QDmore » photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Finally, our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.« less
Cr/sup 3 +/-doped colquiriite solid state laser material
Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.
1988-03-31
Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.
Cr.sup.3+ -doped colquiriite solid state laser material
Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.
1989-01-01
Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.
Quantum Yields in Mixed-Conifer Forests and Ponderosa Pine Plantations
NASA Astrophysics Data System (ADS)
Wei, L.; Marshall, J. D.; Zhang, J.
2008-12-01
Most process-based physiological models require canopy quantum yield of photosynthesis as a starting point to simulate carbon sequestration and subsequently gross primary production (GPP). The quantum yield is a measure of photosynthetic efficiency expressed in moles of CO2 assimilated per mole of photons absorbed; the process is influenced by environmental factors. In the summer 2008, we measured quantum yields on both sun and shade leaves for four conifer species at five sites within Mica Creek Experimental Watershed (MCEW) in northern Idaho and one conifer species at three sites in northern California. The MCEW forest is typical of mixed conifer stands dominated by grand fir (Abies grandis (Douglas ex D. Don) Lindl.). In northern California, the three sites with contrasting site qualities are ponderosa pine (Pinus ponderosa C. Lawson var. ponderosa) plantations that were experimentally treated with vegetation control, fertilization, and a combination of both. We found that quantum yields in MCEW ranged from ~0.045 to ~0.075 mol CO2 per mol incident photon. However, there were no significant differences between canopy positions, or among sites or tree species. In northern California, the mean value of quantum yield of three sites was 0.051 mol CO2/mol incident photon. No significant difference in quantum yield was found between canopy positions, or among treatments or sites. The results suggest that these conifer species maintain relatively consistent quantum yield in both MCEW and northern California. This consistency simplifies the use of a process-based model to accurately predict forest productivity in these areas.
Quantum-Carnot engine for particle confined to cubic potential
NASA Astrophysics Data System (ADS)
Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.
2015-09-01
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence
NASA Astrophysics Data System (ADS)
Dorfman, Konstantin E.; Xu, Dazhi; Cao, Jianshu
2018-04-01
Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.
Verifiable fault tolerance in measurement-based quantum computation
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Hayashi, Masahito
2017-09-01
Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.
An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin
2017-04-01
In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing
The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less
Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord
NASA Astrophysics Data System (ADS)
Piani, Marco
2016-08-01
Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum correlations: their lack of shareability. Our approach emphasizes how the difference between entanglement and discord depends on whether shareability is intended as a static property or as a dynamical process.
Secure Multiparty Quantum Computation for Summation and Multiplication.
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2016-01-21
As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.
Secure Multiparty Quantum Computation for Summation and Multiplication
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2016-01-01
As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197
Efficient Variational Quantum Simulator Incorporating Active Error Minimization
NASA Astrophysics Data System (ADS)
Li, Ying; Benjamin, Simon C.
2017-04-01
One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X., E-mail: iu.xiangming@nims.go.jp; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044; Kumano, H.
2014-07-28
We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-typemore » two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.« less
Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.
Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc
2016-12-13
The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo
2015-03-02
The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less
Optimization of single photon detection model based on GM-APD
NASA Astrophysics Data System (ADS)
Chen, Yu; Yang, Yi; Hao, Peiyu
2017-11-01
One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
Efficient tomography of a quantum many-body system
NASA Astrophysics Data System (ADS)
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.
