Sample records for quantum ergodic theorem

  1. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, S., E-mail: fishman@physics.technion.ac.il; Soffer, A., E-mail: soffer@math.rutgers.edu

    2016-07-15

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  2. The generalized Lyapunov theorem and its application to quantum channels

    NASA Astrophysics Data System (ADS)

    Burgarth, Daniel; Giovannetti, Vittorio

    2007-05-01

    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.

  3. An Estimation of the Logarithmic Timescale in Ergodic Dynamics

    NASA Astrophysics Data System (ADS)

    Gomez, Ignacio S.

    An estimation of the logarithmic timescale in quantum systems having an ergodic dynamics in the semiclassical limit, is presented. The estimation is based on an extension of the Krieger’s finite generator theorem for discretized σ-algebras and using the time rescaling property of the Kolmogorov-Sinai entropy. The results are in agreement with those obtained in the literature but with a simpler mathematics and within the context of the ergodic theory. Moreover, some consequences of the Poincaré’s recurrence theorem are also explored.

  4. Ergodic theorem, ergodic theory, and statistical mechanics

    PubMed Central

    Moore, Calvin C.

    2015-01-01

    This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechanics and Boltzman's ergodic hypothesis to the Ehrenfests' quasi-ergodic hypothesis, and then to the ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics. PMID:25691697

  5. A Perron-Frobenius Type of Theorem for Quantum Operations

    NASA Astrophysics Data System (ADS)

    Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng

    2017-10-01

    We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.

  6. Weak ergodicity of population evolution processes.

    PubMed

    Inaba, H

    1989-10-01

    The weak ergodic theorems of mathematical demography state that the age distribution of a closed population is asymptotically independent of the initial distribution. In this paper, we provide a new proof of the weak ergodic theorem of the multistate population model with continuous time. The main tool to attain this purpose is a theory of multiplicative processes, which was mainly developed by Garrett Birkhoff, who showed that ergodic properties generally hold for an appropriate class of multiplicative processes. First, we construct a general theory of multiplicative processes on a Banach lattice. Next, we formulate a dynamical model of a multistate population and show that its evolution operator forms a multiplicative process on the state space of the population. Subsequently, we investigate a sufficient condition that guarantees the weak ergodicity of the multiplicative process. Finally, we prove the weak and strong ergodic theorems for the multistate population and resolve the consistency problem.

  7. Quantum Groups, Property (T), and Weak Mixing

    NASA Astrophysics Data System (ADS)

    Brannan, Michael; Kerr, David

    2018-06-01

    For second countable discrete quantum groups, and more generally second countable locally compact quantum groups with trivial scaling group, we show that property (T) is equivalent to every weakly mixing unitary representation not having almost invariant vectors. This is a generalization of a theorem of Bekka and Valette from the group setting and was previously established in the case of low dual by Daws, Skalski, and Viselter. Our approach uses spectral techniques and is completely different from those of Bekka-Valette and Daws-Skalski-Viselter. By a separate argument we furthermore extend the result to second countable nonunimodular locally compact quantum groups, which are shown in particular not to have property (T), generalizing a theorem of Fima from the discrete setting. We also obtain quantum group versions of characterizations of property (T) of Kerr and Pichot in terms of the Baire category theory of weak mixing representations and of Connes and Weiss in terms of the prevalence of strongly ergodic actions.

  8. Special ergodic theorems and dynamical large deviations

    NASA Astrophysics Data System (ADS)

    Kleptsyn, Victor; Ryzhov, Dmitry; Minkov, Stanislav

    2012-11-01

    Let f : M → M be a self-map of a compact Riemannian manifold M, admitting a global SRB measure μ. For a continuous test function \\varphi\\colon M\\to R and a constant α > 0, consider the set Kφ,α of the initial points for which the Birkhoff time averages of the function φ differ from its μ-space average by at least α. As the measure μ is a global SRB one, the set Kφ,α should have zero Lebesgue measure. The special ergodic theorem, whenever it holds, claims that, moreover, this set has a Hausdorff dimension less than the dimension of M. We prove that for Lipschitz maps, the special ergodic theorem follows from the dynamical large deviations principle. We also define and prove analogous result for flows. Applying the theorems of Young and of Araújo and Pacifico, we conclude that the special ergodic theorem holds for transitive hyperbolic attractors of C2-diffeomorphisms, as well as for some other known classes of maps (including the one of partially hyperbolic non-uniformly expanding maps) and flows.

  9. On the analogues of Szegő's theorem for ergodic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirsch, W; Pastur, L A

    2015-01-31

    Szegő's theorem on the asymptotic behaviour of the determinants of large Toeplitz matrices is generalized to the class of ergodic operators. The generalization is formulated in terms of a triple consisting of an ergodic operator and two functions, the symbol and the test function. It is shown that in the case of the one-dimensional discrete Schrödinger operator with random ergodic or quasiperiodic potential and various choices of the symbol and the test function this generalization leads to asymptotic formulae which have no analogues in the situation of Toeplitz operators. Bibliography: 22 titles.

  10. Granular Contact Forces: Proof of "Self-Ergodicity" by Generalizing Boltzmann's Stosszahlansatz and H Theorem

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2006-01-01

    Ergodicity is proved for granular contact forces. To obtain this proof from first principles, this paper generalizes Boltzmann's stosszahlansatz (molecular chaos) so that it maintains the necessary correlations and symmetries of granular packing ensembles. Then it formally counts granular contact force states and thereby defines the proper analog of Boltzmann's H functional. This functional is used to prove that (essentially) all static granular packings must exist at maximum entropy with respect to their contact forces. Therefore, the propagation of granular contact forces through a packing is a truly ergodic process in the Boltzmannian sense, or better, it is self-ergodic. Self-ergodicity refers to the non-dynamic, internal relationships that exist between the layer-by-layer and column-by-column subspaces contained within the phase space locus of any particular granular packing microstate. The generalized H Theorem also produces a recursion equation that may be solved numerically to obtain the density of single particle states and hence the distribution of granular contact forces corresponding to the condition of self-ergodicity. The predictions of the theory are overwhelmingly validated by comparison to empirical data from discrete element modeling.

  11. Scattering General Analysis; ANALISIS GENERAL DE LA DISPERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tixaire, A.G.

    1962-01-01

    A definition of scattering states is given. It is shown that such states must belong to the absolutely continuous part of the spectrum of the total hamiltonian whenever scattering systems are considered. Such embedding may be proper unless the quantum system is physically admissible. The Moller wave operators are analyzed using Abel- and Cesaro-limit theoretical arguments. Von Neumann s ergodic theorem is partially generalized. A rigorous derivation of the Gell-Mann and Goldberger and Lippmann and Schwinger equations is obtained by making use of results on spectral theory, wave function, and eigendifferential concepts contained. (auth)

  12. A semigroup approach to the strong ergodic theorem of the multistate stable population process.

    PubMed

    Inaba, H

    1988-01-01

    "In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE) excerpt

  13. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  14. The ergodicity landscape of quantum theories

    NASA Astrophysics Data System (ADS)

    Ho, Wen Wei; Radičević, Đorđe

    2018-02-01

    This paper is a physicist’s review of the major conceptual issues concerning the problem of spectral universality in quantum systems. Here, we present a unified, graph-based view of all archetypical models of such universality (billiards, particles in random media, interacting spin or fermion systems). We find phenomenological relations between the onset of ergodicity (Gaussian-random delocalization of eigenstates) and the structure of the appropriate graphs, and we construct a heuristic picture of summing trajectories on graphs that describes why a generic interacting system should be ergodic. We also provide an operator-based discussion of quantum chaos and propose criteria to distinguish bases that can usefully diagnose ergodicity. The result of this analysis is a rough but systematic outline of how ergodicity changes across the space of all theories with a given Hilbert space dimension. As a particular example, we study the SYK model and report on the transition from maximal to partial ergodicity as the disorder strength is decreased.

  15. A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dragičević, D.; Froyland, G.; González-Tokman, C.; Vaienti, S.

    2018-06-01

    We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form {T_{σ^{n-1} ω} circ\\cdotscirc T_{σω}circ T_ω}. An important aspect of our results is that we only assume ergodicity and invertibility of the random driving {σ:Ω\\toΩ} ; in particular no expansivity or mixing properties are required.

  16. A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dragičević, D.; Froyland, G.; González-Tokman, C.; Vaienti, S.

    2018-01-01

    We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form {T_{σ^{n-1} ω} circ\\cdotscirc T_{σω}circ T_ω} . An important aspect of our results is that we only assume ergodicity and invertibility of the random driving {σ:Ω\\toΩ} ; in particular no expansivity or mixing properties are required.

  17. Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.

    2018-02-01

    We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.

  18. The spectral method and the central limit theorem for general Markov chains

    NASA Astrophysics Data System (ADS)

    Nagaev, S. V.

    2017-12-01

    We consider Markov chains with an arbitrary phase space and develop a modification of the spectral method that enables us to prove the central limit theorem (CLT) for non-uniformly ergodic Markov chains. The conditions imposed on the transition function are more general than those by Athreya-Ney and Nummelin. Our proof of the CLT is purely analytical.

  19. Quantum ergodicity in the SYK model

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Bagrets, Dmitry

    2018-05-01

    We present a replica path integral approach describing the quantum chaotic dynamics of the SYK model at large time scales. The theory leads to the identification of non-ergodic collective modes which relax and eventually give way to an ergodic long time regime (describable by random matrix theory). These modes, which play a role conceptually similar to the diffusion modes of dirty metals, carry quantum numbers which we identify as the generators of the Clifford algebra: each of the 2N different products that can be formed from N Majorana operators defines one effective mode. The competition between a decay rate quickly growing in the order of the product and a density of modes exponentially growing in the same parameter explains the characteristics of the system's approach to the ergodic long time regime. We probe this dynamics through various spectral correlation functions and obtain favorable agreement with existing numerical data.

  20. Mixing, ergodicity and slow relaxation phenomena

    NASA Astrophysics Data System (ADS)

    Costa, I. V. L.; Vainstein, M. H.; Lapas, L. C.; Batista, A. A.; Oliveira, F. A.

    2006-11-01

    Investigations on diffusion in systems with memory [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] have established a hierarchical connection between mixing, ergodicity, and the fluctuation-dissipation theorem (FDT). This hierarchy means that ergodicity is a necessary condition for the validity of the FDT, and mixing is a necessary condition for ergodicity. In this work, we compare those results with recent investigations using the Lee recurrence relations method [M.H. Lee, Phys. Rev. B 26 (1982) 2547; M.H. Lee, Phys. Rev. Lett. 87 (2001) 250601; M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. Lee shows that ergodicity is violated in the dynamics of the electron gas [M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. This reinforces both works and implies that the results of [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] are more general than the framework in which they were obtained. Some applications to slow relaxation phenomena are discussed.

  1. Quantum Ergodicity and L p Norms of Restrictions of Eigenfunctions

    NASA Astrophysics Data System (ADS)

    Hezari, Hamid

    2018-02-01

    We prove an analogue of Sogge's local L p estimates for L p norms of restrictions of eigenfunctions to submanifolds, and use it to show that for quantum ergodic eigenfunctions one can get improvements of the results of Burq-Gérard-Tzvetkov, Hu, and Chen-Sogge. The improvements are logarithmic on negatively curved manifolds (without boundary) and by o(1) for manifolds (with or without boundary) with ergodic geodesic flows. In the case of ergodic billiards with piecewise smooth boundary, we get o(1) improvements on L^∞ estimates of Cauchy data away from a shrinking neighborhood of the corners, and as a result using the methods of Ghosh et al., Jung and Zelditch, Jung and Zelditch, we get that the number of nodal domains of 2-dimensional ergodic billiards tends to infinity as λ \\to ∞. These results work only for a full density subsequence of any given orthonormal basis of eigenfunctions. We also present an extension of the L p estimates of Burq-Gérard-Tzvetkov, Hu, Chen-Sogge for the restrictions of Dirichlet and Neumann eigenfunctions to compact submanifolds of the interior of manifolds with piecewise smooth boundary. This part does not assume ergodicity on the manifolds.

  2. Ergodic Theory, Interpretations of Probability and the Foundations of Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    van Lith, Janneke

    The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of these two points is held to be an explanation why calculating microcanonical phase averages is a successful algorithm for predicting the values of thermodynamic observables. It is also well known that this account is problematic. This survey intends to show that ergodic theory nevertheless may have important roles to play, and it explores three other uses of ergodic theory. Particular attention is paid, firstly, to the relevance of specific interpretations of probability, and secondly, to the way in which the concern with systems in thermal equilibrium is translated into probabilistic language. With respect to the latter point, it is argued that equilibrium should not be represented as a stationary probability distribution as is standardly done; instead, a weaker definition is presented.

