Science.gov

Sample records for quantum entanglement based

  1. Entanglement-Based Quantum Cryptography and Quantum Communication

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2007-03-01

    Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.

  2. Efficient multiuser quantum cryptography network based on entanglement.

    PubMed

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-04

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  3. Efficient multiuser quantum cryptography network based on entanglement

    PubMed Central

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-01-01

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory. PMID:28374854

  4. Efficient multiuser quantum cryptography network based on entanglement

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-01

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  5. Quantum coordinated multi-point communication based on entanglement swapping

    NASA Astrophysics Data System (ADS)

    Du, Gang; Shang, Tao; Liu, Jian-wei

    2017-05-01

    In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten-Podolsky-Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.

  6. Atom-chip-based generation of entanglement for quantum metrology.

    PubMed

    Riedel, Max F; Böhi, Pascal; Li, Yun; Hänsch, Theodor W; Sinatra, Alice; Treutlein, Philipp

    2010-04-22

    Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing and quantum metrology. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms; this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development.

  7. Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari

    2016-06-01

    Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.

  8. Quantum state regeneration in entanglement based quantum key distribution protocols

    NASA Astrophysics Data System (ADS)

    Erdmann, Reinhard

    2014-05-01

    Quantum Key Distribution (QKD) has been shown to be provably secure when certain idealized conditions are met in a physical realization. All implementations of QKD to date require non-orthogonal basis measurements to implement it; making it commonly assumed that measurement basis variation is fundamental to making QKD protocols secure from eavesdropping. We show here that in particular physical conditions this assumption is incorrect, and that provable security can be achieved without use of multiple bases. Basis setting information can in fact be shared with all potential eavesdroppers, as they are unable to use it to acquire or influence any part of the encryption key generation. Furthermore the key generation efficiency is limited to 100 % as compared with an inherent 50 % limit for alternating bases in BB84 or Entangled Ekert protocols.

  9. Revisiting Quantum Authentication Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb

    2016-05-01

    The crucial issue of quantum communication protocol is its security. In this paper, the security of the Quantum Authentication Scheme Based on Entanglement Swapping proposed by Penghao et al. (Int J Theor Phys., doi: 10.1007/s10773-015-2662-7) is reanalyzed. It is shown that the original does not complete the task of quantum authentication and communication securely. Furthermore a simple improvement on the protocol is proposed.

  10. Quantum entanglement percolation

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2016-09-01

    Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.

  11. Cavity-based architecture to preserve quantum coherence and entanglement

    PubMed Central

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-01-01

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004

  12. Cavity-based architecture to preserve quantum coherence and entanglement.

    PubMed

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-09-09

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.

  13. Cavity-based architecture to preserve quantum coherence and entanglement

    NASA Astrophysics Data System (ADS)

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-09-01

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.

  14. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  15. Entanglement-Based Free Space Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Weihs, Gregor

    2007-06-01

    Free-space optical communication can complement fiber optics, when the latter are not readily available or when transmitting to or from a satellite is the goal. I will report on our free-space quantum key distribution experiment that links a source to receivers in two different buildings with a distance of about 1.8 km. There is no direct line of sight between the endpoints. Our implementation is a complete quantum key distribution system that includes error correction and privacy amplification. It is based on the distribution of polarization-entangled photon pairs via optical telescopes from the source location on the roof of a campus building to the building of the Institute for Quantum Computing and the Perimeter Institute for Theoretical Physics respectively. In the future, we want to achieve daylight operation capability and use brighter sources of entangled photon pairs to increase the achievable key rates.

  16. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  17. Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Weedbrook, Christian; Marshall, Kevin; Pirandola, Stefano; Yu, Song; Guo, Hong

    2015-06-01

    We propose a method to improve the performance of two entanglement-based continuous-variable quantum key distribution protocols using noiseless linear amplifiers. The two entanglement-based schemes consist of an entanglement distribution protocol with an untrusted source and an entanglement swapping protocol with an untrusted relay. Simulation results show that the noiseless linear amplifiers can improve the performance of these two protocols, in terms of maximal transmission distances, when we consider small amounts of entanglement, as typical in realistic setups.

  18. The Dining Cryptographer Problem-Based Anonymous Quantum Communication via Non-maximally Entanglement State Analysis

    NASA Astrophysics Data System (ADS)

    Shi, Ronghua; Su, Qian; Guo, Ying; Huang, Dazu

    2013-02-01

    We demonstrate an anonymous quantum communication (AQC) via the non-maximally entanglement state analysis (NESA) based on the dining cryptographer problem (DCP). The security of the present AQC is ensured due to the quantum-mechanical impossibility of local unitary transformations between non-maximally entanglement states, which provides random numbers for the secure AQC. The analysis shows that the DCP-based AQC can be performed without intractability through the NESA in the multi-photon entangled quantum system.

  19. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J.; Saito, Shiro

    2015-10-01

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  20. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.

    PubMed

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J; Saito, Shiro

    2015-10-23

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  1. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  2. Entanglement-based machine learning on a quantum computer.

    PubMed

    Cai, X-D; Wu, D; Su, Z-E; Chen, M-C; Wang, X-L; Li, Li; Liu, N-L; Lu, C-Y; Pan, J-W

    2015-03-20

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  3. Multi-Party Quantum Private Comparison Protocol Based on Entanglement Swapping of Bell Entangled States

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-09-01

    Recently, Liu et al. proposed a two-party quantum private comparison (QPC) protocol using entanglement swapping of Bell entangled state (Commun. Theor. Phys. 57 (2012) 583). Subsequently Liu et al. pointed out that in Liu et al.'s protocol, the TP can extract the two users' secret inputs without being detected by launching the Bell-basis measurement attack, and suggested the corresponding improvement to mend this loophole (Commun. Theor. Phys. 62 (2014) 210). In this paper, we first point out the information leakage problem toward TP existing in both of the above two protocols, and then suggest the corresponding improvement by using the one-way hash function to encrypt the two users' secret inputs. We further put forward the three-party QPC protocol also based on entanglement swapping of Bell entangled state, and then validate its output correctness and its security in detail. Finally, we generalize the three-party QPC protocol into the multi-party case, which can accomplish arbitrary pair's comparison of equality among K users within one execution. Supported by the National Natural Science Foundation of China under Grant No. 61402407

  4. Dynamics of quantum entanglement in quantum channels

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong

    2017-08-01

    Based on the von Neumann entropy, we give a computational formalism of the quantum entanglement dynamics in quantum channels, which can be applied to a general finite systems coupled with their environments in quantum channels. The quantum entanglement is invariant in the decoupled local unitary quantum channel, but it is variant in the non-local coupled unitary quantum channel. The numerical investigation for two examples, two-qubit and two-qutrit models, indicates that the quantum entanglement evolution in the quantum non-local coupling channel oscillates with the coupling strength and time, and depends on the quantum entanglement of the initial state. It implies that quantum information loses or gains when the state of systems evolves in the quantum non-local coupling channel.

  5. Quantum Private Comparison Based on χ-Type Entangled States

    NASA Astrophysics Data System (ADS)

    Hong-Ming, Pan

    2017-08-01

    A two-party quantum private comparison (QPC) protocol is constructed with χ-type entangled states in this paper. The proposed protocol employs a semi-honest third party (TP) that is allowed to misbehave on his own but cannot conspire with the adversary. The proposed protocol need perform Bell basis measurements and single-particle measurements but neither unitary operations nor quantum entanglement swapping technology. The proposed protocol possesses good security toward both the outside attack and the participant attack. TP only knows the comparison result of the private information from two parties in the proposed protocol.

  6. Quantum Private Comparison Based on χ-Type Entangled States

    NASA Astrophysics Data System (ADS)

    Hong-Ming, Pan

    2017-10-01

    A two-party quantum private comparison (QPC) protocol is constructed with χ-type entangled states in this paper. The proposed protocol employs a semi-honest third party (TP) that is allowed to misbehave on his own but cannot conspire with the adversary. The proposed protocol need perform Bell basis measurements and single-particle measurements but neither unitary operations nor quantum entanglement swapping technology. The proposed protocol possesses good security toward both the outside attack and the participant attack. TP only knows the comparison result of the private information from two parties in the proposed protocol.

  7. Quantum frequency doubling based on tripartite entanglement with cavities

    NASA Astrophysics Data System (ADS)

    Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang

    2016-02-01

    We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  8. Entanglement purification for quantum communication.

    PubMed

    Pan, J W; Simon, C; Brukner, C; Zeilinger, A

    2001-04-26

    The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.

  9. Universal quantum computation with little entanglement.

    PubMed

    Van den Nest, Maarten

    2013-02-08

    We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.

  10. Quantum secret sharing protocol based on four-dimensional three-particle entangled states

    NASA Astrophysics Data System (ADS)

    Xiang, Yi; Mo, Zhi Wen

    2016-01-01

    In this paper, we proposed a three-party quantum secret sharing (QSS) scheme using four-dimensional three-particle entangled states. In this QSS scheme, each agent can obtain a shadow of the secret key by performing single-particle measurements. Compared with the existing QSS protocol, this scheme has high efficiency and can resist the eavesdropping attack and entangle-measuring attack, which using three-particle entangled states are based on four-dimensional Hilbert space.

  11. Haunted Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    Snyder, Douglas

    2009-04-01

    There are two steps in establishing a quantum entanglement. These two steps often are not considered as independent from one another. Step 1 involves the interaction through which the particles are to be entangled. Step 2 involves making the result of the interaction through which the development of the entanglement begins available to the environment. Step 1 can occur in isolation from the environment. Step 2 then occurs with making the result of the interaction available to the environment through no longer isolating the particles. The entanglement that begins to develop in step 1 can originate in a form where there is which-way information. With step 2, the entanglement is complete and which-way information is established (option 1). Instead of completing the entanglement with step 2, the developing entanglement can be eliminated with the result that which-way information is lost. The result is a distribution for each of the paired particles that exhibits interference (option 2). The elimination of the developing entanglement results in haunted quantum entanglement. Through the use of options 1 and 2, one need not associate measurements on each of two entangled particles after measurements on each of the particles in order to decipher information. Associating measurements can be done automatically as measurements are made through the ability to control whether a developing entanglement is allowed to be fully established or instead eliminated. Options 1 and 2 can be used in a communications device.

  12. Two new Controlled not Gate Based Quantum Secret Sharing Protocols without Entanglement Attenuation

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Chao; Hu, Ai-Qun; Fu, An-Min

    2016-05-01

    In this paper, we propose two new controlled not gate based quantum secret sharing protocols. In these two protocols, each photon only travels once, which guarantees the agents located in long distance can be able to derive the dealer's secret without suffering entanglement attenuation problem. The protocols are secure against trojan horse attack, intercept-resend attack, entangle-measure attack and entanglement-swapping attack. The theoretical efficiency for qubits of these two protocols can approach 100 %, except those used for eavesdropping checking, all entangled states can be used for final secret sharing.

  13. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    PubMed Central

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  14. Teleportation-based realization of an optical quantum two-qubit entangling gate

    PubMed Central

    Gao, Wei-Bo; Goebel, Alexander M.; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390–393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme—a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  15. Teleportation-based realization of an optical quantum two-qubit entangling gate.

    PubMed

    Gao, Wei-Bo; Goebel, Alexander M; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-12-07

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390-393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme--a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.

  16. Quantum Entanglement and Information

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2002-04-01

    The development of quantum entanglement presents a very interesting and typical case how fundamental reasearch leads to new technologically interesting concepts. Initially it was introduced by Einstein and Schroedinger because of its philosophical interest. This, together with Bell's theorem, led to experiments beginning in the early 1970-s which also were only motivated by their importance for the foundations of physics. Most remarkably, in recent years people discovered that quantum entanglement can be useful in completely novel ways of transmitting and processing of information with no analog in classical physics. Here the most developed areas are quantum communication, quantum cryptography, quantum teleportation and quantum computation. In the talk I will present the basics of these applications of entanglement and I will discuss some existing experimental realisations. Finally I will argue that, while it is impossible to foresee where the present development will lead us, it is very likely that in the end a novel kind of information technology will emerge.

  17. Quantum Entanglement and Quantum Discord in Gaussian Open Systems

    SciTech Connect

    Isar, Aurelian

    2011-10-03

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.

  18. A Quantum Proxy Blind Signature Scheme Based on Genuine Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Zeng, Chuan; Zhang, Jian-Zhong; Xie, Shu-Cui

    2017-06-01

    In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.

  19. A Four-State Entanglement Based Quantum Single Sign-On Protocol

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Xu, RongQiang; Dai, Guiping

    2015-06-01

    Single Sign-On (SSO) is an important cryptography mechanism in distributed systems. Quantum cryptography has gained great successes and makes great influence on traditional cryptography. In this paper, we combines the SSO mechanism and quantum cryptography together. A SSO protocol based on four-state entanglement is designed. Through security analysis, we show that this protocol has good security properties.

  20. Key rate for calibration robust entanglement based BB84 quantum key distribution protocol

    SciTech Connect

    Gittsovich, O.; Moroder, T.

    2014-12-04

    We apply the approach of verifying entanglement, which is based on the sole knowledge of the dimension of the underlying physical system to the entanglement based version of the BB84 quantum key distribution protocol. We show that the familiar one-way key rate formula holds already if one assumes the assumption that one of the parties is measuring a qubit and no further assumptions about the measurement are needed.

  1. An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type Quantum States

    NASA Astrophysics Data System (ADS)

    Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Ding, Qing-Yan; Zhang, Shu-Hui

    2016-06-01

    In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states. Supported by the National Natural Science Foundation of China under Grant Nos. 61572297, 61303199, 61272514, and 61373131, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2013FM025, ZR2013FQ001, ZR2014FM003, and ZY2015YL018, the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China under Grant Nos. BS2015DX006 and BS2014DX007, the National Development Foundation for Cryptological Research, China under Grant No. MMJJ201401012, the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology Funds, and the Shandong Academy of Sciences Youth Fund Project, China under Grant Nos. 2015QN003 and 2013QN007

  2. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (~10-2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  3. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  4. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    PubMed Central

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-01-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10−2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications. PMID:26621073

  5. Optimal pair-generation rate for entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Holloway, Catherine; Doucette, John A.; Erven, Christopher; Bourgoin, Jean-Philippe; Jennewein, Thomas

    2013-02-01

    In entanglement-based quantum key distribution (QKD), the generation and detection of multiphoton modes leads to a trade-off between entanglement visibility and twofold coincidence events when maximizing the secure key rate. We produce a predictive model for the optimal twofold coincidence probability per coincidence window given the channel efficiency and detector dark count rate of a given system. This model is experimentally validated and used in simulations for QKD with satellites as well as optical fibers.

  6. Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, Xue-Xi

    2017-02-01

    A quantum-feedback-based scheme is proposed for generating multipartite entanglements of Rydberg atoms in a dissipative optical cavity. The Rydberg blockade mechanism efficiently prevents double excitations of the system, which is further exploited to speed up the stabilization of an entangled state with a single Rydberg state excitation. The corresponding feedback operations are greatly simplified, since only one regular atom needs to be controlled during the whole process, irrespective of the number of particles. The form of the entangled state is also adjustable via regulating the Rabi frequencies of driving fields. Moreover, a relatively long lifetime of the high-lying Rydberg level guarantees a high fidelity in a realistic situation.

  7. An Improved Quantum Proxy Blind Signature Scheme Based on Genuine Seven-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Yuan; Xie, Shu-Cui; Zhang, Jian-Zhong

    2017-07-01

    An improved quantum proxy blind signature scheme based on controlled teleportation is proposed in this paper. Genuine seven-qubit entangled state functions as quantum channel. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is unforgeability, undeniability, blind and unconditionally secure. Meanwhile, we propose a trust party to provide higher security, the trust party is costless.

  8. Greenberger-Horne-Zeilinger states-based blind quantum computation with entanglement concentration.

    PubMed

    Zhang, Xiaoqian; Weng, Jian; Lu, Wei; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing

    2017-09-11

    In blind quantum computation (BQC) protocol, the quantum computability of servers are complicated and powerful, while the clients are not. It is still a challenge for clients to delegate quantum computation to servers and keep the clients' inputs, outputs and algorithms private. Unfortunately, quantum channel noise is unavoidable in the practical transmission. In this paper, a novel BQC protocol based on maximally entangled Greenberger-Horne-Zeilinger (GHZ) states is proposed which doesn't need a trusted center. The protocol includes a client and two servers, where the client only needs to own quantum channels with two servers who have full-advantage quantum computers. Two servers perform entanglement concentration used to remove the noise, where the success probability can almost reach 100% in theory. But they learn nothing in the process of concentration because of the no-signaling principle, so this BQC protocol is secure and feasible.

  9. Quantum Entanglement in Open Systems

    SciTech Connect

    Isar, Aurelian

    2008-01-24

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, the master equation for two independent harmonic oscillators interacting with an environment is solved in the asymptotic long-time regime. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems become asymptotically entangled for certain environments, so that in the long-time regime they manifest non-local quantum correlations. We calculate also the logarithmic negativity characterizing the degree of entanglement of the asymptotic state.

  10. Quantum cost for sending entanglement.

    PubMed

    Streltsov, Alexander; Kampermann, Hermann; Bruß, Dagmar

    2012-06-22

    Establishing quantum entanglement between two distant parties is an essential step of many protocols in quantum information processing. One possibility for providing long-distance entanglement is to create an entangled composite state within a lab and then physically send one subsystem to a distant lab. However, is this the "cheapest" way? Here, we investigate the minimal "cost" that is necessary for establishing a certain amount of entanglement between two distant parties. We prove that this cost is intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol for entanglement distribution and show that quantum correlations are the essential resource for this task.

  11. Quantum entanglement of moving bodies.

    PubMed

    Gingrich, Robert M; Adami, Christoph

    2002-12-30

    We study the properties of quantum entanglement in moving frames, and show that, because spin and momentum become mixed when viewed by a moving observer, the entanglement between the spins of a pair of particles is not invariant. We give an example of a pair, fully spin entangled in the rest frame, which has its spin entanglement reduced in all other frames. Similarly, we show that there are pairs whose spin entanglement increases from zero to maximal entanglement when boosted. While spin and momentum entanglement separately are not Lorentz invariant, the joint entanglement of the wave function is.

  12. Measurement-based local quantum filters and their ability to transform quantum entanglement

    NASA Astrophysics Data System (ADS)

    Das, Debmalya; Sengupta, Ritabrata; Arvind

    2017-06-01

    We introduce local filters as a means to detect the entanglement of bound entangled states which do not yield to detection by witnesses based on positive maps which are not completely positive. We demonstrate how such non-detectable bound entangled states can be locally filtered into detectable bound entangled states. Specifically, we show that a bound entangled state in the orthogonal complement of the unextendible product bases (UPB), can be locally filtered into another bound entangled state that is detectable by the Choi map. We reinterpret these filters as local measurements on locally extended Hilbert spaces. We give explicit constructions of a measurement-based implementation of these filters for 2 ⊗ 2 and 3 ⊗ 3 systems. This provides us with a physical mechanism to implement such local filters.

  13. Long-distance entanglement-based quantum key distribution over optical fiber.

    PubMed

    Honjo, T; Nam, S W; Takesue, H; Zhang, Q; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Baek, B; Hadfield, R; Miki, S; Fujiwara, M; Sasaki, M; Wang, Z; Inoue, K; Yamamoto, Y

    2008-11-10

    We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-mum telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key.

  14. Quantum entanglement in circuit QED

    SciTech Connect

    Milburn, G. J.; Meaney, Charles

    2008-11-07

    We show that the ground state of a very strongly coupled two level system based on a superconducting island and a microwave cavity field can undergo a morphological change as the coupling strength is increased. This looks like a quantum phase transition and is characterized by the appearance of entanglement between the cavity field and the two level system.

  15. Multipartite entanglement in quantum algorithms

    SciTech Connect

    Bruss, D.; Macchiavello, C.

    2011-05-15

    We investigate the entanglement features of the quantum states employed in quantum algorithms. In particular, we analyze the multipartite entanglement properties in the Deutsch-Jozsa, Grover, and Simon algorithms. Our results show that for these algorithms most instances involve multipartite entanglement.

  16. A Two-State Entanglement Based Quantum Single Sign-On Protocol

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Ma, Bingzhan; Dai, Guiping

    2014-12-01

    Single Sign-On (SSO) is an important cryptography mechanism in distributed systems. Quantum cryptography has gained great successes and makes great influence on traditional cryptography. In this paper, a SSO protocol based on two-state entanglement is designed. Through security analysis, we show that this protocol has good security properties.

  17. Measuring Quantum Coherence with Entanglement.

    PubMed

    Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo

    2015-07-10

    Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.

  18. Entanglement of distinguishable quantum memories

    NASA Astrophysics Data System (ADS)

    Vittorini, G.; Hucul, D.; Inlek, I. V.; Crocker, C.; Monroe, C.

    2014-10-01

    Time-resolved photon detection can be used to generate entanglement between distinguishable photons. This technique can be extended to entangle quantum memories that emit photons with different frequencies and identical temporal profiles without the loss of entanglement rate or fidelity. We experimentally realize this process using remotely trapped 171Yb+ ions where heralded entanglement is generated by interfering distinguishable photons. This technique may be necessary for future modular quantum systems and networks that are composed of heterogeneous qubits.

  19. Quantum Entanglement Swapping between Two Multipartite Entangled States

    NASA Astrophysics Data System (ADS)

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-01

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  20. Quantum Entanglement Swapping between Two Multipartite Entangled States.

    PubMed

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-09

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  1. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons

    NASA Astrophysics Data System (ADS)

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-07-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system.

  2. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons

    PubMed Central

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-01-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276

  3. Evolution of Quantum Entanglement in Open Systems

    SciTech Connect

    Isar, A.

    2010-08-04

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.

  4. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  5. High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhao, Yuqian

    2013-02-01

    We investigate a novel quantum secret sharing (QSS) based on the Chinese remainder theory (CRT) in multi-dimensional Hilbert space with the orbital angular momentum (OAM) entanglement analysis. The secret is divided and then allotted to two or more participants who prepare pairs of photons in the OAM-entanglement states. The initial secret can be restored jointly by legal participants via the OAM-entanglement analysis on the corresponding photons. Its security is guaranteed from the OAM entanglement of photons that are established through the spin angular momentum (SAM) entanglement analysis performed on the generated SAM-based OAM hybrid entanglement photons. It provides an alternative technique for the QSS while producing the OAM entanglement photons in the combined multi-dimensional OAM Hilbert space, where the CRT is conducted properly for sharing the conventional secret among legal participants.

  6. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  7. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  8. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  9. Entanglement-assisted codeword stabilized quantum codes

    SciTech Connect

    Shin, Jeonghwan; Heo, Jun; Brun, Todd A.

    2011-12-15

    Entangled qubits can increase the capacity of quantum error-correcting codes based on stabilizer codes. In addition, by using entanglement quantum stabilizer codes can be construct from classical linear codes that do not satisfy the dual-containing constraint. We show that it is possible to construct both additive and nonadditive quantum codes using the codeword stabilized quantum code framework. Nonadditive codes may offer improved performance over the more common stabilizer codes. Like other entanglement-assisted codes, the encoding procedure acts only on the qubits on Alice's side, and only these qubits are assumed to pass through the channel. However, errors in the codeword stabilized quantum code framework give rise to effective Z errors on Bob's side. We use this scheme to construct entanglement-assisted nonadditive quantum codes, in particular, ((5,16,2;1)) and ((7,4,5;4)) codes.

  10. Quantum Entanglement Oscillations

    NASA Astrophysics Data System (ADS)

    Dima, A.; Dima, M.

    2009-09-01

    Quantum entanglement is shown to exist as a means of lowering ground state energy for multi-component systems. Symmetric and anti-symmetric system wavefunctions are thus simply due to the inter-particle potential and not to fundamental particle types: fermions and bosons. The paper shows that additionally to the cases known, bosons— apart from the condensate minimum, can exhibit an energy minimum type allowing entanglement oscillations. This fundamentally new case could conceivably be the origin of the conflicting properties observed in super-solidity: lower (fluid-like) rotational inertia (Kim and Chan in Nature 427:225, 2004; J. Low Temp. Phys. 138:859, 2005), higher (solid-like) shear modulus (Chan in Science 319:29, 2008).

  11. Quantum secret sharing based on modulated high-dimensional time-bin entanglement

    SciTech Connect

    Takesue, Hiroki; Inoue, Kyo

    2006-07-15

    We propose a scheme for quantum secret sharing (QSS) that uses a modulated high-dimensional time-bin entanglement. By modulating the relative phase randomly by {l_brace}0,{pi}{r_brace}, a sender with the entanglement source can randomly change the sign of the correlation of the measurement outcomes obtained by two distant recipients. The two recipients must cooperate if they are to obtain the sign of the correlation, which is used as a secret key. We show that our scheme is secure against intercept-and-resend (IR) and beam splitting attacks by an outside eavesdropper thanks to the nonorthogonality of high-dimensional time-bin entangled states. We also show that a cheating attempt based on an IR attack by one of the recipients can be detected by changing the dimension of the time-bin entanglement randomly and inserting two 'vacant' slots between the packets. Then, cheating attempts can be detected by monitoring the count rate in the vacant slots. The proposed scheme has better experimental feasibility than previously proposed entanglement-based QSS schemes.

  12. Entanglement-induced quantum radiation

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro

    2017-08-01

    Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.

  13. General polygamy inequality of multiparty quantum entanglement

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2012-06-01

    Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.

  14. Insecurity of position-based quantum-cryptography protocols against entanglement attacks

    SciTech Connect

    Lau, Hoi-Kwan; Lo, Hoi-Kwong

    2011-01-15

    Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to undermine the previous protocols can succeed with a rate of at most 85%. We prove the modified protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.

  15. Insecurity of position-based quantum-cryptography protocols against entanglement attacks

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Lo, Hoi-Kwong

    2011-01-01

    Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to undermine the previous protocols can succeed with a rate of at most 85%. We prove the modified protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.

  16. A Quantum Multi-proxy Multi-blind-signature Scheme Based on Genuine Six-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Shao, Ai-Xia; Zhang, Jian-Zhong; Xie, Shu-Cui

    2016-12-01

    In this paper, a very efficient and secure multi-proxy multi-blind-signature scheme is proposed which is based on controlled quantum teleportation. Genuine six-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to guarantee its unforgeability, undeniability, blindness and unconditional security.

  17. Comment on 'Multiparty quantum secret sharing of classical messages based on entanglement swapping'

    SciTech Connect

    Lin Song; Gao Fei; Guo Fenzhuo; Wen Qiaoyan; Zhu Fuchen

    2007-09-15

    In a recent paper [Z. J. Zhang and Z. X. Man, Phys. Rev. A 72, 022303 (2005)], a multiparty quantum secret sharing protocol based on entanglement swapping was presented. However, as we show, this protocol is insecure in the sense that an unauthorized agent group can recover the secret from the dealer. Hence we propose an improved version of this protocol which can stand against this kind of attack.

  18. Entanglement-based quantum key distribution with biased basis choice via free space.

    PubMed

    Cao, Yuan; Liang, Hao; Yin, Juan; Yong, Hai-Lin; Zhou, Fei; Wu, Yu-Ping; Ren, Ji-Gang; Li, Yu-Huai; Pan, Ge-Sheng; Yang, Tao; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-11-04

    We report a free-space entanglement-based quantum key distribution experiment, implementing the biased basis protocol between two sites which are 15.3 km apart. Photon pairs from a polarization-entangled source are distributed through two 7.8-km free-space optical links. An optimal bias 20:80 between the X and Z basis is used. A post-processing scheme with finite-key analysis is applied to extract the final secure key. After three-hour continuous operation at night, a 4293-bit secure key is obtained, with a final key rate of 0.124 bit per raw key bit which increases the final key rate by 14.8% comparing to the standard BB84 case. Our results experimentally demonstrate that the efficient BB84 protocol, which increases key generation efficiency by biasing Alice and Bob's basis choices, is potentially useful for the ground-satellite quantum communication.

  19. Evolution and Survival of Quantum Entanglement

    DTIC Science & Technology

    2015-05-06

    Entanglement and Optical Polarization " Changchun Inst. of Optics and Mechanics Changchun, Jilin, China 518. Heraeus Seminar on Quantum Optical...Evolution and Survival of Quantum Entanglement Theoretical foundations for methods to preserve quantum entanglement are explored and explained...Research Triangle Park, NC 27709-2211 quantum entanglement, decoherence, qubit, revival, survival, Jaynes-Cummings, Rabi, rotating wave approximation

  20. Higher-order quantum entanglement

    NASA Technical Reports Server (NTRS)

    Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.

    1992-01-01

    In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.

  1. Local copying of orthogonal entangled quantum states

    NASA Astrophysics Data System (ADS)

    Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B.

    2004-11-01

    In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible.

  2. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication.

    PubMed

    Peng, Cheng-Zhi; Yang, Tao; Bao, Xiao-Hui; Zhang, Jun; Jin, Xian-Min; Feng, Fa-Yong; Yang, Bin; Yang, Jian; Yin, Juan; Zhang, Qiang; Li, Nan; Tian, Bao-Li; Pan, Jian-Wei

    2005-04-22

    We report free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. It is shown that the desired entanglement can still survive after both entangled photons have passed through the noisy ground atmosphere with a distance beyond the effective thickness of the aerosphere. This is confirmed by observing a spacelike separated violation of Bell inequality of 2.45+/-0.09. On this basis, we exploit the distributed entangled photon source to demonstrate the Bennett-Brassard 1984 quantum cryptography scheme. The distribution distance of entangled photon pairs achieved in the experiment is for the first time well beyond the effective thickness of the aerosphere, hence presenting a significant step towards satellite-based global quantum communication.

  3. Quantum discord with weak measurement operators of quasi-Werner states based on bipartite entangled coherent states

    NASA Astrophysics Data System (ADS)

    Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.