Study on chemical hydrography, chlorophyll-a and primary productivity in Liaodong Bay, China
NASA Astrophysics Data System (ADS)
Pei, Shaofeng; Laws, Edward A.; Zhang, Haibo; Ye, Siyuan; Kemper, Marc T.; Yuan, Hongming; Xu, Gang; Yang, Shixiong; Liu, Haiyue; Zhu, Yaxuan
2018-03-01
A field study was carried out during the summer of 2013 in Liaodong Bay, China to determine the dynamics of the phytoplankton in the bay and the extent to which primary production in the bay was constrained by environmental factors. There was little or no evidence of limitation of phytoplankton production by nutrient concentrations at any of the sampling stations, with the possible exception of a few offshore stations where phosphate concentrations were less than 30 nM. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Poptb) at twelve stations where photosynthetic rates were measured by 14C method, light-conditioned values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). According to this model, the light-conditioned Poptb values increased with temperatures from 22 °C to roughly 25 °C but declined precipitously at higher temperatures, and Poptb values and corresponding areal photosynthetic rates at all 66 stations were estimated to be 7.6 ± 2.4 g C g-1 Chl a h-1 and 532 ± 429 gC m-2 d-1 in average, respectively. The quanta absorbed per carbon atom fixed averaged 14 ± 2 and 37 ± 10 at six coastal stations and six estuarine stations, respectively. The relatively high Poptb values and low quantum requirements at the coastal stations implied the highly efficient usage of absorbed light by phytoplankton under nutrient-replete conditions and favorable temperatures. Comparatively, the low Poptb values and high quantum requirements at the estuarine stations suggested rather extreme light limitation and lowly efficient usage of absorbed light in photosynthesis in the Liaohe River estuary. Areal production in Liaodong Bay appears to be controlled by a combination of temperature and light limitation.
A Multidimensional B-Spline Correction for Accurate Modeling Sugar Puckering in QM/MM Simulations.
Huang, Ming; Dissanayake, Thakshila; Kuechler, Erich; Radak, Brian K; Lee, Tai-Sung; Giese, Timothy J; York, Darrin M
2017-09-12
The computational efficiency of approximate quantum mechanical methods allows their use for the construction of multidimensional reaction free energy profiles. It has recently been demonstrated that quantum models based on the neglect of diatomic differential overlap (NNDO) approximation have difficulty modeling deoxyribose and ribose sugar ring puckers and thus limit their predictive value in the study of RNA and DNA systems. A method has been introduced in our previous work to improve the description of the sugar puckering conformational landscape that uses a multidimensional B-spline correction map (BMAP correction) for systems involving intrinsically coupled torsion angles. This method greatly improved the adiabatic potential energy surface profiles of DNA and RNA sugar rings relative to high-level ab initio methods even for highly problematic NDDO-based models. In the present work, a BMAP correction is developed, implemented, and tested in molecular dynamics simulations using the AM1/d-PhoT semiempirical Hamiltonian for biological phosphoryl transfer reactions. Results are presented for gas-phase adiabatic potential energy surfaces of RNA transesterification model reactions and condensed-phase QM/MM free energy surfaces for nonenzymatic and RNase A-catalyzed transesterification reactions. The results show that the BMAP correction is stable, efficient, and leads to improvement in both the potential energy and free energy profiles for the reactions studied, as compared with ab initio and experimental reference data. Exploration of the effect of the size of the quantum mechanical region indicates the best agreement with experimental reaction barriers occurs when the full CpA dinucleotide substrate is treated quantum mechanically with the sugar pucker correction.
NASA Astrophysics Data System (ADS)
Kim, Sang-Jo; Lee, Kwang Jae; Park, Seong-Ju
2018-06-01
We numerically investigated the effects of trapezoidal quantum barriers (QBs) on efficiency droop in InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs). Simulations showed that the electrostatic field in QWs of LEDs with trapezoidal barriers is reduced because of the reduced sheet charge density at the QW-QB interface caused by the thin GaN layer in trapezoidal QBs. Additionally, the InGaN grading region in trapezoidal QBs suppresses hot carrier transport and this enhances efficient carrier injection into the QWs. The electroluminescence intensity of an LED with trapezoidal QBs is increased by 10.2% and 6.7% at 245 A cm‑2 when compared with the intensities of LEDs with square-type GaN barriers and multilayer barriers, respectively. The internal quantum efficiency (IQE) droop of an LED with trapezoidal QBs is 16% at 300 A cm‑2, while LEDs with square-type GaN barriers and multilayer barriers have IQE droop of 31% and 24%, respectively. This IQE droop alleviation in LEDs with trapezoidal QBs is attributed to the reduced energy band bending, efficient hole injection, and more uniform hole distribution in the MQWs that results from reduction of the piezoelectric field by the trapezoidal QBs. These results indicate that the trapezoidal QB in MQWs is promising for enhanced efficiency in high-power GaN-based LEDs.