  3. Integrability versus Thermalizability in Isolated Quantum Systems

    NASA Astrophysics Data System (ADS)

    Olshanii, Maxim

    2012-02-01

    The purpose of this presentation is to assess the status of our understanding of the transition from integrability to thermalizability in isolated quantum systems. In Classical Mechanics, the boundary stripe between the two is relatively sharp: its integrability edge is marked by the appearance of finite Lyapunov's exponents that further converge to a unique value when the ergodicity edge is reached. Classical ergodicity is a universal property: if a system is ergodic, then every observable attains its microcanonical value in the infinite time average over the trajectory. On the contrary, in Quantum Mechanics, Lyapunov's exponents are always zero. Furthermore, since quantum dynamics necessarily invokes coherent superpositions of eigenstates of different energy, projectors to the eigenstates become more relevant; those in turn never thermalize. All of the above indicates that in quantum many-body systems, (a) the integrability-thermalizability transition is smooth, and (b) the degree of thermalizability is not absolute like in classical mechanics, but it is relative to the class of observables of interest. In accordance with these observations, we propose a concrete measure of the degree of quantum thermalizability, consistent with the expected empirical manifestations of it. As a practical application of this measure, we devise a unified recipe for choosing an optimal set of conserved quantities to govern the after-relaxation values of observables, in both integrable quantum systems and in quantum systems in between integrable and thermalizable.

  4. Generalized quantum no-go theorems of pure states

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Lai, Hong

    2018-07-01

    Various results of the no-cloning theorem, no-deleting theorem and no-superposing theorem in quantum mechanics have been proved using the superposition principle and the linearity of quantum operations. In this paper, we investigate general transformations forbidden by quantum mechanics in order to unify these theorems. First, we prove that any useful information cannot be created from an unknown pure state which is randomly chosen from a Hilbert space according to the Harr measure. And then, we propose a unified no-go theorem based on a generalized no-superposing result. The new theorem includes the no-cloning theorem, no-anticloning theorem, no-partial-erasure theorem, no-splitting theorem, no-superposing theorem or no-encoding theorem as a special case. Moreover, it implies various new results. Third, we extend the new theorem into another form that includes the no-deleting theorem as a special case.

  5. Quantitative quasiperiodicity

    NASA Astrophysics Data System (ADS)

    Das, Suddhasattwa; Saiki, Yoshitaka; Sander, Evelyn; Yorke, James A.

    2017-11-01

    The Birkhoff ergodic theorem concludes that time averages, i.e. Birkhoff averages, B_N( f):=Σn=0N-1 f(x_n)/N of a function f along a length N ergodic trajectory (x_n) of a function T converge to the space average \\int f dμ , where μ is the unique invariant probability measure. Convergence of the time average to the space average is slow. We use a modified average of f(x_n) by giving very small weights to the ‘end’ terms when n is near 0 or N-1 . When (x_n) is a trajectory on a quasiperiodic torus and f and T are C^∞ , our weighted Birkhoff average (denoted \

  6. Quantum and classical behavior in interacting bosonic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzberg, Mark P.

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular differencemore » in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.« less

  7. Ergodic actions of SμU(2) on C∗-algebras from II1 subfactors

    NASA Astrophysics Data System (ADS)

    Pinzari, Claudia; Roberts, John E.

    2010-03-01

    To a proper inclusion N⊂M of II factors of finite Jones index [M:N], we associate an ergodic C∗-action of the quantum group SμU(2) (or more generally of certain groups Ao(F)). The higher relative commutant N'∩M can be identified with the spectral space of the rth tensor power u of the defining representation of the quantum group. The index and the deformation parameter are related by -1≤μ<0 and [M:N]=|μ+μ-1|. This ergodic action may be thought of as a virtual subgroup of SμU(2) in the sense of Mackey arising from the tensor category generated by the N-bimodule NMN. μ is negative as NMN is a real bimodule.

  8. A Manifesto on Psychology as Idiographic Science: Bringing the Person Back into Scientific Psychology, This Time Forever

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.

    2004-01-01

    Psychology is focused on variation between cases (interindividual variation). Results thus obtained are considered to be generalizable to the understanding and explanation of variation within single cases (intraindividual variation). It is indicated, however, that the direct consequences of the classical ergodic theorems for psychology and…

  9. Quantum voting and violation of Arrow's impossibility theorem

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Yunger Halpern, Nicole

    2017-06-01

    We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.

  10. Applications of Ergodic Theory to Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.

    2003-01-01

    The study of differential equations, or dynamical systems in general, has two fundamentally different approaches. We are most familiar with the construction of solutions to differential equations. Another approach is to study the statistical behavior of the solutions. Ergodic Theory is one of the most developed methods to study the statistical behavior of the solutions of differential equations. In the theory of satellite orbits, the statistical behavior of the orbits is used to produce 'Coverage Analysis' or how often a spacecraft is in view of a site on the ground. In this paper, we consider the use of Ergodic Theory for Coverage Analysis. This allows us to greatly simplify the computation of quantities such as the total time for which a ground station can see a satellite without ever integrating the trajectory, see Lo 1,2. More over, for any quantity which is an integrable function of the ground track, its average may be computed similarly without the integration of the trajectory. For example, the data rate for a simple telecom system is a function of the distance between the satellite and the ground station. We show that such a function may be averaged using the Ergodic Theorem.

  11. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  12. A Nonlinear Transfer Operator Theorem

    NASA Astrophysics Data System (ADS)

    Pollicott, Mark

    2017-02-01

    In recent papers, Kenyon et al. (Ergod Theory Dyn Syst 32:1567-1584 2012), and Fan et al. (C R Math Acad Sci Paris 349:961-964 2011, Adv Math 295:271-333 2016) introduced a form of non-linear thermodynamic formalism based on solutions to a non-linear equation using matrices. In this note we consider the more general setting of Hölder continuous functions.

  13. Research on Quantum Algorithms at the Institute for Quantum Information

    DTIC Science & Technology

    2009-10-17

    accuracy threshold theorem for the one-way quantum computer. Their proof is based on a novel scheme, in which a noisy cluster state in three spatial...detected. The proof applies to independent stochastic noise but (in contrast to proofs of the quantum accuracy threshold theorem based on concatenated...proved quantum threshold theorems for long-range correlated non-Markovian noise, for leakage faults, for the one-way quantum computer, for postselected

  14. Thermodynamic phase transitions for Pomeau-Manneville maps

    NASA Astrophysics Data System (ADS)

    Venegeroles, Roberto

    2012-08-01

    We study phase transitions in the thermodynamic description of Pomeau-Manneville intermittent maps from the point of view of infinite ergodic theory, which deals with diverging measure dynamical systems. For such systems, we use a distributional limit theorem to provide both a powerful tool for calculating thermodynamic potentials as also an understanding of the dynamic characteristics at each instability phase. In particular, topological pressure and Rényi entropy are calculated exactly for such systems. Finally, we show the connection of the distributional limit theorem with non-Gaussian fluctuations of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad. Sci. USA10.1073/pnas.85.13.4591 85, 4591 (1988)].

  15. A fermionic de Finetti theorem

    NASA Astrophysics Data System (ADS)

    Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens

    2017-12-01

    Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.

  16. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  17. Twelve years before the quantum no-cloning theorem

    NASA Astrophysics Data System (ADS)

    Ortigoso, Juan

    2018-03-01

    The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.

  18. Quantum Theory of Jaynes' Principle, Bayes' Theorem, and Information

    NASA Astrophysics Data System (ADS)

    Haken, Hermann

    2014-12-01

    After a reminder of Jaynes' maximum entropy principle and of my quantum theoretical extension, I consider two coupled quantum systems A,B and formulate a quantum version of Bayes' theorem. The application of Feynman's disentangling theorem allows me to calculate the conditional density matrix ρ (A|B) , if system A is an oscillator (or a set of them), linearly coupled to an arbitrary quantum system B. Expectation values can simply be calculated by means of the normalization factor of ρ (A|B) that is derived.

  19. Steady States, Fluctuation-Dissipation Theorems and Homogenization for Reversible Diffusions in a Random Environment

    NASA Astrophysics Data System (ADS)

    Mathieu, P.; Piatnitski, A.

    2018-04-01

    Prolongating our previous paper on the Einstein relation, we study the motion of a particle diffusing in a random reversible environment when subject to a small external forcing. In order to describe the long time behavior of the particle, we introduce the notions of steady state and weak steady state. We establish the continuity of weak steady states for an ergodic and uniformly elliptic environment. When the environment has finite range of dependence, we prove the existence of the steady state and weak steady state and compute its derivative at a vanishing force. Thus we obtain a complete `fluctuation-dissipation Theorem' in this context as well as the continuity of the effective variance.

  20. Consistency of the adiabatic theorem.

    PubMed

    Amin, M H S

    2009-06-05

    The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we show that the reported violations of the adiabatic theorem all arise from resonant transitions between energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds. Implications for adiabatic quantum computation are discussed.

  1. The Non-Signalling theorem in generalizations of Bell's theorem

    NASA Astrophysics Data System (ADS)

    Walleczek, J.; Grössing, G.

    2014-04-01

    Does "epistemic non-signalling" ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the basis of an ontic, foundational interpretation of the non-signalling theorem. We here argue that the non-signalling theorem must instead be viewed as an epistemic, operational theorem i.e. one that refers exclusively to what epistemic agents can, or rather cannot, do. That is, we emphasize that the non-signalling theorem is a theorem about the operational inability of epistemic agents to signal information. In other words, as a proper principle, the non-signalling theorem may only be employed as an epistemic, phenomenological, or operational principle. Critically, our argument emphasizes that the non-signalling principle must not be used as an ontic principle about physical reality as such, i.e. as a theorem about the nature of physical reality independently of epistemic agents e.g. human observers. One major reason in favor of our conclusion is that any definition of signalling or of non-signalling invariably requires a reference to epistemic agents, and what these agents can actually measure and report. Otherwise, the non-signalling theorem would equal a general "no-influence" theorem. In conclusion, under the assumption that the non-signalling theorem is epistemic (i.e. "epistemic non-signalling"), the search for deterministic approaches to quantum mechanics, including NHVTs and an emergent quantum mechanics, continues to be a viable research program towards disclosing the foundations of physical reality at its smallest dimensions.

  2. Optimal state points of the subadditive ergodic theorem

    NASA Astrophysics Data System (ADS)

    Dai, Xiongping

    2011-05-01

    Let T\\colon (X,\\mathscr{B},\\mu)\\rightarrow(X,\\mathscr{B},\\mu) be an ergodic measure-preserving Borel measurable transformation of a separable metric space X that is not necessarily compact, and suppose that \\{\\varphi_n\\}_{n\\ge1}\\colon X\\rightarrow{R}\\cup\\{-\\infty\\} is a T-subadditive sequence of \\mathscr{B} -measurable upper-bounded functions. In this paper, we prove that, if the sets D_{\\varphi_n} of phivn-discontinuities are of μ-measure 0 for all n >= 1 and if the growth rates \\[ \\begin{equation*} {\\bvarphi}^*(x):=\\limsup_{n\\to+\\infty}\\frac{1}{n}\\varphi_n(x)<0\\tqs for \\mu-a.e. x\\in X, \\end{equation*} \\] then bold varphi*(x) < 0 for all points x in the basin BT(μ) of (T, μ). We apply this to considering the Oseledets regular points.

  3. Quantum-correlation breaking channels, quantum conditional probability and Perron-Frobenius theory

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz

    2013-03-01

    Using the quantum analog of conditional probability and classical Bayes theorem we discuss some aspects of particular entanglement breaking channels: quantum-classical and classical-classical channels. Applying the quantum analog of Perron-Frobenius theorem we generalize the recent result of Korbicz et al. (2012) [8] on full and spectrum broadcasting from quantum-classical channels to arbitrary quantum channels.

  4. From localization to anomalous diffusion in the dynamics of coupled kicked rotors

    NASA Astrophysics Data System (ADS)

    Notarnicola, Simone; Iemini, Fernando; Rossini, Davide; Fazio, Rosario; Silva, Alessandro; Russomanno, Angelo

    2018-02-01

    We study the effect of many-body quantum interference on the dynamics of coupled periodically kicked systems whose classical dynamics is chaotic and shows an unbounded energy increase. We specifically focus on an N -coupled kicked rotors model: We find that the interplay of quantumness and interactions dramatically modifies the system dynamics, inducing a transition between energy saturation and unbounded energy increase. We discuss this phenomenon both numerically and analytically through a mapping onto an N -dimensional Anderson model. The thermodynamic limit N →∞ , in particular, always shows unbounded energy growth. This dynamical delocalization is genuinely quantum and very different from the classical one: Using a mean-field approximation, we see that the system self-organizes so that the energy per site increases in time as a power law with exponent smaller than 1. This wealth of phenomena is a genuine effect of quantum interference: The classical system for N ≥2 always behaves ergodically with an energy per site linearly increasing in time. Our results show that quantum mechanics can deeply alter the regularity or ergodicity properties of a many-body-driven system.

  5. Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication

    NASA Astrophysics Data System (ADS)

    Walleczek, Jan; Grössing, Gerhard

    2016-09-01

    It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time—effectively denies superluminal signalling and communication.