    2013-11-01

    Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.

  4. Entanglement-assisted quantum feedback control

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  5. Inter-Universal Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S. J.; González-Díaz, P. F.

    2015-01-01

    The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.

  6. Measurement-based quantum communication with resource states generated by entanglement purification

    NASA Astrophysics Data System (ADS)

    Wallnöfer, J.; Dür, W.

    2017-01-01

    We investigate measurement-based quantum communication with noisy resource states that are generated by entanglement purification. We consider the transmission of encoded information via noisy quantum channels using a measurement-based implementation of encoding, error correction, and decoding. We show that such an approach offers advantages over direct transmission, gate-based error correction, and measurement-based schemes with direct generation of resource states. We analyze the noise structure of resource states generated by entanglement purification and show that a local error model, i.e., noise acting independently on all qubits of the resource state, is a good approximation in general, and provides an exact description for Greenberger-Horne-Zeilinger states. The latter are resources for a measurement-based implementation of error-correction codes for bit-flip or phase-flip errors. This provides an approach to link the recently found very high thresholds for fault-tolerant measurement-based quantum information processing based on local error models for resource states with error thresholds for gate-based computational models.

  7. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  8. Entanglement for All Quantum States

    ERIC Educational Resources Information Center

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  9. Entanglement for All Quantum States

    ERIC Educational Resources Information Center

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  10. Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Zou, Xiangfu; Mateus, Paulo

    2017-06-01

    A broadcasting multiple blind signature scheme based on quantum GHZ entanglement has been presented recently. It is said that the scheme's unconditional security is guaranteed by adopting quantum key preparation, quantum encryption algorithm and quantum entanglement. In this paper, we prove that each signatory can get the signed message just by an intercept-resend attack. Then, we show there still exist some participant attacks and external attacks. Specifically, we verify the message sender Alice can impersonate each signatory to sign the message at will, and so is the signature collector Charlie. Also, we demonstrate that the receiver Bob can forge the signature successfully, and with respect to the external attacks, the eavesdropper Eve can modify the signature at random. Besides, we discover Eve can change the signed message at random, and Eve can impersonate Alice as the message sender without being discovered. In particular, we propose an improved scheme based on the original one and show that it is secure against not only the attacks mentioned above but also some collusion attacks.

  11. Entanglement swapping secures multiparty quantum communication

    NASA Astrophysics Data System (ADS)

    Lee, Juhui; Lee, Soojoon; Kim, Jaewan; Oh, Sung Dahm

    2004-09-01

    Extending the eavesdropping strategy devised by Zhang, Li, and Guo [

    Zhang, Li, and Guo, Phys. Rev. A 63, 036301 (2001)
    ], we show that the multiparty quantum communication protocol based on entanglement swapping, which was proposed by Cabello (e-print quant-ph/0009025), is not secure. We modify the protocol so that entanglement swapping can secure multiparty quantum communication, such as multiparty quantum key distribution and quantum secret sharing of classical information, and show that the modified protocol is secure against the Zhang-Li-Guo strategy for eavesdropping as well as the basic intercept-resend attack.

  12. Entanglement and the shareability of quantum states

    NASA Astrophysics Data System (ADS)

    Doherty, Andrew C.

    2014-10-01

    This brief review discusses the problem of determining whether a given quantum state is separable or entangled. I describe an established approach to this problem that is based on the monogamy of entanglement, which is the observation that a pair of quantum systems that are strongly entangled must be uncorrelated with the rest of the world. Unentangled states on the other hand involve correlations that can be shared with many other parties. Checking whether a given quantum state is shareable involves constructing certain symmetric quantum state extensions and I discuss how to do this using a class of optimizations known as semidefinite programs. An attractive feature of this approach is that it generates explicit entanglement witnesses that can be measured to demonstrate the entanglement experimentally. In recent years analysis of this approach has greatly increased our understanding of the complexity of determining whether a given quantum state is entangled and this review aims to give a unified discussion of these developments. Specifically, I describe how to use finite quantum de Finetti theorems to prove that highly shareable states are nearly separable and use these results to understand the computational complexity of the problem. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  13. Tuning of quantum entanglement in molecular quantum cellular automata based on mixed-valence tetrameric units.

    PubMed

    Palii, Andrew; Tsukerblat, Boris

    2016-10-25

    In this article we consider two coupled tetrameric mixed-valence (MV) units accommodating electron pairs, which play the role of cells in molecular quantum cellular automata. It is supposed that the Coulombic interaction between instantly localized electrons within the cell markedly inhibits the transfer processes between the redox centers. Under this condition, as well as due to the vibronic localization of the electron pair, the cell can encode binary information, which is controlled by neighboring cells. We show that under certain conditions the two low-lying vibronic spin levels of the cell (ground and first excited states) can be regarded as originating from an effective spin-spin interaction. This is shown to depend on the internal parameters of the cell as well as on the induced polarization. Within this simplified two-level picture we evaluate the quantum entanglement in the system represented by the two electrons in the cell and show how the entanglement within the cell and concurrence can be controlled via polarization of the neighboring cells and temperature.

  14. Quantum Entanglement on a Hypersphere

    NASA Astrophysics Data System (ADS)

    Peters, James F.; Tozzi, Arturo

    2016-08-01

    A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.

  15. Quantum entanglement assisted key distribution

    NASA Astrophysics Data System (ADS)

    Tang, Ke; Ji, Ping; Zhang, Xiaowen

    2007-04-01

    Quantum correlations or entanglement is a basic ingredient for many applications of quantum information theory.One important application using quantum entanglement exploits the correlation nature of entangled photon states is quantum key distribution, which is proven unbreakable in principle and provides the highest possible security that is impossible in classical information theory. However, generating entangled photon pairs is not a simple task -- only approximately one out of a million pump photons decay into a signal and idler photon pair. This low rate of entangled photon pairs is further reduced by the overhead required in order for the rectification of the inevitable errors due to channel imperfections or caused by potential eavesdroppers. As a consequence, quantum key distribution suffers from a low bit rate, which is in the order of hundreds to thousands bits per second or below. On the other hand, the classical public key distribution does not impose a tight limit on the transmission rate. However, it is subject to the risks of eavesdroppers sitting in the middle of the insecure channel. In this paper, we propose a hybrid key distribution method which uses public key distribution method to generate a raw key, and then uses entanglement assisted communication to modify the raw key by inserting a number of quantum bits in the raw key. Building upon the foundation of the unconditional security of quantum key distribution, we use the privacy amplification to make the affection of inserted bits expand to a whole key. Our quantum entanglement assisted key distribution scheme greatly improves the efficiency of key distribution while without compromising the level of security achievable by quantum cryptography.

  16. Unconditional security of entanglement-based continuous-variable quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Kogias, Ioannis; Xiang, Yu; He, Qiongyi; Adesso, Gerardo

    2017-01-01

    The need for secrecy and security is essential in communication. Secret sharing is a conventional protocol to distribute a secret message to a group of parties, who cannot access it individually but need to cooperate in order to decode it. While several variants of this protocol have been investigated, including realizations using quantum systems, the security of quantum secret sharing schemes still remains unproven almost two decades after their original conception. Here we establish an unconditional security proof for entanglement-based continuous-variable quantum secret sharing schemes, in the limit of asymptotic keys and for an arbitrary number of players. We tackle the problem by resorting to the recently developed one-sided device-independent approach to quantum key distribution. We demonstrate theoretically the feasibility of our scheme, which can be implemented by Gaussian states and homodyne measurements, with no need for ideal single-photon sources or quantum memories. Our results contribute to validating quantum secret sharing as a viable primitive for quantum technologies.

  17. Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Yamamoto, Yoshihisa

    `In this chapter, we introduced and analyze techniques that allow truly secure secret key sharing over long distances, using public, open channels, where the laws of quantum mechanics ensure the security of the long distance key sharing - an idea generally referred to as the essence of a quantum repeater. We describe several proof-of-principle experiments where technology based on self-assembled quantum dots is used as the backbone of a future quantum repeater.'

  18. Quantum Entanglement and Chemical Reactivity.

    PubMed

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  19. Cooperative Quantum Two-Way Communications via Quantum Teleportation Based on Brown State with the Partial Entanglement Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Kuang, Hongyan; Guo, Ying

    2013-10-01

    We demonstrate two explicit cooperative two-way quantum communications based on the Brown state in a forward-and-backward fashion. One realizes the duplex exchange of an arbitrary unknown state and a certain state between Alice and Bob with the aid of the trusty Charlie via the partial entanglement analysis. The other realizes the half-duplex exchange of arbitrary unknown states. Their securities are both guaranteed due to the fact that each participant either faithfully recovers the transmitted unknown states after performing some suitable unitary operations in a deterministic way or, in a case of any irregularity, generates no results. In addition, the present half-duplex cooperative quantum communication can be similarly extended for transmitting arbitrary unknown states via the two-way quantum teleportation based on the generalized Brown-like state in a probabilistic way.

  20. Hierarchy of universal entanglement in 2D measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Miller, Jacob; Miyake, Akimasa

    2016-11-01

    Measurement-based quantum computation (MQC) is a paradigm for studying quantum computation using many-body entanglement and single-qubit measurements. Although MQC has inspired wide-ranging discoveries throughout quantum information, our understanding of the general principles underlying MQC seems to be biased by its historical reliance upon the archetypal 2D cluster state. Here we utilise recent advances in the subject of symmetry-protected topological order (SPTO) to introduce a novel MQC resource state, whose physical and computational behaviour differs fundamentally from that of the cluster state. We show that, in sharp contrast to the cluster state, our state enables universal quantum computation using only measurements of single-qubit Pauli X, Y, and Z operators. This novel computational feature is related to the 'genuine' 2D SPTO possessed by our state, and which is absent in the cluster state. Our concrete connection between the latent computational complexity of many-body systems and macroscopic quantum orders may find applications in quantum many-body simulation for benchmarking classically intractable complexity.

  1. Quantum entanglement distillation with metamaterials.

    PubMed

    al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö

    2015-07-13

    We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.

  2. A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei

    2017-02-01

    In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.

  3. Dissipation-based entanglement via quantum Zeno dynamics and Rydberg antiblockade

    NASA Astrophysics Data System (ADS)

    Shao, X. Q.; Wu, J. H.; Yi, X. X.

    2017-06-01

    A scheme is proposed for dissipative generation of maximally entanglement between two Rydberg atoms in the context of cavity QED. The spontaneous emission of atoms combined with quantum Zeno dynamics and the Rydberg antiblockade guarantees a unique steady solution of the master equation of the system, which just corresponds to the antisymmetric Bell state |S > . The convergence rate can be accelerated by the ground-state blockade mechanism of Rydberg atoms. Meanwhile the effect of cavity decay is suppressed by the Zeno requirement, leading to a steady-state fidelity about 90 % as the single-atom cooperativity parameter C ≡g2/(κ γ ) =10 , and this restriction is further relaxed to C =5.2 once the quantum-jump-based feedback control is exploited.

  4. A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei

    2016-11-01

    In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.

  5. Quantum key distribution with an entangled light emitting diode

    SciTech Connect

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  6. Entanglement over global distances via quantum repeaters with satellite links

    NASA Astrophysics Data System (ADS)

    Boone, K.; Bourgoin, J.-P.; Meyer-Scott, E.; Heshami, K.; Jennewein, T.; Simon, C.

    2015-05-01

    We study entanglement creation over global distances based on a quantum repeater architecture that uses low-Earth-orbit satellites equipped with entangled photon sources, as well as ground stations equipped with quantum nondemolition detectors and quantum memories. We show that this approach allows entanglement creation at viable rates over distances that are inaccessible via direct transmission through optical fibers or even from very distant satellites.

  7. Quantum random number generator using photon-number path entanglement

    NASA Astrophysics Data System (ADS)

    Kwon, Osung; Cho, Young-Wook; Kim, Yoon-Ho

    2010-08-01

    We report an experimental implementation of quantum random number generator based on the photon-number-path entangled state. The photon-number-path entangled state is prepared by means of two-photon Hong-Ou-Mandel quantum interference at a beam splitter. The randomness in our scheme is of truly quantum mechanical origin as it comes from the projection measurement of the entangled two-photon state. The generated bit sequences satisfy the standard randomness test.

  8. Polygamy of entanglement in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2009-08-01

    We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.

  9. Entanglement evolution for quantum trajectories

    NASA Astrophysics Data System (ADS)

    Vogelsberger, S.; Spehner, D.

    2011-07-01

    Entanglement is a key resource in quantum information. It can be destroyed or sometimes created by interactions with a reservoir. In recent years, much attention has been devoted to the phenomena of entanglement sudden death and sudden birth, i.e., the sudden disappearance or revival of entanglement at finite times resulting from a coupling of the quantum system to its environment [1, 2, 3]. We investigate the evolution of the entanglement of noninteracting qubits coupled to reservoirs under monitoring of the reservoirs by means of continuous measurements. Because of these measurements, the qubits remain at all times in a pure state, which evolves randomly. To each measurement result (or "realization") corresponds a quantum trajectory in the Hilbert space of the qubits. We show that for two qubits coupled to independent baths subjected to local measurements, the average of the qubits' concurrence over all quantum trajectories is either constant or decays exponentially. The corresponding decay rate depends on the measurement scheme only. This result contrasts with the entanglement sudden death phenomenon exhibited by the qubits' density matrix in the absence of measurements. Our analysis applies to arbitrary quantum jump dynamics (photon counting) as well as to quantum state diffusion (homodyne or heterodyne detections) in the Markov limit. We discuss the best measurement schemes to protect the entanglement of the qubits. We also analyze the case of two qubits coupled to a common bath. Then, the average concurrence can vanish at discrete times and may coincide with the concurrence of the density matrix. The results explained in this article have been presented during the "Fifth International Workshop DICE2010" by the first author and have been the subject of a prior publication [4].

  10. Quantum entanglement, quantum communication and the limits of quantum computing

    NASA Astrophysics Data System (ADS)

    Ambainis, Andris

    Quantum entanglement is a term describing the quantum correlations between different parts of a quantum system. Quantum information theory has developed sophisticated techniques to quantify and study quantum entanglement. In this thesis, we show how to apply those techniques to problems in quantum algorithms, complexity theory, communication and cryptography. The main results are: (1) quantum communication protocols that are exponentially more efficient that conventional (classical) communication protocols, (2) unconditionally secure quantum protocols for cryptographic problems, (3) a new "quantum adversary" method for proving lower bounds on quantum algorithms, (4) a study of "one clean qubit computation", a model related to the experimental implementation of quantum computers using NMR (nucleo-magnetic resonance) technology.

  11. Quantum entanglement in the multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S.; González-Díaz, P. F.

    2014-01-01

    We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time, whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state. These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermodynamical properties of entanglement are calculated for a composite quantum state of two universes whose states are quantum-mechanically correlated. The energy of entanglement between the positive and negative modes of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also computed.

  12. Experimental quantum computing without entanglement.

    PubMed

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  13. Quantum Entanglement in Neural Network States

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    unparalleled power of artificial neural networks in representing quantum many-body states regardless of how much entanglement they possess, which paves a novel way to bridge computer-science-based machine-learning techniques to outstanding quantum condensed-matter physics problems.

  14. Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-02-01

    In this study, we propose the concept of judgment space to investigate the quantum-secret-sharing scheme based on local distinguishability (called LOCC-QSS). Because of the proposing of this conception, the property of orthogonal mutiqudit entangled states under restricted local operation and classical communication (LOCC) can be described more clearly. According to these properties, we reveal that, in the previous (k ,n )-threshold LOCC-QSS scheme, there are two required conditions for the selected quantum states to resist the unambiguous attack: (i) their k -level judgment spaces are orthogonal, and (ii) their (k -1 )-level judgment spaces are equal. Practically, if k quantum states and ensure the scheme's security, i.e., even if the (k -1 )-level judgment spaces of the selected quantum states are not equal, these states can still be used for defeating the unambiguous attack. With this encoding method, we propose a more secure (k ,n )-threshold LOCC-QSS scheme, and give two specific examples for illustration.

  15. A broadcasting multiple blind signature scheme based on quantum GHZ entanglement

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Chen, Hong; Gao, Yan; Zhuang, Honglin; Lian, Haigang; Han, Zhengping; Yu, Peng; Kong, Xiangze; Wen, Xiaojun

    2014-09-01

    Using the correlation of the GHZ triplet states, a broadcasting multiple blind signature scheme is proposed. Different from classical multiple signature and current quantum signature schemes, which could only deliver either multiple signature or unconditional security, our scheme guarantees both by adopting quantum key preparation, quantum encryption algorithm and quantum entanglement. Our proposed scheme has the properties of multiple signature, blindness, non-disavowal, non-forgery and traceability. To the best of our knowledge, we are the first to propose the broadcasting multiple blind signature of quantum cryptography.

  16. Multipartite entanglement accumulation in quantum states: Localizable generalized geometric measure

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Debasis; Roy, Sudipto Singha; Pal, Amit Kumar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2017-02-01

    Multiparty quantum states are useful for a variety of quantum information and computation protocols. We define a multiparty entanglement measure based on local measurements on a multiparty quantum state and an entanglement measure averaged on the postmeasurement ensemble. Using the generalized geometric measure as the measure of multipartite entanglement for the ensemble, we demonstrate, in the case of several well-known classes of multipartite pure states, that the localized multipartite entanglement can exceed the entanglement present in the original state. We also show that measurement over multiple parties may be beneficial in enhancing localizable multipartite entanglement. We point out that localizable generalized geometric measure faithfully signals quantum critical phenomena in well-known quantum spin models even when considerable finite-size effect is present in the system.

  17. Partially entangled states bridge in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen

    2014-10-01

    The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

  18. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    PubMed

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.

  19. Entanglement irreversibility from quantum discord and quantum deficit.

    PubMed

    Cornelio, Marcio F; de Oliveira, Marcos C; Fanchini, Felipe F

    2011-07-08

    We relate the problem of irreversibility of entanglement with the recently defined measures of quantum correlation--quantum discord and one-way quantum deficit. We show that the entanglement of formation is always strictly larger than the coherent information and the entanglement cost is also larger in most cases. We prove irreversibility of entanglement under local operations and classical communication for a family of entangled states. This family is a generalization of the maximally correlated states for which we also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the distillable secret key, and the quantum discord.

  20. Heralded amplification of path entangled quantum states

    NASA Astrophysics Data System (ADS)

    Monteiro, F.; Verbanis, E.; Caprara Vivoli, V.; Martin, A.; Gisin, N.; Zbinden, H.; Thew, R. T.

    2017-06-01

    Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.

  1. Multiplexing scheme for simplified entanglement-based large-alphabet quantum key distribution

    NASA Astrophysics Data System (ADS)

    Dada, Adetunmise C.

    2015-05-01

    We propose a practical quantum cryptographic scheme which combines high information capacity, such as provided by high-dimensional quantum entanglement, with the simplicity of a two-dimensional Clauser-Horne-Shimony-Holt (CHSH) Bell test for security verification. By applying a state combining entanglement in a two-dimensional degree of freedom, such as photon polarization, with high-dimensional correlations in another degree of freedom, such as photon orbital angular momentum (OAM) or path, the scheme provides a considerably simplified route towards security verification in quantum key distribution (QKD) aimed at exploiting high-dimensional quantum systems for increased secure key rates. It also benefits from security against collective attacks and is feasible using currently available technologies.

  2. Monogamy of quantum entanglement and other correlations

    SciTech Connect

    Koashi, Masato; Winter, Andreas

    2004-02-01

    It has been observed by numerous authors that a quantum system being entangled with another one limits its possible entanglement with a third system: this has been dubbed the 'monogamous nature of entanglement'. In this paper we present a simple identity which captures the trade off between entanglement and classical correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs of a monogamy nature for other entanglement measures and secret and total correlation measures.

  3. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.

    PubMed

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-10-26

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.

  4. Sensing intruders using entanglement: a photonic quantum fence

    SciTech Connect

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J

    2009-01-01

    We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. Moreover, we employ the correlated measurement outcomes from polarization-entangled photons to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.

  5. Entanglement in quantum catastrophes

    SciTech Connect

    Emary, Clive; Lambert, Neill; Brandes, Tobias

    2005-06-15

    We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the nonlinearity parameter, and discuss the role of mixing entropies in more complex systems.

  6. Avoiding entanglement sudden death using single-qubit quantum measurement reversal.

    PubMed

    Lim, Hyang-Tag; Lee, Jong-Chan; Hong, Kang-Hee; Kim, Yoon-Ho

    2014-08-11

    When two entangled qubits, each owned by Alice and Bob, undergo separate decoherence, the amount of entanglement is reduced, and often, weak decoherence causes complete loss of entanglement, known as entanglement sudden death. Here we show that it is possible to apply quantum measurement reversal on a single-qubit to avoid entanglement sudden death, rather than on both qubits. Our scheme has important applications in quantum information processing protocols based on distributed or stored entangled qubits as they are subject to decoherence.

  7. Quantum entanglement and temperature fluctuations.

    PubMed

    Ourabah, Kamel; Tribeche, Mouloud

    2017-04-01

    In this paper, we consider entanglement in a system out of equilibrium, adopting the viewpoint given by the formalism of superstatistics. Such an approach yields a good effective description for a system in a slowly fluctuating environment within a weak interaction between the system and the environment. For this purpose, we introduce an alternative version of the formalism within a quantum mechanical picture and use it to study entanglement in the Heisenberg XY model, subject to temperature fluctuations. We consider both isotropic and anisotropic cases and explore the effect of different temperature fluctuations (χ^{2}, log-normal, and F distributions). Our results suggest that particular fluctuations may enhance entanglement and prevent it from vanishing at higher temperatures than those predicted for the same system at thermal equilibrium.

  8. Entanglement enhances cooling in microscopic quantum refrigerators.

    PubMed

    Brunner, Nicolas; Huber, Marcus; Linden, Noah; Popescu, Sandu; Silva, Ralph; Skrzypczyk, Paul

    2014-03-01

    Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.

  9. Cloning quantum entanglement in arbitrary dimensions

    SciTech Connect

    Karpov, E.; Navez, P.; Cerf, N.J.

    2005-10-15

    We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of d-dimensional quantum systems prepared in an arbitrary isotropic state. It maximizes the entanglement of formation contained in the two copies of any maximally entangled input state, while preserving the separability of unentangled input states. Moreover, it cannot increase the entanglement of formation of isotropic states. For large d, the entanglement of formation of each clone tends to one-half the entanglement of the input state, which corresponds to a classical behavior. Finally, we investigate a local entanglement cloner, which yields entangled clones with one-fourth the input entanglement in the large-d limit.

  10. Sequential Path Entanglement for Quantum Metrology

    PubMed Central

    Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.

    2013-01-01

    Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.

  11. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  12. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  13. Efficient entanglement distillation without quantum memory

    NASA Astrophysics Data System (ADS)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  14. Entanglement in fermion systems and quantum metrology

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Floreanini, R.; Marzolino, U.

    2014-03-01

    Entanglement in fermion many-body systems is studied using a generalized definition of separability based on partitions of the set of observables, rather than on particle tensor products. In this way, the characterizing properties of nonseparable fermion states can be explicitly analyzed, allowing a precise description of the geometric structure of the corresponding state space. These results have direct applications in fermion quantum metrology: Sub-shot-noise accuracy in parameter estimation can be obtained without the need of a preliminary state entangling operation.

  15. Entangled States, Holography and Quantum Surfaces

    SciTech Connect

    Chapline, G F

    2003-08-13

    Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.

  16. Topological Quantum Entanglement

    DTIC Science & Technology

    2014-02-19

    Fractional Quantum Hall States (D.J. Clarke, J. Alicia, and K. Shtengel), Nature Commun. 4, 1348 (2013). arXiv:1204.5479 57. Andreev Bound States in...signatures of non-Abelian anyons (i) ν=5/2 state FQHE Perhaps the most striking signature of non-Abelian statistics of anyons in the ν=5/2 fractional...quantum Hall (FQH) state – the most likely FQH state to host such quasiparticles – is the so-called even-odd effect predicted for quantum interference

  17. Quantum thermodynamics and quantum entanglement entropies in an expanding universe

    NASA Astrophysics Data System (ADS)

    Farahmand, Mehrnoosh; Mohammadzadeh, Hosein; Mehri-Dehnavi, Hossein

    2017-05-01

    We investigate an asymptotically spatially flat Robertson-Walker space-time from two different perspectives. First, using von Neumann entropy, we evaluate the entanglement generation due to the encoded information in space-time. Then, we work out the entropy of particle creation based on the quantum thermodynamics of the scalar field on the underlying space-time. We show that the general behavior of both entropies are the same. Therefore, the entanglement can be applied to the customary quantum thermodynamics of the universe. Also, using these entropies, we can recover some information about the parameters of space-time.

  18. Quantum states prepared by realistic entanglement swapping

    SciTech Connect

    Scherer, Artur; Howard, Regina B.; Sanders, Barry C.; Tittel, Wolfgang

    2009-12-15

    Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.

  19. Entanglement and quantum teleportation with multi-atom ensembles.

    PubMed

    Polzik, E S; Julsgaard, B; Sherson, J; Sørensen, J L

    2003-07-15

    Atomic ensembles containing a large number of atoms have been proved to be an effective medium for quantum-state (quantum information) engineering and processing via their coupling with multi-photon light pulses. The general mechanism of this coupling, which involves continuous quantum variables for light and atoms, is described. The efficient quantum interface between light and atoms has led to the recent demonstration of an entangled state of two macroscopic atomic objects, more precisely two caesium gas samples. Based on this result, a proposal for teleportation of an entangled state of two atomic samples (entanglement swapping) is presented.

  20. Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without disturbing them

    SciTech Connect

    Li Zhenni; Jin Jiasen; Yu Changshui

    2011-01-15

    We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.

  1. Lithography system using quantum entangled photons

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2002-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  2. An improved coding method of quantum key distribution protocols based on Fibonacci-valued OAM entangled states

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Luo, Ming-Xing; Zhan, Cheng; Pieprzyk, Josef; Orgun, Mehmet A.

    2017-09-01

    We propose an improved coding method of quantum key distribution protocols based on a recently proposed (QKD) protocol using Fibonacci-valued OAM entangled states. To be exact, we define a new class of Fibonacci-matrix coding and Fibonacci-matrix representation and show how they can be used to extend and improve the original protocols. Compared with the original protocols, our protocol not only greatly improves the encoding efficiency but also has verifiability.

  3. Entanglement and quantum teleportation via decohered tripartite entangled states

    SciTech Connect

    Metwally, N.

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  4. Haunted Quantum Entanglement, Quantum Erasure, and Orthogonality

    NASA Astrophysics Data System (ADS)

    Snyder, Douglas

    2010-02-01

    Both haunted quantum entanglement (hqe) and quantum erasure (qe) demonstrate interference. For interference, overlapping waves are needed which are likely supplied by equations such as 1/√ 2 [\\vert P/u>+\\vert P/l>] = \\vert P/s> and 1/√ 2 [\\vert P/u>-\\vert P/l>] = \\vert P/a> where \\vert P/u> and \\vert P/l> are generally considered orthogonal (i.e., no overlap) and \\vert P/s> and \\vert P/a> are symmetric and anti-symmetric wave functions. The conventional consideration of orthogonality in hqe and qe may need adjustment given empirical support for the presence of fringes and anti-fringes in qe. Orthogonality as regards hqe and qe is tied to the possibility of obtaining which way information. If this possibility is lost, it would appear that orthogonality which is based on this possibility may be lost. A completed measurement appears central to establishing orthogonality as regards hqe and qe. In hqe, this completed measurement could be for example an atom passing through a double slit arrangement after having emitted a photon in one of two micromaser cavities, thus providing general which way information without specifying through which specific slit the atom passed. In qe, the completed measurement could be this atom subsequently striking a detection screen, providing the ability to obtain information regarding through which specific slit the atom passed. Hqe and qe occur when which way information is lost before their respective completed measurements are made. )

  5. Noise and entanglement in quantum conductors

    SciTech Connect

    Lesovik, G. B.; Lebedev, A. V.

    2009-05-14

    In this article we discuss our two recent proposals on producing and detecting of entangled states in quantum conductors. First we analyze a setup where two electrons are scattered on a quantum dot with Coulomb repulsion and became orbitally entangled. Second, for identical noninteracting particles we suggest an operating scheme for the deliberate generation of spin-entangled electron pairs in a normal-metal mesoscopic structure with a fork geometry. The spin-entangled pair is created through a post-selection in the two branches of the fork. We also make comments on different ways of producing and quantifying the degree of entanglement.

  6. Quantum dual signature scheme based on coherent states with entanglement swapping

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  7. Haunted Quantum Entanglement When the Entangled Entities Are Distant From Each Other And Where Only Photons Are The Entangled Entities

    NASA Astrophysics Data System (ADS)

    Snyder, Douglas

    2011-04-01

    Haunted quantum entanglement involves entanglement between 2 entities where entanglement is based on 1 entity supplying which-way information regarding the other. This ww information is lost before it is released to the environment with the result that the entanglement is also lost. The result of losing entanglement is Young interference as if ww information never existed (not fringes and anti-fringes as in a quantum eraser). In an earlier hqe scenario, ww information is eliminated at a distance between an entangled atom and photon. In the hqe scenario here, the entangled entities are both photons and ww information provided by one photon regarding the other is lost with the accompanying loss of entanglement between the two photons. The entangled photon pairs are created in a similar process to that used by Kim et al. in their quantum eraser. The photon carrying the ww information (i.e., the idler photon) is effectively lost through the release of classical em radiation of a similar character to the idler photon into a box that is evacuated (except for the idler photon that traverses the box initially on one of its two possible paths to a detector) before the signal photon reaches its detection axis. ``Two slit'' interference for the signal photon shows no evidence that ww information ever existed regarding the signal photon.