NASA Astrophysics Data System (ADS)
Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.
2017-11-01
The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.
2012-02-24
AND SUBTITLE Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics 6. AUTHORS Marian O...Maximum 200 words) Results of our earlier research in the realm of quantum optics were extended in order to solve the challenging technical problems of...efficient methods of generating UV light via quantum coherence. 14. SUBJECT TERMS Quantum coherence, quantum optics, lasers 15. NUMBER OF PAGES 15
Efficient quantum dialogue without information leakage
NASA Astrophysics Data System (ADS)
Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong
2015-02-01
A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.
NASA Astrophysics Data System (ADS)
Li, Tao; Deng, Fu-Guo
2015-10-01
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.
Li, Tao; Deng, Fu-Guo
2015-10-27
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.
Li, Tao; Deng, Fu-Guo
2015-01-01
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993
Chern-Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map.
Sahlmann, Hanno; Thiemann, Thomas
2012-03-16
We report on a new approach to the calculation of Chern-Simons theory expectation values, using the mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for functions on Lie algebras. These new developments can be used in the quantum theory for certain types of black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and the theory of quantum groups.
Solar energy converters based on multi-junction photoemission solar cells.
Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V
2017-11-23
Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias = 0 in transmission and reflection modes, while, at V bias = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.
Here, InGaAsP/InGaP quantum well (QW) structures are promising materials for next generation photovoltaic devices because of their tunable bandgap (1.50-1.80 eV) and being aluminum-free. However, the strain-balance limitations have previously limited light absorption in the QW region and constrained the external quantum efficiency (EQE) values beyond the In 0.49Ga 0.51P band-edge to less than 25%. In this work, we show that implementing a hundred period lattice matched InGaAsP/InGaP superlattice solar cell with more than 65% absorbing InGaAsP well resulted in more than 2x improvement in EQE values than previously reported strain balanced approaches. In addition, processing the devices with amore » rear optical reflector resulted in strong Fabry-Perot resonance oscillations and the EQE values were highly improved in the vicinity of these peaks, resulting in a short circuit current improvement of 10% relative to devices with a rear optical filter. These enhancements have resulted in an InGaAsP/InGaP superlattice solar cell with improved peak sub-bandgap EQE values exceeding 75% at 700 nm, an improvement in the short circuit current of 26% relative to standard InGaP devices, and an enhanced bandgap-voltage offset (W oc) of 0.4 V.« less
Experimental quantum computing without entanglement.
Lanyon, B P; Barbieri, M; Almeida, M P; White, A G
2008-11-14
Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.
Symmetric Blind Information Reconciliation for Quantum Key Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen
Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less
Symmetric Blind Information Reconciliation for Quantum Key Distribution
Kiktenko, Evgeniy O.; Trushechkin, Anton S.; Lim, Charles Ci Wen; ...
2017-10-27
Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration ofmore » results of unsuccessful belief-propagation decodings.« less
Long-distance quantum communication with atomic ensembles and linear optics.
Duan, L M; Lukin, M D; Cirac, J I; Zoller, P
2001-11-22
Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.
Symmetric Blind Information Reconciliation for Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Kiktenko, E. O.; Trushechkin, A. S.; Lim, C. C. W.; Kurochkin, Y. V.; Fedorov, A. K.
2017-10-01
Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. The proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.
Photodetectors for scintillator proportionality measurement
NASA Astrophysics Data System (ADS)
Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, John D.
2009-10-01
We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high (˜50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.
Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED
NASA Astrophysics Data System (ADS)
Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.
2014-03-01
Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.