  6. H-theorem in quantum physics.

    PubMed

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  7. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    ERIC Educational Resources Information Center

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  8. Periodically driven ergodic and many-body localized quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponte, Pedro; Department of Physics and Astronomy, University of Waterloo, ON N2L 3G1; Chandran, Anushya

    2015-02-15

    We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disorderedmore » spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.« less

  9. Kochen-Specker theorem studied with neutron interferometer.

    PubMed

    Hasegawa, Yuji; Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut

    2011-04-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291±0.008≰1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  10. A Gleason-Type Theorem for Any Dimension Based on a Gambling Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2017-07-01

    Based on a gambling formulation of quantum mechanics, we derive a Gleason-type theorem that holds for any dimension n of a quantum system, and in particular for n=2. The theorem states that the only logically consistent probability assignments are exactly the ones that are definable as the trace of the product of a projector and a density matrix operator. In addition, we detail the reason why dispersion-free probabilities are actually not valid, or rational, probabilities for quantum mechanics, and hence should be excluded from consideration.

  11. H-theorem in quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  12. H-theorem in quantum physics

    PubMed Central

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  13. H-theorem in quantum physics

    DOE PAGES

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; ...

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  14. Efficiency bounds for nonequilibrium heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Pankaj; Polkovnikov, Anatoli, E-mail: asp@bu.edu

    2013-05-15

    We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodicmore » engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes.« less

  15. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography.

    PubMed

    Renner, R; Cirac, J I

    2009-03-20

    We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.

  16. Quantum regression theorem and non-Markovianity of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Guarnieri, Giacomo; Smirne, Andrea; Vacchini, Bassano

    2014-08-01

    We explore the connection between two recently introduced notions of non-Markovian quantum dynamics and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics has been defined looking at the behavior in time of the statistical operator, which determines the evolution of mean values, the quantum regression theorem makes statements about the behavior of system correlation functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression hypothesis, which can be obtained exactly evaluating two-point correlation functions. To this aim we consider a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities. We further study a photonic dephasing model, recently exploited for the experimental measurement of non-Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.

  17. Central limit theorem for recurrent random walks on a strip with bounded potential

    NASA Astrophysics Data System (ADS)

    Dolgopyat, D.; Goldsheid, I.

    2018-07-01

    We prove that the recurrent random walk (RW) in random environment (RE) on a strip in bounded potential satisfies the central limit theorem (CLT). The key ingredients of the proof are the analysis of the invariant measure equation and construction of a linearly growing martingale for walks in bounded potential. Our main result implies a complete classification of recurrent i.i.d. RWRE on the strip. Namely the walk either exhibits the Sinai behaviour in the sense that converges, as , to a (random) limit (the Sinai law) or, it satisfies the CLT. Another application of our main result is the CLT for the quasiperiodic environments with Diophantine frequencies in the recurrent case. We complement this result by proving that in the transient case the CLT holds for all uniquely ergodic environments. We also investigate the algebraic structure of the environments satisfying the CLT. In particular, we show that there exists a collection of proper algebraic subvarieties in the space of transition probabilities, such that: • If RE is stationary and ergodic and the transition probabilities are con-centrated on one of subvarieties from our collection then the CLT holds. • If the environment is i.i.d then the above condition is also necessary forthe CLT. All these results are valid for one-dimensional RWRE with bounded jumps as a particular case of the strip model.

  18. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  19. Analysis of non locality proofs in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2012-02-01

    Two kinds of non-locality theorems in Quantum Mechanics are taken into account: the theorems based on the criterion of reality and the quite different theorem proposed by Stapp. In the present work the analyses of the theorem due to Greenberger, Horne, Shimony and Zeilinger, based on the criterion of reality, and of Stapp's argument are shown. The results of these analyses show that the alleged violations of locality cannot be considered definitive.

  20. More on Weinberg's no-go theorem in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  1. Efficiency and formalism of quantum games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.F.; Johnson, Neil F.

    We show that quantum games are more efficient than classical games and provide a saturated upper bound for this efficiency. We also demonstrate that the set of finite classical games is a strict subset of the set of finite quantum games. Our analysis is based on a rigorous formulation of quantum games, from which quantum versions of the minimax theorem and the Nash equilibrium theorem can be deduced.

  2. Quantum probability rule: a generalization of the theorems of Gleason and Busch

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Cresser, James D.; Jeffers, John; Pegg, David T.

    2014-04-01

    Busch's theorem deriving the standard quantum probability rule can be regarded as a more general form of Gleason's theorem. Here we show that a further generalization is possible by reducing the number of quantum postulates used by Busch. We do not assume that the positive measurement outcome operators are effects or that they form a probability operator measure. We derive a more general probability rule from which the standard rule can be obtained from the normal laws of probability when there is no measurement outcome information available, without the need for further quantum postulates. Our general probability rule has prediction-retrodiction symmetry and we show how it may be applied in quantum communications and in retrodictive quantum theory.

  3. How a Small Quantum Bath Can Thermalize Long Localized Chains

    NASA Astrophysics Data System (ADS)

    Luitz, David J.; Huveneers, François; De Roeck, Wojciech

    2017-10-01

    We investigate the stability of the many-body localized phase for a system in contact with a single ergodic grain modeling a Griffiths region with low disorder. Our numerical analysis provides evidence that even a small ergodic grain consisting of only three qubits can delocalize a localized chain as soon as the localization length exceeds a critical value separating localized and extended regimes of the whole system. We present a simple theory, consistent with De Roeck and Huveneers's arguments in [Phys. Rev. B 95, 155129 (2017), 10.1103/PhysRevB.95.155129] that assumes a system to be locally ergodic unless the local relaxation time determined by Fermi's golden rule is larger than the inverse level spacing. This theory predicts a critical value for the localization length that is perfectly consistent with our numerical calculations. We analyze in detail the behavior of local operators inside and outside the ergodic grain and find excellent agreement of numerics and theory.

  4. A General No-Cloning Theorem for an infinite Multiverse

    NASA Astrophysics Data System (ADS)

    Gauthier, Yvon

    2013-10-01

    In this paper, I formulate a general no-cloning theorem which covers the quantum-mechanical and the theoretical quantum information cases as well as the cosmological multiverse theory. However, the main argument is topological and does not involve the peculiar copier devices of the quantum-mechanical and information-theoretic approaches to the no-cloning thesis. It is shown that a combinatorial set-theoretic treatment of the mathematical and physical spacetime continuum in cosmological or quantum-mechanical terms forbids an infinite (countable or uncountable) number of exact copies of finite elements (states) in the uncountable multiverse cosmology. The historical background draws on ideas from Weyl to Conway and Kochen on the free will theorem in quantum mechanics.

  5. Strong converse theorems using Rényi entropies

    NASA Astrophysics Data System (ADS)

    Leditzky, Felix; Wilde, Mark M.; Datta, Nilanjana

    2016-08-01

    We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint arXiv:1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.

  6. Strong converse theorems using Rényi entropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leditzky, Felix; Datta, Nilanjana; Wilde, Mark M.

    We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint http://arxiv.org/abs/1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for themore » boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.« less

  7. Non-thermalization in trapped atomic ion spin chains

    NASA Astrophysics Data System (ADS)

    Hess, P. W.; Becker, P.; Kaplan, H. B.; Kyprianidis, A.; Lee, A. C.; Neyenhuis, B.; Pagano, G.; Richerme, P.; Senko, C.; Smith, J.; Tan, W. L.; Zhang, J.; Monroe, C.

    2017-10-01

    Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  8. Non-thermalization in trapped atomic ion spin chains.

    PubMed

    Hess, P W; Becker, P; Kaplan, H B; Kyprianidis, A; Lee, A C; Neyenhuis, B; Pagano, G; Richerme, P; Senko, C; Smith, J; Tan, W L; Zhang, J; Monroe, C

    2017-12-13

    Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  9. Out-of-time-order fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito

    2018-01-01

    We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.

  10. Microcanonical Szilárd engines beyond the quasistatic regime

    NASA Astrophysics Data System (ADS)

    Acconcia, Thiago V.; Bonança, Marcus V. S.

    2017-12-01

    We discuss the possibility of extracting energy from a single thermal bath using microcanonical Szilárd engines operating in finite time. This extends previous works on the topic which are restricted to the quasistatic regime. The feedback protocol is implemented based on linear response predictions of the excess work. It is claimed that the underlying mechanism leading to energy extraction does not violate Liouville's theorem and preserves ergodicity throughout the cycle. We illustrate our results with several examples including an exactly solvable model.

  11. Microcanonical Szilárd engines beyond the quasistatic regime.

    PubMed

    Acconcia, Thiago V; Bonança, Marcus V S

    2017-12-01

    We discuss the possibility of extracting energy from a single thermal bath using microcanonical Szilárd engines operating in finite time. This extends previous works on the topic which are restricted to the quasistatic regime. The feedback protocol is implemented based on linear response predictions of the excess work. It is claimed that the underlying mechanism leading to energy extraction does not violate Liouville's theorem and preserves ergodicity throughout the cycle. We illustrate our results with several examples including an exactly solvable model.

  12. Sharp Estimates in Ruelle Theorems for Matrix Transfer Operators

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Latushkin, Y.

    A matrix coefficient transfer operator , on the space of -sections of an m-dimensional vector bundle over n-dimensional compact manifold is considered. The spectral radius of is estimated bya; and the essential spectral radius by Here is the set of ergodic f-invariant measures, and for is the measure-theoretic entropy of f, is the largest Lyapunov exponent of the cocycle over f generated by , and is the smallest Lyapunov exponent of the differential of f.

  13. Physical models of polarization mode dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menyuk, C.R.; Wai, P.K.A.

    The effect of randomly varying birefringence on light propagation in optical fibers is studied theoretically in the parameter regime that will be used for long-distance communications. In this regime, the birefringence is large and varies very rapidly in comparison to the nonlinear and dispersive scale lengths. We determine the polarization mode dispersion, and we show that physically realistic models yield the same result for polarization mode dispersion as earlier heuristic models that were introduced by Poole. We also prove an ergodic theorem.

  14. The uncertainty principle and quantum chaos

    NASA Technical Reports Server (NTRS)

    Chirikov, Boris V.

    1993-01-01

    The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

  15. Topics in quantum chaos

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew Noble

    2002-09-01

    In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.

  16. Topological order, entanglement, and quantum memory at finite temperature

    NASA Astrophysics Data System (ADS)

    Mazáč, Dalimil; Hamma, Alioscia

    2012-09-01

    We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement-deconfinement transitions in the corresponding Z2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed.

  17. Adiabatic Theorem for Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  18. Entanglement, space-time and the Mayer-Vietoris theorem

    NASA Astrophysics Data System (ADS)

    Patrascu, Andrei T.

    2017-06-01

    Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).

  19. Quantum Mechanics, Can It Be Consistent with Locality?

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2011-07-01

    We single out an alternative, strict interpretation of the Einstein-Podolsky-Rosen criterion of reality, and identify the implied extensions of quantum correlations. Then we prove that the theorem of Bell, and the non-locality theorems without inequalities, fail if the new extensions are adopted. Therefore, these theorems can be interpreted as arguments against the wide interpretation of the criterion of reality rather than as a violation of locality.

  20. Comment on 'All quantum observables in a hidden-variable model must commute simultaneously'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Koji

    Malley discussed [Phys. Rev. A 69, 022118 (2004)] that all quantum observables in a hidden-variable model for quantum events must commute simultaneously. In this comment, we discuss that Malley's theorem is indeed valid for the hidden-variable theoretical assumptions, which were introduced by Kochen and Specker. However, we give an example that the local hidden-variable (LHV) model for quantum events preserves noncommutativity of quantum observables. It turns out that Malley's theorem is not related to the LHV model for quantum events, in general.

  1. Faithful quantum broadcast beyond the no-go theorem

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Deng, Yun; Chen, Xiu-Bo; Yang, Yi-Xian; Li, Hong-Heng

    2013-05-01

    The main superiority of the quantum remote preparation over quantum teleportation lies the classical resource saving. This situation may be changed from the following constructions. Our purpose in this paper is to find some special differences between these two quantum tasks besides the classical resource costs. Some novel schemes show that the first one is useful to simultaneously broadcast arbitrary quantum states, while the second one cannot because of the quantum no-cloning theorem. Moreover, these broadcast schemes may be adapted to satisfying the different receivers' requirements or distributing the classical information, which are important in various quantum applications such as the quantum secret distribution or the quantum network communication.

  2. Quantum Nonlocality and Reality

    NASA Astrophysics Data System (ADS)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective physics of Bell non-locality: palatial twistor theory Roger Penrose; 26. Measurement and macroscopicity: overcoming conceptual imprecision in quantum measurement theory Gregg Jaeger; Index.

  3. The Misapplication of Probability Theory in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  4. Quantization of Chirikov Map and Quantum KAM Theorem.