  8. Entanglement and quantum nonlocality demystified

    NASA Astrophysics Data System (ADS)

    Kupczynski, Marian

    2012-12-01

    Quantum nonlocality is presented often as the most remarkable and inexplicable phenomenon known to modern science. It has been known already for a long time that the probabilistic models used to prove Bell and Clauser-Horn-Shimony-Holt inequalities (BI-CHSH) for spin polarization correlation experiments (SPCE) are incompatible with the experimental protocols of SPCE. In particular these models use the same common probability space, joint probability distributions and/or conditional independence to describe coincidence experiments in incompatible experimental settings. Strangely enough these results are not known or simply neglected. This is why we will once again reanalyze Bell locality assumptions and show that they have nothing to do with the notion of Einsteinian locality therefore their violation should not be called quantum nonlocality but rather quantum non-Kolmogorovness or quantum contextuality. Moreover if local variables describing the measuring instruments are correctly taken into account then BI-CHSH can no longer be proven and one can easily construct non-signaling probabilistic models able to reproduce the predictions of QT. The violation of BI-CHSH is considered usually as a proof that a quantum state is entangled. Since BI-CHSH are violated also in some experiments from outside the domain of quantum physics therefore the entanglement is not exclusively a quantum phenomenon. In order to further demystify these notions we show that one can prepare two macroscopic systems in such a way that simple realizable local experiments on these systems violate BI. In view of these arguments the further testing of BI-CHSH inequalities in search for the loopholes does not seem to be necessary.

  9. Entanglement and thermodynamics after a quantum quench in integrable systems.

    PubMed

    Alba, Vincenzo; Calabrese, Pasquale

    2017-07-25

    Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.

  10. Multiparty quantum secret sharing of classical messages based on entanglement swapping

    SciTech Connect

    Zhang Zhanjun; Man Zhongxiao

    2005-08-15

    A multiparty quantum secret sharing (QSS) protocol of classical messages (i.e., classical bits) is proposed by using swapping quantum entanglement of Bell states. The secret messages are imposed on Bell states by local unitary operations. The secret messages are split into several parts, and each part is distributed to a separate party so that no action of a subset of all the parties without the cooperation of the entire group is able to read out the secret messages. In addition, dense coding is used in this protocol to achieve a high efficiency. The security of the present multiparty QSS against eavesdropping has been analyzed and confirmed even in a noisy quantum channel.

  11. Quantum coherence and entanglement in the avian compass.

    PubMed

    Pauls, James A; Zhang, Yiteng; Berman, Gennady P; Kais, Sabre

    2013-06-01

    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models.

  12. Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals.

    PubMed

    Roy, Ananda; Jiang, Liang; Stone, A Douglas; Devoret, Michel

    2015-10-09

    Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.

  13. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  14. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  15. Understanding Entanglement as a Resource for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2009-03-01

    Ever since Erwin Schrodinger shocked the physics world by killing (and not killing) his cat, entanglement has played a critical role in attempts to understand quantum mechanics. More recently, entanglement has been shown to be a valuable resource, of central importance for quantum computation and the processing of quantum information. In this talk, I will describe a new diagrammatic approach to understanding why entanglement is so valuable, the key idea being that entanglement between two systems ``creates'' multiple images of the state of a third. By way of example, I will show how to ``visualize'' teleportation of unknown quantum states, and how to use entanglement to determine the (unknown) state of a spatially distributed, multipartite quantum system. Illustrative examples of this entanglement-assisted local state discrimination are sets of orthogonal product states exhibiting what is known as ``non-locality without entanglement'', including unextendible product bases. These ideas have also proven useful in using entanglement to implement a unitary interaction between spatially separated (and therefore non-interacting!) systems.

  16. Quantum entanglement and coherence in molecular magnets

    NASA Astrophysics Data System (ADS)

    Shiddiq, Muhandis

    Quantum computers are predicted to outperform classical computers in certain tasks, such as factoring large numbers and searching databases. The construction of a computer whose operation is based on the principles of quantum mechanics appears extremely challenging. Solid state approaches offer the potential to answer this challenge by tailor-making novel nanomaterials for quantum information processing (QIP). Molecular magnets, which are materials whose energy levels and magnetic quantum states are well defined at the molecular level, have been identified as a class of material with properties that make them attractive for quantum computing purpose. In this dissertation, I explore the possibilities and challenges for molecular magnets to be used in quantum computing architecture. The properties of molecular magnets that are critical for applications in quantum computing, i.e., quantum entanglement and coherence, are comprehensively investigated to probe the feasibility of molecular magnets to be used as quantum bits (qubits). Interactions of qubits with photons are at the core of QIP. Photons can be used to detect and manipulate qubits, after which information can then be transferred over long distances. As a potential candidate for qubits, the interactions between Fe8 single-molecule magnets (SMMs) and cavity photons were studied. An earlier report described that a cavity mode splitting was observed in a spectrum of a cavity filled with a single-crystal of Fe8 SMMs. This splitting was interpreted as a vacuum Rabi splitting (VRS), which is a signature of an entanglement between a large number of SMMs and a cavity photon. However, find that large absorption and dispersion of the magnetic susceptibility are the reasons for this splitting. This finding highlights the fact that an observation of a peak splitting in a cavity transmission spectrum neither represents an unambiguous indication of quantum coherence in a large number of spins, nor a signature of

  17. Macroscopic quantum entanglement in modulated optomechanics

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Lü, Xin-You; Wang, Ying-Dan; You, J. Q.; Wu, Ying

    2016-11-01

    Quantum entanglement in mechanical systems is not only a key signature of macroscopic quantum effects but has wide applications in quantum technologies. Here we propose an effective approach for creating strong steady-state entanglement between two directly coupled mechanical oscillators (or a mechanical oscillator and a microwave resonator) in a modulated optomechanical system. The entanglement is achieved by combining the processes of a cavity cooling and the two-mode parametric interaction, which can surpass the bound on the maximal stationary entanglement from the two-mode parametric interaction. In principle, our proposal allows one to cool the system from an initial thermal state to an entangled state with high purity by a monochromatic driving laser. Also, the obtained entangled state can be used to implement the continuous-variable teleportation with high fidelity. Moreover, our proposal is robust against the thermal fluctuations of the mechanical modes under the condition of strong optical pumping.

  18. Robust entanglement distribution via quantum network coding

    NASA Astrophysics Data System (ADS)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-10-01

    Many protocols of quantum information processing, like quantum key distribution or measurement-based quantum computation, ‘consume’ entangled quantum states during their execution. When participants are located at distant sites, these resource states need to be distributed. Due to transmission losses quantum repeater become necessary for large distances (e.g. ≳ 300 {{km}}). Here we generalize the concept of the graph state repeater to D-dimensional graph states and to repeaters that can perform basic measurement-based quantum computations, which we call quantum routers. This processing of data at intermediate network nodes is called quantum network coding. We describe how a scheme to distribute general two-colourable graph states via quantum routers with network coding can be constructed from classical linear network codes. The robustness of the distribution of graph states against outages of network nodes is analysed by establishing a link to stabilizer error correction codes. Furthermore we show, that for any stabilizer error correction code there exists a corresponding quantum network code with similar error correcting capabilities.

  19. Hacking the Bell test using classical light in energy-time entanglement-based quantum key distribution.

    PubMed

    Jogenfors, Jonathan; Elhassan, Ashraf Mohamed; Ahrens, Johan; Bourennane, Mohamed; Larsson, Jan-Åke

    2015-12-01

    Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type.

  20. Monogamy of quantum entanglement and other correlations

    NASA Astrophysics Data System (ADS)

    Koashi, Masato; Winter, Andreas

    2004-02-01

    It has been observed by numerous authors that a quantum system being entangled with another one limits its possible entanglement with a third system: this has been dubbed the “monogamous nature of entanglement.” In this paper we present a simple identity which captures the trade off between entanglement and classical correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs of a monogamy nature for other entanglement measures and secret and total correlation measures.

  1. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...semiconductor quantum dots doped with a single electron, made possible by the Coulomb blockade in this system. The quantum dots confine both electrons and

  2. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  3. Entangled and sequential quantum protocols with dephasing.

    PubMed

    Boixo, Sergio; Heunen, Chris

    2012-03-23

    Sequences of commuting quantum operators can be parallelized using entanglement. This transformation is behind some optimal quantum metrology protocols and recent results on quantum circuit complexity. We show that dephasing quantum maps in arbitrary dimension can also be parallelized. This implies that for general dephasing noise the protocol with entanglement is not more fragile than the corresponding sequential protocol and, conversely, the sequential protocol is not less effective than the entangled one. We derive this result using tensor networks. Furthermore, we only use transformations strictly valid within string diagrams in dagger compact closed categories. Therefore, they apply verbatim to other theories, such as geometric quantization and topological quantum field theory. This clarifies and characterizes to some extent the role of entanglement in general quantum theories.

  4. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  5. Quantum entanglement in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Laflorencie, Nicolas

    2016-08-01

    This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.

  6. Quantum entanglement for two qubits in a nonstationary cavity

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.

    2016-11-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  7. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    SciTech Connect

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim

    2016-05-11

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.

  8. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    DOE PAGES

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; ...

    2016-05-11

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance,more » a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less

  9. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    NASA Astrophysics Data System (ADS)

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; Zurek, Wojciech H.; Boyd, Robert W.; Karimi, Ebrahim

    2016-05-01

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr’s Copenhagen interpretation, textbooks postulate the Born rule outright. However, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. A major family of derivations is based on envariance, a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Further, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.

  10. A Generic Simulation Framework for Non-Entangled based Experimental Quantum Cryptography and Communication: Quantum Cryptography and Communication Simulator (QuCCs)

    NASA Astrophysics Data System (ADS)

    Buhari, Abudhahir; Zukarnain, Zuriati Ahmad; Khalid, Roszelinda; Zakir Dato', Wira Jaafar Ahmad

    2016-11-01

    The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.

  11. Philosophy of Quantum Information and Entanglement

    NASA Astrophysics Data System (ADS)

    Bokulich, Alisa; Jaeger, Gregg

    2010-06-01

    Preface; Introduction; Part I. Quantum Entanglement and Nonlocality: 1. Nonlocality beyond quantum mechanics Sandu Popescu; 2. Entanglement and subsystems, entanglement beyond subsystems, and all that Lorenza Viola and Howard Barnum; 3. Formalism locality in quantum theory and quantum gravity Lucien Hardy; Part II. Quantum Probability: 4. Bell's inequality from the contextual probabilistic viewpoint Andrei Khrennikov; 5. Probabilistic theories: what is special about quantum mechanics? Giacomo Mauro D'Ariano; 6. What probabilities tell about quantum systems, with application to entropy and entanglement John Myers and Hadi Madjid; 7. Bayesian updating and information gain in quantum measurements Leah Henderson; Part III. Quantum Information: 8. Schumacher information and the philosophy of physics Arnold Duwell; 9. From physics to information theory and back Wayne Myrvold; 10. Information, immaterialism, and instrumentalism: old and new in quantum information Chris Timpson; Part IV. Quantum Communication and Computing: 11. Quantum computation: where does the speed-up come from? Jeff Bub; 12. Quantum mechanics, quantum computing and quantum cryptography Tai Wu.

  12. Entanglement, EPR correlations, and mesoscopic quantum superposition by the high-gain quantum injected parametric amplification

    SciTech Connect

    Caminati, Marco; De Martini, Francesco; Perris, Riccardo; Secondi, Veronica; Sciarrino, Fabio

    2006-12-15

    We investigate the multiparticle quantum superposition and the persistence of bipartite entanglement of the output field generated by the quantum injected high-gain optical parametric amplification of a single photon. The physical configuration based on the optimal universal quantum cloning has been adopted to investigate how the entanglement and the quantum coherence of the system persists for large values of the nonlinear parametric gain g.

  13. On-chip continuous-variable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  14. A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols

    NASA Astrophysics Data System (ADS)

    Sharma, Vishal; Thapliyal, Kishore; Pathak, Anirban; Banerjee, Subhashish

    2016-11-01

    The effect of noise on various protocols of secure quantum communication has been studied. Specifically, we have investigated the effect of amplitude damping, phase damping, squeezed generalized amplitude damping, Pauli type as well as various collective noise models on the protocols of quantum key distribution, quantum key agreement, quantum secure direct quantum communication and quantum dialogue. From each type of protocol of secure quantum communication, we have chosen two protocols for our comparative study: one based on single-qubit states and the other one on entangled states. The comparative study reported here has revealed that single-qubit-based schemes are generally found to perform better in the presence of amplitude damping, phase damping, squeezed generalized amplitude damping noises, while entanglement-based protocols turn out to be preferable in the presence of collective noises. It is also observed that the effect of noise depends upon the number of rounds of quantum communication involved in a scheme of quantum communication. Further, it is observed that squeezing, a completely quantum mechanical resource present in the squeezed generalized amplitude channel, can be used in a beneficial way as it may yield higher fidelity compared to the corresponding zero squeezing case.

  15. Superadditivity of distillable entanglement from quantum teleportation

    SciTech Connect

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani

    2005-12-15

    We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes.

  16. Entanglement Measure and Quantum Violation of Bell-Type Inequality

    NASA Astrophysics Data System (ADS)

    Ding, Dong; He, Ying-Qiu; Yan, Feng-Li; Gao, Ting

    2016-10-01

    By calculating entanglement measures and quantum violation of Bell-type inequality, we reveal the relationship between entanglement measure and the amount of quantum violation for a family of four-qubit entangled states. It has been demonstrated that the Bell-type inequality is completely violated by these four-qubit entangled states. The plot of entanglement measure as a function of the expectation value of Bell operator shows that entanglement measure first decreases and then increases smoothly with increasing quantum violation.

  17. Quantum entanglement of baby universes

    SciTech Connect

    Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi

    2006-12-07

    We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.

  18. Quantum entanglement of baby universes

    NASA Astrophysics Data System (ADS)

    Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi

    2007-08-01

    We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.

  19. Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Mei; Zhang, Guo-Feng

    2017-09-01

    We construct an entangled quantum Otto engine based on spin-1/2 systems undergoing Dzyaloshinski-Moriya (DM) interaction within a varying magnetic field. We investigate the influence of the DM interaction on basic thermodynamic quantities, including heat transfer, work done, and efficiency and find that the DM interaction importantly influences the engine's thermodynamics. We obtain an expression for engine efficiency, finding it to yield the same efficiency for antiferromagnetic and ferromagnetic coupling. A new upper bound, nontrivially consistent with the second law of thermodynamics, is derived for engine efficiency in the case of non-zero DM interaction.

  20. Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zanardi, Paolo; Wang, Z. D.; Zhang, F. C.

    2006-06-01

    Entanglement of the ground states in the S = 1/2 XXZ chain, dimerized Heisenberg spin chain, two-leg spin ladders as well as S = 1 anisotropic Haldane chain is analysed using the entanglement entropy between a selected sublattice of spins and the rest of the system. In particular, we reveal that quantum phase transition points/boundaries may be identified based on the analysis on the local extreme of this sublattice entanglement entropy, which is illustrated to be superior over the concurrence scenario and may enable us to explore quantum phase transitions in many other systems including higher dimensional ones.

  1. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-06-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature.

  2. Privacy Preserving Quantum Anonymous Transmission via Entanglement Relay

    PubMed Central

    Yang, Wei; Huang, Liusheng; Song, Fang

    2016-01-01

    Anonymous transmission is an interesting and crucial issue in computer communication area, which plays a supplementary role to data privacy. In this paper, we put forward a privacy preserving quantum anonymous transmission protocol based on entanglement relay, which constructs anonymous entanglement from EPR pairs instead of multi-particle entangled state, e.g. GHZ state. Our protocol achieves both sender anonymity and receiver anonymity against an active adversary and tolerates any number of corrupt participants. Meanwhile, our protocol obtains an improvement in efficiency compared to quantum schemes in previous literature. PMID:27247078

  3. Quantum entanglement and a metaphysics of relations

    NASA Astrophysics Data System (ADS)

    Esfeld, Michael

    This paper argues for a metaphysics of relations based on a characterization of quantum entanglement in terms of non-separability, thereby regarding entanglement as a sort of holism. By contrast to a radical metaphysics of relations, the position set out in this paper recognizes things that stand in the relations, but claims that, as far as the relations are concerned, there is no need for these things to have qualitative intrinsic properties underlying the relations. This position thus opposes a metaphysics of individual things that are characterized by intrinsic properties. A principal problem of the latter position is that it seems that we cannot gain any knowledge of these properties insofar as they are intrinsic. Against this background, the rationale behind a metaphysics of relations is to avoid a gap between epistemology and metaphysics.

  4. Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.

    PubMed

    Bayat, Abolfazl

    2017-01-20

    The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.

  5. Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Bayat, Abolfazl

    2017-01-01

    The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.

  6. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Chang

    2016-12-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  7. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Chang

    2017-02-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  8. Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based quantum-information processing

    NASA Astrophysics Data System (ADS)

    Su, Yung-Chao; Wu, Shin-Tza

    2017-09-01

    We study theoretically the teleportation of a controlled-phase (cz) gate through measurement-based quantum-information processing for continuous-variable systems. We examine the degree of entanglement in the output modes of the teleported cz-gate for two classes of resource states: the canonical cluster states that are constructed via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess noise arising from finite-squeezed resource states, teleportation through resource states with different multirail designs will be considered and the enhancement of entanglement in the teleported cz gates will be analyzed. For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in the output modes and analyze in detail the results for both classes of resource states. At the same time, we also show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the measurement-based gate teleportation, which will also be explained in detail.

  9. An investigation for quantum qutrit entanglements through colour wheel compass

    NASA Astrophysics Data System (ADS)

    Duran, Volkan; Gençten, Azmi

    2016-10-01

    In this study qutrits which have 3-level quantum systems will be used. The investigation of quantum qutrit states was done in a mathematical thought experiment in which most of the quantum phenomena (such as decoherence as well as charge and mass) are neglected. Hence, the model based on the investigation of qutrit states by using colour wheel was given in terms of set theory. Then the results of quantum qutrit entanglements in a hypothetical entangled universe will be analysed through the colour wheel compass.

  10. Quantum discord of bipartite entangled non-linear coherent states

    NASA Astrophysics Data System (ADS)

    Castro, E.; Zambrano, A.; Ladera, C. L.; Gómez, R.

    2013-11-01

    Quantum discord measures the fraction of the pair-wise mutual information that is locally inaccessible in a multipartite system. Nonzero quantum discord has interesting and significant applications because although non-zero entanglement guarantees the existence of quantum correlation in a bipartite quantum system, zero entanglement does not guarantee the absence of a quantum correlation. On the other hand, many quantum optics systems can be described as deformed quantum oscillators. In this work, we investigate the quantum discord of bipartite entangled nonlinear coherent states, in the context of the so-called f-deformed coherent states algebra. To calculate the quantum discord, we consider quasi- Werner mixed states bases on bipartite entangled f-deformed coherent states. Two explicit analytic expressions are derived for the quantum discord of two different nonlinear deformed coherent states. The first one considers deformed coherent states obtained as eigenstates of the annihilation deformed operator, and the second one is obtained by using a deformed displacement operator. We compare the quantum discord of those states, when the nonlinear deformation function is either associated with the SU(1,1) coherent states in the Gilmore-Perelomov or Barut-Girardello representations, respectively.

  11. Quantum entanglement for systems of identical bosons: I. General features

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with two mode entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. Entanglement is a key quantum feature of composite systems in which the probabilities for joint measurements on the composite sub-systems are no longer determined from measurement probabilities on the separate sub-systems. There are many aspects of entanglement that can be studied. This two-part review focuses on the meaning of entanglement, the quantum paradoxes associated with entangled states, and the important tests that allow an experimentalist to determine whether a quantum state—in particular, one for massive bosons is entangled. An overall outcome of the review is to distinguish criteria (and hence experiments) for entanglement that fully utilize the symmetrization principle and the super-selection rules that can be applied to bosonic massive particles. In the first paper (I), the background is given for the meaning of entanglement in the context of systems of identical particles. For such systems, the requirement is that the relevant quantum density operators must satisfy the symmetrization principle and that global and local super-selection rules prohibit states in which there are coherences between differing particle numbers. The justification for these requirements is fully discussed. In the second quantization approach that is used, both the system and the sub-systems are modes (or sets of modes) rather than particles, particles being associated with different occupancies of the modes. The definition of entangled states is based on first defining the non-entangled states—after specifying which modes constitute the sub-systems. This work mainly focuses on the two mode entanglement for massive bosons, but is put in the context of tests of local hidden variable theories, where one may not be able to make the above restrictions. The review provides the detailed

  12. Notes on quantum entanglement of local operators

    NASA Astrophysics Data System (ADS)

    Nozaki, Masahiro

    2014-10-01

    This is an expanded version of the short report arXiv:1401.0539, where we studied the time evolution of (Renyi) entanglement entropies for the excited state defined by acting a given local operator on the ground state. In the present paper, we introduce (Renyi) entanglement entropies of given local operators which are defined by late time values of excesses of (Renyi) entanglement entropies. They measure the degrees of freedom of local operators and characterize them in conformal field theories from the viewpoint of quantum entanglement. We explain how to compute them in free massless scalar field theories and we also investigate their time evolution. Our results can be interpreted in terms of the relativistic propagation of entangled pairs. The main new results which we acquire in the present paper are as follows. Firstly, we provide an explanation which shows that (Renyi) entanglement entropies of a specific operator are given by (Renyi) entanglement entropies whose reduced density matrices are given by the binomial distribution. That operator is constructed of only the scalar field. Secondly, we found the sum rule which (Renyi) entanglement entropies of those local operators obey. Those local operators are located separately. Moreover we argue that (Renyi) entanglement entropies of specific operators in conformal field theories are given by (Renyi) entanglement entropies whose reduced density matrices are given by the binomial distribution. These specific operators are constructed of single-species operators. We also argue that general operators obey the sum rule which we mentioned above.

  13. Quantum cryptography with perfect multiphoton entanglement.

    PubMed

    Luo, Yuhui; Chan, Kam Tai

    2005-05-01

    Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.

  14. Using entanglement against noise in quantum metrology.

    PubMed

    Demkowicz-Dobrzański, Rafal; Maccone, Lorenzo

    2014-12-19

    We analyze the role of entanglement among probes and with external ancillas in quantum metrology. In the absence of noise, it is known that unentangled sequential strategies can achieve the same Heisenberg scaling of entangled strategies and that external ancillas are useless. This changes in the presence of noise; here we prove that entangled strategies can have higher precision than unentangled ones and that the addition of passive external ancillas can also increase the precision. We analyze some specific noise models and use the results to conjecture a general hierarchy for quantum metrology strategies in the presence of noise.

  15. Quantum entanglement and geometry of determinantal varieties

    SciTech Connect

    Chen Hao

    2006-05-15

    Quantum entanglement was first recognized as a feature of quantum mechanics in the famous paper of Einstein, Podolsky, and Rosen. Recently it has been realized that quantum entanglement is a key ingredient in quantum computation, quantum communication, and quantum cryptography. In this paper, we introduce algebraic sets, which are determinantal varieties in the complex projective spaces or the products of complex projective spaces, for the mixed states on bipartite or multipartite quantum systems as their invariants under local unitary transformations. These invariants are naturally arised from the physical consideration of measuring mixed states by separable pure states. Our construction has applications in the following important topics in quantum information theory: (1) separability criterion, it is proved that the algebraic sets must be a union of the linear subspaces if the mixed states are separable; (2) simulation of Hamiltonians, it is proved that the simulation of semipositive Hamiltonians of the same rank implies the projective isomorphisms of the corresponding algebraic sets; (3) construction of bound entangled mixed states, examples of the entangled mixed states which are invariant under partial transpositions (thus PPT bound entanglement) are constructed systematically from our new separability criterion.

  16. Entanglement and Coherence in Quantum State Merging.

    PubMed

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  17. Haunted Quantum Entanglement: Two Scenarios

    NASA Astrophysics Data System (ADS)

    Snyder, Douglas

    2010-04-01

    Two haunted quantum entanglement scenarios are proposed that are very close to the haunted measurement scenario in that: 1) the entity that is developing as a which-way marker is effectively restored to its state prior to its being fixed as a w-w marker, and 2) the entity for which the developing w-w marker provides information is restored to its state before it interacted with the entity which subsequent to the interaction begins developing as a w-w marker. In the hqe scenarios, the loss of developing w-w information through 1 relies on the loss of a developing entanglement. In scenario 1, the photon initially emitted in one of two micromaser cavities and developing into a w-w marker is effectively lost through the injection of classical microwave radiation into both of the microwave cavities after the atom initially emits the photon into one of the micromaser cavities, exits the cavity system, and before this atom reaches the 2 slit screen. The atom is restored in both of the two new scenarios to its original state before it emitted a photon by an rf coil situated at the exit of the micromaser cavity system. In scenario 2, the cavity system and everything from the atom source forward to the cavity system is enclosed in an evacuated box. After the atom that emits the photon exits the cavity system and before it reaches the 2 slit screen, the cavity system opens (and the photon escapes in the evacuated box) and then the box is opened and the photon escapes into the environment.

  18. Black hole entanglement and quantum error correction

    NASA Astrophysics Data System (ADS)

    Verlinde, Erik; Verlinde, Herman

    2013-10-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic perspective in which all black hole degrees of freedom live on the stretched horizon. We model the horizon as a unitary quantum system with finite entropy, and do not postulate that the horizon geometry is smooth. We then show that, with mild assumptions, one can reconstruct local effective field theory observables that probe the black hole interior, and relative to which the state near the horizon looks like a local Minkowski vacuum. The reconstruction makes use of the formalism of quantum error correcting codes, and works for black hole states whose entanglement entropy does not yet saturate the Bekenstein-Hawking bound. Our general framework clarifies the black hole final state proposal, and allows a quantitative study of the transition into the "firewall" regime of maximally mixed black hole states.

  19. Mutually unbiased bases and bound entanglement

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.; Löffler, Wolfgang

    2014-04-01

    In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement. We provide a general toolbox for analyzing and comparing entanglement of quantum states for different dimensions and numbers of particles. In particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communications. For a certain class of states—for which the state-space forms a ‘magic’ simplex—we analyze the set of bound entangled states detected by the MUB criterion for different dimensions d and number of particles n. We find that the geometry is similar for different d and n, consequently the MUB criterion opens possibilities to investigate the typicality of positivity under partial transposition (PPT)-bound and multipartite bound entanglement more deeply and provides a simple experimentally feasible tool to detect bound entanglement.

  20. Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control

    NASA Astrophysics Data System (ADS)

    Yan, Zhihui; Jia, Xiaojun

    2017-06-01

    A quantum mechanical model of the non-measurement based coherent feedback control (CFC) is applied to deterministic atom-light entanglement with imperfect retrieval efficiency, which is generated based on Raman process. We investigate the influence of different experimental parameters on entanglement property of CFC Raman system. By tailoring the transmissivity of coherent feedback controller, it is possible to manipulate the atom-light entanglement. Particularly, we show that CFC allows atom-light entanglement enhancement under appropriate operating conditions. Our work can provide entanglement source between atomic ensemble and light of high quality for high-fidelity quantum networks and quantum computation based on atomic ensemble.

  1. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Liu, Sanqiu; He, Jizhou

    2009-04-01

    The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and investigate a entangled quantum Otto engine (QOE). Expressions for several important performance parameters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The results obtained here have general significance and will be helpful to understand deeply the performance of an entangled QOE.

  2. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine.

    PubMed

    Wang, Hao; Liu, Sanqiu; He, Jizhou

    2009-04-01

    The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and investigate a entangled quantum Otto engine (QOE). Expressions for several important performance parameters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The results obtained here have general significance and will be helpful to understand deeply the performance of an entangled QOE.

  3. Entanglement in Lifshitz-type quantum field theories

    NASA Astrophysics Data System (ADS)

    Mohammadi Mozaffar, M. Reza; Mollabashi, Ali

    2017-07-01

    We study different aspects of quantum entanglement and its measures, including entanglement entropy in the vacuum state of a certain Lifshitz free scalar theory. We present simple intuitive arguments based on "non-local" effects of this theory that the scaling of entanglement entropy depends on the dynamical exponent as a characteristic parameter of the theory. The scaling is such that in the massless theory for small entangling regions it leads to area law in the Lorentzian limit and volume law in the z → ∞ limit. We present strong numerical evidences in (1+1) and (2+1)-dimensions in support of this behavior. In (2 + 1)-dimensions we also study some shape dependent aspects of entanglement. We argue that in the massless limit corner contributions are no more additive for large enough dynamical exponent due to non-local effects of Lifshitz theories. We also comment on possible holographic duals of such theories based on the sign of tripartite information.

  4. Quantum Entanglement Growth under Random Unitary Dynamics

    NASA Astrophysics Data System (ADS)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  5. Generating entangled quantum microwaves in a Josephson-photonics device

    NASA Astrophysics Data System (ADS)

    Dambach, Simon; Kubala, Björn; Ankerhold, Joachim

    2017-02-01

    When connecting a voltage-biased Josephson junction in series to several microwave cavities, a Cooper-pair current across the junction gives rise to a continuous emission of strongly correlated photons into the cavity modes. Tuning the bias voltage to the resonance where a single Cooper pair provides the energy to create an additional photon in each of the cavities, we demonstrate the entangling nature of these creation processes by simple witnesses in terms of experimentally accessible observables. To characterize the entanglement properties of the such created quantum states of light to the fullest possible extent, we then proceed to more elaborate entanglement criteria based on the knowledge of the full density matrix and provide a detailed study of bi- and multipartite entanglement. In particular, we illustrate how due to the relatively simple design of these circuits changes of experimental parameters allow one to access a wide variety of entangled states differing, e.g., in the number of entangled parties or the dimension of state space. Such devices, besides their promising potential to act as a highly versatile source of entangled quantum microwaves, may thus represent an excellent natural testbed for classification and quantification schemes developed in quantum information theory.