Nano-patterned superconducting surface for high quantum efficiency cathode
Hannon, Fay; Musumeci, Pietro
2017-03-07
A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.
Quan, Li Na; Zhao, Yongbiao; García de Arquer, F Pelayo; Sabatini, Randy; Walters, Grant; Voznyy, Oleksandr; Comin, Riccardo; Li, Yiying; Fan, James Z; Tan, Hairen; Pan, Jun; Yuan, Mingjian; Bakr, Osman M; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H
2017-06-14
Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm 2 , yielding a ratio of quantum yield to excitation intensity of 0.3 cm 2 /mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m 2 .
Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells.
Tsukigase, Hiroki; Suzuki, Yoshikazu; Berger, Marie-Hélène; Sagawa, Takashi; Yoshikawa, Susumu
2011-03-01
SnS-sensitized TiO2 electrodes were applied in quantum dot-sensitized solar cells (QDSSCs) which are environmentally more favorable than conventional Cd or Pb-chalcogenide-sensitized electrodes. SnS nanoparticles were well-distributed over the surface of TiO2 nanoparticles by the successive ionic layer adsorption and reaction (SILAR) method. Deposited SnS nanoparticles had diameter about 3 nm. Under AM1.5 irradiation with 100 mW/cm2 light intensity (at 1 sun), the energy conversion efficiency of obtained cells reached a value of 0.21% (0.25 cm2) at SILAR coating cycles of 5. In addition, the photovoltaic performance was improved by additional ZnS coating on the surface of SnS-sensitized TiO2 electrodes.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.
2017-12-01
Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.
Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo
2017-02-20
We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.
Quantum optics with nanowires (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zwiller, Val
2017-02-01
Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.
Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence
Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K. L.; Sum, Tze Chien; Huang, Wei
2017-01-01
The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm−3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence. PMID:28239146
Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence.
Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K L; Sum, Tze Chien; Huang, Wei
2017-02-27
The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10 15 cm -3 , defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.
Low-threshold high-T/0/ constricted double heterojunction AlGaAs diode lasers
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.
1980-01-01
Constricted double heterojunction diode lasers of relatively low CW thresholds (28-40 mA) are obtained by growing structures that maximize the amount of current flow into the lasing spot. These values are obtained while still using standard 10 microns wide oxide-defined stripe contacts. Over the 20-70 C temperature interval, threshold current temperature coefficients as high as 320 C and a virtually constant external differential quantum efficiency, are found.
NASA Astrophysics Data System (ADS)
Tsaplev, Yu. B.
2016-12-01
The kinetics and mechanism of chemiluminescence during the reduction of manganese(IV) ions with lactic acid in an H2SO4-AcOH medium are studied. Kinetic spectrophotometric measurements are used to determine the profiles of change in the concentrations of Mn(IV) and Mn(III) ions during the reaction. The results from kinetic spectrophotometric measurements are compared to the light yield kinetics. The quantum chemiluminescence and chemiexcitation yields reach record values.