    NASA Astrophysics Data System (ADS)

    Shi, Kang-Jie

    KAM theorem is one of the most important theorems in classical nonlinear dynamics and chaos. To extend KAM theorem to the regime of quantum mechanics, we first study the quantum Chirikov map, whose classical counterpart provides a good example of KAM theorem. Under resonance condition 2pihbar = 1/N, we obtain the eigenstates of the evolution operator of this system. We find that the wave functions in the coherent state representation (CSR) are very similar to the classical trajectories. In particular, some of these wave functions have wall-like structure at the locations of classical KAM curves. We also find that a local average is necessary for a Wigner function to approach its classical limit in the phase space. We then study the general problem theoretically. Under similar conditions for establishing the classical KAM theorem, we obtain a quantum extension of KAM theorem. By constructing successive unitary transformations, we can greatly reduce the perturbation part of a near-integrable Hamiltonian system in a region associated with a Diophantine number {rm W}_{o}. This reduction is restricted only by the magnitude of hbar.. We can summarize our results as follows: In the CSR of a nearly integrable quantum system, associated with a Diophantine number {rm W}_ {o}, there is a band near the corresponding KAM torus of the classical limit of the system. In this band, a Gaussian wave packet moves quasi-periodically (and remain close to the KAM torus) for a long time, with possible diffusion in both the size and the shape of its wave packet. The upper bound of the tunnelling rate out of this band for the wave packet can be made much smaller than any given power of hbar, if the original perturbation is sufficiently small (but independent of hbar). When hbarto 0, we reproduce the classical KAM theorem. For most near-integrable systems the eigenstate wave function in the above band can either have a wall -like structure or have a vanishing amplitude. These conclusions agree with the numerical results of the quantum Chirikov map.

  5. Decentralized learning in Markov games.

    PubMed

    Vrancx, Peter; Verbeeck, Katja; Nowé, Ann

    2008-08-01

    Learning automata (LA) were recently shown to be valuable tools for designing multiagent reinforcement learning algorithms. One of the principal contributions of the LA theory is that a set of decentralized independent LA is able to control a finite Markov chain with unknown transition probabilities and rewards. In this paper, we propose to extend this algorithm to Markov games--a straightforward extension of single-agent Markov decision problems to distributed multiagent decision problems. We show that under the same ergodic assumptions of the original theorem, the extended algorithm will converge to a pure equilibrium point between agent policies.

  6. Generalized entropy production fluctuation theorems for quantum systems

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Lahiri, Sourabh; Jayannavar, A. M.

    2013-02-01

    Based on trajectory dependent path probability formalism in state space, we derive generalized entropy production fluctuation relations for a quantum system in the presence of measurement and feedback. We have obtained these results for three different cases: (i) the system is evolving in isolation from its surroundings; (ii) the system being weakly coupled to a heat bath; and (iii) system in contact with reservoir using quantum Crooks fluctuation theorem. In case (iii), we build on the treatment carried out in [H. T. Quan and H. Dong, arxiv/cond-mat: 0812.4955], where a quantum trajectory has been defined as a sequence of alternating work and heat steps. The obtained entropy production fluctuation theorems retain the same form as in the classical case. The inequality of second law of thermodynamics gets modified in the presence of information. These fluctuation theorems are robust against intermediate measurements of any observable performed with respect to von Neumann projective measurements as well as weak or positive operator valued measurements.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Michael A.; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland 4072; Dawson, Christopher M.

    The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which showmore » that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.« less

  8. On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Fathizadeh, Farzad; Gabriel, Olivier

    2016-02-01

    The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.

  9. Generalization of the Ehrenfest theorem to quantum systems with periodical boundary conditions

    NASA Astrophysics Data System (ADS)

    Sanin, Andrey L.; Bagmanov, Andrey T.

    2005-04-01

    A generalization of Ehrenfest's theorem is discussed. For this purpose the quantum systems with periodical boundary conditions are being revised. The relations for time derivations of mean coordinate and momentum are derived once again. In comparison with Ehrenfest's theorem and its conventional quantities, the additional local terms occur which are caused boundaries. Because of this, the obtained new relations can be named as generalized. An example for using these relations is given.

  10. Making Sense of Bell's Theorem and Quantum Nonlocality

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen

    2017-05-01

    Bell's theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell's theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system (one with which the original system has previously interacted). Einstein was repulsed by such "spooky action at a distance" and was led to question whether quantum mechanics could provide a complete description of physical reality. In this paper I argue that quantum mechanics does not require spooky action at a distance of any kind and yet it is entirely reasonable to question the assumption that quantum mechanics can provide a complete description of physical reality. The magic of entangled quantum states has little to do with entanglement and everything to do with superposition, a property of all quantum systems and a foundational tenet of quantum mechanics.

  11. Short distance modification of the quantum virial theorem

    NASA Astrophysics Data System (ADS)

    Zhao, Qin; Faizal, Mir; Zaz, Zaid

    2017-07-01

    In this letter, we will analyse the deformation of a semi-classical gravitational system from minimal measurable length scale. In the semi-classical approximation, the gravitational field will be analysed as a classical field, and the matter fields will be treated quantum mechanically. Thus, using this approximation, this system will be represented by a deformation of Schrödinger-Newton equation by the generalised uncertainty principle (GUP). We will analyse the effects of this GUP deformed Schrödinger-Newton equation on the behaviour of such a semi-classical gravitational system. As the quantum mechanical virial theorem can be obtained using the Schrödinger-Newton equation, a short distance modification of the Schrödinger-Newton equation will also result in a short distance modification of the quantum mechanical virial theorem.

  12. Sharp Contradiction for Local-Hidden-State Model in Quantum Steering.

    PubMed

    Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Pati, Arun Kumar

    2016-08-26

    In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell's nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR's original scenario is "steering", i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.

  13. Faithful actions of locally compact quantum groups on classical spaces

    NASA Astrophysics Data System (ADS)

    Goswami, Debashish; Roy, Sutanu

    2017-07-01

    We construct examples of locally compact quantum groups coming from bicrossed product construction, including non-Kac ones, which can faithfully and ergodically act on connected classical (noncompact) smooth manifolds. However, none of these actions can be isometric in the sense of Goswami (Commun Math Phys 285(1):141-160, 2009), leading to the conjecture that the result obtained by Goswami and Joardar (Rigidity of action of compact quantum groups on compact, connected manifolds, 2013. arXiv:1309.1294) about nonexistence of genuine quantum isometry of classical compact connected Riemannian manifolds may hold in the noncompact case as well.

  14. Dynamically induced many-body localization

    NASA Astrophysics Data System (ADS)

    Choi, Soonwon; Abanin, Dmitry A.; Lukin, Mikhail D.

    2018-03-01

    We show that a quantum phase transition from ergodic to many-body localized (MBL) phases can be induced via periodic pulsed manipulation of spin systems. Such a transition is enabled by the interplay between weak disorder and slow heating rates. Specifically, we demonstrate that the Hamiltonian of a weakly disordered ergodic spin system can be effectively engineered, by using sufficiently fast coherent controls, to yield a stable MBL phase, which in turn completely suppresses the energy absorption from external control field. Our results imply that a broad class of existing many-body systems can be used to probe nonequilibrium phases of matter for a long time, limited only by coupling to external environment.

  15. Beyond the Quantum

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu

    2007-09-01

    pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic electrodynamics. Some quantum experiments from the point of view of Stochastic electrodynamics / V. Spicka ... [et al.]. On the ergodic behaviour of atomic systems under the action of the zero-point radiation field / L. De La Peña and A. M. Cetto. Inertia and the vacuum-view on the emergence of the inertia reaction force / A. Rueda and H. Sunahata -- pt. F. Models for the electron. Rotating Hopf-Kinks: oscillators in the sense of de Broglie / U. Enz. Kerr-Newman particles: symmetries and other properties / H.I. Arcos and J.G. Pereira. Kerr geometry beyond the quantum theory / Th. M. Nieuwenhuizen -- pt. G. Philosophical considerations. Probability in non-collapse interpretations of a quantum mechanics / D. Dieks. The Schrödinger-Park paradox about the concept of "State" in quantum statistical mechanics and quantum information theory is still open: one more reason to go beyond? / G.P. Beretta. The conjecture that local realism is possible / E. Santos -- pt. H. The round table. Round table discussion / A.M. Cetto ... [et al.].

  16. Quantum phase slips: from condensed matter to ultracold quantum gases.

    PubMed

    D'Errico, C; Abbate, S Scaffidi; Modugno, G

    2017-12-13

    Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  17. Quantum States and Generalized Observables: A Simple Proof of Gleason's Theorem

    NASA Astrophysics Data System (ADS)

    Busch, P.

    2003-09-01

    A quantum state can be understood in a loose sense as a map that assigns a value to every observable. Formalizing this characterization of states in terms of generalized probability distributions on the set of effects, we obtain a simple proof of the result, analogous to Gleason’s theorem, that any quantum state is given by a density operator. As a corollary we obtain a vonNeumann type argument against noncontextual hidden variables. It follows that on an individual interpretation of quantum mechanics the values of effects are appropriately understood as propensities.

  18. Private algebras in quantum information and infinite-dimensional complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crann, Jason, E-mail: jason-crann@carleton.ca; Laboratoire de Mathématiques Paul Painlevé–UMR CNRS 8524, UFR de Mathématiques, Université Lille 1–Sciences et Technologies, 59655 Villeneuve d’Ascq Cédex; Kribs, David W., E-mail: dkribs@uoguelph.ca

    We introduce a generalized framework for private quantum codes using von Neumann algebras and the structure of commutants. This leads naturally to a more general notion of complementary channel, which we use to establish a generalized complementarity theorem between private and correctable subalgebras that applies to both the finite and infinite-dimensional settings. Linear bosonic channels are considered and specific examples of Gaussian quantum channels are given to illustrate the new framework together with the complementarity theorem.

  19. Bertrand's theorem and virial theorem in fractional classical mechanics

    NASA Astrophysics Data System (ADS)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  20. Psychological methodology will change profoundly due to the necessity to focus on intra-individual variation.

    PubMed

    Molenaar, Peter C M

    2007-03-01

    I am in general agreement with Toomela's (Integrative Psychological and Behavioral Science doi:10.1007/s12124-007-9004-0, 2007) plea for an alternative psychological methodology inspired by his description of the German-Austrian orientation. I will argue, however, that this alternative methodology has to be based on the classical ergodic theorems, using state-of-the-art statistical time series analysis of intra-individual variation as its main tool. Some more specific points made by Toomela will be criticized, while for others a more extreme elaboration along the lines indicated by Toomela is proposed.

  1. Autonomous quantum to classical transitions and the generalized imaging theorem

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  2. Quantum no-singularity theorem from geometric flows

    NASA Astrophysics Data System (ADS)

    Alsaleh, Salwa; Alasfar, Lina; Faizal, Mir; Ali, Ahmed Farag

    2018-04-01

    In this paper, we analyze the classical geometric flow as a dynamical system. We obtain an action for this system, such that its equation of motion is the Raychaudhuri equation. This action will be used to quantize this system. As the Raychaudhuri equation is the basis for deriving the singularity theorems, we will be able to understand the effects and such a quantization will have on the classical singularity theorems. Thus, quantizing the geometric flow, we can demonstrate that a quantum space-time is complete (nonsingular). This is because the existence of a conjugate point is a necessary condition for the occurrence of singularities, and we will be able to demonstrate that such conjugate points cannot occur due to such quantum effects.

  3. A quantum framework for likelihood ratios

    NASA Astrophysics Data System (ADS)

    Bond, Rachael L.; He, Yang-Hui; Ormerod, Thomas C.

    The ability to calculate precise likelihood ratios is fundamental to science, from Quantum Information Theory through to Quantum State Estimation. However, there is no assumption-free statistical methodology to achieve this. For instance, in the absence of data relating to covariate overlap, the widely used Bayes’ theorem either defaults to the marginal probability driven “naive Bayes’ classifier”, or requires the use of compensatory expectation-maximization techniques. This paper takes an information-theoretic approach in developing a new statistical formula for the calculation of likelihood ratios based on the principles of quantum entanglement, and demonstrates that Bayes’ theorem is a special case of a more general quantum mechanical expression.

  4. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  5. From the necessary to the possible: the genesis of the spin-statistics theorem

    NASA Astrophysics Data System (ADS)

    Blum, Alexander

    2014-12-01

    The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.

  6. What is Quantum Mechanics? A Minimal Formulation

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2018-03-01

    This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.

  7. The emergent Copenhagen interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.

    2014-05-01

    We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.

  8. Sharp Contradiction for Local-Hidden-State Model in Quantum Steering

    PubMed Central

    Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Pati, Arun Kumar

    2016-01-01

    In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox. PMID:27562658

  9. Sharp Contradiction for Local-Hidden-State Model in Quantum Steering

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Pati, Arun Kumar

    2016-08-01

    In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.

  10. Quantum Experimental Data in Psychology and Economics

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; D'Hooghe, Bart; Haven, Emmanuel

    2010-12-01

    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the ‘disjunction effect’ in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage’s Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. Our analysis puts forward a strong argument in favor of the validity of using the quantum formalism for modeling the considered psychological experimental data as considered in this paper.