  6. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    PubMed

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  7. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    PubMed Central

    He, Yong; Zhu, Ka-Di

    2017-01-01

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165

  8. Multipartite quantum entanglement evolution in photosynthetic complexes.

    PubMed

    Zhu, Jing; Kais, Sabre; Aspuru-Guzik, Alán; Rodriques, Sam; Brock, Ben; Love, Peter J

    2012-08-21

    We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based on simulations using the scaled hierarchical equations of motion approach. We examine the role of entanglement in the FMO complex by direct computation of the convex roof. We use monogamy to give a lower bound for entanglement and obtain an upper bound from the evaluation of the convex roof. Examination of bipartite measures for all possible bipartitions provides a complete picture of the multipartite entanglement. Our results support the hypothesis that entanglement is maximum primary along the two distinct electronic energy transfer pathways. In addition, we note that the structure of multipartite entanglement is quite simple, suggesting that there are constraints on the mixed state entanglement beyond those due to monogamy.

  9. Magnetic alteration of entanglement in two-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Simonović, N. S.; Nazmitdinov, R. G.

    2015-11-01

    Quantum entanglement is analyzed thoroughly in the case of the ground and lowest states of two-electron axially symmetric quantum dots under a perpendicular magnetic field. The individual-particle and the center-of-mass representations are used to study the entanglement variation at the transition from interacting to noninteracting particle regimes. The mechanism of symmetry breaking due to the interaction, which results in the states with symmetries related to the latter representation only being entangled even at the vanishing interaction, is discussed. The analytical expression for the entanglement measure based on the linear entropy is derived in the limit of noninteracting electrons. It reproduces remarkably well the numerical results for the lowest states with the magnetic quantum number M ≥2 in the interacting regime. It is found that the entanglement of the ground state is a discontinuous function of the field strength. A method to estimate the entanglement of the ground state, characterized by the quantum number M , with the aid of the magnetic-field dependence of the addition energy is proposed.

  10. Simulating electron spin entanglement in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia

    2011-03-01

    One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.

  11. Quantum entanglement in photoactive prebiotic systems.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

  12. Coherent feedback control of multipartite quantum entanglement for optical fields

    SciTech Connect

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  13. Multi-state Quantum Teleportation via One Entanglement State

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee

    2008-08-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.

  14. Experimental estimation of entanglement at the quantum limit.

    PubMed

    Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G A; Shurupov, Alexander

    2010-03-12

    Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.

  15. Thermal entangled quantum Otto engine based on the two qubits Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wu, Guoxing; Chen, Daojiong

    2012-07-01

    Based on the isotropic two spin-1/2 qubits Heisenberg model with Dzyaloshinskii-Moriya interaction in a constant external magnetic field, we have constructed the entangled quantum Otto engine. Expressions for the basic thermodynamic quantities, i.e. the amount of heat exchange, the net work output and the efficiency, are derived. The influence of thermal entanglement on these basic thermodynamic quantities is investigated. Moreover, some intriguing features and their qualitative explanations in zero and finite magnetic field are given. The validity of the second law of thermodynamics is confirmed in the system. The results obtained here have general significance and will be useful in increasing understanding of the performance of an entangled quantum engine.

  16. Nature and measure of entanglement in quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Somma, Rolando; Ortiz, Gerardo; Barnum, Howard; Knill, Emanuel; Viola, Lorenza

    2003-03-01

    Characterizing and quantifying entanglement of quantum states in many-particle systems is at the core of a full understanding of the nature of quantum phase transitions in matter. Entanglement is a relative notion and, although many measures of entanglement have been defined in the literature, assessing the utility of those measures to characterize quantum phase transitions is still an open problem. We introduce a new measure, based on a different concept of entanglement, which allows us to identify the transition. The traditional concept of entanglement refers to the property of many-parties states which cannot be expressed as a product of states of each party. We have recently [1] introduced a different concept of entanglement which makes no reference to the subsystem decomposition of the total Hilbert space and which reduces to the traditional concept in the case of two parties. In our framework an extremal (pure) quantum state is unentangled with respect to an algebra of observables if it induces an extremal state (set of expectation values) on that algebra. This identifies pure unentangled states with generalized coherent states of the algebra (mixed states will be unentangled if they are convex combinations of pure unentangled states). For example, a Slater determinant, i.e., a state of free spinless fermions (Fermi liquid), is unentangled with respect to the algebra generated by the bilinear fermionic operators c^i cj (algebra U(N)) but it is, in general, entangled with respect to the Pauli (spin 1/2) algebra. This concept leads to the definition of a "Purity" relative to a given subalgebra as a measure of entanglement. We will show how this measure applies to the study of different types of phase transitions. In particular, we will apply this concept to Ising-like and Kosterlitz-Thouless transitions in models of interest in condensed matter physics. [1] H. Barnum, E. Knill, G. Ortiz, and L. Viola (2002), quant-ph/0207149.

  17. Entanglement enhances security in quantum communication

    SciTech Connect

    Demkowicz-Dobrzanski, Rafal; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej

    2009-07-15

    Secret sharing is a protocol in which a 'boss' wants to send a classical message secretly to two 'subordinates', such that none of the subordinates is able to know the message alone, while they can find it if they cooperate. Quantum mechanics is known to allow for such a possibility. We analyze tolerable quantum bit error rates in such secret sharing protocols in the physically relevant case when the eavesdropping is local with respect to the two channels of information transfer from the boss to the two subordinates. We find that using entangled encoding states is advantageous to legitimate users of the protocol. We therefore find that entanglement is useful for secure quantum communication. We also find that bound entangled states with positive partial transpose are not useful as a local eavesdropping resource. Moreover, we provide a criterion for security in secret sharing--a parallel of the Csiszar-Koerner criterion in single-receiver classical cryptography.

  18. Generalized Entanglement and Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo

    2006-07-01

    Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.

  19. Generalized Entanglement and Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo

    Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.

  20. Superdense coding facilitated by hyper-entanglement and quantum networks

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2017-05-01

    A method of generating superdense coding based on quantum hyper-entanglement and facilitated by quantum networks is discussed. Superdense coding refers to the coding of more than one classical bit into each qubit. Quantum hyperentanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, and orbital angular momentum (OAM). The new superdense coding scheme permits 2L bits to be encoded into each qubit where L is the number of degrees of freedom used for quantum hyper-entanglement. The superdense coding procedure is based on a generalization of the Bell state for L degrees of freedom. Theory describing the structure, generation/transmission, and detection of the generalized Bell state is developed. Circuit models are provided describing the generation/transmission process and detection process. Detection processes are represented mathematically as projection operators. A mathematical proof that that the detection scheme permits the generalized Bell states to be distinguished with 100% probability is provided. Measures of effectiveness (MOEs) are derived for the superdense coding scheme based on open systems theory represented in terms of density operators. Noise and loss related to generation/transmission, detection and propagation are included. The MOEs include various probabilities, quantum Chernoff bound, a measure of the number of message photons that must be transmitted to successfully send and receive a message, SNR and the quantum Cramer Rao' lower bound. Quantum networks with quantum memory are used to increase the efficiency of the superdense coding scheme.

  1. Entangled exciton states in quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  2. Entanglement in Quantum-Classical Hybrid

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  3. Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2016-12-01

    We establish a unified view of the polygamy of multiparty quantum entanglement in arbitrary dimensions. Using quantum Tsallis-q entropy, we provide a one-parameter class of polygamy inequalities of multiparty quantum entanglement. This class of polygamy inequalities reduces to the known polygamy inequalities based on tangle and entanglement of assistance for a selective choice of the parameter q . We further provide one-parameter generalizations of various quantum correlations based on Tsallis-q entropy. By investigating the properties of the generalized quantum correlations, we provide a sufficient condition on which the Tsallis-q polygamy inequalities hold in multiparty quantum systems of arbitrary dimensions.

  4. Entanglement production in quantum decision making

    SciTech Connect

    Yukalov, V. I. Sornette, D.

    2010-03-15

    The quantum decision theory introduced recently is formulated as a quantum theory of measurement. It describes prospect states represented by complex vectors of a Hilbert space over a prospect lattice. The prospect operators, acting in this space, form an involutive bijective algebra. A measure is defined for quantifying the entanglement produced by the action of prospect operators. This measure characterizes the level of complexity of prospects involved in decision making. An explicit expression is found for the maximal entanglement produced by the operators of multimode prospects.

  5. An Arbitrated Quantum Signature Scheme without Entanglement*

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Peng, Dai-Yuan; Wang, Xiao-Jun

    2017-09-01

    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.

  6. The analysis of quantum qutrit entanglements in a qutrit based hyper-sphere in terms of gluing and combining products

    SciTech Connect

    Duran, Volkan Gençten, Azmi

    2016-03-25

    In this research the aim is to analyze quantum qutrit entanglements in a new perspective in terms of the reflection of n-dimensional sphere which can be depicted as the set of points equidistant from a fixed central point in three dimensional Euclidian Space which has also real and imaginary dimensions, that can also be depicted similarly as a two unit spheres having same centre in a dome-shaped projection. In order to analyze quantum qutrit entanglements: i- a new type of n dimensional hyper-sphere which is the extend version of Bloch Sphere to hyper-space, is defined ii- new operators and products such as rotation operator, combining and gluing products in this space are defined, iii-the entangled states are analyzed in terms of those products in order to reach a general formula to depict qutrit entanglements and some new patterns between spheres for the analysis of entanglement for different routes in a more simple way in a four dimensional time independent hypersphere.

  7. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  8. On measures of quantum entanglement — A brief review

    NASA Astrophysics Data System (ADS)

    Sarkar, Debasis

    2016-08-01

    Entanglement is one of the most useful resources in quantum information processing. It is effectively the quantum correlation between different subsystems of a composite system. Mathematically, one of the most hard tasks in quantum mechanics is to quantify entanglement. However, progress in this field is remarkable but not complete yet. There are many things to do with quantification of entanglement. In this review, we will discuss some of the important measures of bipartite entanglement.

  9. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  10. Investigate the entanglement of a quintuple quantum dot molecule via entropy

    NASA Astrophysics Data System (ADS)

    Arzhang, B.; Mehmannavaz, M. R.; Rezaei, M.

    2015-12-01

    The time evaluation of quantum entropy in the quintuple-coupled quantum dots based on a GaAs/AlGaAs heterostructure is theoretically investigated. The quantum entanglement of quantum dot molecules (QDMs) and their spontaneous emission fields is then discussed via quantum entropy. The effects of the tunneling effect, i.e. T , an incoherent pumping field and voltage controllable detuning on entanglement between QDMs and their spontaneous emission fields is then discussed. We found that in the presence of the tunneling effect and an incoherent pumping field the entanglement between the QDMs and their spontaneous emission fields is increased, while in the presence of voltage controllable detuning the entanglement reduced. Finally, we investigated the switching time from a disentangled state to an entangled state. The results may provide some new possibilities for technological applications in optoelectronics, solid-state quantum information science, quantum computing, teleportation, encryption, and compression codec.

  11. Entanglement of spin waves among four quantum memories.

    PubMed

    Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J

    2010-11-18

    Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.

  12. Measuring entanglement entropy in a quantum many-body system.

    PubMed

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-03

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  13. Dissipative entanglement of quantum spin fluctuations

    SciTech Connect

    Benatti, F.; Carollo, F.; Floreanini, R.

    2016-06-15

    We consider two non-interacting infinite quantum spin chains immersed in a common thermal environment and undergoing a local dissipative dynamics of Lindblad type. We study the time evolution of collective mesoscopic quantum spin fluctuations that, unlike macroscopic mean-field observables, retain a quantum character in the thermodynamical limit. We show that the microscopic dissipative dynamics is able to entangle these mesoscopic degrees of freedom, through a purely mixing mechanism. Further, the behaviour of the dissipatively generated quantum correlations between the two chains is studied as a function of temperature and dissipation strength.

  14. Dissipative entanglement of quantum spin fluctuations

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Carollo, F.; Floreanini, R.

    2016-06-01

    We consider two non-interacting infinite quantum spin chains immersed in a common thermal environment and undergoing a local dissipative dynamics of Lindblad type. We study the time evolution of collective mesoscopic quantum spin fluctuations that, unlike macroscopic mean-field observables, retain a quantum character in the thermodynamical limit. We show that the microscopic dissipative dynamics is able to entangle these mesoscopic degrees of freedom, through a purely mixing mechanism. Further, the behaviour of the dissipatively generated quantum correlations between the two chains is studied as a function of temperature and dissipation strength.

  15. Quantum entanglement of quark colour states

    SciTech Connect

    Buividovich, P. V.; Kuvshinov, V. I.

    2010-03-24

    An analysis of quantum entanglement between the states of static colour charges in the vacuum of pure Yang-Mills theory is carried out. Hilbert space of physical states of the fields and the charges is endowed with a direct product structure by attaching an infinite Dirac string to each charge.

  16. Heralded Quantum Entanglement between Distant Matter Qubits

    PubMed Central

    Yang, Wen-Juan; Wang, Xiang-Bin

    2015-01-01

    We propose a scheme to realize heralded quantum entanglement between two distant matter qubits using two Λ atom systems. Our proposal does not need any photon interference. We also present a general theory of outcome state of non-monochromatic incident light and finite interaction time. PMID:26041259

  17. Entanglement distillation between solid-state quantum network nodes.

    PubMed

    Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R

    2017-06-02

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.

  18. Entanglement distillation between solid-state quantum network nodes

    NASA Astrophysics Data System (ADS)

    Kalb, N.; Reiserer, A. A.; Humphreys, P. C.; Bakermans, J. J. W.; Kamerling, S. J.; Nickerson, N. H.; Benjamin, S. C.; Twitchen, D. J.; Markham, M.; Hanson, R.

    2017-06-01

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.

  19. Optimized entanglement-assisted quantum error correction

    SciTech Connect

    Taghavi, Soraya; Brun, Todd A.; Lidar, Daniel A.

    2010-10-15

    Using convex optimization, we propose entanglement-assisted quantum error-correction procedures that are optimized for given noise channels. We demonstrate through numerical examples that such an optimized error-correction method achieves higher channel fidelities than existing methods. This improved performance, which leads to perfect error correction for a larger class of error channels, is interpreted in at least some cases by quantum teleportation, but for general channels this interpretation does not hold.

  20. Entanglement and Quantum Computation: An Overview

    SciTech Connect

    Perez, R.B.

    2000-06-27

    This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.

  1. Quantum entanglement in helium-like ions

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Ho, Y. K.

    2012-06-01

    Recently, there have been considerable interests to investigate quantum entanglement in two-electron atoms [1-3]. Here we investigate quantum entanglement for the ground and excited states of helium-like ions using correlated wave functions, concentrating on the particle-particle entanglement coming from the continuous spatial degrees of freedom. We use the two-electron wave functions constructed by employing B-spline basis to calculate the linear entropy of the reduced density matrix L=1-TrA(ρA^2 ) as a measure of the spatial entanglement. HereρA=TrB(| >AB AB<|) is the one-electron reduced density matrix obtained after tracing the two-electron density matrix over the degrees of freedom of the other electron. We have investigated the spatial entanglement for the helium-like systems with Z=1 to Z=10. For the helium atoms (Z=2), we have calculated the linear entropy for the ground state and the 1sns ^1S^e (n=2-10) excited states. Results are compared with other calculations [1-3]. [4pt] [1] J. P. Coe and I. D'Amico, J. Phys.: Conf. Ser. 254, 012010 (2010) [0pt] [2] D. Manzano et. al., J. Phys. A: Math. Theor. 43, 275301 (2010) [0pt] [3] J. S. Dehesa et. al., J. Phys. B 45, 015504 (2012)

  2. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

  3. Measuring entanglement entropy in a quantum many-body system

    NASA Astrophysics Data System (ADS)

    Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus

    2016-05-01

    The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.

  4. Quantum channels with correlated noise and entanglement teleportation

    SciTech Connect

    Yeo Ye

    2003-05-01

    Motivated by the results of Macchiavello and Palma on entanglement-enhanced information transmission over a quantum channel with correlated noise, we demonstrate how the entanglement teleportation scheme of Lee and Kim gives rise to two uncorrelated generalized depolarizing channels. In an attempt to find a teleportation scheme that yields two correlated generalized depolarizing channels, we discover a teleportation scheme that allows one to learn about the entanglement in an entangled pure input state, without decreasing the amount of entanglement associated with it.

  5. Boundary quantum critical phenomena with entanglement renormalization

    SciTech Connect

    Evenbly, G.; Pfeifer, R. N. C.; Tagliacozzo, L.; McCulloch, I. P.; Vidal, G.; Pico, V.; Iblisdir, S.

    2010-10-15

    We propose the use of entanglement renormalization techniques to study boundary critical phenomena on a lattice system. The multiscale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the MERA, an accurate approximation to the ground state of a semi-infinite critical chain with an open boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. As in Wilson's renormalization-group formulation of the Kondo problem, our construction produces, as a side result, an effective chain displaying explicit separation of energy scales. We present benchmark results for the quantum Ising and quantum XX models with free and fixed boundary conditions.

  6. Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources

    SciTech Connect

    Yang Jian; Zhang Han; Peng Chengzhi; Chen Zengbing; Bao Xiaohui; Chen Shuai; Pan Jianwei

    2009-10-15

    In this paper, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high-demanding synchronization techniques in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multiphoton source will have applications in some advanced quantum communication protocols and linear optical quantum computation.

  7. Entanglement-secured single-qubit quantum secret sharing

    SciTech Connect

    Scherpelz, P.; Resch, R.; Berryrieser, D.; Lynn, T. W.

    2011-09-15

    In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant's preparation of the qubit state and the subsequent participants' choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocol's security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.

  8. Complementarity and entanglement in quantum information theory

    NASA Astrophysics Data System (ADS)

    Tessier, Tracey Edward

    This research investigates two inherently quantum mechanical phenomena, namely complementarity and entanglement, from an information-theoretic perspective. Beyond philosophical implications, a thorough grasp of these concepts is crucial for advancing our understanding of foundational issues in quantum mechanics, as well as in studying how the use of quantum systems might enhance the performance of certain information processing tasks. The primary goal of this thesis is to shed light on the natures and interrelationships of these phenomena by approaching them from the point of view afforded by information theory. We attempt to better understand these pillars of quantum mechanics by studying the various ways in which they govern the manipulation of information, while at the same time gaining valuable insight into the roles they play in specific applications. The restrictions that nature places on the distribution of correlations in a multipartite quantum system play fundamental roles in the evolution of such systems and yield vital insights into the design of protocols for the quantum control of ensembles with potential applications in the field of quantum computing. By augmenting the existing formalism for quantifying entangled correlations, we show how this entanglement sharing behavior may be studied in increasingly complex systems of both theoretical and experimental significance. Further, our results shed light on the dynamical generation and evolution of multipartite entanglement by demonstrating that individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. The findings presented in this thesis support the conjecture that Hilbert space dimension is an objective property of a quantum system since it constrains the number of valid conceptual divisions of the system into subsystems. These arbitrary observer-induced distinctions are integral to the theory since

  9. Generation of entangled photon holes using quantum interference

    SciTech Connect

    Pittman, T. B.; Franson, J. D.

    2006-10-15

    In addition to photon pairs entangled in polarization or other variables, quantum mechanics also allows optical beams that are entangled through the absence of the photons themselves. These correlated absences, or 'entangled photon holes', can lead to counterintuitive nonlocal effects analogous to those of the more familiar entangled photon pairs. Here we report an experimental observation of photon holes generated using quantum interference effects to suppress the probability that two photons in a weak laser pulse will separate at an optical beam splitter.

  10. Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits

    NASA Astrophysics Data System (ADS)

    Chantasri, Areeya; Kimchi-Schwartz, Mollie E.; Roch, Nicolas; Siddiqi, Irfan; Jordan, Andrew N.

    2016-10-01

    We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits' trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a "half-parity" measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.

  11. Quantum discord bounds the amount of distributed entanglement.

    PubMed

    Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M

    2012-08-17

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

  12. Probabilistic quantum teleportation via thermal entanglement

    NASA Astrophysics Data System (ADS)

    Fortes, Raphael; Rigolin, Gustavo

    2017-08-01

    We study the probabilistic (conditional) teleportation protocol when the entanglement needed for its implementation is given by thermal entanglement, i.e., when the entangled resource connecting Alice and Bob is an entangled mixed state described by the canonical ensemble density matrix. Specifically, the entangled resource we employ here is given by two interacting spin-1/2 systems (two qubits) in equilibrium with a thermal reservoir at temperature T . The interaction between the qubits is described by a Heisenberg-like Hamiltonian, encompassing the Ising, the X X , the X Y , the X X X , and X X Z models, with or without external fields. For all those models, we show analytically that the probabilistic protocol is exactly equal to the deterministic one whenever we have no external field. However, when we turn on the field, the probabilistic protocol outperforms the deterministic one in several interesting ways. Under certain scenarios, for example, the efficiency (average fidelity) of the probabilistic protocol is greater than the deterministic one and increases with increasing temperature, a counterintuitive behavior. We also show regimes in which the probabilistic protocol operates with relatively high success rates and, at the same time, with efficiency greater than the classical limit 2 /3 , a threshold that cannot be surpassed by any protocol using only classical resources (no entanglement shared between Alice and Bob). The deterministic protocol's efficiency under the same conditions is below 2 /3 , highlighting that the probabilistic protocol is the only one yielding a genuine quantum teleportation. We also show that near the quantum critical points for almost all those models the qualitative and quantitative behaviors of the efficiency change considerably, even at finite T .

  13. Entanglement of quantum clocks through gravity.

    PubMed

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  14. Entanglement of quantum clocks through gravity

    PubMed Central

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-01-01

    In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623

  15. Entanglement of quantum clocks through gravity

    NASA Astrophysics Data System (ADS)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-01

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  16. Maximally Entangled Set of Multipartite Quantum States

    NASA Astrophysics Data System (ADS)

    de Vicente, J. I.; Spee, C.; Kraus, B.

    2013-09-01

    Entanglement is a resource in quantum information theory when state manipulation is restricted to local operations assisted by classical communication (LOCC). It is therefore of paramount importance to decide which LOCC transformations are possible and, particularly, which states are maximally useful under this restriction. While the bipartite maximally entangled state is well known (it is the only state that cannot be obtained from any other and, at the same time, it can be transformed to any other by LOCC), no such state exists in the multipartite case. In order to cope with this fact, we introduce here the notion of the maximally entangled set (MES) of n-partite states. This is the set of states which are maximally useful under LOCC manipulation; i.e., any state outside of this set can be obtained via LOCC from one of the states within the set and no state in the set can be obtained from any other state via LOCC. We determine the MES for states of three and four qubits and provide a simple characterization for them. In both cases, infinitely many states are required. However, while the MES is of measure zero for 3-qubit states, almost all 4-qubit states are in the MES. This is because, in contrast to the 3-qubit case, deterministic LOCC transformations are almost never possible among fully entangled four-partite states. We determine the measure-zero subset of the MES of LOCC convertible states. This is the only relevant class of states for entanglement manipulation.

  17. Free-space entangled quantum carpets

    NASA Astrophysics Data System (ADS)

    Barros, Mariana R.; Ketterer, Andreas; Farías, Osvaldo Jiménez; Walborn, Stephen P.

    2017-04-01

    The Talbot effect in quantum physics is known to produce intricate patterns in the probability distribution of a particle, known as "quantum carpets," corresponding to the revival and replication of the initial wave function. Recently, it was shown that one can encode a D -level qudit in such a way that the Talbot effect can be used to process the D -dimensional quantum information [Farías et al., Phys. Rev. A 91, 062328 (2015), 10.1103/PhysRevA.91.062328]. Here we introduce a scheme to produce free-propagating "entangled quantum carpets" with pairs of photons produced by spontaneous parametric down-conversion. First we introduce an optical device that can be used to synthesize arbitrary superposition states of Talbot qudits. Sending spatially entangled photon pairs through a pair of these devices produces an entangled pair of qudits. As an application, we show how the Talbot effect can be used to test a D -dimensional Bell inequality. Numerical simulations show that violation of the Bell inequality depends strongly on the amount of spatial correlation in the initial two-photon state. We briefly discuss how our optical scheme might be adapted to matter wave experiments.

  18. A quantum router for high-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Erhard, Manuel; Malik, Mehul; Zeilinger, Anton

    2017-03-01

    In addition to being a workhorse for modern quantum technologies, entanglement plays a key role in fundamental tests of quantum mechanics. The entanglement of photons in multiple levels, or dimensions, explores the limits of how large an entangled state can be, while also greatly expanding its applications in quantum information. Here we show how a high-dimensional quantum state of two photons entangled in their orbital angular momentum can be split into two entangled states with a smaller dimensionality structure. Our work demonstrates that entanglement is a quantum property that can be subdivided into spatially separated parts. In addition, our technique has vast potential applications in quantum as well as classical communication systems.

  19. Energy transmission using recyclable quantum entanglement.

    PubMed

    Ye, Ming-Yong; Lin, Xiu-Min

    2016-07-28

    It is known that faster-than-light (FTL) transmission of energy could be achieved if the transmission were considered in the framework of non-relativistic classical mechanics. Here we show that FTL transmission of energy could also be achieved if the transmission were considered in the framework of non-relativistic quantum mechanics. In our transmission protocol a two-spin Heisenberg model is considered and the energy is transmitted by two successive local unitary operations on the initially entangled spins. Our protocol does not mean that FTL transmission can be achieved in reality when the theory of relativity is considered, but it shows that quantum entanglement can be used in a recyclable way in energy transmission.

  20. Energy transmission using recyclable quantum entanglement

    PubMed Central

    Ye, Ming-Yong; Lin, Xiu-Min

    2016-01-01

    It is known that faster-than-light (FTL) transmission of energy could be achieved if the transmission were considered in the framework of non-relativistic classical mechanics. Here we show that FTL transmission of energy could also be achieved if the transmission were considered in the framework of non-relativistic quantum mechanics. In our transmission protocol a two-spin Heisenberg model is considered and the energy is transmitted by two successive local unitary operations on the initially entangled spins. Our protocol does not mean that FTL transmission can be achieved in reality when the theory of relativity is considered, but it shows that quantum entanglement can be used in a recyclable way in energy transmission. PMID:27465431

  1. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.

    PubMed

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-18

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.

  2. Direct measurement of nonlocal entanglement of two-qubit spin quantum states

    NASA Astrophysics Data System (ADS)

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.

  3. Quantum Communication Using Macroscopic Phase Entangled States

    DTIC Science & Technology

    2015-12-10

    goals of our program was to investigate several different ways in which to implement the Kerr medium that allows a single photon to change the phase ...E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH 1 i. Quantum Communication Using Macroscopic Phase Entangled States Final Report Reporting...media that can produce a shift in the phase of a laser pulse provided that a single photon from another source and at a different frequency is also

  4. Quantum entanglement establishment between two strangers

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Lin, Tzu-Han; Kao, Shih-Hung

    2016-01-01

    This paper presents the first quantum entanglement establishment scheme for strangers who neither pre-share any secret nor have any authenticated classical channel between them. The proposed protocol requires only the help of two almost dishonest third parties (TPs) to achieve the goal. The security analyses indicate that the proposed protocol is secure against not only an external eavesdropper's attack, but also the TP's attack.

  5. Encoding entanglement-assisted quantum stabilizer codes

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Jiang; Bai, Bao-Ming; Li, Zhuo; Peng, Jin-Ye; Xiao, He-Ling

    2012-02-01

    We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.

  6. Quantum communication for satellite-to-ground networks with partially entangled states

    NASA Astrophysics Data System (ADS)

    Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong

    2015-02-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).

  7. Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Jing-Wu; Zhao, Guan-Xiang; He, Xiong-Hui

    2011-05-01

    Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4>1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.

  8. Superconducting quantum node for entanglement and storage of microwave radiation.

    PubMed

    Flurin, E; Roch, N; Pillet, J D; Mallet, F; Huard, B

    2015-03-06

    Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel.

  9. Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation

    NASA Astrophysics Data System (ADS)

    Flurin, E.; Roch, N.; Pillet, J. D.; Mallet, F.; Huard, B.

    2015-03-01

    Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel.

  10. Unextendible maximally entangled bases

    SciTech Connect

    Bravyi, Sergei; Smolin, John A.

    2011-10-15

    We introduce the notion of the unextendible maximally entangled basis (UMEB), a set of orthonormal maximally entangled states in C{sup d} x C{sup d} consisting of fewer than d{sup 2} vectors which have no additional maximally entangled vectors orthogonal to all of them. We prove that UMEBs do not exist for d=2 and give explicit constructions for a six-member UMEB with d=3 and a 12-member UMEB with d=4.

  11. Quantum control on entangled bipartite qubits

    SciTech Connect

    Delgado, Francisco

    2010-04-15

    Ising interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e.g., for quantum computation or quantum cryptography). The presence of parasite magnetic fields destroys or alters the expected behavior for which it was intended. In addition, these pairs are generated with some dispersion in their original configuration, so their discrimination is necessary for applications. Nevertheless, discrimination should be made after Ising distortion. Quantum control helps in both problems; making some projective measurements upon the pair to decide the original state to replace it, or just trying to reconstruct it using some procedures which do not alter their quantum nature. Results about the performance of these procedures are reported. First, we will work with pure systems studying restrictions and advantages. Then, we will extend these operations for mixed states generated with uncertainty in the time of distortion, correcting them by assuming the control prescriptions for the most probable one.

  12. Enhancing entanglement trapping by weak measurement and quantum measurement reversal

    SciTech Connect

    Zhang, Ying-Jie; Han, Wei; Fan, Heng; Xia, Yun-Jie

    2015-03-15

    In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths. - Highlights: • Propose a scheme to enhance entanglement trapping in photonic band gap material. • Weak measurement and its reversal are performed locally on individual qubits. • Obtain an optimal condition for maximizing the concurrence of entanglement trapping. • Entanglement sudden death can be prevented by weak measurement in photonic band gap.