Photocurrent Cancellation Due to Barrier Asymmetry in GaAs/AlGaAs Heterostructure Infrared Detectors
2014-05-01
with previous work published on QWIP current mechanisms. The Barrier Workfunction and Collection Efficiency give the relevant values obtained by using...infrared photodetectors ( QWIPs ,) multiple quantum well (MQW,) and superlattice structures. 15 2.5.1 Heterojunction Interfacial Workfunction Internal...for aluminum fractions of x = 0.28, 0.37, and 0.57, respectively. Similar results were found previously14 by Tsai et. al. in GaAs/AlGaAs QWIPs
Entanglement Measures in Ion-Trap Quantum Simulators without Full Tomography
2014-07-21
t). This will allow us to efficiently compute correlations between ψ and ψ∗ in terms of standard expectation values in the enlarged space as follows...measure correlations of the form appearing in Eq. (2), with Θ a linear combination of tensorial products of Pauli matrices and identity operators...matrices will produce the desired correlation . Note that this protocol always results in a correlation of an odd number of Pauli matrices. In order to
Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope
NASA Astrophysics Data System (ADS)
Aiello, S.; Akrame, S. E.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aublin, J.; Avgitas, T.; Baars, M.; Bagatelas, C.; Barbarino, G.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Biagi, S.; Biagioni, A.; Biernoth, C.; Bormuth, R.; Boumaaza, J.; Bourret, S.; Bouwhuis, M.; Bozza, C.; Brânzaş, H.; Briukhanova, N.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Calvo, D.; Capone, A.; Caramete, L.; Celli, S.; Chabab, M.; Cherubini, S.; Chiarella, V.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colomer Molla, M.; Coniglione, R.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Onofrio, A.; Dallier, R.; De Sio, C.; Di Palma, I.; Díaz, A. F.; Distefano, C.; Domi, A.; Donà, R.; Donzaud, C.; Dornic, D.; Dörr, M.; Durocher, M.; Eberl, T.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Ferrara, G.; Fusco, L. A.; Gal, T.; Garufi, F.; Gauchery, S.; Geißelsöder, S.; Gialanella, L.; Giorgio, E.; Giuliante, A.; Gozzini, S. R.; Ruiz, R. Gracia; Graf, K.; Grasso, D.; Grégoire, T.; Grella, G.; Hallmann, S.; van Haren, H.; Heid, T.; Heijboer, A.; Hekalo, A.; Hernández-Rey, J. J.; Hofestädt, J.; Illuminati, G.; James, C. W.; Jongen, M.; Jongewaard, B.; de Jong, M.; de Jong, P.; Kadler, M.; Kalaczyński, P.; Kalekin, O.; Katz, U. F.; Chowdhury, N. R. Khan; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Le Breton, R.; Leone, F.; Leonora, E.; Levi, G.; Lincetto, M.; Lonardo, A.; Longhitano, F.; Lotze, M.; Loucatos, S.; Maggi, G.; Mańczak, J.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Markou, C.; Martin, L.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miranda, L. S.; Mollo, C. M.; Morganti, M.; Moser, M.; Moussa, A.; Muller, R.; Musumeci, M.; Nauta, L.; Navas, S.; Nicolau, C. A.; Nielsen, C.; Organokov, M.; Orlando, A.; Panagopoulos, V.; Papalashvili, G.; Papaleo, R.; Păvălaş, G. E.; Pellegrini, G.; Pellegrino, C.; Pérez Romero, J.; Perrin-Terrin, M.; Piattelli, P.; Pikounis, K.; Pisanti, O.; Poirè, C.; Polydefki, G.; Poma, G. E.; Popa, V.; Post, M.; Pradier, T.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Raffaelli, F.; Randazzo, N.; Razzaque, S.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Richer, M.; Rovelli, A.; Salvadori, I.; Samtleben, D. F. E.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Schermer, B.; Sciacca, V.; Seneca, J.; Sgura, I.; Shanidze, R.; Sharma, A.; Simeone, F.; Sinopoulou, A.; Spisso, B.; Spurio, M.; Stavropoulos, D.; Steijger, J.; Stellacci, S. M.; Strandberg, B.; Stransky, D.; Stüven, T.; Taiuti, M.; Tatone, F.; Tayalati, Y.; Tenllado, E.; Thakore, T.; Timmer, P.; Trovato, A.; Tsagkli, S.; Tzamariudaki, E.; Tzanetatos, D.; Valieri, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Viola, S.; Vivolo, D.; Volkert, M.; de Waardt, L.; Wilms, J.; de Wolf, E.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.
2018-05-01
The Hamamatsu R12199-02 3-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT
2017-01-01
Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment. PMID:29181020
Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.
Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.
Nie, Xiaohua; Wang, Wei; Nie, Haoyao
2017-01-01
Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.
Quantum Inference on Bayesian Networks
NASA Astrophysics Data System (ADS)
Yoder, Theodore; Low, Guang Hao; Chuang, Isaac
2014-03-01
Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.
Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes
Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; ...
2017-09-11
Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot LED with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21 % at a bias of 6 V and outstanding operational stability, with a L70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under amore » constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 quantum dots for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.« less
Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity
NASA Astrophysics Data System (ADS)
Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai
2017-12-01
Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.
NASA Astrophysics Data System (ADS)
Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan
2018-04-01
We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) < 0.06 without background subtraction. The demonstrated combination of site-controlled growth of QDs and in-situ electron-beam lithography is relevant for arrays of efficient SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.
Spectral difference Lanczos method for efficient time propagation in quantum control theory
NASA Astrophysics Data System (ADS)
Farnum, John D.; Mazziotti, David A.
2004-04-01
Spectral difference methods represent the real-space Hamiltonian of a quantum system as a banded matrix which possesses the accuracy of the discrete variable representation (DVR) and the efficiency of finite differences. When applied to time-dependent quantum mechanics, spectral differences enhance the efficiency of propagation methods for evolving the Schrödinger equation. We develop a spectral difference Lanczos method which is computationally more economical than the sinc-DVR Lanczos method, the split-operator technique, and even the fast-Fourier-Transform Lanczos method. Application of fast propagation is made to quantum control theory where chirped laser pulses are designed to dissociate both diatomic and polyatomic molecules. The specificity of the chirped laser fields is also tested as a possible method for molecular identification and discrimination.
Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.
Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui
2017-03-28
The prototypical multi-channel reaction H + H 2 S → H 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.
Fast, efficient error reconciliation for quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttler, W.T.; Lamoreaux, S.K.; Torgerson, J.R.
2003-05-01
We describe an error-reconciliation protocol, which we call Winnow, based on the exchange of parity and Hamming's 'syndrome' for N-bit subunits of a large dataset. The Winnow protocol was developed in the context of quantum-key distribution and offers significant advantages and net higher efficiency compared to other widely used protocols within the quantum cryptography community. A detailed mathematical analysis of the Winnow protocol is presented in the context of practical implementations of quantum-key distribution; in particular, the information overhead required for secure implementation is one of the most important criteria in the evaluation of a particular error-reconciliation protocol. The increasemore » in efficiency for the Winnow protocol is largely due to the reduction in authenticated public communication required for its implementation.« less
A variational eigenvalue solver on a photonic quantum processor
Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.
2014-01-01
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053
A space-efficient quantum computer simulator suitable for high-speed FPGA implementation
NASA Astrophysics Data System (ADS)
Frank, Michael P.; Oniciuc, Liviu; Meyer-Baese, Uwe H.; Chiorescu, Irinel
2009-05-01
Conventional vector-based simulators for quantum computers are quite limited in the size of the quantum circuits they can handle, due to the worst-case exponential growth of even sparse representations of the full quantum state vector as a function of the number of quantum operations applied. However, this exponential-space requirement can be avoided by using general space-time tradeoffs long known to complexity theorists, which can be appropriately optimized for this particular problem in a way that also illustrates some interesting reformulations of quantum mechanics. In this paper, we describe the design and empirical space/time complexity measurements of a working software prototype of a quantum computer simulator that avoids excessive space requirements. Due to its space-efficiency, this design is well-suited to embedding in single-chip environments, permitting especially fast execution that avoids access latencies to main memory. We plan to prototype our design on a standard FPGA development board.
Quantum storage of a photonic polarization qubit in a solid.
Gündoğan, Mustafa; Ledingham, Patrick M; Almasi, Attaallah; Cristiani, Matteo; de Riedmatten, Hugues
2012-05-11
We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize the storage by using quantum state tomography, and find that the average conditional fidelity of the retrieved qubits exceeds 95% for a mean photon number μ=0.4. This is significantly higher than a classical benchmark, taking into account the poissonian statistics and finite memory efficiency, which proves that our crystal functions as a quantum storage device for polarization qubits. These results extend the storage capabilities of solid state quantum light matter interfaces to polarization encoding, which is widely used in quantum information science.