  11. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    NASA Astrophysics Data System (ADS)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  12. A characterization of linearly repetitive cut and project sets

    NASA Astrophysics Data System (ADS)

    Haynes, Alan; Koivusalo, Henna; Walton, James

    2018-02-01

    For the development of a mathematical theory which can be used to rigorously investigate physical properties of quasicrystals, it is necessary to understand regularity of patterns in special classes of aperiodic point sets in Euclidean space. In one dimension, prototypical mathematical models for quasicrystals are provided by Sturmian sequences and by point sets generated by substitution rules. Regularity properties of such sets are well understood, thanks mostly to well known results by Morse and Hedlund, and physicists have used this understanding to study one dimensional random Schrödinger operators and lattice gas models. A key fact which plays an important role in these problems is the existence of a subadditive ergodic theorem, which is guaranteed when the corresponding point set is linearly repetitive. In this paper we extend the one-dimensional model to cut and project sets, which generalize Sturmian sequences in higher dimensions, and which are frequently used in mathematical and physical literature as models for higher dimensional quasicrystals. By using a combination of algebraic, geometric, and dynamical techniques, together with input from higher dimensional Diophantine approximation, we give a complete characterization of all linearly repetitive cut and project sets with cubical windows. We also prove that these are precisely the collection of such sets which satisfy subadditive ergodic theorems. The results are explicit enough to allow us to apply them to known classical models, and to construct linearly repetitive cut and project sets in all pairs of dimensions and codimensions in which they exist. Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges the support of the Osk. Huttunen foundation.

  13. Quantum interval-valued probability: Contextuality and the Born rule

    NASA Astrophysics Data System (ADS)

    Tai, Yu-Tsung; Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr

    2018-05-01

    We present a mathematical framework based on quantum interval-valued probability measures to study the effect of experimental imperfections and finite precision measurements on defining aspects of quantum mechanics such as contextuality and the Born rule. While foundational results such as the Kochen-Specker and Gleason theorems are valid in the context of infinite precision, they fail to hold in general in a world with limited resources. Here we employ an interval-valued framework to establish bounds on the validity of those theorems in realistic experimental environments. In this way, not only can we quantify the idea of finite-precision measurement within our theory, but we can also suggest a possible resolution of the Meyer-Mermin debate on the impact of finite-precision measurement on the Kochen-Specker theorem.

  14. A Perron-Frobenius type of theorem for quantum operations

    NASA Astrophysics Data System (ADS)

    Lagro, Matthew

    Quantum random walks are a generalization of classical Markovian random walks to a quantum mechanical or quantum computing setting. Quantum walks have promising applications but are complicated by quantum decoherence. We prove that the long-time limiting behavior of the class of quantum operations which are the convex combination of norm one operators is governed by the eigenvectors with norm one eigenvalues which are shared by the operators. This class includes all operations formed by a coherent operation with positive probability of orthogonal measurement at each step. We also prove that any operation that has range contained in a low enough dimension subspace of the space of density operators has limiting behavior isomorphic to an associated Markov chain. A particular class of such operations are coherent operations followed by an orthogonal measurement. Applications of the convergence theorems to quantum walks are given.

  15. Recurrence theorems: A unified account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, David, E-mail: david.wallace@balliol.ox.ac.uk

    I discuss classical and quantum recurrence theorems in a unified manner, treating both as generalisations of the fact that a system with a finite state space only has so many places to go. Along the way, I prove versions of the recurrence theorem applicable to dynamics on linear and metric spaces and make some comments about applications of the classical recurrence theorem in the foundations of statistical mechanics.

  16. On the implications of the classical ergodic theorems: analysis of developmental processes has to focus on intra-individual variation.

    PubMed

    Molenaar, Peter C M

    2008-01-01

    It is argued that general mathematical-statistical theorems imply that standard statistical analysis techniques of inter-individual variation are invalid to investigate developmental processes. Developmental processes have to be analyzed at the level of individual subjects, using time series data characterizing the patterns of intra-individual variation. It is shown that standard statistical techniques based on the analysis of inter-individual variation appear to be insensitive to the presence of arbitrary large degrees of inter-individual heterogeneity in the population. An important class of nonlinear epigenetic models of neural growth is described which can explain the occurrence of such heterogeneity in brain structures and behavior. Links with models of developmental instability are discussed. A simulation study based on a chaotic growth model illustrates the invalidity of standard analysis of inter-individual variation, whereas time series analysis of intra-individual variation is able to recover the true state of affairs. (c) 2007 Wiley Periodicals, Inc.

  17. Quantum stochastic thermodynamic on harmonic networks

    DOE PAGES

    Deffner, Sebastian

    2016-01-04

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  18. Quantum stochastic thermodynamic on harmonic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffner, Sebastian

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  19. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    PubMed

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  20. Autonomous quantum to classical transitions and the generalized imaging theorem

    DOE PAGES

    Briggs, John S.; Feagin, James M.

    2016-03-16

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less

  1. Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Hanschke, Lukas; Kremser, Malte; Finley, Jonathan J.; Müller, Kai; Vučković, Jelena

    2018-01-01

    The area theorem states that when a short optical pulse drives a quantum two-level system, it undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon emission dynamics of a two-level system. Our model provides an intuitive way to understand re-excitation, which elucidates the mechanism behind the two-photon emission events that can spoil single-photon emission. We experimentally measure the emission statistics from a semiconductor quantum dot, acting as a two-level system, and show good agreement with our simple model for short pulses. Additionally, the model clearly explains our recent results (Fischer and Hanschke 2017 et al Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with interaction areas equal to an even multiple of π.

  2. Blessing and curse of chaos in numerical turbulence simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jon

    1994-03-01

    Because of the trajectory instability, time reversal is not possible beyond a certain evolution time and hence the time irreversibility prevails under the finite-accuracy trajectory computation. This therefore provides a practical reconciliation of the dynamic reversibility and macroscopic irreversibility (blessing of chaos). On the other hand, the trajectory instability is also responsible for a limited evolution time, so that finite-accuracy computation would yield a pseudo-orbit which is totally unrelated to the true trajectory (curse of chaos). For the inviscid 2D flow, however, we can accurately compute the long- time average of flow quantities with a pseudo-orbit by invoking the ergodic theorem.

  3. Optimal control strategy for an impulsive stochastic competition system with time delays and jumps

    NASA Astrophysics Data System (ADS)

    Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.

  4. Comments on Musha's theorem that an evanescent photon in the microtubule is a superluminal particle.

    PubMed

    Hari, Syamala D

    2014-07-01

    Takaaki Musha's research of high performance quantum computation in living systems is motivated by the theories of Penrose and Hameroff that microtubules in the brain function as quantum computers, and by those of Jibu and Yasue that the quantum states of microtubules depend upon boson condensates of evanescent photons. His work is based on the assumption that the evanescent photons described by Jibu et al. are superluminal and that they are tachyons defined and discussed by well-known physicists such as Sudarshan, Feinberg and Recami. Musha gives a brief justification for the assumption and sometimes calls it a theorem. However, the assumption is not valid because Jibu et al. stated that the evanescent photons have transmission speed smaller than that of light and that their mass is real and momentum is imaginary whereas a tachyon's mass is imaginary and momentum is real. We show here that Musha's proof of the "theorem" has errors and hence his theorem/assumption is not valid. This article is not meant to further discuss any biological aspects of the brain but only to comment on the consistency of the quantum-physical aspects of earlier work by Musha et al. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Differentiability of correlations in realistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumedmore » to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.« less

  6. Symmetry, Statistics and Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.

  7. Gleason-Busch theorem for sequential measurements

    NASA Astrophysics Data System (ADS)

    Flatt, Kieran; Barnett, Stephen M.; Croke, Sarah

    2017-12-01

    Gleason's theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957), 10.1512/iumj.1957.6.56050]. We show that Gleason's theorem contains within it also the structure of sequential measurements, and along with this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those in Busch's proof of Gleason's theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003), 10.1103/PhysRevLett.91.120403], from which the familiar Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in making clear those assumptions which underlie the security of quantum communication protocols. Interestingly, the two-time formalism is seen to arise naturally in this approach.

  8. From statistical proofs of the Kochen-Specker theorem to noise-robust noncontextuality inequalities

    NASA Astrophysics Data System (ADS)

    Kunjwal, Ravi; Spekkens, Robert W.

    2018-05-01

    The Kochen-Specker theorem rules out models of quantum theory wherein projective measurements are assigned outcomes deterministically and independently of context. This notion of noncontextuality is not applicable to experimental measurements because these are never free of noise and thus never truly projective. For nonprojective measurements, therefore, one must drop the requirement that an outcome be assigned deterministically in the model and merely require that it be assigned a distribution over outcomes in a manner that is context-independent. By demanding context independence in the representation of preparations as well, one obtains a generalized principle of noncontextuality that also supports a quantum no-go theorem. Several recent works have shown how to derive inequalities on experimental data which, if violated, demonstrate the impossibility of finding a generalized-noncontextual model of this data. That is, these inequalities do not presume quantum theory and, in particular, they make sense without requiring an operational analog of the quantum notion of projectiveness. We here describe a technique for deriving such inequalities starting from arbitrary proofs of the Kochen-Specker theorem. It extends significantly previous techniques that worked only for logical proofs, which are based on sets of projective measurements that fail to admit of any deterministic noncontextual assignment, to the case of statistical proofs, which are based on sets of projective measurements that d o admit of some deterministic noncontextual assignments, but not enough to explain the quantum statistics.

  9. The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, Sven; De Roeck, Wojciech; Fraas, Martin

    2018-03-01

    The adiabatic theorem refers to a setup where an evolution equation contains a time-dependent parameter whose change is very slow, measured by a vanishing parameter ɛ. Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instantaneous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One important application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect.

  10. Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.

    2015-07-01

    About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.

  11. Quantum memories and Landauer's principle

    NASA Astrophysics Data System (ADS)

    Alicki, Robert

    2011-10-01

    Two types of arguments concerning (im)possibility of constructing a scalable, exponentially stable quantum memory equipped with Hamiltonian controls are discussed. The first type concerns ergodic properties of open Kitaev models which are considered as promising candidates for such memories. It is shown that, although the 4D Kitaev model provides stable qubit observables, the Hamiltonian control is not possible. The thermodynamical approach leads to the new proposal of the revised version of Landauer's principle and suggests that the existence of quantum memory implies the existence of the perpetuum mobile of the second kind. Finally, a discussion of the stability property of information and its implications is presented.

  12. Time Asymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr

    2011-09-01

    The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.

  13. Non Locality Proofs in Quantum Mechanics Analyzed by Ordinary Mathematical Logic

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2014-10-01

    The so-called non-locality theorems aim to show that Quantum Mechanics is not consistent with the Locality Principle. Their proofs require, besides the standard postulates of Quantum Theory, further conditions, as for instance the Criterion of Reality, which cannot be formulated in the language of Standard Quantum Theory; this difficulty makes the proofs not verifiable according to usual logico-mathematical methods, and therefore it is a source of the controversial debate about the real implications of these theorems. The present work addresses this difficulty for Bell-type and Stapp's arguments of non-locality. We supplement the formalism of Quantum Mechanics with formal statements inferred from the further conditions in the two different cases. Then an analysis of the two arguments is performed according to ordinary mathematical logic.

  14. Relation between ``no broadcasting'' for noncommuting states and ``no local broadcasting'' for quantum correlations

    NASA Astrophysics Data System (ADS)

    Luo, Shunlong; Li, Nan; Cao, Xuelian

    2009-05-01

    The no-broadcasting theorem, first established by Barnum [Phys. Rev. Lett. 76, 2818 (1996)], states that a set of quantum states can be broadcast if and only if it constitutes a commuting family. Quite recently, Piani [Phys. Rev. Lett. 100, 090502 (2008)] showed, by using an ingenious and sophisticated method, that the correlations in a single bipartite state can be locally broadcast if and only if the state is effectively a classical one (i.e., the correlations therein are classical). In this Brief Report, under the condition of nondegenerate spectrum, we provide an alternative and significantly simpler proof of the latter result based on the original no-broadcasting theorem and the monotonicity of the quantum relative entropy. This derivation motivates us to conjecture the equivalence between these two elegant yet formally different no-broadcasting theorems and indicates a subtle and fundamental issue concerning spectral degeneracy which also lies at the heart of the conflict between the von Neumann projection postulate and the Lüders ansatz for quantum measurements. This relation not only offers operational interpretations for commutativity and classicality but also illustrates the basic significance of noncommutativity in characterizing quantumness from the informational perspective.

  15. Hunting Solomonoff's Swans: Exploring the Boundary Between Physics and Statistics in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.