  13. Long-distance practical quantum key distribution by entanglement swapping.

    PubMed

    Scherer, Artur; Sanders, Barry C; Tittel, Wolfgang

    2011-02-14

    We develop a model for practical, entanglement-based long-distance quantum key distribution employing entanglement swapping as a key building block. Relying only on existing off-the-shelf technology, we show how to optimize resources so as to maximize secret key distribution rates. The tools comprise lossy transmission links, such as telecom optical fibers or free space, parametric down-conversion sources of entangled photon pairs, and threshold detectors that are inefficient and have dark counts. Our analysis provides the optimal trade-off between detector efficiency and dark counts, which are usually competing, as well as the optimal source brightness that maximizes the secret key rate for specified distances (i.e. loss) between sender and receiver.

  14. Entangling power and operator entanglement of nonunitary quantum evolutions

    NASA Astrophysics Data System (ADS)

    Kong, Fan-Zhen; Zhao, Jun-Long; Yang, Ming; Cao, Zhuo-Liang

    2015-07-01

    We propose a method to calculate the operator entanglement and entangling power of a noisy nonunitary operation in terms of linear entropy. By decomposing the Kraus operators of noisy evolution as the sum of products of Pauli matrices, we derive the analytical expression of the operator entanglement for a general nonunitary operation. The definition of entangling power is extended from the ideal unitary operation case to the nonunitary case via a Kraus operator representation and the analytical expression of the entangling power for a general nonunitary operation is derived. To demonstrate the effectiveness of the above method, we investigate the properties of operator entanglement and entangling power of nonunitary operations caused by phase damping noise. Our findings imply that the pure phase damping noise has its own operator entanglement and entangling power, which increase exponentially with time and asymptotically approach their respective upper bounds. In addition, when the phase damping noise is added to an ideal operation, such as an iswap operation or a controlled-Z operation, it can make the operation's entangling power grow exponentially with the strength of noise, but leave its operator entanglement invariant. In this sense, we can conclude that, for a general operation, operator entanglement is a more intrinsic property than entangling power.

  15. Monogamy Inequality for Any Local Quantum Resource and Entanglement

    NASA Astrophysics Data System (ADS)

    Camalet, S.

    2017-09-01

    We derive a monogamy inequality for any local quantum resource and entanglement. It results from the fact that there is always a convex measure for a quantum resource, as shown here, and from the relation between entanglement and local entropy. One of its consequences is an entanglement monogamy different from that usually discussed. If the local resource is nonuniformity or coherence, it is satisfied by familiar resource and entanglement measures. The ensuing upper bound for the local coherence, determined by the entanglement, is independent of the basis used to define the coherence.

  16. Monogamy Inequality for Any Local Quantum Resource and Entanglement.

    PubMed

    Camalet, S

    2017-09-15

    We derive a monogamy inequality for any local quantum resource and entanglement. It results from the fact that there is always a convex measure for a quantum resource, as shown here, and from the relation between entanglement and local entropy. One of its consequences is an entanglement monogamy different from that usually discussed. If the local resource is nonuniformity or coherence, it is satisfied by familiar resource and entanglement measures. The ensuing upper bound for the local coherence, determined by the entanglement, is independent of the basis used to define the coherence.

  17. Exploring Tripartite Quantum Correlations: Entanglement Witness and Quantum Discord

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Karimi, N.; Heshmati, A.; Amidi, D.

    2017-04-01

    In this study, we explore the tripartite quantum correlations by employing the quantum relative entropy as a distance measure. First, we evaluate the explicit expression for nonlinear entanglement witness (EW) of tripartite systems in the four dimensional space that lends itself to a straightforward algorithm for finding closest separable state (CSS) to the generic state. Then using nonlinear EW with specific feasible regions (FRs), quantum discord is derived analytically for the three-qubit and tripartite systems in the four dimensional space. Furthermore, we explicitly figure out the additivity relation of quantum correlations in tripartite systems.

  18. Exploring Tripartite Quantum Correlations: Entanglement Witness and Quantum Discord

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Karimi, N.; Heshmati, A.; Amidi, D.

    2016-12-01

    In this study, we explore the tripartite quantum correlations by employing the quantum relative entropy as a distance measure. First, we evaluate the explicit expression for nonlinear entanglement witness (EW) of tripartite systems in the four dimensional space that lends itself to a straightforward algorithm for finding closest separable state (CSS) to the generic state. Then using nonlinear EW with specific feasible regions (FRs), quantum discord is derived analytically for the three-qubit and tripartite systems in the four dimensional space. Furthermore, we explicitly figure out the additivity relation of quantum correlations in tripartite systems.

  19. Origins and optimization of entanglement in plasmonically coupled quantum dots

    SciTech Connect

    Otten, Matthew; Larson, Jeffrey; Min, Misun; Wild, Stefan M.; Pelton, Matthew; Gray, Stephen K.

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.

  20. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  1. Origins and optimization of entanglement in plasmonically coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Otten, Matthew; Larson, Jeffrey; Min, Misun; Wild, Stefan M.; Pelton, Matthew; Gray, Stephen K.

    2016-08-01

    A system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines for maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.

  2. Entanglement-assisted quantum low-density parity-check codes

    SciTech Connect

    Fujiwara, Yuichiro; Clark, David; Tonchev, Vladimir D.; Vandendriessche, Peter; De Boeck, Maarten

    2010-10-15

    This article develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error-correction performance, high rates, and low decoding complexity. The proposed method produces several infinite families of codes with a wide variety of parameters and entanglement requirements. Our framework encompasses the previously known entanglement-assisted quantum LDPC codes having the best error-correction performance and many other codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.

  3. Nature and measure of entanglement in quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Somma, Rolando; Ortiz, Gerardo; Barnum, Howard; Knill, Emanuel; Viola, Lorenza

    2004-10-01

    Characterizing and quantifying quantum correlations in states of many-particle systems is at the core of a full understanding of phase transitions in matter. In this work, we continue our investigation of the notion of generalized entanglement [Barnum , Phys. Rev. A 68, 032308 (2003)] by focusing on a simple Lie-algebraic measure of purity of a quantum state relative to an observable set. For the algebra of local observables on multi-qubit systems, the resulting local purity measure is equivalent to a recently introduced global entanglement measure [Meyer and Wallach, J. Math. Phys. 43, 4273 (2002)]. In the condensed-matter setting, the notion of Lie-algebraic purity is exploited to identify and characterize the quantum phase transitions present in two exactly solvable models, namely the Lipkin-Meshkov-Glick model and the spin- (1)/(2) anisotropic XY model in a transverse magnetic field. For the latter, we argue that a natural fermionic observable set arising after the Jordan-Wigner transformation better characterizes the transition than alternative measures based on qubits. This illustrates the usefulness of going beyond the standard subsystem-based framework while providing a global disorder parameter for this model. Our results show how generalized entanglement leads to useful tools for distinguishing between the ordered and disordered phases in the case of broken symmetry quantum phase transitions. Additional implications and possible extensions of concepts to other systems of interest in condensed-matter physics are also discussed.

  4. Entanglement-assisted operator codeword stabilized quantum codes

    NASA Astrophysics Data System (ADS)

    Shin, Jeonghwan; Heo, Jun; Brun, Todd A.

    2016-05-01

    In this paper, we introduce a unified framework to construct entanglement-assisted quantum error-correcting codes (QECCs), including additive and nonadditive codes, based on the codeword stabilized (CWS) framework on subsystems. The CWS framework is a scheme to construct QECCs, including both additive and nonadditive codes, and gives a method to construct a QECC from a classical error-correcting code in standard form. Entangled pairs of qubits (ebits) can be used to improve capacity of quantum error correction. In addition, it gives a method to overcome the dual-containing constraint. Operator quantum error correction (OQEC) gives a general framework to construct QECCs. We construct OQEC codes with ebits based on the CWS framework. This new scheme, entanglement-assisted operator codeword stabilized (EAOCWS) quantum codes, is the most general framework we know of to construct both additive and nonadditive codes from classical error-correcting codes. We describe the formalism of our scheme, demonstrate the construction with examples, and give several EAOCWS codes

  5. Measurement-device-independent entanglement witnesses for all entangled quantum states.

    PubMed

    Branciard, Cyril; Rosset, Denis; Liang, Yeong-Cherng; Gisin, Nicolas

    2013-02-08

    The problem of demonstrating entanglement is central to quantum information processing applications. Resorting to standard entanglement witnesses requires one to perfectly trust the implementation of the measurements to be performed on the entangled state, which may be an unjustified assumption. Inspired by the recent work of F. Buscemi [Phys. Rev. Lett. 108, 200401 (2012)], we introduce the concept of measurement-device-independent entanglement witnesses (MDI-EWs), which allow one to demonstrate entanglement of all entangled quantum states with untrusted measurement apparatuses. We show how to systematically obtain such MDI-EWs from standard entanglement witnesses. Our construction leads to MDI-EWs that are loss tolerant and can be implemented with current technology.

  6. Quantum quench and scaling of entanglement entropy

    NASA Astrophysics Data System (ADS)

    Caputa, Paweł; Das, Sumit R.; Nozaki, Masahiro; Tomiya, Akio

    2017-09-01

    Global quantum quench with a finite quench rate which crosses critical points is known to lead to universal scaling of correlation functions as functions of the quench rate. In this work, we explore scaling properties of the entanglement entropy of a subsystem in a harmonic chain during a mass quench which asymptotes to finite constant values at early and late times and for which the dynamics is exactly solvable. When the initial state is the ground state, we find that for large enough subsystem sizes the entanglement entropy becomes independent of size. This is consistent with Kibble-Zurek scaling for slow quenches, and with recently discussed "fast quench scaling" for quenches fast compared to physical scales, but slow compared to UV cutoff scales.

  7. Manipulation of Entangled States for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Bose, S.; Huelga, S. F.; Jonathan, D.; Knight, P. L.; Murao, M.; Plenio, M. B.; Vedral, V.

    Entanglement manipulation, and especially Entanglement Swapping is at the heart of current work on quantum information processing, purification and quantum teleportation. We will discuss how it may be generalized to multiparticle systems and how this enables multi-user quantum cryptographic protocols to be developed. Our scheme allows us to establish multiparticle entanglement between particles which belong to distant users in a communication network through a prior distribution of Bell state singlets followed by local measurements. We compare our method for generating entanglement with existing schemes using simple quantum networks, and highlight the advantages and applications in cryptographic conferencing and in reading messages from more than one source through a single quantum measurement. We also discuss how entanglement leads to the idea of `telecloning', in which a teleportation-like protocol can be found which reproduces the output of an optimal quantum cloning machine.

  8. Understanding Entanglement as a Resource for Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2008-05-01

    Ever since Erwin Schrodinger shocked the physics world by killing (and not killing) his cat, entanglement has played a critical role in attempts to understand quantum mechanics. More recently, entanglement has been shown to be a valuable resource, of central importance for quantum computation and the processing of quantum information. In this talk, I will describe a new diagrammatic approach to understanding why entanglement is so valuable, the key idea being that entanglement between two systems ``creates'' multiple images of the state of a third. By way of example, I will show how to ``visualize'' teleportation of unknown quantum states, and how to use entanglement to implement an interaction between spatially separated (and therefore non-interacting!) systems. These ideas have also proven useful in quantum state discrimination, where the state of a quantum system is unknown and is to be determined.

  9. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  10. Entanglement in quantum impurity problems is nonperturbative

    NASA Astrophysics Data System (ADS)

    Saleur, H.; Schmitteckert, P.; Vasseur, R.

    2013-08-01

    We study the entanglement entropy of a region of length 2L with the remainder of an infinite one-dimensional gapless quantum system in the case where the region is centered on a quantum impurity. The coupling to this impurity is not scale invariant, and the physics involves a crossover between weak- and strong-coupling regimes. While the impurity contribution to the entanglement has been computed numerically in the past, little is known analytically about it, since in particular the methods of conformal invariance cannot be applied because of the presence of a crossover length. We show in this paper that the small coupling expansion of the entanglement entropy in this problem is quite generally plagued by strong infrared divergences, implying a nonperturbative dependence on the coupling. The large coupling expansion turns out to be better behaved, thanks to powerful results from the boundary CFT formulation and, in some cases, the underlying integrability of the problem. However, it is clear that this expansion does not capture well the crossover physics. In the integrable case—which includes problems such as an XXZ chain with a modified link, the interacting resonant level model or the anisotropic Kondo model—a nonperturbative approach is in principle possible using form factors. We adapt in this paper the ideas of Cardy [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-007-9422-x 130, 129 (2008)] and Castro-Alvaredo and Doyon [J. Stat. Phys.JSTPBS0022-471510.1007/s10955-008-9664-2 134, 105 (2009)] to the gapless case and show that, in the rather simple case of the resonant level model, and after some additional renormalizations, the form-factors approach yields remarkably accurate results for the entanglement all the way from short to large distances. This is confirmed by detailed comparison with numerical simulations. Both our form factor and numerical results are compatible with a nonperturbative form at short distance.

  11. Quantum entanglement in multiparticle systems of two-level atoms

    SciTech Connect

    Deb, Ram Narayan

    2011-09-15

    We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.

  12. Entanglement and Quantum Phase Transition in Low Dimensional Spin Systems

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zanardi, Paolo; Wang, Zidan; Zhang, Fuchun

    2005-03-01

    Entanglement of the ground states in XXZ and dimerized Heisenberg spin chains and in two-leg spin ladder is analyzed by using spin-spin concurrence and the entanglement entropy between a selected block of spins and the rest of the system. Quantum critical points as well as phase boundaries can be in some cases identified straightforwardly by analyzing the local extreme of the entanglement. We show that various subsystem partitions may provide complementary description of a quantum phase diagram.

  13. Optimal entanglement generation for efficient hybrid quantum repeaters

    SciTech Connect

    Azuma, Koji; Sota, Naoya; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki; Namiki, Ryo; Oezdemir, Sahin Kaya

    2009-12-15

    We propose a realistic protocol to generate entanglement between quantum memories at neighboring nodes in hybrid quantum repeaters. Generated entanglement includes only one type of error, which enables efficient entanglement distillation. In contrast to the known protocols with such a property, our protocol with ideal detectors achieves the theoretical limit of the success probability and the fidelity to a Bell state, promising higher efficiencies in the repeaters. We also show that the advantage of our protocol remains even with realistic threshold detectors.

  14. Compensated Crystal Assemblies for Type-II Entangled Photon Generation in Quantum Cluster States

    DTIC Science & Technology

    2010-03-01

    multi-crystal sources, such as cluster states, entanglement swapping, and teleportation . 15. SUBJECT TERMS quantum , entangled photons, joint...entanglement swapping, and teleportation . Key Words: quantum , entangled photons, joint spectral function, spontaneous parametric downconversion 2...DATES COVERED (From - To) OCT 2009 – SEP 2011 4. TITLE AND SUBTITLE COMPENSATED CRYSTAL ASSEMBLIES FOR TYPE-II ENTANGLED PHOTO GENERATION IN QUANTUM

  15. Entanglement dynamics with a trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Martens, Craig C.; Zheng, Yujun

    2017-08-01

    In this paper we present a trajectory-based formulation of entanglement dynamics by employing the Wigner function. The linear entropy of a single trajectory is derived based on the trajectory evolution of the Wigner function. The entanglement dynamics with a separable Gaussian initial state is investigated using different values of Planck's constant ℏ in the evolution of the trajectories, while quantum-classical correspondence in entanglement dynamics is investigated. In addition, we show why chaos can increase entanglement rapidly through analytical results and physical pictures of the underlying dynamics in phase space.

  16. Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement.

    PubMed

    Mičuda, M; Koutný, D; Miková, M; Straka, I; Ježek, M; Mišta, L

    2017-03-27

    Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.

  17. Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement

    PubMed Central

    Mičuda, M.; Koutný, D.; Miková, M.; Straka, I.; Ježek, M.; Mišta, L.

    2017-01-01

    Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit. PMID:28344336

  18. Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement

    NASA Astrophysics Data System (ADS)

    Mičuda, M.; Koutný, D.; Miková, M.; Straka, I.; Ježek, M.; Mišta, L.

    2017-03-01

    Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.

  19. Physical realization of quantum teleportation for a nonmaximal entangled state

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori

    2010-08-01

    Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics0219-025710.1142/S021902570700283X 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schrödinger’s cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.

  20. Physical realization of quantum teleportation for a nonmaximal entangled state

    SciTech Connect

    Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori

    2010-08-15

    Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.

  1. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    SciTech Connect

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  2. Entanglement of a coarse grained quantum field in the expanding universe

    SciTech Connect

    Nambu, Yasusada; Ohsumi, Yuji

    2009-12-15

    We investigate the entanglement of a quantum field in the expanding universe. By introducing a bipartite system using a coarse-grained scalar field, we apply the separability criterion based on the partial transpose operation and numerically calculate the bipartite entanglement between separate spatial regions. We find that the initial entangled state becomes separable or disentangled after the spatial separation of two points exceed the Hubble horizon. This provides the necessary conditions for the appearance of classicality of the quantum fluctuation. We also investigate the condition of classicality that the quantum field can be treated as the classical stochastic variables.

  3. Quantum radiation produced by the entanglement of quantum fields

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Oshita, Naritaka; Tatsukawa, Rumi; Yamamoto, Kazuhiro; Zhang, Sen

    2017-01-01

    We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006), 10.1103/PhysRevD.73.124018]. We infer that this quantum radiation from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state, which has its origin in the entanglement of the state between the left and the right Rindler wedges.

  4. Deterministic entanglement generation from driving through quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li

    2017-02-01

    Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a rubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.

  5. Quantum electron transport in magnetically entangled subbands

    NASA Astrophysics Data System (ADS)

    Mayer, William; Vitkalov, Sergey; Bykov, A. A.

    2017-07-01

    Transport properties of highly mobile two-dimensional (2D) electrons in symmetric GaAs quantum wells with two populated subbands placed in tilted magnetic fields are studied at high temperatures. Quantum positive magnetoresistance (QPMR) and magneto-intersubband resistance oscillations (MISO) are observed in quantizing magnetic fields, B⊥, applied perpendicular to the 2D layer. QPMR displays contributions from electrons with considerably different quantum lifetimes, τq(1 ,2 ), confirming the presence of two subbands in the studied system. MISO evolution with B⊥ agrees with the obtained quantum scattering times only if an additional reduction of the MISO magnitude is applied at small magnetic fields. This indicates the presence of a yet unknown mechanism leading to MISO damping. Application of an in-plane magnetic field produces a strong decrease of both QPMR and MISO magnitude. The reduction of QPMR is explained by spin splitting of Landau levels indicating a g factor, g ≈0.4 , which is considerably less than the g factor found in GaAs quantum well with a single subband populated. In contrast to QPMR, the decrease of MISO magnitude is largely related to the in-plane magnetic field induced entanglement between quantum levels in different subbands that, in addition, increases the MISO period.

  6. Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits

    NASA Astrophysics Data System (ADS)

    Schwartz, Mollie Elisheva

    Superconducting quantum circuits provide a promising avenue for scalable quantum computation and simulation. Their chief advantage is that, unlike physical atoms or electrons, these ''artificial atoms'' can be designed with nearly-arbitrarily large coupling to one another and to their electromagnetic environment. This strong coupling allows for fast quantum bit (qubit) operations, and for efficient readout. However, strong coupling comes at a price: a qubit that is strongly coupled to its environment is also strongly susceptible to losses and dissipation, as coherent information leaks from the quantum system under study into inaccessible ''bath'' modes. Extensive work in the field is dedicated to engineering away these losses to the extent possible, and to using error correction to undo the effects of losses that are unavoidable. This dissertation explores an alternate approach to dissipation: we study avenues by which dissipation itself can be used to generate, rather than destroy, quantum resources. We do so specifically in the context of quantum entanglement, one of the most important and most counter-intuitive aspects of quantum mechanics. Entanglement generation and stabilization is critical to most non-trivial implementations of quantum computing and quantum simulation, as it is the property that distinguishes a multi-qubit quantum system from a string of classical bits. The ability to harness dissipation to generate, purify, and stabilize entanglement is therefore highly desirable. We begin with an overview of quantum dissipation and measurement, followed by an introduction to entanglement and to the superconducting quantum information architecture. We then discuss three sets of experiments that highlight and explore the powerful uses of dissipation in quantum systems. First, we use an entangling measurement to probabilistically generate entanglement between two qubits separated by more than one meter of ordinary cable. This represents the first achievement

  7. Entanglement of single-atom quantum bits at a distance

    NASA Astrophysics Data System (ADS)

    Moehring, D. L.; Maunz, P.; Olmschenk, S.; Younge, K. C.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.

    2007-09-01

    Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum

  8. Distilling quantum entanglement via mode-matched filtering

    SciTech Connect

    Huang Yuping; Kumar, Prem

    2011-09-15

    We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.

  9. Quantum Phase Transition and Entanglement in Topological Quantum Wires.

    PubMed

    Cho, Jaeyoon; Kim, Kun Woo

    2017-06-05

    We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.

  10. Entanglement and the process of measuring the position of a quantum particle

    SciTech Connect

    Apel, V.M.; Curilef, S.; Plastino, A.R.

    2015-03-15

    We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computed on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process. - Highlights: • We explore entanglement features of a quantum position measurement. • We consider instantaneous and finite-duration measurements. • We evaluate the entanglement of exact time-dependent particle–pointer states.

  11. Haunted Quantum Entanglement Where Entanglement is Lost Before Ww Information is Released to the Environment and When the Entangled Entities are Distant From Each Other

    NASA Astrophysics Data System (ADS)

    Snyder, Douglas

    2011-04-01

    Haunted quantum entanglement involves entanglement between 2 entities where entanglement is based on 1 entity supplying which way information to the other. This ww info is lost before it is released to the environment with the result that the entanglement is also lost. The result of losing the entanglement is Young interference as if ww info never existed. Greenberger and YaSin demonstrated hqe in their haunted measurement where they obtained interference as if ww info initially provided by the displacement of a flexible mirror apparatus (fma) along one arm in their neutron interferometer never existed. Ww info in their haunted measurement is eliminated by a direct interaction between the neutron and the fma that restores the fma to its original state. In the hqe scenario here, ww info is eliminated at a distance between the entities. Interference is obtained in the dissolution of an entanglement that incorporates ww info held by one entity (photon) regarding the other distant entity with which it is entangled (atom) before any ww info is released to the environment. The ww info carried by the photon is eliminated at a distance from the atom with the accompanying loss of entanglement. The photon is essentially lost in classical microwave radiation. The ``two-slit'' interference obtained for the atoms shows no evidence that ww info ever existed.

  12. Cosmological implications of quantum entanglement in the multiverse

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi

    2015-12-01

    We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.

  13. Quantum imaging and spatial entanglement characterization with an EMCCD camera

    NASA Astrophysics Data System (ADS)

    Reichert, Matthew; Defienne, Hugo; Sun, Xiaohang; Fleischer, Jason W.

    2017-05-01

    We utilize a single-photon sensitive electron multiplying CCD camera as a massively parallel coincidence counting apparatus to study spatial entanglement of photon pairs. This allows rapid measurement of transverse spatial entanglement in a fraction of the time required with traditional point-scanning techniques. We apply this technique to quantum experiments on entangled photon pairs: characterization of the evolution of entanglement upon propagation, and measurement of one- and two-photon portions of the state transmitted through non-unitary (lossy) objects, and quantum phase imaging.

  14. Efficient quantum dialogue using entangled states and entanglement swapping without information leakage

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu

    2016-06-01

    We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.

  15. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.

    PubMed

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-06-24

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.

  16. Analysis of Entanglement Measures and LOCC Maximized Quantum Fisher Information of General Two Qubit Systems

    PubMed Central

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-01-01

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa. PMID:24957694

  17. Self-healing of quantum entanglement after an obstruction

    NASA Astrophysics Data System (ADS)

    McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J.; Roux, Filippus S.; Forbes, Andrew

    2014-02-01

    Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.

  18. Quantum memory, entanglement and sensing with room temperature atoms

    NASA Astrophysics Data System (ADS)

    Jensen, K.; Wasilewski, W.; Krauter, H.; Fernholz, T.; Nielsen, B. M.; Petersen, J. M.; Renema, J. J.; Balabas, M. V.; Owari, M.; Plenio, M. B.; Serafini, A.; Wolf, M. M.; Muschik, C. A.; Cirac, J. I.; Müller, J. H.; Polzik, E. S.

    2011-01-01

    Room temperature atomic ensembles in a spin-protected environment are useful systems both for quantum information science and metrology. Here we utilize a setup consisting of two atomic ensembles as a memory for quantum information initially encoded in the polarization state of two entangled light modes. We also use the ensembles as a radio frequency entanglement-assisted magnetometer with projection noise limited sensitivity below femtoTesla/. The performance of the quantum memory as well as the magnetometer was improved by spin-squeezed or entangled atomic states generated by quantum non demolition measurements. Finally, we present preliminary results of long lived entangled atomic states generated by dissipation. With the method presented, one should be able to generate an entangled steady state.

  19. Self-healing of quantum entanglement after an obstruction.

    PubMed

    McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J; Roux, Filippus S; Forbes, Andrew

    2014-01-01

    Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.

  20. Time-bin entangled photons from a quantum dot

    PubMed Central

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor

    2014-01-01

    Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024

  1. Entanglement and deterministic quantum computing with one qubit

    NASA Astrophysics Data System (ADS)

    Boyer, Michel; Brodutch, Aharon; Mor, Tal

    2017-02-01

    The role of entanglement and quantum correlations in complex physical systems and quantum information processing devices has become a topic of intense study in the past two decades. In this work we present tools for learning about entanglement and quantum correlations in dynamical systems where the quantum states are mixed and the eigenvalue spectrum is highly degenerate. We apply these results to the deterministic quantum computing with one qubit (DQC1) computation model and show that the states generated in a DQC1 circuit have an eigenvalue structure that makes them difficult to entangle, even when they are relatively far from the completely mixed state. Our results strengthen the conjecture that it may be possible to find quantum algorithms that do not generate entanglement and yet still have an exponential advantage over their classical counterparts.

  2. Quantum Enhanced Imaging by Entangled States

    DTIC Science & Technology

    2009-07-01

    multiple photon detectors based on coupled quantum wells as well as tri-photon sources based on aperiodic gratings. Experimentally, we have made what we... Detectors and Electronics ................................................................................ 35 4.2 Experimental Issues...47 6.2 Asymmetric Coupled Quantum Well Absorption Structure ................................. 48 6.3 Proposed Semiconductor Quantum-Well

  3. Dynamics of Quantum Matter with Long-Range Entanglement

    DTIC Science & Technology

    2013-06-07

    REPORT Final Report: Dynamics of quantum matter with long-range entanglement. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Recent experiments on...ultracold atoms in optical lattices have opened a remarkable new window on the dynamics of quantum matter with long-range entanglement. The simplest...paradigm of this is the boson superfluid-insulator quantum phase transition in two spatial dimensions. This project will study the theoretical

  4. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-27

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  5. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.

    2016-01-01

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  6. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots

    PubMed Central

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.

    2016-01-01

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms. PMID:26813326

  7. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam

    2017-03-01

    We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

  8. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  9. Quantum Fisher information, quantum entanglement and correlation close to quantum critical phenomena

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-cheng; Wang, Dong; Sun, Wen-yang; Ye, Liu

    2017-09-01

    In this paper, we investigate the quantum Fisher information (QFI), quantum entanglement, quantum correlation and quantum phase transition (QPT) within the one-dimensional transverse Ising model by exploiting quantum renormalization-group method. The results show that quantum Fisher information, quantum entanglement, quantum correlation can evolve to two saturated values which exhibit QPT at the critical point after several iterations of the renormalization. Meanwhile, we find quantum entanglement or correlation can be detected perfectly by means of quantum Fisher information. Besides, it cannot capture any information about the system in the paramagnetic phase in view of quantum entanglement and correlation. Contrarily, it is evident the QFI is always nonzero even if the system is in the paramagnetic phase, i.e., the QFI can also be utilized as a highly favorable measure of quantum information in a broad of quantum spin systems. Furthermore, we disclose the nonanalytic and scaling behaviors of quantum Fisher information, which can be taken as a representation of quantum critical characterism.

  10. High quality entanglement on a chip-based frequency comb.

    PubMed

    Mazeas, F; Traetta, M; Bentivegna, M; Kaiser, F; Aktas, D; Zhang, W; Ramos, C A; Ngah, L A; Lunghi, T; Picholle, É; Belabas-Plougonven, N; Le Roux, X; Cassan, É; Marris-Morini, D; Vivien, L; Sauder, G; Labonté, L; Tanzilli, S

    2016-12-12

    We report an efficient energy-time entangled photon-pair source based on four-wave mixing in a CMOS-compatible silicon photonics ring resonator. Thanks to suitable optimization, the source shows a large spectral brightness of 400 pairs of entangled photons /s/MHz for 500 μW pump power, compatible with standard telecom dense wavelength division multiplexers. We demonstrate high-purity energy-time entanglement, i.e., free of photonic noise, with near perfect raw visibilities (> 98%) between various channel pairs in the telecom C-band. Such a compact source stands as a path towards more complex quantum photonic circuits dedicated to quantum communication systems.

  11. Comment on 'Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair'

    SciTech Connect

    Qin Sujuan; Gao Fei; Wen Qiaoyan; Guo Fenzhuo

    2010-09-15

    Three protocols of quantum cryptography with a nonmaximally entangled qubit pair [Phys. Rev. A 80, 022323 (2009)] were recently proposed by Shimizu, Tamaki, and Fukasaka. The security of these protocols is based on the quantum-mechanical constraint for a state transformation between nonmaximally entangled states. However, we find that the second protocol is vulnerable under the correlation-elicitation attack. An eavesdropper can obtain the encoded bit M although she has no knowledge about the random bit R.