Quantum realization of the nearest neighbor value interpolation method for INEQR
NASA Astrophysics Data System (ADS)
Zhou, RiGui; Hu, WenWen; Luo, GaoFeng; Liu, XingAo; Fan, Ping
2018-07-01
This paper presents the nearest neighbor value (NNV) interpolation algorithm for the improved novel enhanced quantum representation of digital images (INEQR). It is necessary to use interpolation in image scaling because there is an increase or a decrease in the number of pixels. The difference between the proposed scheme and nearest neighbor interpolation is that the concept applied, to estimate the missing pixel value, is guided by the nearest value rather than the distance. Firstly, a sequence of quantum operations is predefined, such as cyclic shift transformations and the basic arithmetic operations. Then, the feasibility of the nearest neighbor value interpolation method for quantum image of INEQR is proven using the previously designed quantum operations. Furthermore, quantum image scaling algorithm in the form of circuits of the NNV interpolation for INEQR is constructed for the first time. The merit of the proposed INEQR circuit lies in their low complexity, which is achieved by utilizing the unique properties of quantum superposition and entanglement. Finally, simulation-based experimental results involving different classical images and ratios (i.e., conventional or non-quantum) are simulated based on the classical computer's MATLAB 2014b software, which demonstrates that the proposed interpolation method has higher performances in terms of high resolution compared to the nearest neighbor and bilinear interpolation.
The components of crop productivity: measuring and modeling plant metabolism
NASA Technical Reports Server (NTRS)
Bugbee, B.
1995-01-01
Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.
Path integrals with higher order actions: Application to realistic chemical systems
NASA Astrophysics Data System (ADS)
Lindoy, Lachlan P.; Huang, Gavin S.; Jordan, Meredith J. T.
2018-02-01
Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for H2O and HCN-HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both H2O and HCN-HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN-HNC but has similar efficiency to the TIA for H2O at low temperature. In H2O and HCN-HNC systems, the optimal value of the a1 CA parameter is approximately 1/3 , corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ˜0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a1 = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum H2O system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.
A scheme of quantum state discrimination over specified states via weak-value measurement
NASA Astrophysics Data System (ADS)
Chen, Xi; Dai, Hong-Yi; Liu, Bo-Yang; Zhang, Ming
2018-04-01
The commonly adopted projective measurements are invalid in the specified task of quantum state discrimination when the discriminated states are superposition of planar-position basis states whose complex-number probability amplitudes have the same magnitude but different phases. Therefore we propose a corresponding scheme via weak-value measurement and examine the feasibility of this scheme. Furthermore, the role of the weak-value measurement in quantum state discrimination is analyzed and compared with one in quantum state tomography in this Letter.
Efficient 3He/4He separation in a nanoporous graphenylene membrane.
Qu, Yuanyuan; Li, Feng; Zhao, Mingwen
2017-08-16
Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.
Kim, Hyo-Jun; Shin, Min-Ho; Lee, Jae-Yong; Kim, Ji-Hoon; Kim, Young-Joo
2017-05-15
An optically efficient liquid-crystal display (LCD) structure using a patterned quantum dot (QD) film and a short-pass filter (SPF) was proposed and fabricated. The patterned QD film contributed to the generation of 95% in the area ratio (or 90% in the coverage ratio) of the Rec. 2020 color gamut. This was achieved by avoiding the problem of interaction between white backlight and broad transmittance spectra of color filters (CFs) as seen in a conventional LCD with a mixed QD film as a reference. The patterned QD film can maintain the narrow bandwidth of the green and the red QD colors before passing through the CFs. Additionally, the optical intensities of the red, green, and blue spectra were enhanced to 1.63, 1.72, and 2.16 times the reference LCD values, respectively. This was a result of separated emission of the red and green patterned QD film and reflection of the red and green light to the forward direction by the SPF.
Avalanche photodiode photon counting receivers for space-borne lidars
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Davidson, Frederic M.