    2014-12-01

    Statistical models consistently out-perform conceptual models in the short term, however to account for a nonstationary future (or an unobserved past) scientists prefer to base predictions on unchanging and commutable properties of the universe - i.e., physics. The problem with physically-based hydrology models is, of course, that they aren't really based on physics - they are based on statistical approximations of physical interactions, and we almost uniformly lack an understanding of the entropy associated with these approximations. Thermodynamics is successful precisely because entropy statistics are computable for homogeneous (well-mixed) systems, and ergodic arguments explain the success of Newton's laws to describe systems that are fundamentally quantum in nature. Unfortunately, similar arguments do not hold for systems like watersheds that are heterogeneous at a wide range of scales. Ray Solomonoff formalized the situation in 1968 by showing that given infinite evidence, simultaneously minimizing model complexity and entropy in predictions always leads to the best possible model. The open question in hydrology is about what happens when we don't have infinite evidence - for example, when the future will not look like the past, or when one watershed does not behave like another. How do we isolate stationary and commutable components of watershed behavior? I propose that one possible answer to this dilemma lies in a formal combination of physics and statistics. In this talk I outline my recent analogue (Solomonoff's theorem was digital) of Solomonoff's idea that allows us to quantify the complexity/entropy tradeoff in a way that is intuitive to physical scientists. I show how to formally combine "physical" and statistical methods for model development in a way that allows us to derive the theoretically best possible model given any given physics approximation(s) and available observations. Finally, I apply an analogue of Solomonoff's theorem to evaluate the tradeoff between model complexity and prediction power.

  16. Quantum Anosov flows: A new family of examples

    NASA Astrophysics Data System (ADS)

    Peter, Ingo J.; Emch, Gérard G.

    1998-09-01

    A quantum version is presented for the Anosov system defined by the time evolution implemented by the geodesic coflow on the cotangent bundle of any compact quotient manifold obtained from the Poincaré half-plane. While the canonical Weyl algebra does not close under time evolution, the symplectic structure of these classical systems can be exploited to produce objects akin to the CCR algebras encountered in quantum field theory. This construction allows one to lift both the geodesic and the horocyclic flows to a Weyl algebra describing the quantum dynamics corresponding to the systems under consideration. The Anosov relations as proposed in Ref. Reference 1 are found to be valid for these models. A quantum version of the classical ergodicity of these systems is discussed in the last section.

  17. John S. Bell's concept of local causality

    NASA Astrophysics Data System (ADS)

    Norsen, Travis

    2011-12-01

    John Stewart Bell's famous theorem is widely regarded as one of the most important developments in the foundations of physics. Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many workers assert that Bell's theorem refutes the possibility suggested by Einstein, Podolsky, and Rosen (EPR) of supplementing ordinary quantum theory with ``hidden'' variables that might restore determinism and/or some notion of an observer-independent reality. But Bell himself interpreted the theorem very differently--as establishing an ``essential conflict'' between the well-tested empirical predictions of quantum theory and relativistic local causality. Our goal is to make Bell's own views more widely known and to explain Bell's little-known formulation of the concept of relativistic local causality on which his theorem rests. We also show precisely how Bell's formulation of local causality can be used to derive an empirically testable Bell-type inequality and to recapitulate the EPR argument.

  18. John S. Bell's concept of local causality

    NASA Astrophysics Data System (ADS)

    Norsen, Travis

    2011-12-01

    John Stewart Bell's famous theorem is widely regarded as one of the most important developments in the foundations of physics. Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many workers assert that Bell's theorem refutes the possibility suggested by Einstein, Podolsky, and Rosen (EPR) of supplementing ordinary quantum theory with "hidden" variables that might restore determinism and/or some notion of an observer-independent reality. But Bell himself interpreted the theorem very differently—as establishing an "essential conflict" between the well-tested empirical predictions of quantum theory and relativistic local causality. Our goal is to make Bell's own views more widely known and to explain Bell's little-known formulation of the concept of relativistic local causality on which his theorem rests. We also show precisely how Bell's formulation of local causality can be used to derive an empirically testable Bell-type inequality and to recapitulate the EPR argument.

  19. Long Time Quantum Evolution of Observables on Cusp Manifolds

    NASA Astrophysics Data System (ADS)

    Bonthonneau, Yannick

    2016-04-01

    The Eisenstein functions {E(s)} are some generalized eigenfunctions of the Laplacian on manifolds with cusps. We give a version of Quantum Unique Ergodicity for them, for {|{I}s| to ∞} and {R}s to d/2} with {{R}s - d/2 ≥ log log |{I}s| / log |{I}s|}. For the purpose of the proof, we build a semi-classical quantization procedure for finite volume manifolds with hyperbolic cusps, adapted to a geometrical class of symbols. We also prove an Egorov Lemma until Ehrenfest times on such manifolds.

  20. Fluctuation Theorem for Many-Body Pure Quantum States.

    PubMed

    Iyoda, Eiki; Kaneko, Kazuya; Sagawa, Takahiro

    2017-09-08

    We prove the second law of thermodynamics and the nonequilibrium fluctuation theorem for pure quantum states. The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy eigenstate that satisfies the eigenstate-thermalization hypothesis. Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can be experimentally tested by artificial isolated quantum systems such as ultracold atoms.

  1. Quantum steganography with large payload based on entanglement swapping of χ-type entangled states

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Chen, Xiu-Bo; Luo, Ming-Xing; Niu, Xin-Xin; Yang, Yi-Xian

    2011-04-01

    In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.

  2. Experimental violation of local causality in a quantum network.

    PubMed

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-16

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  3. No-go theorem for passive single-rail linear optical quantum computing.

    PubMed

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  4. Experimental violation of local causality in a quantum network

    PubMed Central

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-01-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols. PMID:28300068

  5. Fluctuation Theorem for Many-Body Pure Quantum States

    NASA Astrophysics Data System (ADS)

    Iyoda, Eiki; Kaneko, Kazuya; Sagawa, Takahiro

    2017-09-01

    We prove the second law of thermodynamics and the nonequilibrium fluctuation theorem for pure quantum states. The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy eigenstate that satisfies the eigenstate-thermalization hypothesis. Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can be experimentally tested by artificial isolated quantum systems such as ultracold atoms.

  6. Experimental violation of local causality in a quantum network

    NASA Astrophysics Data System (ADS)

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  7. Proposal for founding mistrustful quantum cryptography on coin tossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian; Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ,

    2003-07-01

    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process, or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multiparty computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signaling constraints into account. The best that can be hoped for, in general, aremore » quantum protocols which are computationally secure against quantum attack. Here a method is described for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin-tossing protocol. No security proof is attempted, but reasons are sketched why these protocols might resist quantum computational attack.« less

  8. Markov Property of the Conformal Field Theory Vacuum and the a Theorem.

    PubMed

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-06-30

    We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.

  9. Optimal no-go theorem on hidden-variable predictions of effect expectations

    NASA Astrophysics Data System (ADS)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  10. Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem

    NASA Astrophysics Data System (ADS)

    Kulikov, Anatoly; Jerger, Markus; Potočnik, Anton; Wallraff, Andreas; Fedorov, Arkady

    2017-12-01

    Random numbers are required for a variety of applications from secure communications to Monte Carlo simulation. Yet randomness is an asymptotic property, and no output string generated by a physical device can be strictly proven to be random. We report an experimental realization of a quantum random number generator (QRNG) with randomness certified by quantum contextuality and the Kochen-Specker theorem. The certification is not performed in a device-independent way but through a rigorous theoretical proof of each outcome being value indefinite even in the presence of experimental imperfections. The analysis of the generated data confirms the incomputable nature of our QRNG.

  11. Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem.

    PubMed

    Kulikov, Anatoly; Jerger, Markus; Potočnik, Anton; Wallraff, Andreas; Fedorov, Arkady

    2017-12-15

    Random numbers are required for a variety of applications from secure communications to Monte Carlo simulation. Yet randomness is an asymptotic property, and no output string generated by a physical device can be strictly proven to be random. We report an experimental realization of a quantum random number generator (QRNG) with randomness certified by quantum contextuality and the Kochen-Specker theorem. The certification is not performed in a device-independent way but through a rigorous theoretical proof of each outcome being value indefinite even in the presence of experimental imperfections. The analysis of the generated data confirms the incomputable nature of our QRNG.

  12. Not-Post-Peierls compatibility under noisy channels

    NASA Astrophysics Data System (ADS)

    Ducuara, Andrés F.; Susa, Cristian E.; Reina, John H.

    2017-06-01

    The Pusey-Barrett-Rudolph (PBR) theorem deals with the realism of the quantum states. It establishes that every pure quantum state is real, in the context of quantum ontological models. Specifically, by guaranteeing the property of not-Post-Peierls (\

  13. High-dimensional quantum cloning and applications to quantum hacking

    PubMed Central

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim

    2017-01-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219

  14. High-dimensional quantum cloning and applications to quantum hacking.

    PubMed

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  15. Bell's Theorem and Einstein's `Spooky Actions' from a Simple Thought Experiment

    NASA Astrophysics Data System (ADS)

    Kuttner, Fred; Rosenblum, Bruce

    2010-02-01

    In 1964 John Bell proved a theorem2 allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they do. Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at any level. And a simple, semi-classical derivation of the quantum theory result can be given for physics students. These entanglement phenomena are today applied in industrial laboratories and are increasingly discussed in the popular literature. Unfortunately, they are also misappropriated by the purveyors of pseudoscience, something physicists have a responsibility to address.3 Students can be intrigued by the quantum strangeness physics has encountered at a boundary of our discipline.

  16. A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics

    NASA Technical Reports Server (NTRS)

    Gingold, H.

    1991-01-01

    A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.

  17. Graph State-Based Quantum Secret Sharing with the Chinese Remainder Theorem

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Luo, Peng; Wang, Yijun

    2016-11-01

    Quantum secret sharing (QSS) is a significant quantum cryptography technology in the literature. Dividing an initial secret into several sub-secrets which are then transferred to other legal participants so that it can be securely recovered in a collaboration fashion. In this paper, we develop a quantum route selection based on the encoded quantum graph state, thus enabling the practical QSS scheme in the small-scale complex quantum network. Legal participants are conveniently designated with the quantum route selection using the entanglement of the encoded graph states. Each participant holds a vertex of the graph state so that legal participants are selected through performing operations on specific vertices. The Chinese remainder theorem (CRT) strengthens the security of the recovering process of the initial secret among the legal participants. The security is ensured by the entanglement of the encoded graph states that are cooperatively prepared and shared by legal users beforehand with the sub-secrets embedded in the CRT over finite fields.

  18. Sanov and central limit theorems for output statistics of quantum Markov chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horssen, Merlijn van, E-mail: merlijn.vanhorssen@nottingham.ac.uk; Guţă, Mădălin, E-mail: madalin.guta@nottingham.ac.uk

    2015-02-15

    In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Suchmore » higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.« less

  19. Entropic no-disturbance as a physical principle

    NASA Astrophysics Data System (ADS)

    Jia, Zhih-Ahn; Zhai, Rui; Yu, Bai-Chu; Wu, Yu-Chun; Guo, Guang-Can

    2018-05-01

    The celebrated Bell-Kochen-Specker no-go theorem asserts that quantum mechanics does not present the property of realism; the essence of the theorem is the lack of a joint probability distribution for some experiment settings. We exploit the information theoretic form of the theorem using information measure instead of probabilistic measure and indicate that quantum mechanics does not present such kind of entropic realism either. The entropic form of Gleason's no-disturbance principle is developed and characterized by the intersection of several entropic cones. Entropic contextuality and entropic nonlocality are investigated in depth in this framework as well. We show how one can construct monogamy relations using entropic cone and basic Shannon-type inequalities. The general criterion for several entropic tests to be monogamous is also developed; using the criterion, we demonstrate that entropic nonlocal correlations, entropic contextuality tests, and entropic nonlocality and entropic contextuality are monogamous. Finally, we analyze the entropic monogamy relations for the multiparty and many-test case, which may play a crucial role in quantum network communication.

  20. Multipoint entanglement in disordered systems

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.; Paganelli, Simone; Oganesyan, Vadim

    2017-02-01

    We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases - MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase - some of these show considerable generation and delocalization of quantum information.

  1. Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain

    2015-03-01

    We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).

  2. Exploring the Tomlin-Varadarajan quantum constraints in U (1 )3 loop quantum gravity: Solutions and the Minkowski theorem

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jerzy; Lin, Chun-Yen

    2017-03-01

    We explicitly solved the anomaly-free quantum constraints proposed by Tomlin and Varadarajan for the weak Euclidean model of canonical loop quantum gravity, in a large subspace of the model's kinematic Hilbert space, which is the space of the charge network states. In doing so, we first identified the subspace on which each of the constraints acts convergingly, and then by explicitly evaluating such actions we found the complete set of the solutions in the identified subspace. We showed that the space of solutions consists of two classes of states, with the first class having a property that involves the condition known from the Minkowski theorem on polyhedra, and the second class satisfying a weaker form of the spatial diffeomorphism invariance.

  3. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    NASA Astrophysics Data System (ADS)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  4. Quantum capacity of quantum black holes

    NASA Astrophysics Data System (ADS)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  5. Robustness of Many-Body Localization in the Presence of Dissipation

    NASA Astrophysics Data System (ADS)

    Levi, Emanuele; Heyl, Markus; Lesanovsky, Igor; Garrahan, Juan P.