  12. Experimental nonlocality proof of quantum teleportation and entanglement swapping.

    PubMed

    Jennewein, Thomas; Weihs, Gregor; Pan, Jian-Wei; Zeilinger, Anton

    2002-01-07

    Quantum teleportation strikingly underlines the peculiar features of the quantum world. We present an experimental proof of its quantum nature, teleporting an entangled photon with such high quality that the nonlocal quantum correlations with its original partner photon are preserved. This procedure is also known as entanglement swapping. The nonlocality is confirmed by observing a violation of Bell's inequality by 4.5 standard deviations. Thus, by demonstrating quantum nonlocality for photons that never interacted, our results directly confirm the quantum nature of teleportation.

  13. A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You

    2016-02-01

    In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.

  14. Entanglement of a quantum field with a dispersive medium.

    PubMed

    Klich, Israel

    2012-08-10

    In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.

  15. Relating the Resource Theories of Entanglement and Quantum Coherence.

    PubMed

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-08

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.

  16. Entanglement of two-electron spin states in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Levin, A. D.; Meireles, M. S.

    Recently, an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using spin states of coupled single-electron quantum dots was proposed. It was demonstrated that it is possible to execute a coherent control of a quantum system based on two-electron spin states in a double quantum dot, allowing state preparation, coherent manipulation, and projective readout. This possibility is based on rapid electrical control of the spin exchange interaction. These results motivated us to develop a formal theoretical study of the corresponding model of two coupled spins placed in a magnetic field and subjected to a time-dependent mutual Heisenberg interaction. Using possible exact solutions of the corresponding quantum problem, we study entangling of different separable initial states in this model. It is demonstrated that the entanglement due to a time-dependent Heisenberg interaction is dominating in comparison with the entanglement due to the action of an external magnetic field.

  17. Entanglement in Nonunitary Quantum Critical Spin Chains

    NASA Astrophysics Data System (ADS)

    Couvreur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert

    2017-07-01

    Entanglement entropy has proven invaluable to our understanding of quantum criticality. It is natural to try to extend the concept to "nonunitary quantum mechanics," which has seen growing interest from areas as diverse as open quantum systems, noninteracting electronic disordered systems, or nonunitary conformal field theory (CFT). We propose and investigate such an extension here, by focusing on the case of one-dimensional quantum group symmetric or supergroup symmetric spin chains. We show that the consideration of left and right eigenstates combined with appropriate definitions of the trace leads to a natural definition of Rényi entropies in a large variety of models. We interpret this definition geometrically in terms of related loop models and calculate the corresponding scaling in the conformal case. This allows us to distinguish the role of the central charge and effective central charge in rational minimal models of CFT, and to define an effective central charge in other, less well-understood cases. The example of the s l (2 |1 ) alternating spin chain for percolation is discussed in detail.

  18. Quantum entanglement in two-electron atomic models

    NASA Astrophysics Data System (ADS)

    Manzano, D.; Plastino, A. R.; Dehesa, J. S.; Koga, T.

    2010-07-01

    We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.

  19. Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations

    SciTech Connect

    Qasimi, Asma Al-; James, Daniel F. V.

    2011-03-15

    Measurements of quantum systems disturb their states. To quantify this nonclassical characteristic, Zurek and Ollivier [Phys. Rev. Lett. 88, 017901 (2001)] introduced the quantum discord, a quantum correlation that can be nonzero even when entanglement in the system is zero. Discord has aroused great interest as a resource that is more robust against the effects of decoherence and offers the exponential speed-up of certain computational algorithms. Here, we study general two-level bipartite systems and give general results on the relationship between discord, entanglement, and linear entropy. We also identify the states for which discord takes a maximal value for a given entropy or entanglement, thus placing strong bounds on entanglement-discord and entropy-discord relations. We find out that although discord and entanglement are identical for pure states, they differ when generalized to mixed states as a result of the difference in the method of generalization.

  20. Gaussian intrinsic entanglement: An entanglement quantifier based on secret correlations

    NASA Astrophysics Data System (ADS)

    Mišta, Ladislav; Tatham, Richard

    2015-06-01

    Intrinsic entanglement (IE) is a quantity which aims at quantifying bipartite entanglement carried by a quantum state as an optimal amount of the intrinsic information that can be extracted from the state by measurement. We investigate in detail the properties of a Gaussian version of IE, the so-called Gaussian intrinsic entanglement (GIE). We show explicitly how GIE simplifies to the mutual information of a distribution of outcomes of measurements on a conditional state obtained by a measurement on a purifying subsystem of the analyzed state, which is first minimized over all measurements on the purifying subsystem and then maximized over all measurements on the conditional state. By constructing for any separable Gaussian state a purification and a measurement on the purifying subsystem which projects the purification onto a product state, we prove that GIE vanishes on all Gaussian separable states. Via realization of quantum operations by teleportation, we further show that GIE is nonincreasing under Gaussian local trace-preserving operations and classical communication. For pure Gaussian states and a reduction of the continuous-variable GHZ state, we calculate GIE analytically and we show that it is always equal to the Gaussian Rényi-2 entanglement. We also extend the analysis of IE to a non-Gaussian case by deriving an analytical lower bound on IE for a particular form of the non-Gaussian continuous-variable Werner state. Our results indicate that mapping of entanglement onto intrinsic information is capable of transmitting also quantitative properties of entanglement and that this property can be used for introduction of a quantifier of Gaussian entanglement which is a compromise between computable and physically meaningful entanglement quantifiers.

  1. Multipartite entanglement for continuous variables: A quantum teleportation network

    PubMed

    van Loock P; Braunstein

    2000-04-10

    We show that one single-mode squeezed state distributed among N parties using linear optics suffices to produce a truly N-partite entangled state for any nonzero squeezing and arbitrarily many parties. From this N-partite entangled state, via quadrature measurements of N-2 modes, bipartite entanglement between any two of the N parties can be "distilled," which enables quantum teleportation with an experimentally determinable fidelity better than could be achieved in any classical scheme.

  2. Macroscopic entanglement in many-particle quantum states

    NASA Astrophysics Data System (ADS)

    Tichy, Malte C.; Park, Chae-Yeun; Kang, Minsu; Jeong, Hyunseok; Mølmer, Klaus

    2016-04-01

    We elucidate the relationship between Schrödinger-cat-like macroscopicity and geometric entanglement and argue that these quantities are not interchangeable. While both properties are lost due to decoherence, we show that macroscopicity is rare in uniform and in so-called random physical ensembles of pure quantum states, despite possibly large geometric entanglement. In contrast, permutation-symmetric pure states feature rather low geometric entanglement and strong and robust macroscopicity.

  3. Quantum phase gate and controlled entanglement with polar molecules

    SciTech Connect

    Charron, Eric; Keller, Arne; Atabek, Osman; Milman, Perola

    2007-03-15

    We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed.

  4. Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-01

    We propose quantum information processing schemes to generate and swap entangled states based on the interactions between flying photons and quantum dots (QDs) confined within optical cavities for quantum communication. To produce and distribute entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between the photonic qubits of flying photons of consumers (Alice and Bob) and electron-spin qubits of a provider (trust center, or TC), the TC employs the interactions of the QD-cavity system, which is composed of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, the TC constructs an entanglement channel (Bell state and 4-qubit GHZ state) to link one consumer with another through entanglement swapping, which can be realized to exploit a probe photon with interactions of the QD-cavity systems and single-qubit measurements without Bell state measurement, for quantum communication between consumers. Consequently, the TC, which has quantum nodes (QD-cavity systems), can accomplish constructing the entanglement channel (authenticated channel) between two separated consumers from the distributions of entangled states and entanglement swapping. Furthermore, our schemes using QD-cavity systems, which are feasible with a certain probability of success and high fidelity, can be experimentally implemented with technology currently in use.

  5. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  6. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  7. Non-equilibrium quantum phase transition via entanglement decoherence dynamics.

    PubMed

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-07

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  8. Natural Mode Entanglement as a Resource for Quantum Communication

    SciTech Connect

    Heaney, Libby; Vedral, Vlatko

    2009-11-13

    Natural particle-number entanglement resides between spatial modes in coherent ultracold atomic gases. However, operations on the modes are restricted by a superselection rule that forbids coherent superpositions of different particle numbers. This seemingly prevents mode entanglement being used as a resource for quantum communication. In this Letter, we demonstrate that mode entanglement of a single massive particle can be used for dense coding and quantum teleportation despite the superselection rule. In particular, we provide schemes where the dense coding linear photonic channel capacity is reached without a shared reservoir and where the full quantum channel capacity is achieved if both parties share a coherent particle reservoir.

  9. Novel quantum phase transition from bounded to extensive entanglement.

    PubMed

    Zhang, Zhao; Ahmadain, Amr; Klich, Israel

    2017-05-16

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.

  10. Quantum entanglement produced in the formation of a black hole

    SciTech Connect

    Martin-Martinez, Eduardo; Leon, Juan; Garay, Luis J.

    2010-09-15

    A field in the vacuum state, which is in principle separable, can evolve to an entangled state in a dynamical gravitational collapse. We will study, quantify, and discuss the origin of this entanglement, showing that it could even reach the maximal entanglement limit for low frequencies or very small black holes, with consequences in micro-black hole formation and the final stages of evaporating black holes. This entanglement provides quantum information resources between the modes in the asymptotic future (thermal Hawking radiation) and those which fall to the event horizon. We will also show that fermions are more sensitive than bosons to this quantum entanglement generation. This fact could be helpful in finding experimental evidence of the genuine quantum Hawking effect in analog models.

  11. Novel quantum phase transition from bounded to extensive entanglement

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Ahmadain, Amr; Klich, Israel

    2017-05-01

    The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.

  12. Haunted Quantum Entanglement: A New Scenario

    NASA Astrophysics Data System (ADS)

    Snyder, Douglas

    2010-10-01

    A haunted quantum entanglement scenario is proposed that is very close to Greenberger and YaSin's haunted measurement in that: 1) the entity that is developing as a which-way marker is effectively restored to its state prior to its developing as a which-way marker, and 2) the entity for which the developing which-way marker provides information enters the state it would have had if the development of the which-way marker had never begun. In the hqe scenario, the loss of developing which-way information through 1 relies on the loss of a developing entanglement. The photon initially emitted in one of two micromaser cavities and developing into a which-way marker is effectively lost through the injection of classical microwave radiation into both of the microwave cavities: 1) after the atom initially emits the photon into one of the micromaser cavities and exits the cavity system, and 2) before this atom reaches the 2 slit screen. The atom enters the state it would have had if the atom had never emitted the photon into one of the micromaser cavities because of the injection of classical microwave radiation into both of the microwave cavities and the presence of an rf coil situated at the exit of the micromaser cavity system.

  13. Quantum teleportation and entanglement swapping of matter qubits with coherent multiphoton states

    NASA Astrophysics Data System (ADS)

    Torres, J. M.; Bernád, J. Z.; Alber, G.

    2014-07-01

    Protocols for probabilistic entanglement-assisted quantum teleportation and for entanglement swapping of material qubits are presented. They are based on a protocol for postselective Bell- state projection which is capable of projecting two material qubits onto a Bell state with the help of ancillary coherent multiphoton states and postselection by balanced homodyne photodetection. Provided this photonic postselection is successful, we explore the theoretical possibilities of realizing unit-fidelity quantum teleportation and entanglement swapping with 25% success probability. This photon-assisted Bell projection is generated by coupling almost resonantly the two material qubits to single modes of the radiation field in two separate cavities in a Ramsey-type interaction sequence and by measuring the emerged field states in a balanced homodyne detection scenario. As these quantum protocols require basic tools of quantum state engineering of coherent multiphoton states and balanced homodyne photodetection, they may offer interesting perspectives in particular for current quantum optical applications in quantum information processing.

  14. Quantum key distribution using entangled-photon trains with no basis selection

    SciTech Connect

    Inoue, Kyo; Takesue, Hiroki

    2006-03-15

    Conventional quantum key distribution (QKD) protocols include a basis selection process for providing a secure secret key. In contrast, this paper proposes an entanglement-based QKD with no basis selection procedure. Entangled-photon pulse trains with an average photon number less than one per pulse are sent to two legitimate parties, from which a secret key is created utilizing the entanglement nature. Eavesdropping on a transmission line is prevented by a condition of less than one photon per pulse, and sending classically correlated coherent pulses instead of quantum correlated ones is revealed by monitoring coincident count rate000.

  15. Multi-partite entanglement can speed up quantum key distribution in networks

    NASA Astrophysics Data System (ADS)

    Epping, Michael; Kampermann, Hermann; macchiavello, Chiara; Bruß, Dagmar

    2017-09-01

    The laws of quantum mechanics allow for the distribution of a secret random key between two parties. Here we analyse the security of a protocol for establishing a common secret key between N parties (i.e. a conference key), using resource states with genuine N-partite entanglement. We compare this protocol to conference key distribution via bipartite entanglement, regarding the required resources, achievable secret key rates and threshold qubit error rates. Furthermore we discuss quantum networks with bottlenecks for which our multipartite entanglement-based protocol can benefit from network coding, while the bipartite protocol cannot. It is shown how this advantage leads to a higher secret key rate.

  16. Entanglement dynamics in critical random quantum Ising chain with perturbations

    NASA Astrophysics Data System (ADS)

    Huang, Yichen

    2017-05-01

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique.

  17. SU(4) Kondo entanglement in double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.

    2017-08-01

    We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.

  18. Quantum Entanglement: A Fundamental Concept Finding its Applications

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    Entanglement, according to the Austrian physicist Erwin Schrödinger the Essence of Quantum Mechanics, has been known for a long time now to be the source of a number of paradoxical and counterintuitive phenomena. Of those the most remarkable one is usually called non-locality and it is at the heart of the Einstein-Podolsky-Rosen Paradox and of the fact that Quantum Mechanics violates Bell's inequalities. Recent years saw an emergence of novel ideas in entanglement of three or more particles. Most recently it turned out that entanglement is an important concept in the development of quantum communication, quantum cryptography and quantum computation. First explicit experimental realizations with two or more photons include quantum dense coding and quantum teleportation.

  19. Classical synchronization indicates persistent entanglement in isolated quantum systems.

    PubMed

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-04-12

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.

  20. Classical synchronization indicates persistent entanglement in isolated quantum systems

    NASA Astrophysics Data System (ADS)

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-04-01

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.

  1. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field.

    PubMed

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-27

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  2. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-01

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field hc = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  3. Security of quantum key distributions with entangled qudits

    NASA Astrophysics Data System (ADS)

    Durt, Thomas; Kaszlikowski, Dagomir; Chen, Jing-Ling; Kwek, L. C.

    2004-03-01

    We consider a generalization of Ekert's entanglement-based quantum cryptographic protocol where qubits are replaced by N - or d -dimensional systems (qudits). In order to study its robustness against optimal incoherent attacks, we derive the information gained by a potential eavesdropper during a cloning-based individual attack. In doing so, we generalize Cerf’s formalism for cloning machines and establish the form of the most general cloning machine that respects all the symmetries of the problem. We obtain an upper bound on the error rate that guarantees the confidentiality of qudit generalizations of the Ekert’s protocol for qubits.

  4. Quantum Discord Bounds the Amount of Distributed Entanglement

    NASA Astrophysics Data System (ADS)

    Piani, Marco; Kok Chuan, Tan; Maillard, Jean; Modi, Kavan; Paterek, Tomasz; Paternostro, Mauro

    2013-03-01

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon. We thank the National Research Foundation and Ministry of Education in Singapore (T. K. Chuan, K. Modi, and T. Paterek), the John Templeton Foundation (K. Modi), the UK EPSRC (M. Paternostro), NSERC, CIFAR, and the Ontario Centres of Excellence (M. Piani)

  5. Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.

    2000-01-01

    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.

  6. Nonlinear dynamics and quantum entanglement in optomechanical systems.

    PubMed

    Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2014-03-21

    To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.

  7. Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.

    2000-01-01

    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.

  8. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Srinivasa, Vanita; Taylor, Jacob M.; Tahan, Charles

    Enabling modularity within a quantum information processing device relies on robust entanglement of coherent qubits at macroscopic distances. To address this challenge, we investigate theoretically a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. By analyzing three specific approaches drawn from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes, we show that methods for entangling superconducting qubits map directly to resonant exchange qubits. We also calculate the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well-suited to achieving the strong coupling regime. Our approach combines the robustness of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  9. Quantum Spin Baths Induced Transition of Decoherence and Entanglement

    SciTech Connect

    Chen Pochung; Lai Chengyan; Hung, J.-T.; Mou Chungyu

    2008-11-07

    We investigate the reduced dynamics of single or two qubits coupled to an interacting quantum spin bath modeled by a XXZ spin chain. By using the method of time-dependent density matrix renormalization group (t-DMRG), we evaluate nonperturbatively the induced decoherence and entanglement. We find that the behavior of both decoherence and entanglement strongly depend on the phase of the underlying spin bath. We show that spin baths can induce entanglement for an initially disentangled pair of qubits. We observe that entanglement sudden death only occurs in paramagnetic phase and discuss the effect of the coupling range.

  10. Light for the quantum. Entangled photons and their applications: a very personal perspective

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2017-07-01

    The quantum physics of light is a most fascinating field. Here I present a very personal viewpoint, focusing on my own path to quantum entanglement and then on to applications. I have been fascinated by quantum physics ever since I heard about it for the first time in school. The theory struck me immediately for two reasons: (1) its immense mathematical beauty, and (2) the unparalleled precision to which its predictions have been verified again and again. Particularly fascinating for me were the predictions of quantum mechanics for individual particles, individual quantum systems. Surprisingly, the experimental realization of many of these fundamental phenomena has led to novel ideas for applications. Starting from my early experiments with neutrons, I later became interested in quantum entanglement, initially focusing on multi-particle entanglement like GHZ states. This work opened the experimental possibility to do quantum teleportation and quantum hyper-dense coding. The latter became the first entanglement-based quantum experiment breaking a classical limitation. One of the most fascinating phenomena is entanglement swapping, the teleportation of an entangled state. This phenomenon is fundamentally interesting because it can entangle two pairs of particles which do not share any common past. Surprisingly, it also became an important ingredient in a number of applications, including quantum repeaters which will connect future quantum computers with each other. Another application is entanglement-based quantum cryptography where I present some recent long-distance experiments. Entanglement swapping has also been applied in very recent so-called loophole-free tests of Bell’s theorem. Within the physics community such loophole-free experiments are perceived as providing nearly definitive proof that local realism is untenable. While, out of principle, local realism can never be excluded entirely, the 2015 achievements narrow down the remaining possibilities for

  11. Electron-exchange and quantum screening effects on the collisional entanglement fidelity in degenerate quantum plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-06-01

    The influence of electron-exchange and quantum screening on the collisional entanglement fidelity for the elastic electron-ion collision is investigated in degenerate quantum plasmas. The effective Shukla-Eliasson potential and the partial wave method are used to obtain the collisional entanglement fidelity in quantum plasmas as a function of the electron-exchange parameter, Fermi energy, plasmon energy and collision energy. The results show that the quantum screening effect enhances the entanglement fidelity in quantum plasmas. However, it is found that the electron-exchange effect strongly suppresses the collisional entanglement fidelity. Hence, we have found that the influence of the electron-exchange reduces the transmission of quantum information in quantum plasmas. In addition, it is found that, although the entanglement fidelity decreases with an increase of the Fermi energy, it increases with increasing plasmon energy in degenerate quantum plasmas.

  12. A Weak Quantum Blind Signature with Entanglement Permutation

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoping; Chen, Zhigang; Guo, Ying

    2015-09-01

    Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.

  13. Preparing projected entangled pair states on a quantum computer.

    PubMed

    Schwarz, Martin; Temme, Kristan; Verstraete, Frank

    2012-03-16

    We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.

  14. Ion-photon entanglement and quantum frequency conversion with trapped Ba+ ions.

    PubMed

    Siverns, J D; Li, X; Quraishi, Q

    2017-01-20

    Trapped ions are excellent candidates for quantum nodes, as they possess many desirable features of a network node including long lifetimes, on-site processing capability, and production of photonic flying qubits. However, unlike classical networks in which data may be transmitted in optical fibers and where the range of communication is readily extended with amplifiers, quantum systems often emit photons that have a limited propagation range in optical fibers and, by virtue of the nature of a quantum state, cannot be noiselessly amplified. Here, we first describe a method to extract flying qubits from a Ba+ trapped ion via shelving to a long-lived, low-lying D-state with higher entanglement probabilities compared with current strong and weak excitation methods. We show a projected fidelity of ≈89% of the ion-photon entanglement. We compare several methods of ion-photon entanglement generation, and we show how the fidelity and entanglement probability varies as a function of the photon collection optic's numerical aperture. We then outline an approach for quantum frequency conversion of the photons emitted by the Ba+ ion to the telecommunication range for long-distance networking and to 780 nm for potential entanglement with rubidium-based quantum memories. Our approach is significant for extending the range of quantum networks and for the development of hybrid quantum networks compromised of different types of quantum memories.

  15. Optimal universal asymmetric covariant quantum cloning circuits for qubit entanglement manipulation

    SciTech Connect

    Szabo, Levente; Koniorczyk, Matyas; Adam, Peter; Janszky, Jozsef

    2010-03-15

    We consider the entanglement manipulation capabilities of the universal covariant quantum cloner or quantum processor circuit for quantum bits. We investigate its use for cloning a member of a bipartite or a genuine tripartite entangled state of quantum bits. We find that for bipartite pure entangled states a nontrivial behavior of concurrence appears, while for GHZ entangled states a possibility of the partial extraction of bipartite entanglement can be achieved.

  16. Optimal estimation of parameters of an entangled quantum state

    NASA Astrophysics Data System (ADS)

    Virzì, S.; Avella, A.; Piacentini, F.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Genovese, M.

    2017-05-01

    Two-photon entangled quantum states are a fundamental tool for quantum information and quantum cryptography. A complete description of a generic quantum state is provided by its density matrix: the technique allowing experimental reconstruction of the density matrix is called quantum state tomography. Entangled states density matrix reconstruction requires a large number of measurements on many identical copies of the quantum state. An alternative way of certifying the amount of entanglement in two-photon states is represented by the estimation of specific parameters, e.g., negativity and concurrence. If we have a priori partial knowledge of our state, it’s possible to develop several estimators for these parameters that require lower amount of measurements with respect to full density matrix reconstruction. The aim of this work is to introduce and test different estimators for negativity and concurrence for a specific class of two-photon states.

  17. Quantum entanglement of local operators in conformal field theories.

    PubMed

    Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi

    2014-03-21

    We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.

  18. Quantum Entanglement of Local Operators in Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi

    2014-03-01

    We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.

  19. Quantum frequency up-conversion of continuous variable entangled states

    SciTech Connect

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-07

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  20. Quantum entanglement in topological phases on a torus

    NASA Astrophysics Data System (ADS)

    Luo, Zhu-Xi; Hu, Yu-Ting; Wu, Yong-Shi

    2016-08-01

    In this paper, we study the effect of nontrivial spatial topology on quantum entanglement by examining the degenerate ground states of a topologically ordered system on a torus. Using the string-net (fixed-point) wave function, we propose a general formula of the reduced density matrix when the system is partitioned into two cylinders. The cylindrical topology of the subsystems makes a significant difference in regard to entanglement: a global quantum number for the many-body states comes into play, together with a decomposition matrix M which describes how topological charges of the ground states decompose into boundary degrees of freedom. We obtain a general formula for entanglement entropy and generalize the concept of minimally entangled states to minimally entangled sectors. Concrete examples are demonstrated with data from both finite groups and modular tensor categories (i.e., Fibonacci, Ising, etc.), supported by numerical verification.

  1. Collapse–revival of quantum discord and entanglement

    SciTech Connect

    Yan, Xue-Qun Zhang, Bo-Ying

    2014-10-15

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamical aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.

  2. Entanglement and dissipation in a 2x2 quantum-dot cell

    NASA Astrophysics Data System (ADS)

    Debora Contreras, Lesbia; Rojas, Fernando

    2005-03-01

    Quantum dot arrays or quantum-dot cellular automata (QCA) have been proposed as elements capable to encode, process and transmit logical information based on quantum effects in terms of charge distributions in specific geometries. and the basis for the charge qubits. Quantum Entanglement is a resource to encode information in a completely new way making possible quantum teleportation, quantum error correction, quantum dense coding. In this work, we explore the dynamical formation of entangled states including dissipative effects, of two parallel double dots (four dots, 2x2 cell), with one extra electron each, coupled by the Coulomb interaction and controlled by a time dependent potential difference applied to one of the double dots, causing the electron to switch. We include dissipative effects via electron-phonon interaction in the Markovian approximation for the reduced density matrix. Dynamical properties of the cell such as charge polarization, measure the entanglement (Wootters concurrence) and the probabilities for each Bell state, are discussed as a function of relevant parameters (tunneling, potential difference, temperature). We find that it is possible to obtain entangled states in the cell based on the electronic charge distribution and produce a specific Bell state from an initially non entangled state through the control of the time dependent potential. The work is supported by DGAPA project IN114403 and CONACyT project 43673-F

  3. Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan

    2016-06-01

    Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.

  4. Use of entanglement in quantum optics

    NASA Technical Reports Server (NTRS)

    Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton

    1992-01-01

    Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.

  5. Two holes in a two-dimensional quantum antiferromagnet: A variational study based on entangled-plaquette states

    NASA Astrophysics Data System (ADS)

    Mezzacapo, Fabio; Angelone, Adriano; Pupillo, Guido

    2016-10-01

    We show that the entangled-plaquette variational Ansatz can be adapted to study the two-dimensional t-J model in the presence of two mobile holes. Specifically, we focus on a square lattice comprising up to N =256 sites in the parameter range 0.4 ≤J /t ≤2.0 . Ground state energies are obtained via the optimization of a wave function in which the weight of a given configuration is expressed in terms of variational coefficients associated with square and linear entangled plaquettes. Our estimates are in excellent agreement with exact results available for the N =16 lattice. By extending our study to considerably larger systems we find, based on the analysis of the long-distance tail of the probability of finding two holes at spatial separation r , and on our computed two-hole binding energies, the existence of a two-hole bound state for all the values of J /t explored here. It is estimated that d -wave binding of the two holes does not occur for J /t

  6. One Lyapunov control for quantum systems and its application to entanglement generation

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Sun, Jitao

    2013-05-01

    In this Letter, we investigate the control of finite dimensional ideal quantum systems in which the quantum states are represented by the density operators. A new Lyapunov function based on the Hilbert-Schmidt distance and mechanical quantity of the quantum system is given. We present a theoretical convergence result using LaSalle invariance principle. Applying the proposed Lyapunov method, the generation of the maximally entangled quantum states of two qubits is obtained.

  7. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities

    SciTech Connect

    Wang Chuan; Zhang Yong; Jin Guangsheng

    2011-09-15

    We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.

  8. Quantum coherence, decoherence and entanglement in light harvesting complexes

    NASA Astrophysics Data System (ADS)

    Plenio, Martin; Caruso, Filippo; Chin, Alex; Datta, Animesh; Huelga, Susana

    2009-03-01

    Transport phenomena in networks allow for information and energy to be exchanged between individual constituents of communication systems, networks or light-harvesting complexes. Environmental noise is generally expected to hinder transport. Here we show that transport of excitations across dissipative quantum networks can be enhanced by dephasing noise. We identify two key processes that underly this phenomenon and provide instructive examples of quantum networks for each. We argue that Nature may be routinely exploiting this effect by showing that exciton transport in light harvesting complexes and other networks benefits from noise and is remarkably robust against static disorder. These results point towards the possibility for designing optimized structures for transport, for example in artificial nano-structures, assisted by noise. Furthermore, we demonstrate that quantum entanglement may be present for short times in light-harvesting complexes. We describe how the presence of such entanglement may be verified without the need for full state tomography and with minimal model assumptions. This work is based on M.B. Plenio & S.F. Huelga, New J. Phys. 10, 113019 (2008) and F. Caruso, A. Chin, A. Datta, S.F. Huelga & M.B. Plenio, in preparation

  9. Practical Entanglement Estimation for Spin-System Quantum Simulators.

    PubMed

    Marty, O; Cramer, M; Plenio, M B

    2016-03-11

    We present practical methods to measure entanglement for quantum simulators that can be realized with trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum circuit. As such circuits are not (yet) available for every platform, we investigate the performance of routinely measured observables as quantitative entanglement witnesses. Possible applications include experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum simulators.

  10. Experimental verification of multipartite entanglement in quantum networks

    NASA Astrophysics Data System (ADS)

    McCutcheon, W.; Pappa, A.; Bell, B. A.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; Rarity, J. G.; Tame, M. S.

    2016-11-01

    Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.

  11. Experimental verification of multipartite entanglement in quantum networks

    PubMed Central

    McCutcheon, W.; Pappa, A.; Bell, B. A.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; Rarity, J. G.; Tame, M. S.

    2016-01-01

    Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications. PMID:27827361

  12. Experimental verification of multipartite entanglement in quantum networks.

    PubMed

    McCutcheon, W; Pappa, A; Bell, B A; McMillan, A; Chailloux, A; Lawson, T; Mafu, M; Markham, D; Diamanti, E; Kerenidis, I; Rarity, J G; Tame, M S

    2016-11-09

    Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.

  13. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    SciTech Connect

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-09-15

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.

  14. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    SciTech Connect

    Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah

    2008-12-05

    We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.