1991-01-01
Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.
2016-01-01
Semiempirical (SE) methods can be derived from either Hartree–Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems. PMID:27074247
Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering
NASA Astrophysics Data System (ADS)
Perrone, A.; D'Elia, M.; Gontad, F.; Di Giulio, M.; Maruccio, G.; Cola, A.; Stankova, N. E.; Kovacheva, D. G.; Broitman, E.
2014-07-01
Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.
Effect of QW thickness and numbers on performance characteristics of deep violet InGaN MQW lasers
NASA Astrophysics Data System (ADS)
Alahyarizadeh, Gh.; Amirhoseiny, M.; Hassan, Z.
2015-03-01
The performance characteristics of deep violet indium gallium nitride (InGaN) multiquantum well (MQW) laser diodes (LDs) with an emission wavelength of around 390 nm have been investigated using the integrated system engineering technical computer aided design (ISE-TCAD) software. A comparative study on the effect of quantum well (QW) thickness and number on electrical and optical performance of deep violet In0.082Ga0.918N/GaN MQW LDs have been carried out. The simulation results showed that the highest slope efficiency and external differential quantum efficiency (DQE), as well as the lowest threshold current are obtained when the number of wells is two. The different QW thickness values of 2.2, 2.5, 2.8, 3 and 3.2 nm were compared and the best results were achieved for 2.5 nm QW thickness. The radiative recombination rate decreases with increasing QW thickness because of decreasing electron and hole carrier densities in wells. By increasing QW thickness, output power decreases and threshold current increases.
Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi
2018-05-07
Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.
Pure sources and efficient detectors for optical quantum information processing
NASA Astrophysics Data System (ADS)
Zielnicki, Kevin
Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on optimizing the detection efficiency of visible light photon counters (VLPCs), a single-photon detection technology that is also capable of resolving photon number states. We report a record-breaking quantum efficiency of 91 +/- 3% observed with our detection system. Both sources and detectors are independently interesting physical systems worthy of study, but together they promise to enable entire new classes and applications of information based on quantum mechanics.
High-quantum efficiency, long-lived luminescing refractory oxides
Chen, Y.; Gonzalez, R.; Summers, G.P.
A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.
GaN ultraviolet p-i-n photodetectors with enhanced deep ultraviolet quantum efficiency
NASA Astrophysics Data System (ADS)
Wang, Guosheng; Xie, Feng; Wang, Jun; Guo, Jin
2017-10-01
GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a thin p-AlGaN/GaN contact layer are designed and fabricated. The PD exhibits a low dark current density of˜7 nA/cm2 under -5 V, and a zero-bias peak responsivity of ˜0.16 A/W at 360 nm, which corresponds to a maximum quantum efficiency of 55%. It is found that, in the wavelength range between 250 and 365 nm, the PD with thin p-AlGaN/GaN contact layer exhibits enhanced quantum efficiency especially in a deep-UV wavelength range, than that of the control PD with conventional thin p-GaN contact layer. The improved quantum efficiency of the PD with thin p-AlGaN/GaN contact layer in the deep-UV wavelength range is mainly attributed to minority carrier reflecting properties of thin p-AlGaN/GaN heterojunction which could reduce the surface recombination loss of photon-generated carriers and improve light current collection efficiency.
Quantum versus classical dynamics in the optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2017-09-01
The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.
Fluorescent porous silicon biological probes with high quantum efficiency and stability.
Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y
2014-12-01
We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.
Entanglement enhances cooling in microscopic quantum refrigerators.
Brunner, Nicolas; Huber, Marcus; Linden, Noah; Popescu, Sandu; Silva, Ralph; Skrzypczyk, Paul
2014-03-01
Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.
Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, D.; Donaldson, W.; Sobolewski, R.
2007-07-31
We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.
Minimized state complexity of quantum-encoded cryptic processes
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.
2016-05-01
The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.
Tuning Single Quantum Dot Emission with a Micromirror.
Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul
2018-02-14
The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.