    2016-06-01

    Many-body localization (MBL) has emerged as a novel paradigm for robust ergodicity breaking in closed quantum many-body systems. However, it is not yet clear to which extent MBL survives in the presence of dissipative processes induced by the coupling to an environment. Here we study heating and ergodicity for a paradigmatic MBL system—an interacting fermionic chain subject to quenched disorder—in the presence of dephasing. We find that, even though the system is eventually driven into an infinite-temperature state, heating as monitored by the von Neumann entropy can progress logarithmically slowly, implying exponentially large time scales for relaxation. This slow loss of memory of initial conditions makes signatures of nonergodicity visible over a long, but transient, time regime. We point out a potential controlled realization of the considered setup with cold atomic gases held in optical lattices.

  6. Mathematical and physical meaning of the Bell inequalities

    NASA Astrophysics Data System (ADS)

    Santos, Emilio

    2016-09-01

    It is shown that the Bell inequalities are closely related to the triangle inequalities involving distance functions amongst pairs of random variables with values \\{0,1\\}. A hidden variables model may be defined as a mapping between a set of quantum projection operators and a set of random variables. The model is noncontextual if there is a joint probability distribution. The Bell inequalities are necessary conditions for its existence. The inequalities are most relevant when measurements are performed at space-like separation, thus showing a conflict between quantum mechanics and local realism (Bell's theorem). The relations of the Bell inequalities with contextuality, the Kochen-Specker theorem, and quantum entanglement are briefly discussed.

  7. Entropy for quantum pure states and quantum H theorem

    NASA Astrophysics Data System (ADS)

    Han, Xizhi; Wu, Biao

    2015-06-01

    We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929), 10.1007/BF01339852]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.

  8. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases

    DOE PAGES

    Brandino, G. P.; Caux, J. -S.; Konik, R. M.

    2015-12-16

    Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking,more » we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.« less

  9. Why are para-hydrogen clusters superfluid? A quantum theorem of corresponding states study.

    PubMed

    Sevryuk, Mikhail B; Toennies, J Peter; Ceperley, David M

    2010-08-14

    The quantum theorem of corresponding states is applied to N=13 and N=26 cold quantum fluid clusters to establish where para-hydrogen clusters lie in relation to more and less quantum delocalized systems. Path integral Monte Carlo calculations of the energies, densities, radial and pair distributions, and superfluid fractions are reported at T=0.5 K for a Lennard-Jones (LJ) (12,6) potential using six different de Boer parameters including the accepted value for hydrogen. The results indicate that the hydrogen clusters are on the borderline to being a nonsuperfluid solid but that the molecules are sufficiently delocalized to be superfluid. A general phase diagram for the total and kinetic energies of LJ (12,6) clusters encompassing all sizes from N=2 to N=infinity and for the entire range of de Boer parameters is presented. Finally the limiting de Boer parameters for quantum delocalization induced unbinding ("quantum unbinding") are estimated and the new results are found to agree with previous calculations for the bulk and smaller clusters.

  10. Teaching the Jahn-Teller Theorem: A Simple Exercise That Illustrates How the Magnitude of Distortion Depends on the Number of Electrons and Their Occupation of the Degenerate Energy Level

    ERIC Educational Resources Information Center

    Johansson, Adam Johannes

    2013-01-01

    Teaching the Jahn-Teller theorem offers several challenges. For many students, the first encounter comes in coordination chemistry, which can be difficult due to the already complicated nature of transition-metal complexes. Moreover, a deep understanding of the Jahn-Teller theorem requires that one is well acquainted with quantum mechanics and…

  11. Weyl consistency conditions in non-relativistic quantum field theory

    DOE PAGES

    Pal, Sridip; Grinstein, Benjamín

    2016-12-05

    Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2 + 1 dimensions with anisotropic scaling exponent z = 2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. Here, we comment on possible candidates for a C-theorem in higher dimensions.

  12. Quantum-field-theoretical approach to phase–space techniques: Symmetric Wick theorem and multitime Wigner representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimak, L.I., E-mail: Lev.Plimak@mbi-berlin.de; Olsen, M.K.

    2014-12-15

    In this work we present the formal background used to develop the methods used in earlier works to extend the truncated Wigner representation of quantum and atom optics in order to address multi-time problems. Analogs of Wick’s theorem for the Weyl ordering are verified. Using the Bose–Hubbard chain as an example, we show how these may be applied to constructing a mapping of the system in question to phase space. Regularisation issues and the reordering problem for the Heisenberg operators are addressed.

  13. BOOK REVIEW:

    NASA Astrophysics Data System (ADS)

    Berkolaiko, G.

    2003-12-01

    The book represents the collected lectures given at the Summer School on Mathematical Aspects of Quantum Maps held at Bologna University in September 2001. Quantum maps gained their prominence as a testing ground for mathematical understanding of various concepts in quantum chaos, such as the spectral statistics, quantum ergodicity, scarring of the eigenfunctions and the connection to algebraic number theory. The book is nicely structured. It begins by reviewing the relevant concepts and results from dynamical systems (a contribution by A Knauf) and number theory (by Z Rudnick). A contribution by the editors, M Degli Esposti and S Graffi, explains the quantization procedure for the quantum maps and proceeds to discuss some properties of the quantized maps, such as ergodicity and scarring, and the number theoretical techniques involved in proving these properties. The contribution by A Bäacker discusses the numerical methods used to study quantum chaotic systems. It contains both the mathematical background and a detailed explanation of the numerical techniques, possible pitfalls at the implementation stage and how to avoid them. It even contains a computer program in Python used by the author to compute the eigenvalues of a perturbed cat map. The last contribution, by R Artuso, while very interesting in itself, feels somewhat disconnected from the rest of the book. It deals with deterministic transport in hyperbolic and weakly chaotic systems, where one can observe normal and anomalous diffusion respectively. Although being a collection of contributions from various authors, the book feels very much like a well-coordinated team effort, with frequent cross-contributional references underlying the connections between different facets of the discussed subjects. I consider it an invaluable reference for researchers in the field of quantum chaos and would recommend it as a first read for people just entering the field. It contains both the necessary background information and tasters of the main results and concepts of quantum chaos. The only slight drawback of the book is the misprints in some of the contributions, which can make an understanding more difficult than it should be.

  14. Quantum Markov Semigroups with Unbounded Generator and Time Evolution of the Support Projection of a State

    NASA Astrophysics Data System (ADS)

    Gliouez, Souhir; Hachicha, Skander; Nasroui, Ikbel

    We characterize the support projection of a state evolving under the action of a quantum Markov semigroup with unbounded generator represented in the generalized GKSL form and a quantum version of the classical Lévy-Austin-Ornstein theorem.

  15. Continuous-time quantum walks on star graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salimi, S.

    2009-06-15

    In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.

  16. Metastable Distributions of Markov Chains with Rare Transitions

    NASA Astrophysics Data System (ADS)

    Freidlin, M.; Koralov, L.

    2017-06-01

    In this paper we consider Markov chains X^\\varepsilon _t with transition rates that depend on a small parameter \\varepsilon . We are interested in the long time behavior of X^\\varepsilon _t at various \\varepsilon -dependent time scales t = t(\\varepsilon ). The asymptotic behavior depends on how the point (1/\\varepsilon , t(\\varepsilon )) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale t(\\varepsilon ). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.

  17. Hidden Variable Theories and Quantum Nonlocality

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2009-01-01

    We clarify the meaning of Bell's theorem and its implications for the construction of hidden variable theories by considering an example system consisting of two entangled spin-1/2 particles. Using this example, we present a simplified version of Bell's theorem and describe several hidden variable theories that agree with the predictions of…

  18. Thermodynamics of quantum information scrambling

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Goold, John

    2017-06-01

    Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators (OTOCs), i.e., correlators of the type <[Wτ,V ] †[Wτ,V ] > , whose measurements present a formidable experimental challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of broader applicability than methods employed in current experiments and provides a clear-cut interpretation of quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also discuss how the method can be used to extend the reach of current experiments.

  19. Topological order and memory time in marginally-self-correcting quantum memory

    NASA Astrophysics Data System (ADS)

    Siva, Karthik; Yoshida, Beni

    2017-03-01

    We examine two proposals for marginally-self-correcting quantum memory: the cubic code by Haah and the welded code by Michnicki. In particular, we prove explicitly that they are absent of topological order above zero temperature, as their Gibbs ensembles can be prepared via a short-depth quantum circuit from classical ensembles. Our proof technique naturally gives rise to the notion of free energy associated with excitations. Further, we develop a framework for an ergodic decomposition of Davies generators in CSS codes which enables formal reduction to simpler classical memory problems. We then show that memory time in the welded code is doubly exponential in inverse temperature via the Peierls argument. These results introduce further connections between thermal topological order and self-correction from the viewpoint of free energy and quantum circuit depth.

  20. Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Hsieh, Chang-Tse; Ryu, Shinsei

    2017-11-01

    The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the lattice translation symmetry and particle number conservation are strictly imposed. In this paper, we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective of quantum anomalies. We first note that they can both be described by the same low-energy effective field theory with the same effective symmetry realizations on low-energy modes, wherein non-on-site lattice translation symmetry is encoded as if it were an internal symmetry. In spite of the identical form of the low-energy effective field theories, we show that the quantum anomalies of the theories play different roles in the two systems. In particular, we find that the chiral anomaly is equivalent to the LSM theorem, whereas there is another anomaly that is not related to the LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of the gaplessness local in the parameter space.

  1. Sharpening the second law of thermodynamics with the quantum Bayes theorem.

    PubMed

    Gharibyan, Hrant; Tegmark, Max

    2014-09-01

    We prove a generalization of the classic Groenewold-Lindblad entropy inequality, combining decoherence and the quantum Bayes theorem into a simple unified picture where decoherence increases entropy while observation decreases it. This provides a rigorous quantum-mechanical version of the second law of thermodynamics, governing how the entropy of a system (the entropy of its density matrix, partial-traced over the environment and conditioned on what is known) evolves under general decoherence and observation. The powerful tool of spectral majorization enables both simple alternative proofs of the classic Lindblad and Holevo inequalities without using strong subadditivity, and also novel inequalities for decoherence and observation that hold not only for von Neumann entropy, but also for arbitrary concave entropies.

  2. How to (properly) strengthen Bell's theorem using counterfactuals

    NASA Astrophysics Data System (ADS)

    Bigaj, Tomasz

    Bell's theorem in its standard version demonstrates that the joint assumptions of the hidden-variable hypothesis and the principle of local causation lead to a conflict with quantum-mechanical predictions. In his latest counterfactual strengthening of Bell's theorem, Stapp attempts to prove that the locality assumption itself contradicts the quantum-mechanical predictions in the Hardy case. His method relies on constructing a complex, non-truth functional formula which consists of statements about measurements and outcomes in some region R, and whose truth value depends on the selection of a measurement setting in a space-like separated location L. Stapp argues that this fact shows that the information about the measurement selection made in L has to be present in R. I give detailed reasons why this conclusion can and should be resisted. Next I correct and formalize an informal argument by Shimony and Stein showing that the locality condition coupled with Einstein's criterion of reality is inconsistent with quantum-mechanical predictions. I discuss the possibility of avoiding the inconsistency by rejecting Einstein's criterion rather than the locality assumption.

  3. From the Kochen-Specker theorem to noncontextuality inequalities without assuming determinism.

    PubMed

    Kunjwal, Ravi; Spekkens, Robert W

    2015-09-11

    The Kochen-Specker theorem demonstrates that it is not possible to reproduce the predictions of quantum theory in terms of a hidden variable model where the hidden variables assign a value to every projector deterministically and noncontextually. A noncontextual value assignment to a projector is one that does not depend on which other projectors-the context-are measured together with it. Using a generalization of the notion of noncontextuality that applies to both measurements and preparations, we propose a scheme for deriving inequalities that test whether a given set of experimental statistics is consistent with a noncontextual model. Unlike previous inequalities inspired by the Kochen-Specker theorem, we do not assume that the value assignments are deterministic and therefore in the face of a violation of our inequality, the possibility of salvaging noncontextuality by abandoning determinism is no longer an option. Our approach is operational in the sense that it does not presume quantum theory: a violation of our inequality implies the impossibility of a noncontextual model for any operational theory that can account for the experimental observations, including any successor to quantum theory.

  4. Constructing local integrals of motion in the many-body localized phase

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Kim, Isaac H.; Vidal, Guifre; Abanin, Dmitry A.

    2015-02-01

    Many-body localization provides a generic mechanism of ergodicity breaking in quantum systems. In contrast to conventional ergodic systems, many-body-localized (MBL) systems are characterized by extensively many local integrals of motion (LIOM), which underlie the absence of transport and thermalization in these systems. Here we report a physically motivated construction of local integrals of motion in the MBL phase. We show that any local operator (e.g., a local particle number or a spin-flip operator), evolved with the system's Hamiltonian and averaged over time, becomes a LIOM in the MBL phase. Such operators have a clear physical meaning, describing the response of the MBL system to a local perturbation. In particular, when a local operator represents a density of some globally conserved quantity, the corresponding LIOM describes how this conserved quantity propagates through the MBL phase. Being uniquely defined and experimentally measurable, these LIOMs provide a natural tool for characterizing the properties of the MBL phase, in both experiments and numerical simulations. We demonstrate the latter by numerically constructing an extensive set of LIOMs in the MBL phase of a disordered spin-chain model. We show that the resulting LIOMs are quasilocal and use their decay to extract the localization length and establish the location of the transition between the MBL and ergodic phases.