  15. Path Entanglement of Continuous-Variable Quantum Microwaves

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Deppe, F.; Eder, P.; Zhong, L.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ballester, D.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2013-03-01

    Entanglement is a quantum mechanical phenomenon playing a key role in quantum communication and information processing protocols. Here, we report on frequency-degenerate entanglement between continuous-variable quantum microwaves propagating along two separated paths. In our experiment, we combine a squeezed and a vacuum state via a beam splitter. Overcoming the challenges imposed by the low photon energies in the microwave regime, we reconstruct the squeezed state and, independently from this, detect and quantify the produced entanglement via correlation measurements (E. P. Menzel et al., arXiv:1210.4413). Our work paves the way towards quantum communication and teleportation with continuous variables in the microwave regime. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED and PROMISCE, MEXT Kakenhi ``Quantum Cybernetics'', JSPS FIRST Program, the NICT Commissioned Research, EPSRC EP/H050434/1, Basque Government IT472-10, and Spanish MICINN FIS2009-12773-C02-01.

  16. Quantum entanglement in a two-electron quantum dot in magnetic field

    NASA Astrophysics Data System (ADS)

    Nazmitdinov, R. G.; Chizhov, A. V.

    2012-03-01

    The properties of quantum entanglement of the ground state in an exactly solvable model of a two-electron QD have been investigated. It is shown that the degree of entanglement increases with enhancement of interaction between electrons, irrespective of the shape of electron confining potential in a QD. A magnetic field destroys electron entanglement. However, the entanglement in deformed QDs is more stable against magnetic field.

  17. Quantum entanglement swapping of two arbitrary biqubit pure states

    NASA Astrophysics Data System (ADS)

    Xie, ChuanMei; Liu, YiMin; Chen, JianLan; Yin, XiaoFeng; Zhang, ZhanJun

    2016-10-01

    In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation (EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established. Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability; however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.

  18. On the Character of Quantum Law: Complementarity, Entanglement, and Information

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2017-08-01

    This article considers the relationships between the character of physical law in quantum theory and Bohr's concept of complementarity, under the assumption of the unrepresentable and possibly inconceivable nature of quantum objects and processes, an assumption that may be seen as the most radical departure from realism currently available. Complementarity, the article argues, is a reflection of the fact that, as against classical physics or relativity, the behavior of quantum objects of the same type, say, all electrons, is not governed by the same physical law in all contexts, specifically in complementary contexts. On the other hand, the mathematical formalism of quantum mechanics offers correct probabilistic or statistical predictions (no other predictions are possible on experimental grounds) in all contexts, here, again, under the assumption that quantum objects themselves and their behavior are beyond representation or even conception. Bohr, in this connection, spoke of "an entirely new situation as regards the description of physical phenomena that, the notion of complementarity aims at characterizing." The article also considers the relationships among complementarity, entanglement, and quantum information, by basing these relationships on this understanding of complementarity.

  19. Multiplexed entangled photon-pair sources for all-fiber quantum networks

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Yuan; Li, Yin-Hai; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-11-01

    The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such a quantum network can be realized using only fiber elements, thus deriving the advantages of low transmission loss, low cost, scalability, and integrability through mature fiber communication techniques such as dense wavelength division multiplexing. Hence high-quality entangled-photon sources based on fibers are in high demand. Here we report multiplexed polarization- and time-bin-entangled photon-pair sources based on the dispersion-shifted fiber operating at room temperature. The associated high quality of entanglement is characterized using interference, Bell's inequality, and quantum state tomography. The simultaneous presence of both types of entanglement in multi-channel pairs of a 100-GHz dense wavelength division multiplexing device indicates a great capacity in distributing entangled photons over multiple users. Our design provides a versatile platform and takes a big step toward constructing an all-fiber quantum network.

  20. Multiplexed entangled photon-pair sources for all-fiber quantum networks

    NASA Astrophysics Data System (ADS)

    Li, Yin-Hai; Zhou, Zhi-Yuan; Xu, Zhao-Huai; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-10-01

    The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such a quantum network can be realized using only fiber elements, thus deriving the advantages of low transmission loss, low cost, scalability, and integrability through mature fiber communication techniques such as dense wavelength division multiplexing. Hence high-quality entangled-photon sources based on fibers are in high demand. Here we report multiplexed polarization- and time-bin-entangled photon-pair sources based on the dispersion-shifted fiber operating at room temperature. The associated high quality of entanglement is characterized using interference, Bell's inequality, and quantum state tomography. The simultaneous presence of both types of entanglement in multichannel pairs of a 100-GHz dense wavelength division multiplexing device indicates a great capacity in distributing entangled photons over multiple users. Our design provides a versatile platform and takes a big step toward constructing an all-fiber quantum network.

  1. Generation of entanglement in quantum parametric oscillators using phase control

    PubMed Central

    Gonzalez-Henao, J. C.; Pugliese, E.; Euzzor, S.; Abdalah, S.F.; Meucci, R.; Roversi, J. A.

    2015-01-01

    The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system. PMID:26286485

  2. Generation of entanglement in quantum parametric oscillators using phase control.

    PubMed

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Abdalah, S F; Meucci, R; Roversi, J A

    2015-08-19

    The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system.

  3. Entanglement dynamics in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Abanin, Dmitry A.

    2017-03-01

    The dynamics of entanglement has recently been realized as a useful probe in studying ergodicity and its breakdown in quantum many-body systems. In this paper, we study theoretically the growth of entanglement in quantum many-body systems and propose a method to measure it experimentally. We show that entanglement growth is related to the spreading of local operators in real space. We present a simple toy model for ergodic systems in which linear spreading of operators results in a universal, linear-in-time growth of entanglement for initial product states, in contrast with the logarithmic growth of entanglement in many-body localized (MBL) systems. Furthermore, we show that entanglement growth is directly related to the decay of the Loschmidt echo in a composite system comprised of several copies of the original system, in which connections are controlled by a quantum switch (two-level system). By measuring only the switch's dynamics, the growth of the Rényi entropies can be extracted. Our work provides a way of understanding entanglement dynamics in many-body systems and to directly measure its growth in time via a single local measurement.

  4. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  5. Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states

    NASA Astrophysics Data System (ADS)

    Zhao-Xu, Ji; Tian-Yu, Ye

    2017-07-01

    In this paper, a novel multi-party quantum private comparison protocol with a semi-honest third party (TP) is proposed based on the entanglement swapping of d-level cat states and d-level Bell states. Here, TP is allowed to misbehave on his own, but will not conspire with any party. In our protocol, n parties employ unitary operations to encode their private secrets and can compare the equality of their private secrets within one time execution of the protocol. Our protocol can withstand both the outside attacks and the participant attacks on the condition that none of the QKD methods is adopted to generate keys for security. One party cannot obtain other parties' secrets except for the case that their secrets are identical. The semi-honest TP cannot learn any information about these parties' secrets except the end comparison result on whether all private secrets from n parties are equal.

  6. Electrical and optical control of entanglement entropy in a coupled triple quantum dot system

    NASA Astrophysics Data System (ADS)

    Mehmannavaz, Mohammad Reza

    2015-10-01

    We investigated theoretically the entanglement creation through tunneling rate and fields in a four-level triple quantum dot molecule based on InAs/GaAs/AlGaAs heterostructure in both steady state and transient state. We demonstrate that the entanglement entropy among the QDM and its spontaneous emission fields can be controlled by coherent and incoherent pumping field and tunnel-coupled electronics levels. The results may provide some new possibilities for technological applications in solid-state quantum information science, quantum computing, teleportation, encryption, compression codec, and optoelectronics.

  7. On the number of entangled qubits in quantum wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mohapatra, Amit Kumar; Balakrishnan, S.

    2016-08-01

    Wireless sensor networks (WSNs) can take the advantages by utilizing the security schemes based on the concepts of quantum computation and cryptography. However, quantum wireless sensor networks (QWSNs) are shown to have many practical constraints. One of the constraints is the number of entangled qubits which is very high in the quantum security scheme proposed by [Nagy et al., Nat. Comput. 9 (2010) 819]. In this work, we propose a modification of the security scheme introduced by Nagy et al. and hence the reduction in the number of entangled qubits is shown. Further, the modified scheme can overcome some of the constraints in the QWSNs.

  8. Relating quantum coherence and correlations with entropy-based measures.

    PubMed

    Wang, Xiao-Li; Yue, Qiu-Ling; Yu, Chao-Hua; Gao, Fei; Qin, Su-Juan

    2017-09-21

    Quantum coherence and quantum correlations are important quantum resources for quantum computation and quantum information. In this paper, using entropy-based measures, we investigate the relationships between quantum correlated coherence, which is the coherence between subsystems, and two main kinds of quantum correlations as defined by quantum discord as well as quantum entanglement. In particular, we show that quantum discord and quantum entanglement can be well characterized by quantum correlated coherence. Moreover, we prove that the entanglement measure formulated by quantum correlated coherence is lower and upper bounded by the relative entropy of entanglement and the entanglement of formation, respectively, and equal to the relative entropy of entanglement for all the maximally correlated states.

  9. On-chip generation of high-dimensional entangled quantum states and their coherent control

    NASA Astrophysics Data System (ADS)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-01

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  10. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    PubMed

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  11. Quantum-limited amplification and entanglement in coupled nonlinear resonators.

    PubMed

    Eichler, C; Salathe, Y; Mlynek, J; Schmidt, S; Wallraff, A

    2014-09-12

    We demonstrate a coupled cavity realization of a Bose-Hubbard dimer to achieve quantum-limited amplification and to generate frequency entangled microwave fields with squeezing parameters well below -12  dB. In contrast to previous implementations of parametric amplifiers, our dimer can be operated both as a degenerate and as a nondegenerate amplifier. The large measured gain-bandwidth product of more than 250 MHz for the nondegenerate operation and the saturation at input photon numbers as high as 2000 per μs are both expected to be improvable even further, while maintaining wide frequency tunability of about 2 GHz. Featuring flexible control over all relevant system parameters, the presented Bose-Hubbard dimer based on lumped element circuits has significant potential as an elementary cell in nonlinear cavity arrays for quantum simulations.

  12. Quantum communication using a multiqubit entangled channel

    NASA Astrophysics Data System (ADS)

    Ghose, Shohini; Hamel, Angele

    2015-12-01

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  13. Quantum communication using a multiqubit entangled channel

    SciTech Connect

    Ghose, Shohini; Hamel, Angele

    2015-12-31

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  14. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    PubMed

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  15. Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics

    SciTech Connect

    Li Wenan; Huang Guangyao

    2011-02-15

    A scheme is proposed for the generation of a three-dimensional entangled state for two atoms trapped in a cavity via quantum Zeno dynamics. Because the scheme is based on the resonant interaction, the time required to produce entanglement is very short compared with the dispersive protocols. We show that the resulting effective dynamics allows for the creation of robust qutrit-qutrit entanglement. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity of the entangled state is investigated. Numerical results show that the scheme is robust against the cavity decay since the evolution of the system is restricted to a subspace with null-excitation cavity fields. Furthermore, the present scheme has been generalized to realize N-dimensional entanglement for two atoms.

  16. Quantum teleportation of composite systems via mixed entangled states

    SciTech Connect

    Bandyopadhyay, Somshubhro; Sanders, Barry C.

    2006-09-15

    We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.

  17. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  18. Asymptotic entanglement in quantum walks from delocalized initial states

    NASA Astrophysics Data System (ADS)

    Orthey, Alexandre C.; Amorim, Edgard P. M.

    2017-09-01

    We study the entanglement between the internal (spin) and external (position) degrees of freedom of the one-dimensional discrete time quantum walk starting from local and delocalized initial states whose time evolution is driven by Hadamard and Fourier coins. We obtain the dependence of the asymptotic entanglement with the initial dispersion of the state and establish a way to connect the asymptotic entanglement between local and delocalized states. We find out that the delocalization of the state increases the number of initial spin states which achieves maximal entanglement from two states (local) to a continuous set of spin states (delocalized) given by a simple relation between the angles of the initial spin state. We also carry out numerical simulations of the average entanglement along the time to confront with our analytical results.

  19. Triple-server blind quantum computation using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua

    2014-04-01

    Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.

  20. Optically induced multispin entanglement in a semiconductor quantum well.

    PubMed

    Bao, Jiming; Bragas, Andrea V; Furdyna, Jacek K; Merlin, Roberto

    2003-03-01

    According to quantum mechanics, a many-particle system is allowed to exhibit non-local behaviour, in that measurements performed on one of the particles can affect a second one that is far away. These so-called entangled states are crucial for the implementation of most quantum information protocols and, in particular, gates for quantum computation. Here we use ultrafast optical pulses and coherent techniques to create and control spin-entangled states in an ensemble of non-interacting electrons bound to donors (at least three) and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the exchange interaction between localized excitons and paramagnetic impurities, can in principle be applied to entangle an arbitrarily large number of spins.

  1. Gravity from entanglement close to a quantum critical point

    NASA Astrophysics Data System (ADS)

    Faulkner, Thomas

    2015-04-01

    Entanglement entropy (EE) in quantum many-body systems reveal interesting non-local aspects of the state or phase of the system. For example, topological order in gapped phases may be characterized in this way. We present calculations of entanglement close to a quantum critical point with relativistic invariance that reveal the existence of an emergent gravitational theory in one higher dimension. The gravitational theory encodes the entanglement of the quantum system in an efficient way. In this way calculations of EE, a usually notoriously difficult quantity to calculate, are reduced to a simple computation in classical gravity. The answer we find is in the spirit of the AdS/CFT duality but goes beyond it since our results apply to any relativistic quantum critical point and not just the known theories with classical gravity duals.

  2. Effect of multimode entanglement on lossy optical quantum metrology

    NASA Astrophysics Data System (ADS)

    Knott, P. A.; Proctor, T. J.; Nemoto, Kae; Dunningham, J. A.; Munro, W. J.

    2014-09-01

    In optical interferometry multimode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single-mode quantum states perform just as well as their multimode entangled counterparts. We go beyond this to show that when photon losses occur, an inevitability in any realistic system, multimode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote an alternate way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future.

  3. A Non-Entanglement Quantum Single Sign-On Protocol

    NASA Astrophysics Data System (ADS)

    Dai, Guiping; Wang, Yong

    2014-08-01

    Single Sign-On (SSO) is an important cryptography mechanism in distributed systems. Quantum cryptography has gained great successes and makes great influence on traditional cryptography. In this paper, A SSO protocol under almost pure quantum cryptography without entanglement is designed. Through security analysis, we show that this protocol has good security properties.

  4. Autonomously stabilized entanglement between two superconducting quantum bits.

    PubMed

    Shankar, S; Hatridge, M; Leghtas, Z; Sliwa, K M; Narla, A; Vool, U; Girvin, S M; Frunzio, L; Mirrahimi, M; Devoret, M H

    2013-12-19

    Quantum error correction codes are designed to protect an arbitrary state of a multi-qubit register from decoherence-induced errors, but their implementation is an outstanding challenge in the development of large-scale quantum computers. The first step is to stabilize a non-equilibrium state of a simple quantum system, such as a quantum bit (qubit) or a cavity mode, in the presence of decoherence. This has recently been accomplished using measurement-based feedback schemes. The next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved using an autonomous feedback scheme that combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have been used for qubit reset, single-qubit state stabilization, and the creation and stabilization of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, the autonomous approach uses engineered dissipation to counteract decoherence, obviating the need for a complicated external feedback loop to correct errors. Instead, the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, as demonstrated by the accompanying paper on trapped ion qubits, will be an essential tool for the implementation of quantum error correction.

  5. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  6. All entangled pure quantum states violate the bilocality inequality

    NASA Astrophysics Data System (ADS)

    Gisin, Nicolas; Mei, Quanxin; Tavakoli, Armin; Renou, Marc Olivier; Brunner, Nicolas

    2017-08-01

    The nature of quantum correlations in networks featuring independent sources of entanglement remains poorly understood. Here, focusing on the simplest network of entanglement swapping, we start a systematic characterization of the set of quantum states leading to violation of the so-called "bilocality" inequality. First, we show that all possible pairs of entangled pure states can violate the inequality. Next, we derive a general criterion for violation for arbitrary pairs of mixed two-qubit states. Notably, this reveals a strong connection between the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and the bilocality inequality, namely, that any entangled state violating CHSH also violates the bilocality inequality. We conclude with a list of open questions.

  7. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics

    PubMed Central

    Joo, Jaewoo; Ginossar, Eran

    2016-01-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775

  8. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics.

    PubMed

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  9. Entanglement at a two-dimensional quantum critical point: a numerical linked-cluster expansion study.

    PubMed

    Kallin, Ann B; Hyatt, Katharine; Singh, Rajiv R P; Melko, Roger G

    2013-03-29

    We develop a method to calculate the bipartite entanglement entropy of quantum models, in the thermodynamic limit, using a numerical linked-cluster expansion (NLCE) involving only rectangular clusters. It is based on exact diagonalization of all n×m rectangular clusters at the interface between entangled subsystems A and B. We use it to obtain the Renyi entanglement entropy of the two-dimensional transverse field Ising model, for arbitrary real Renyi index α. Extrapolating these results as a function of the order of the calculation, we obtain universal pieces of the entanglement entropy associated with lines and corners at the quantum critical point. They show NLCE to be one of the few methods capable of accurately calculating universal properties of arbitrary Renyi entropies at higher dimensional critical points.

  10. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  11. Locality and entanglement in bandlimited quantum field theory

    NASA Astrophysics Data System (ADS)

    Pye, Jason; Donnelly, William; Kempf, Achim

    2015-11-01

    We consider a model for a Planck-scale ultraviolet cutoff which is based on Shannon sampling. Shannon sampling originated in information theory, where it expresses the equivalence of continuous and discrete representations of information. When applied to quantum field theory, Shannon sampling expresses a hard ultraviolet cutoff in the form of a bandlimitation. This introduces nonlocality at the cutoff scale in a way that is more subtle than a simple discretization of space: quantum fields can then be represented as either living on continuous space or, entirely equivalently, as living on any one lattice whose average spacing is sufficiently small. We explicitly calculate vacuum entanglement entropies in 1 +1 dimensions and we find a transition between logarithmic and linear scaling of the entropy, which is the expected 1 +1 dimensional analog of the transition from an area to a volume law. We also use entanglement entropy and mutual information as measures to probe in detail the localizability of the field degrees of freedom. We find that, even though neither translation nor rotation invariance are broken, each field degree of freedom occupies an incompressible volume of space, indicating a finite information density.

  12. Deterministic entanglement generation from driving through quantum phase transitions.

    PubMed

    Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li

    2017-02-10

    Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a arubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs. Copyright © 2017, American Association for the Advancement of Science.

  13. Photonic Quantum Metrologies Using Photons: Phase Super-sensitivity and Entanglement-Enhanced Imaging

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shigeki

    Quantum information science has been attracting significant attention recently. It harnesses the intrinsic nature of quantum mechanics such as quantum superposition, the uncertainty principle, and quantum entanglement to realize novel functions. Recently, quantum metrology has been emerging as an application of quantum information science. Among the many physical quanta, photons are an indispensable tool for metrology, as light-based measurements are applicable to fields ranging from astronomy to life science. In quantum metrology, quantum entanglement between photons is the phenomenon utilized.In this chapter, we will try to give a brief overview of this emerging field mainly focusing on two topics: Optical phase measurements beyond the standard quantum limit (SQL) and quantum optical coherence tomography (QOCT). The sensitivity of an optical phase measurement for a given photon number N is usually limited by N sqrt{N} , which is called the SQL or shot noise limit. However, the SQL can be overcome when non-classical light is used. We explain the basic concepts and the recent experimental results that exceed the SQL, and an application of this technology for microscopy. QOCT harnesses the quantum entanglement of photons in frequency to cancel out the dispersion effect, which degrades the resolution of conventional OCT. The mechanism of the dispersion cancellation and the latest experimental results will be given.

  14. Entanglement entropy after selective measurements in quantum chains

    NASA Astrophysics Data System (ADS)

    Najafi, Khadijeh; Rajabpour, M. A.

    2016-12-01

    We study bipartite post measurement entanglement entropy after selective measurements in quantum chains. We first study the quantity for the critical systems that can be described by conformal field theories. We find a connection between post measurement entanglement entropy and the Casimir energy of floating objects. Then we provide formulas for the post measurement entanglement entropy for open and finite temperature systems. We also comment on the Affleck-Ludwig boundary entropy in the context of the post measurement entanglement entropy. Finally, we also provide some formulas regarding modular hamiltonians and entanglement spectrum in the after measurement systems. After through discussion regarding CFT systems we also provide some predictions regarding massive field theories. We then discuss a generic method to calculate the post measurement entanglement entropy in the free fermion systems. Using the method we study the post measurement entanglement entropy in the XY spin chain. We check numerically the CFT and the massive field theory results in the transverse field Ising chain and the XX model. In particular, we study the post meaurement entanglement entropy in the infinite, periodic and open critical transverse field Ising chain and the critical XX model. The effect of the temperature and the gap is also discussed in these models.

  15. Measuring entanglement entropy of a generic many-body system with a quantum switch.

    PubMed

    Abanin, Dmitry A; Demler, Eugene

    2012-07-13

    Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order.

  16. Entanglement boost for extractable work from ensembles of quantum batteries.

    PubMed

    Alicki, Robert; Fannes, Mark

    2013-04-01

    Motivated by the recent interest in thermodynamics of micro- and mesoscopic quantum systems we study the maximal amount of work that can be reversibly extracted from a quantum system used to temporarily store energy. Guided by the notion of passivity of a quantum state we show that entangling unitary controls extract in general more work than independent ones. In the limit of a large number of copies one can reach the thermodynamical bound given by the variational principle for the free energy.

  17. Entanglement boost for extractable work from ensembles of quantum batteries

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Fannes, Mark

    2013-04-01

    Motivated by the recent interest in thermodynamics of micro- and mesoscopic quantum systems we study the maximal amount of work that can be reversibly extracted from a quantum system used to temporarily store energy. Guided by the notion of passivity of a quantum state we show that entangling unitary controls extract in general more work than independent ones. In the limit of a large number of copies one can reach the thermodynamical bound given by the variational principle for the free energy.

  18. Geometric entanglement and quantum phase transitions in two-dimensional quantum lattice models

    NASA Astrophysics Data System (ADS)

    Shi, Qian-Qian; Wang, Hong-Lei; Li, Sheng-Hao; Cho, Sam Young; Batchelor, Murray T.; Zhou, Huan-Qiang

    2016-06-01

    Geometric entanglement (GE), as a measure of multipartite entanglement, has been investigated as a universal tool to detect phase transitions in quantum many-body lattice models. In this paper we outline a systematic method to compute GE for two-dimensional (2D) quantum many-body lattice models based on the translational invariant structure of infinite projected entangled pair state (iPEPS) representations. By employing this method, the q -state quantum Potts model on the square lattice with q ∈{2 ,3 ,4 ,5 } is investigated as a prototypical example. Further, we have explored three 2D Heisenberg models: the antiferromagnetic spin-1/2 X X X and anisotropic X Y X models in an external magnetic field, and the antiferromagnetic spin-1 X X Z model. We find that continuous GE does not guarantee a continuous phase transition across a phase transition point. We observe and thus classify three different types of continuous GE across a phase transition point: (i) GE is continuous with maximum value at the transition point and the phase transition is continuous, (ii) GE is continuous with maximum value at the transition point but the phase transition is discontinuous, and (iii) GE is continuous with nonmaximum value at the transition point and the phase transition is continuous. For the models under consideration, we find that the second and the third types are related to a point of dual symmetry and a fully polarized phase, respectively.

  19. Generalised squeezing and information theory approach to quantum entanglement

    NASA Technical Reports Server (NTRS)

    Vourdas, A.

    1993-01-01

    It is shown that the usual one- and two-mode squeezing are based on reducible representations of the SU(1,1) group. Generalized squeezing is introduced with the use of different SU(1,1) rotations on each irreducible sector. Two-mode squeezing entangles the modes and information theory methods are used to study this entanglement. The entanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.

  20. Bell states and entanglement dynamics on two coupled quantum molecules

    SciTech Connect

    Oliveira, P.A.; Sanz, L.

    2015-05-15

    This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.

  1. Quantum Entanglement of Matter and Geometry in Large Systems

    SciTech Connect

    Hogan, Craig J.

    2014-12-04

    Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account for the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.

  2. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  3. Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids.

    PubMed

    Liu, Zhao; Bhatt, R N

    2016-11-11

    We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder-the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.

  4. Quantum-entanglement-initiated super Raman scattering

    SciTech Connect

    Agarwal, G. S.

    2011-02-15

    It has now been possible to prepare a chain of ions in an entangled state and thus the question arises: How will the optical properties of a chain of entangled ions differ from say a chain of independent particles? We investigate nonlinear optical processes in such chains. Since light scattering is quite a versatile technique to probe matter, we explicitly demonstrate the possibility of entanglement-produced super Raman scattering. Our results suggest the possibility of similar enhancement factors in other nonlinear processes like four-wave mixing.

  5. Entanglement witness operator for quantum teleportation.

    PubMed

    Ganguly, Nirman; Adhikari, Satyabrata; Majumdar, A S; Chatterjee, Jyotishman

    2011-12-30

    The ability of entangled states to act as a resource for teleportation is linked to a property of the fully entangled fraction. We show that the set of states with their fully entangled fraction bounded by a threshold value required for performing teleportation is both convex and compact. This feature enables the existence of Hermitian witness operators, the measurement of which could distinguish unknown states useful for performing teleportation. We present an example of such a witness operator illustrating it for different classes of states.

  6. Quantum order, entanglement and localization in many-body systems

    NASA Astrophysics Data System (ADS)

    Khemani, Vedika

    The interplay of disorder and interactions can have remarkable effects on the physics of quantum systems. A striking example is provided by the long conjectured--and recently confirmed--phenomenon of many-body localization. Many-body localized (MBL) phases violate foundational assumptions about ergodicity and thermalization in interacting systems, and represent a new frontier for non-equilibrium quantum statistical mechanics. We start with a study of the dynamical response of MBL phases to time-dependent perturbations. We find that that an asymptotically slow, local perturbation induces a highly non-local response, a surprising result for a localized insulator. A complementary calculation in the linear-response regime elucidates the structure of many-body resonances contributing to the dynamics of this phase. We then turn to a study of quantum order in MBL systems. It was shown that localization can allow novel high-temperature phases and phase transitions that are disallowed in equilibrium. We extend this idea of "localization protected order'' to the case of symmetry-protected topological phases and to the elucidation of phase structure in periodically driven Floquet systems. We show that Floquet systems can display nontrivial phases, some of which show a novel form of correlated spatiotemporal order and are absolutely stable to all generic perturbations. The next part of the thesis addresses the role of quantum entanglement, broadly speaking. Remarkably, it was shown that even highly-excited MBL eigenstates have low area-law entanglement. We exploit this feature to develop tensor-network based algorithms for efficiently computing and representing highly-excited MBL eigenstates. We then switch gears from disordered, localized systems and examine the entanglement Hamiltonian and its low energy spectrum from a statistical mechanical lens, particularly focusing on issues of universality and thermalization. We close with two miscellaneous results on topologically

  7. Entangled coherent states versus entangled photon pairs for practical quantum-information processing

    SciTech Connect

    Park, Kimin; Jeong, Hyunseok

    2010-12-15

    We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum-information processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.

  8. Minimum-error discrimination of entangled quantum states

    SciTech Connect

    Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.

    2010-10-15

    Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.

  9. Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition

    SciTech Connect

    Song, K.-H.; Zhou, Z.-W.; Guo, G.-C.

    2005-05-15

    In the system with superconducting quantum interference devices (SQUIDs) in cavity, the quantum logic gates operation and entanglement can be achieved by using a quantized cavity field and classical microwave pluses, via Raman transition. In this scheme, no transfer of quantum information between the SQUIDs and cavity is required, the cavity field is only virtually excited and thus the cavity decay is suppressed during the gate operation and entanglement generations. The gate operation and entanglement generations are realized by using only the two lower flux states of the SQUID system and the excited state would not be excited. Therefore, the effect of docoherence based on the levels of the SQUID system is possible to minimize.

  10. Generation and entanglement concentration for electron-spin entangled cluster states using charged quantum dots in optical microcavities

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zheng, Chun-Hong; Shi, Peng; Ren, Chun-Nian; Gu, Yong-Jian

    2014-07-01

    We present schemes for deterministically generating multi-qubit electron-spin entangled cluster states by the giant circular birefringence, induced by the interface between the spin of a photon and the spin of an electron confined in a quantum dot embedded in a double-sided microcavity. Based on this interface, we construct the controlled phase flip (CPF) gate deterministically which is performed on electron-spin qubits and is the essential component of the cluster-state generation. As one of the universal gates, the CPF gate constructed can also be utilized in achieving scalable quantum computing. Besides, we propose the entanglement concentration protocol to reconstruct a partially entangled cluster state into a maximally entangled one, resorting to the projection measurement on an ancillary photon. By iterating the concentration scheme several times, the maximum success probability can be achieved. The fidelities and experimental feasibilities are analyzed with respect to currently available techniques, indicating that our schemes can work well in both the strong and weak (Purcell) coupling regimes.

  11. Measurement-based quantum communication

    NASA Astrophysics Data System (ADS)

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2016-03-01

    We review and discuss the potential of using measurement-based elements in quantum communication schemes, where certain tasks are realized with the help of entangled resource states that are processed by measurements. We consider long-range quantum communication based on the transmission of encoded quantum states, where encoding, decoding and syndrome readout are implemented using small-scale resource states. We also discuss entanglement-based schemes and consider measurement-based quantum repeaters. An important element in these schemes is entanglement purification, which can also be implemented in a measurement-based way. We analyze the influence of noise and imperfections in these schemes and show that measurement-based implementation allows for very large error thresholds of the order of 10 % noise per qubit and more. We show how to obtain optimal resource states for different tasks and discuss first experimental realizations of measurement-based quantum error correction using trapped ions and photons.

  12. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    PubMed Central

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  13. Classical images as quantum entanglement: An image processing analogy of the GHZ experiment

    NASA Astrophysics Data System (ADS)

    Goldin, Matías A.; Francisco, Diego; Ledesma, Silvia

    2011-04-01

    In this paper we present an optical analogy of quantum entanglement by means of classical images. As in previous works, the quantum state of two or more qbits is encoded by using the spatial modulation in amplitude and phase of an electromagnetic field. We show here that bidimensional encoding of two qbit states allows us to interpret some non local features of the joint measurement by the assumption of “astigmatic” observers with different resolving power in two orthogonal directions. As an application, we discuss the optical simulation of measuring a system characterized by multiparticle entanglement. The simulation is based on a local representation of entanglement and a classical interferometric system. In particular we show how to simulate the Greenberger-Horne Zeilinger (GHZ) argument and the experimental results which interpretation illustrates the conflict between quantum mechanics and local realism.

  14. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    PubMed

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

  15. Post-Markovian dynamics of quantum correlations: entanglement versus discord

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hamidreza

    2017-02-01

    Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

  16. Avalanche of entanglement and correlations at quantum phase transitions.

    PubMed

    Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf

    2017-06-16

    We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.

  17. Entanglement and Quantum Error Correction with Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  18. Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions

    NASA Astrophysics Data System (ADS)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2016-05-01

    Quantum transition probabilities and quantum entanglement for two-qubit states of a four-level trapped ion quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with interactions mapped onto a SU(2 )⊗SU(2 ) group structure. Using the correspondence of the method of simulating a 3 +1 dimensional Dirac-like Hamiltonian for bispinor particles into a single trapped ion, one preliminarily obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation feature. For Dirac-like structures driven by generalized Poincaré classes of coupling potentials, one also identifies the SU(2 )⊗SU(2 ) internal degrees of freedom corresponding to intrinsic parity and spin polarization as an adaptive platform for computing the quantum entanglement between the internal quantum subsystems which define two-qubit ionic states. The obtained quantum correlational content is then translated into the quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the trapping magnetic field. Experimentally, the controllable parameters simulated by ion traps can be mapped into a Dirac-like system in the presence of an electrostatic field which, in this case, is associated to ionic carrier interactions. Besides exhibiting a complete analytical profile for ionic quantum transitions and quantum entanglement, our results indicate that carrier interactions actively drive an overall suppression of the quantum entanglement.

  19. Nanoshell-mediated robust entanglement between coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Hakami, Jabir; Zubairy, M. Suhail

    2016-02-01

    The exact entanglement dynamics in a hybrid structure consisting of two quantum dots (QDs) in the proximity of a metal nanoshell is investigated. Nanoshells can enhance the local density of states, leading to a strong-coupling regime where the excitation energy can coherently be transferred between the QDs and the nanoshell in the form of Rabi oscillations. The long-lived entangled states can be created deterministically by optimizing the shell thickness as well as the ratio of the distances between the QDs and the surface of the shell. The loss of the system is greatly reduced even when the QDs are ultraclose to the shell, which signifies a slow decay rate of the coherence information and longtime entanglement preservation. Our protocol allows for an on-demand, fast, and almost perfect entanglement even at strong carrier-phonon interaction where other systems fail.

  20. Fundamental Entangling Operators in Quantum Mechanics and Their Properties

    NASA Astrophysics Data System (ADS)

    Dao-Ming, Lu

    2016-07-01

    For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.

  1. Quantum Coherent Feedback Control for Generation System of Optical Entangled State

    PubMed Central

    Zhou, Yaoyao; Jia, Xiaojun; Li, Fang; Yu, Juan; Xie, Changde; Peng, Kunchi

    2015-01-01

    The non-measurement based coherent feedback control (CFC) is a control method without introducing any backaction noise into the controlled system, thus is specially suitable to manipulate various quantum optical systems for preparing nonclassical states of light. By simply tuning the transmissivity of an optical controller in a CFC loop attached to a non-degenerate optical parametric amplifier (NOPA), the quantum entanglement degree of the output optical entangled state of the system is improved. At the same time, the threshold pump power of the NOPA is reduced also. The experimental results are in reasonable agreement with the theoretical expectation. PMID:26047357

  2. Deterministic generation of remote entanglement with active quantum feedback

    SciTech Connect

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.

  3. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGES

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  4. Quantum entanglement between an optical photon and a solid-state spin qubit.

    PubMed

    Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D

    2010-08-05

    Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.

  5. Average subentropy, coherence and entanglement of random mixed quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Singh, Uttam; Pati, Arun K.

    2017-02-01

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  6. Exploring the tripartite entanglement and quantum phase transition in the XXZ+h model

    NASA Astrophysics Data System (ADS)

    Joyia, Wajid; Khan, Khalid

    2017-10-01

    The behavior of bipartite and tripartite entanglement in Heisenberg XXZ+h spins chain is investigated with the size of system using the approach of quantum renormalization group method. In thermodynamics limit, both types of entanglement exhibit quantum phase transition (QPT). The boundary of QPT links the phases of saturated entanglement and zero entanglement. The first derivative of both entanglements becomes discontinuous at the critical point, which corresponds to the second-order phase transition. Furthermore, the amount of saturated bipartite entanglement strongly depends on relative positions of spins, while tripartite entanglement is robust than bipartite entanglement. It turns out that the tripartite entanglement can be a better candidate than bipartite entanglement for analyzing QPT and implementing quantum information tasks.

  7. Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2015-04-01

    In this paper, using the quantum entanglement swapping technologies under the collective-dephasing noise and the collective-rotation noise, two robust quantum dialogue protocols are proposed, respectively. The logical Bell states are used as the traveling states to combat the collective noise. The auxiliary logical Bell state is shared privately between two participants through the manner of direct transmission first. After encoded with the receiver's secret messages, it swaps entanglement with its adjacent logical Bell state. In this way, the information leakage problem is avoided. Moreover, Eve's active attacks can be detected with the help of decoy photon technology. For decoding, the Bell state measurements rather than the four-qubit joint measurements are needed.

  8. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.

    PubMed

    Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P

    2015-08-03

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

  9. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering

    PubMed Central

    Cavalcanti, D.; Skrzypczyk, P.; Aguilar, G. H.; Nery, R. V.; Ribeiro, P.H. Souto; Walborn, S. P.

    2015-01-01

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks. PMID:26235944

  10. Entanglement entropy of U (1) quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Pretko, Michael; Senthil, T.

    2016-09-01

    We here investigate the entanglement structure of the ground state of a (3 +1 )-dimensional U (1 ) quantum spin liquid, which is described by the deconfined phase of a compact U (1 ) gauge theory. A gapless photon is the only low-energy excitation, with matter existing as deconfined but gapped excitations of the system. It is found that, for a given bipartition of the system, the elements of the entanglement spectrum can be grouped according to the electric flux between the two regions, leading to a useful interpretation of the entanglement spectrum in terms of electric charges living on the boundary. The entanglement spectrum is also given additional structure due to the presence of the gapless photon. Making use of the Bisognano-Wichmann theorem and a local thermal approximation, these two contributions to the entanglement (particle and photon) are recast in terms of boundary and bulk contributions, respectively. Both pieces of the entanglement structure give rise to universal subleading terms (relative to the area law) in the entanglement entropy, which are logarithmic in the system size (logL ), as opposed to the subleading constant term in gapped topologically ordered systems. The photon subleading logarithm arises from the low-energy conformal field theory and is essentially local in character. The particle subleading logarithm arises due to the constraint of closed electric loops in the wave function and is shown to be the natural generalization of topological entanglement entropy to the U (1 ) spin liquid. This contribution to the entanglement entropy can be isolated by means of the Grover-Turner-Vishwanath construction (which generalizes the Kitaev-Preskill scheme to three dimensions).

  11. Bulk entanglement spectrum reveals quantum criticality within a topological state.

    PubMed

    Hsieh, Timothy H; Fu, Liang

    2014-09-05

    A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we show that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce an extensive partition of the system into two subsystems both of which extend throughout the bulk in all directions. The resulting bulk entanglement spectrum has a low-lying part that resembles the excitation spectrum of a bulk Hamiltonian, which allows us to probe a topological phase transition from a single wave function by tuning either the geometry of the partition or the entanglement temperature. As an example, this remarkable correspondence between the topological phase transition and the entanglement criticality is rigorously established for integer quantum Hall states.

  12. Quantum entanglement for helium atom in the Debye plasmas

    SciTech Connect

    Lin, Yen-Chang; Fang, Te-Kuei; Ho, Yew Kam

    2015-03-15

    In the present work, we present an investigation on quantum entanglement of the two-electron helium atom immersed in weakly coupled Debye plasmas, modeled by the Debye-Hückel, or screened Coulomb, potential to mimic the interaction between two charged particles inside the plasma. Quantum entanglement is related to correlation effects in a multi-particle system. In a bipartite system, a measurement made on one of the two entangled particles affects the outcome of the other particle, even if such two particles are far apart. Employing wave functions constructed with configuration interaction B-spline basis, we have quantified von Neumann entropy and linear entropy for a series of He {sup 1,3}S{sup e} and {sup 1,3}P{sup o} states in plasma-embedded helium atom.

  13. Characterization of quantum phase transition using holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2016-06-01

    The entanglement exhibits extremal or singular behavior near quantum critical points (QCPs) in many condensed matter models. These intriguing phenomena, however, still call for a widely accepted understanding. In this paper we study this issue in holographic framework. We investigate the connection between the holographic entanglement entropy (HEE) and the quantum phase transition (QPT) in a lattice-deformed Einstein-Maxwell-Dilaton theory. Novel backgrounds exhibiting metal-insulator transitions (MIT) have been constructed in which both metallic phase and insulating phase have vanishing entropy density in zero temperature limit. We find that the first order derivative of HEE with respect to lattice parameters exhibits extremal behavior near QCPs. We propose that it would be a universal feature that HEE or its derivatives with respect to system parameters can characterize QPT in a generic holographic system. Our work opens a window for understanding the relation between entanglement and the QPT from a holographic perspective.

  14. Role of entanglement in calibrating optical quantum gyroscopes

    NASA Astrophysics Data System (ADS)

    Kok, Pieter; Dunningham, Jacob; Ralph, Jason F.

    2017-01-01

    We consider the calibration of an optical quantum gyroscope by modeling two Sagnac interferometers, mounted approximately at right angles to each other. Reliable operation requires that we know the angle between the interferometers with high precision, and we show that a procedure akin to multiposition testing in inertial navigation systems can be generalized to the case of quantum interferometry. We find that while entanglement is a key resource within an individual Sagnac interferometer, its presence between the interferometers is a far more complicated story. The optimum level of entanglement depends strongly on the sought parameter values, and small but significant improvements may be gained from choosing states with the optimal amount of entanglement between the interferometers.

  15. Dynamically Disordered Quantum Walk as a Maximal Entanglement Generator

    NASA Astrophysics Data System (ADS)

    Vieira, Rafael; Amorim, Edgard P. M.; Rigolin, Gustavo

    2013-11-01

    We show that the entanglement between the internal (spin) and external (position) degrees of freedom of a qubit in a random (dynamically disordered) one-dimensional discrete time quantum random walk (QRW) achieves its maximal possible value asymptotically in the number of steps, outperforming the entanglement attained by using ordered QRW. The disorder is modeled by introducing an extra random aspect to QRW, a classical coin that randomly dictates which quantum coin drives the system’s time evolution. We also show that maximal entanglement is achieved independently of the initial state of the walker, study the number of steps the system must move to be within a small fixed neighborhood of its asymptotic limit, and propose two experiments where these ideas can be tested.

  16. Tunable quantum entanglement of three qubits in a nonstationary cavity

    NASA Astrophysics Data System (ADS)

    Amico, Mirko; Berman, Oleg L.; Kezerashvili, Roman Ya.

    2017-09-01

    We investigate the tunable quantum entanglement and the probabilities of excitations in a system of three qubits in a nonstationary cavity due to the dynamical Lamb effect, caused by nonadiabatic fast change of the boundary conditions of the cavity. The transition amplitudes and the probabilities of excitation of qubits due to the dynamical Lamb effect have been evaluated. The conditional concurrence and the conditional residual tangle for each fixed amount of created photons are introduced and calculated as measures of the pairwise or three-way dynamical quantum entanglement of the qubits. We also give a prescription on how to increase the values of those quantities by controlling the frequency of the cavity photons. A physical realization of the system with three superconducting qubits, coupled to a coplanar waveguide entangled due to the nonadiabatic fast change of boundary conditions of the cavity is proposed.

  17. On Quantum Secret Sharing via Chinese Remainder Theorem with the Non-maximally Entanglement State Analysis

    NASA Astrophysics Data System (ADS)

    Shi, Ronghua; Lv, Geli; Wang, Yuan; Huang, Dazu; Guo, Ying

    2013-02-01

    An improved framework of quantum secret sharing (QSS) is designated structurally based on the Chinese Remainder Theorem (CRT) via the non-maximally entanglement analysis. In this CRT-based QSS, the secret is divided and then allotted to two or more sharers according to independent shadows achieved from the CRT in finite field. The secret can be restored jointly by legal participants using the partial non-maximally entanglement analysis in independent Hilbert spaces. The security is guaranteed by the secret dividing-and-recovering process based on the CRT, along with the entanglement channels established beforehand. It provides an alternative technique for the secret transmitting in complex quantum computation networks, where the CRT is conducted completely among legal participants.

  18. Berry phase and quantum entanglement in Majorana's stellar representation

    NASA Astrophysics Data System (ADS)

    Liu, H. D.; Fu, L. B.

    2016-08-01

    By presenting the evolution of a quantum state with the trajectories of the Majorana stars on the Bloch sphere, the Majorana's stellar provides an intuitive geometric picture to study a quantum system with high-dimensional Hilbert space. We study the Berry phase and quantum entanglement by distributions and motions of these stars on the Bloch sphere. It is shown that both of these unique characters of quantum state can be perfectly represented by the Majorana stars. The former is expressed by the solid angles of Majorana star loops and the distance between stars. For the latter, the distances between stars are also found to be a tool for measuring and classifying the multiparticle entanglement of a symmetric multiqubit pure state. To demonstrate our theory, we study a typical spin model which is equivalent to an interacting boson model or an interacting multiqubit system. The self-trapping phenomenon within is also discussed via the Majorana stars.

  19. Two-particle quantum walks: Entanglement and graph isomorphism testing

    SciTech Connect

    Berry, Scott D.; Wang, Jingbo B.

    2011-04-15

    We study discrete-time quantum walks on the line and on general undirected graphs with two interacting or noninteracting particles. We introduce two simple interaction schemes and show that they both lead to a diverse range of probability distributions that depend on the correlations and relative phases between the initial coin states of the two particles. We investigate the characteristics of these quantum walks and the time evolution of the entanglement between the two particles from both separable and entangled initial states. We also test the capability of two-particle discrete-time quantum walks to distinguish nonisomorphic graphs. For strongly regular graphs, we show that noninteracting discrete-time quantum walks can distinguish some but not all nonisomorphic graphs with the same family parameters. By incorporating an interaction between the two particles, all nonisomorphic strongly regular graphs tested are successfully distinguished.

  20. Entangled entanglement: A construction procedure

    NASA Astrophysics Data System (ADS)

    Uchida, Gabriele; Bertlmann, Reinhold A.; Hiesmayr, Beatrix C.

    2015-10-01

    The familiar Greenberger-Horne-Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in a constructive way we obtain all eight independent GHZ states that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is relevant for experimental and quantum information theoretic applications.

  1. Satellite-based entanglement distribution over 1200 kilometers.

    PubMed

    Yin, Juan; Cao, Yuan; Li, Yu-Huai; Liao, Sheng-Kai; Zhang, Liang; Ren, Ji-Gang; Cai, Wen-Qi; Liu, Wei-Yue; Li, Bo; Dai, Hui; Li, Guang-Bing; Lu, Qi-Ming; Gong, Yun-Hong; Xu, Yu; Li, Shuang-Lin; Li, Feng-Zhi; Yin, Ya-Yun; Jiang, Zi-Qing; Li, Ming; Jia, Jian-Jun; Ren, Ge; He, Dong; Zhou, Yi-Lin; Zhang, Xiao-Xiang; Wang, Na; Chang, Xiang; Zhu, Zhen-Cai; Liu, Nai-Le; Chen, Yu-Ao; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-06-16

    Long-distance entanglement distribution is essential for both foundational tests of quantum physics and scalable quantum networks. Owing to channel loss, however, the previously achieved distance was limited to ~100 kilometers. Here we demonstrate satellite-based distribution of entangled photon pairs to two locations separated by 1203 kilometers on Earth, through two satellite-to-ground downlinks with a summed length varying from 1600 to 2400 kilometers. We observed a survival of two-photon entanglement and a violation of Bell inequality by 2.37 ± 0.09 under strict Einstein locality conditions. The obtained effective link efficiency is orders of magnitude higher than that of the direct bidirectional transmission of the two photons through telecommunication fibers. Copyright © 2017, American Association for the Advancement of Science.

  2. Multiparty quantum-key-distribution protocol without use of entanglement

    SciTech Connect

    Matsumoto, Ryutaroh

    2007-12-15

    We propose a quantum-key-distribution protocol that enables three parties to agree at once on a shared common random bit string in the presence of an eavesdropper without use of entanglement. We prove its unconditional security and analyze the key rate.

  3. A simple quantum voting scheme with multi-qubit entanglement.

    PubMed

    Xue, Peng; Zhang, Xin

    2017-08-08

    We propose a simple quantum voting scenario with a set of pairs of particles in a multi-particle entangled state. This scenario is suitable for large scale general votings. We also provide a proof of security of our scheme against the most general type of attack by generalizing Shor and Preskill's proof of security of the other schemes.

  4. Deterministic generation of remote entanglement with active quantum feedback

    NASA Astrophysics Data System (ADS)

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-01

    We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.

  5. Wave Detection Beyond the Standard Quantum Limit via EPR Entanglement

    NASA Astrophysics Data System (ADS)

    Ma, Yiqiu; Miao, Haixing; Pang, Belinda; Evans, Matthew; Zhao, Chunnong; Harms, Jan; Schnabel, Roman; Chen, Yanbei

    2017-01-01

    The Standard Quantum Limit in continuous monitoring of a system is given by the trade-off of shot noise and back-action noise. In gravitational-wave detectors, such as Advanced LIGO, both contributions can simultaneously be squeezed in a broad frequency band by injecting a spectrum of squeezed vacuum states with a frequency-dependent squeeze angle. This approach requires setting up an additional long base-line, low-loss filter cavity in a vacuum system at the detector's site. Here, we show that the need for such a filter cavity can be eliminated, by exploiting EPR-entangled signal and idler beams. By harnessing their mutual quantum correlations and the difference in the way each beam propagates in the interferometer, we can engineer the input signal beam to have the appropriate frequency dependent conditional squeezing once the out-going idler beam is detected. Our proposal is appropriate for all future gravitational-wave detectors for achieving sensitivities beyond the Standard Quantum Limit.

  6. Classical simulation of quantum entanglement without local hidden variables

    NASA Astrophysics Data System (ADS)

    Massar, Serge; Bacon, Dave; Cerf, Nicolas J.; Cleve, Richard

    2001-05-01

    Recent work has extended Bell's theorem by quantifying the amount of communication required to simulate entangled quantum systems with classical information. The general scenario is that a bipartite measurement is given from a set of possibilities and the goal is to find a classical scheme that reproduces exactly the correlations that arise when an actual quantum system is measured. Previous results have shown that, using local hidden variables, a finite amount of communication suffices to simulate the correlations for a Bell state. We extend this in a number of ways. First, we show that, when the communication is merely required to be finite on average, Bell states can be simulated without any local hidden variables. More generally, we show that arbitrary positive operator valued measurements on systems of n Bell states can be simulated with O(n2n) bits of communication on average (again, without local hidden variables). On the other hand, when the communication is required to be absolutely bounded, we show that a finite number of bits of local hidden variables is insufficient to simulate a Bell state. This latter result is based on an analysis of the nondeterministic communication complexity of the NOT-EQUAL function, which is constant in the quantum model and logarithmic in the classical model.

  7. Entanglement, Holography, and the Quantum Phases of Matter

    SciTech Connect

    Sachdev, Subir

    2012-11-07

    Electrons in many interesting materials, such as the high temperature superconductors, exhibit low energy states with complex varieties of quantum entanglement. I will describe how the methods of holography, drawn from string theory, have given us a new tool to describe such states, by relating them to theories of gravitation in curved spacetimes with an extra dimension. I will discuss the impact of such ideas on studies of quantum phase transitions, and of novel metals.

  8. Variable entangling in a quantum prisoner's dilemma cellular automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón

    2015-01-01

    The effect of variable entangling on the dynamics of a spatial quantum formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The effect of spatial structure is assessed when allowing the players to adopt quantum and classical strategies, both in the two- and three-parameter strategy spaces.

  9. Quantum entanglement between electronic and vibrational degrees of freedom in molecules.

    PubMed

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2011-12-28

    We consider the quantum entanglement of the electronic and vibrational degrees of freedom in molecules with tendencies towards double welled potentials. In these bipartite systems, the von Neumann entropy of the reduced density matrix is used to quantify the electron-vibration entanglement for the lowest two vibronic wavefunctions obtained from a model Hamiltonian based on coupled harmonic diabatic potential-energy surfaces. Significant entanglement is found only in the region in which the ground vibronic state contains a density profile that is bimodal (i.e., contains two separate local maxima). However, in this region two distinct types of density and entanglement profiles are found: one type arises purely from the degeneracy of energy levels in the two potential wells and is destroyed by slight asymmetry, while the other arises through strong interactions between the diabatic levels of each well and is relatively insensitive to asymmetry. These two distinct types are termed fragile degeneracy-induced entanglement and persistent entanglement, respectively. Six classic molecular systems describable by two diabatic states are considered: ammonia, benzene, BNB, pyridine excited triplet states, the Creutz-Taube ion, and the radical cation of the "special pair" of chlorophylls involved in photosynthesis. These chemically diverse systems are all treated using the same general formalism and the nature of the entanglement that they embody is elucidated.

  10. Signalling, entanglement and quantum evolution beyond Cauchy horizons

    NASA Astrophysics Data System (ADS)

    Yurtsever, Ulvi; Hockney, George

    2005-01-01

    Consider a bipartite entangled system, half of which falls through the event horizon of an evaporating black hole, while the other half remains coherently accessible to experiments in the exterior region. Beyond complete evaporation, the evolution of the quantum state past the Cauchy horizon cannot remain unitary, raising the questions: how can this evolution be described as a quantum map, and how is causality preserved? What are the possible effects of such non-standard quantum evolution maps on the behaviour of the entangled laboratory partner? More generally, the laws of quantum evolution under extreme conditions in remote regions (not just in evaporating black-hole interiors, but possibly near other naked singularities and regions of extreme spacetime structure) remain untested by observation, and might conceivably be non-unitary or even nonlinear, raising the same questions about the evolution of entangled states. The answers to these questions are subtle, and are linked in unexpected ways to the fundamental laws of quantum mechanics. We show that terrestrial experiments can be designed to probe and constrain exactly how the laws of quantum evolution might be altered, either by black-hole evaporation, or by other extreme processes in remote regions possibly governed by unknown physics.

  11. Cryptanalysis and Improvement for the Quantum Private Comparison Protocol Based on Triplet Entangled State and Single-Particle Measurement

    NASA Astrophysics Data System (ADS)

    Ting, Xu; Tian-Yu, Ye

    2017-03-01

    Quantum private comparison (QPC) aims to accomplish the equality comparison of secret inputs from two users on the basis of not leaking their contents out. Recently, Chen et al. proposed the QPC protocol based on triplet GHZ state and single-particle measurement (Optics Communications 283, 1561-1565 (2010)). In this paper, they suggested the standard model of a semi-honest third party (TP) for the first time, and declared that their protocol is secure. Subsequently, Lin et al. pointed out that in Chen et al.'s protocol, one user can extract the other user's secret without being discovered by performing the intercept-resend attack, and suggested two corresponding improvements (Optics Communications 284, 2412-2414 (2011)). However, Yang et al. first pointed out that the model of TP adopted by both Chen et al.'s protocol and Lin et al.'s improved protocols is unreasonable, and thought that a practical TP may also try any possible means to steal the users' secrets except being corrupted by the adversary including the dishonest user (Quantum Inf Process 12, 877-885 (2013). In this paper, after taking the possible attacks from TP into account, we propose the eavesdropping strategy of TP toward Lin et al.'s improved protocols and suggest two feasible solutions accordingly.

  12. Multipartite entanglement for entanglement teleportation

    SciTech Connect

    Lee, Jinhyoung; Min, Hyegeun; Oh, Sung Dahm

    2002-11-01

    A scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits as a quantum channel. Based on the invariance of entanglement teleportation under an arbitrary two-qubit unitary transformation, we derive relations for the separabilities of joint measurements at a sending station and of unitary operations at a receiving station. From the relations of the separabilities it is found that an inseparable quantum channel always leads to total teleportation of entanglement with an inseparable joint measurement and/or a nonlocal unitary operation.

  13. Entangled quantum states as direction indicators.

    PubMed

    Peres, A; Scudo, P F

    2001-04-30

    We consider the use of N spin-1/2 particles for indicating a direction in space. If N>2, their optimal state is entangled. For large N, the mean square error decreases as N-2 (rather than N-1 for parallel spins).

  14. Quantum Information Technology: Entanglement, Teleportation, and Memory

    DTIC Science & Technology

    2005-10-31

    International Conference on Squeezed States and Uncertainty Relations (ICSSUR�), Puebla , Mexico, June 9-13, 2003. X. Li, P. Voss, J E. Sharping...the original vision of a dual-OPA entanglement source [2]. The source output thus ob- tained exhibited collapses and revivals of the Hong-Ou-Mandel

  15. Protocol for hybrid entanglement between a trapped atom and a quantum dot

    SciTech Connect

    Waks, Edo; Monroe, C.

    2009-12-15

    We propose a quantum optical interface between an atomic and solid-state system. We show that quantum states in a single trapped atom can be entangled with the states of a semiconductor quantum dot through their common interaction with a classical laser field. The interference and detection of the resulting scattered photons can then herald the entanglement of the disparate atomic and solid-state quantum bits. We develop a protocol that can succeed despite a significant mismatch in the radiative characteristics of the two matter-based qubits. We study in detail a particular case of this interface applied to a single trapped {sup 171}Yb{sup +} ion and a cavity-coupled InAs semiconductor quantum dot. Entanglement fidelity and success rates are found to be robust to a broad range of experimental nonideal effects such as dispersion mismatch, atom recoil, and multiphoton scattering. We conclude that it should be possible to produce highly entangled states of these complementary qubit systems under realistic experimental conditions.

  16. Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.

    PubMed

    Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor

    2017-12-01

    In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.

  17. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  18. Entanglement and Quantum non-locality: an experimental perspective

    NASA Astrophysics Data System (ADS)

    Avella, Alessio; Gramegna, Marco; Genovese, Marco

    2013-09-01

    The theory of Quantum Mechanics is one of the mainstay of modern physics, a well-established mathematical clockwork whose strength and accuracy in predictions are currently experienced in worldwide research laboratories. As a matter of fact, Quantum Mechanics laid the groundwork of a rich variety of studies ranging from solid state physics to cosmology, from bio-physics to particle physics. The up-to-date ability of manipulating single quantum states is paving the way for emergent quantum technologies as quantum information and computation, quantum communication, quantum metrology and quantum imaging. In spite of the impressive matemathical capacity, a long-standing debate is even revolving around the foundational axioms of this theory, the main bones of content being the non-local effects of entangled states, the wave function collapse and the concept of measurement in Quantum Mechanics, the macro-objectivation problem (the transition from a microscopic probabilistic world to a macroscopic deterministic world described by classical mechanics). Problems that, beyond their fundamental interest in basic science, now also concern the impact of these developing technologies. Without claiming to be complete, this article provides in outline the living matter concerning some of these problems, the implications of which extend deeply on the connection between entanglement and space-time structure.

  19. Entanglement entropy of the Q≥4 quantum Potts chain.

    PubMed

    Lajkó, Péter; Iglói, Ferenc

    2017-01-01

    The entanglement entropy S is an indicator of quantum correlations in the ground state of a many-body quantum system. At a second-order quantum phase-transition point in one dimension S generally has a logarithmic singularity. Here we consider quantum spin chains with a first-order quantum phase transition, the prototype being the Q-state quantum Potts chain for Q>4 and calculate S across the transition point. According to numerical, density matrix renormalization group results at the first-order quantum phase transition point S shows a jump, which is expected to vanish for Q→4^{+}. This jump is calculated in leading order as ΔS=lnQ[1-4/Q-2/(QlnQ)+O(1/Q^{2})].

  20. Do emergent entangled coherent Glauber states violate the no-signaling theorems of quantum theory?

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2013-03-01

    Quantum information theory assumes entanglement cannot be used as a direct stand-alone-communication channel without a light speed limited retarded signal key to unlock the message encrypted in the correlation pattern. This pre-supposes orthogonal base states for the entangled subsystems. Macro-quantum coherent Glauber states emerge as ground/vacuum states in spontaneous broken symmetries that describe the Higgs-Goldstone fields of many real/virtual particles. They are distinguishably non-orthogonal and over-complete. In the bipartite case, Alice's two distinguishable non-orthogonal sender Glauber coherent base states are entangled with Bob's two orthogonal receiver Q-BIT base states. The Born rule for strong von-Neumann projection measurements using the orthodox constant √{ 2} - 1 normalization gives an entanglement signal l Emergent spontaneous symmetry breakdown violates the probability interpretation of orthodox quantum theory. It represents an extension of quantum theory in the same way that gravity required an extension of special relativity limiting it to coincident local inertial frames.