  5. Communication, Correlation and Complementarity

    NASA Astrophysics Data System (ADS)

    Schumacher, Benjamin Wade

    1990-01-01

    In quantum communication, a sender prepares a quantum system in a state corresponding to his message and conveys it to a receiver, who performs a measurement on it. The receiver acquires information about the message based on the outcome of his measurement. Since the state of a single quantum system is not always completely determinable from measurement, quantum mechanics limits the information capacity of such channels. According to a theorem of Kholevo, the amount of information conveyed by the channel can be no greater than the entropy of the ensemble of possible physical signals. The connection between information and entropy allows general theorems to be proved regarding the energy requirements of communication. For example, it can be shown that one particular quantum coding scheme, called thermal coding, uses energy with maximum efficiency. A close analogy between communication and quantum correlation can be made using Everett's notion of relative states. Kholevo's theorem can be used to prove that the mutual information of a pair of observables on different systems is bounded by the entropy of the state of each system. This confirms and extends an old conjecture of Everett. The complementarity of quantum observables can be described by information-theoretic uncertainty relations, several of which have been previously derived. These relations imply limits on the degree to which different messages can be coded in complementary observables of a single channel. Complementarity also restricts the amount of information that can be recovered from a given channel using a given decoding observable. Information inequalities can be derived which are analogous to the well-known Bell inequalities for correlated quantum systems. These inequalities are satisfied for local hidden variable theories but are violated by quantum systems, even where the correlation is weak. These information inequalities are metric inequalities for an "information distance", and their structure can be made exactly analogous to that of the familiar covariance Bell inequalities by introducing a "covariance distance". Similar inequalities derived for successive measurements on a single system are also violated in quantum mechanics.

  6. Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.; Radzikowski, Marek J.; Wald, Robert M.

    1997-02-01

    We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as 'past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's 'Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we prove: Theorem 1. There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M 2 M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of J2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the 'Propagation of Singularities' theorems of Duistermaat and Hörmander.

  7. The canonical quantization of chaotic maps on the torus

    NASA Astrophysics Data System (ADS)

    Rubin, Ron Shai

    In this thesis, a quantization method for classical maps on the torus is presented. The quantum algebra of observables is defined as the quantization of measurable functions on the torus with generators exp (2/pi ix) and exp (2/pi ip). The Hilbert space we use remains the infinite-dimensional L2/ (/IR, dx). The dynamics is given by a unitary quantum propagator such that as /hbar /to 0, the classical dynamics is returned. We construct such a quantization for the Kronecker map, the cat map, the baker's map, the kick map, and the Harper map. For the cat map, we find the same for the propagator on the plane the same integral kernel conjectured in (HB) using semiclassical methods. We also define a quantum 'integral over phase space' as a trace over the quantum algebra. Using this definition, we proceed to define quantum ergodicity and mixing for maps on the torus. We prove that the quantum cat map and Kronecker map are both ergodic, but only the cat map is mixing, true to its classical origins. For Planck's constant satisfying the integrality condition h = 1/N, with N/in doubz+, we construct an explicit isomorphism between L2/ (/IR, dx) and the Hilbert space of sections of an N-dimensional vector bundle over a θ-torus T2 of boundary conditions. The basis functions are distributions in L2/ (/IR, dx), given by an infinite comb of Dirac δ-functions. In Bargmann space these distributions take on the form of Jacobi ϑ-functions. Transformations from position to momentum representation can be implemented via a finite N-dimensional discrete Fourier transform. With the θ-torus, we provide a connection between the finite-dimensional quantum maps given in the physics literature and the canonical quantization presented here and found in the language of pseudo-differential operators elsewhere in mathematics circles. Specifically, at a fixed point of the dynamics on the θ-torus, we return a finite-dimensional matrix propagator. We present this connection explicitly for several examples.

  8. Two-time correlation function of an open quantum system in contact with a Gaussian reservoir

    NASA Astrophysics Data System (ADS)

    Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki

    2018-05-01

    An exact formula of a two-time correlation function is derived for an open quantum system which interacts with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is shown that the two-time correlation function up to the first order is a good approximation to the exact one.

  9. Quantum properties of supersymmetric theories regularized by higher covariant derivatives

    NASA Astrophysics Data System (ADS)

    Stepanyantz, Konstantin

    2018-02-01

    We investigate quantum corrections in \\mathscr{N} = 1 non-Abelian supersymmetric gauge theories, regularized by higher covariant derivatives. In particular, by the help of the Slavnov-Taylor identities we prove that the vertices with two ghost legs and one leg of the quantum gauge superfield are finite in all orders. This non-renormalization theorem is confirmed by an explicit one-loop calculation. By the help of this theorem we rewrite the exact NSVZ β-function in the form of the relation between the β-function and the anomalous dimensions of the matter superfields, of the quantum gauge superfield, and of the Faddeev-Popov ghosts. Such a relation has simple qualitative interpretation and allows suggesting a prescription producing the NSVZ scheme in all loops for the theories regularized by higher derivatives. This prescription is verified by the explicit three-loop calculation for the terms quartic in the Yukawa couplings.

  10. Path integrals, supersymmetric quantum mechanics, and the Atiyah-Singer index theorem for twisted Dirac

    NASA Astrophysics Data System (ADS)

    Fine, Dana S.; Sawin, Stephen

    2017-01-01

    Feynman's time-slicing construction approximates the path integral by a product, determined by a partition of a finite time interval, of approximate propagators. This paper formulates general conditions to impose on a short-time approximation to the propagator in a general class of imaginary-time quantum mechanics on a Riemannian manifold which ensure that these products converge. The limit defines a path integral which agrees pointwise with the heat kernel for a generalized Laplacian. The result is a rigorous construction of the propagator for supersymmetric quantum mechanics, with potential, as a path integral. Further, the class of Laplacians includes the square of the twisted Dirac operator, which corresponds to an extension of N = 1/2 supersymmetric quantum mechanics. General results on the rate of convergence of the approximate path integrals suffice in this case to derive the local version of the Atiyah-Singer index theorem.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beigi, Salman

    Sandwiched (quantum) α-Rényi divergence has been recently defined in the independent works of Wilde et al. [“Strong converse for the classical capacity of entanglement-breaking channels,” preprint http://arxiv.org/abs/arXiv:1306.1586 (2013)] and Müller-Lennert et al. [“On quantum Rényi entropies: a new definition, some properties and several conjectures,” preprint http://arxiv.org/abs/arXiv:1306.3142v1 (2013)]. This new quantum divergence has already found applications in quantum information theory. Here we further investigate properties of this new quantum divergence. In particular, we show that sandwiched α-Rényi divergence satisfies the data processing inequality for all values of α > 1. Moreover we prove that α-Holevo information, a variant of Holevo informationmore » defined in terms of sandwiched α-Rényi divergence, is super-additive. Our results are based on Hölder's inequality, the Riesz-Thorin theorem and ideas from the theory of complex interpolation. We also employ Sion's minimax theorem.« less

  12. Sandwiched Rényi divergence satisfies data processing inequality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beigi, Salman

    2013-12-15

    Sandwiched (quantum) α-Rényi divergence has been recently defined in the independent works of Wilde et al. [“Strong converse for the classical capacity of entanglement-breaking channels,” preprint http://arxiv.org/abs/arXiv:1306.1586 (2013)] and Müller-Lennert et al. [“On quantum Rényi entropies: a new definition, some properties and several conjectures,” preprint http://arxiv.org/abs/arXiv:1306.3142v1 (2013)]. This new quantum divergence has already found applications in quantum information theory. Here we further investigate properties of this new quantum divergence. In particular, we show that sandwiched α-Rényi divergence satisfies the data processing inequality for all values of α > 1. Moreover we prove that α-Holevo information, a variant of Holevo informationmore » defined in terms of sandwiched α-Rényi divergence, is super-additive. Our results are based on Hölder's inequality, the Riesz-Thorin theorem and ideas from the theory of complex interpolation. We also employ Sion's minimax theorem.« less

  13. No-go theorem for iterations of unknown quantum gates

    NASA Astrophysics Data System (ADS)

    Soleimanifar, Mehdi; Karimipour, Vahid

    2016-01-01

    We propose a no-go theorem by proving the impossibility of constructing a deterministic quantum circuit that iterates a unitary oracle by calling it only once. Different schemes are provided to bypass this result and to approximately realize the iteration. The optimal scheme is also studied. An interesting observation is that for a large number of iterations, a trivial strategy like using the identity channel has the optimal performance, and preprocessing, postprocessing, or using resources like entanglement does not help at all. Intriguingly, the number of iterations, when being large enough, does not affect the performance of the proposed schemes.

  14. Quantum calculus of classical vortex images, integrable models and quantum states

    NASA Astrophysics Data System (ADS)

    Pashaev, Oktay K.

    2016-10-01

    From two circle theorem described in terms of q-periodic functions, in the limit q→1 we have derived the strip theorem and the stream function for N vortex problem. For regular N-vortex polygon we find compact expression for the velocity of uniform rotation and show that it represents a nonlinear oscillator. We describe q-dispersive extensions of the linear and nonlinear Schrodinger equations, as well as the q-semiclassical expansions in terms of Bernoulli and Euler polynomials. Different kind of q-analytic functions are introduced, including the pq-analytic and the golden analytic functions.

  15. Inelastic light and electron scattering in parabolic quantum dots in magnetic field: Implications of generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero-dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energy capable of being explored with the FIR, Raman, or electron energy loss spectroscopy. This implies that either of these probes should be competent in observing the localized magnetoplasmons in the system. A deeper insight into the physics of quantum dots is paving the way for their implementation in diverse fields such as quantum computing and medical imaging.

  16. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Ingvar; Salomonson, Sten

    The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the argumentsmore » [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s{sup 3}S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem.« less

  18. Quantum identities for the action

    NASA Astrophysics Data System (ADS)

    Gozzi, E.

    2018-04-01

    In this paper we derive various identities involving the action functional which enters the path-integral formulation of quantum mechanics. They provide some kind of generalisations of the Ehrenfest theorem giving correlations between powers of the action and its functional derivatives.

  19. Fully Quantum Fluctuation Theorems

    NASA Astrophysics Data System (ADS)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  20. Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Simon, R.; Mukunda, N.; Chaturvedi, S.; Srinivasan, V.

    2008-11-01

    In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.

  1. Role of quantum coherence in the thermodynamics of energy transfer

    NASA Astrophysics Data System (ADS)

    Henao, Ivan; Serra, Roberto M.

    2018-06-01

    Recent research on the thermodynamic arrow of time, at the microscopic scale, has questioned the universality of its direction. Theoretical studies showed that quantum correlations can be used to revert the natural heat flow (from the hot body to the cold one), posing an apparent challenge to the second law of thermodynamics. Such an "anomalous" heat current was observed in a recent experiment (K. Micadei et al., arXiv:1711.03323), by employing two spin systems initially quantum correlated. Nevertheless, the precise relationship between this intriguing phenomenon and the initial conditions that allow it is not fully evident. Here, we address energy transfer in a wider perspective, identifying a nonclassical contribution that applies to the reversion of the heat flow as well as to more general forms of energy exchange. We derive three theorems that describe the energy transfer between two microscopic systems, for arbitrary initial bipartite states. Using these theorems, we obtain an analytical bound showing that certain type of quantum coherence can optimize such a process, outperforming incoherent states. This genuine quantum advantage is corroborated through a characterization of the energy transfer between two qubits. For this system, it is shown that a large enough amount of coherence is necessary and sufficient to revert the thermodynamic arrow of time. As a second crucial consequence of the presented theorems, we introduce a class of nonequilibrium states that only allow unidirectional energy flow. In this way, we broaden the set where the standard Clausius statement of the second law applies.

  2. Statistical Mechanics and Applications in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  3. Monte Carlo simulation of quantum Zeno effect in the brain

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  4. Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.

    PubMed

    Heyl, Markus; Vojta, Matthias

    2014-10-31

    One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.

  5. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    NASA Astrophysics Data System (ADS)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  6. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy

    Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  7. Stochastic arbitrage return and its implication for option pricing

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Panayides, Stephanos

    2005-01-01

    The purpose of this work is to explore the role that random arbitrage opportunities play in pricing financial derivatives. We use a non-equilibrium model to set up a stochastic portfolio, and for the random arbitrage return, we choose a stationary ergodic random process rapidly varying in time. We exploit the fact that option price and random arbitrage returns change on different time scales which allows us to develop an asymptotic pricing theory involving the central limit theorem for random processes. We restrict ourselves to finding pricing bands for options rather than exact prices. The resulting pricing bands are shown to be independent of the detailed statistical characteristics of the arbitrage return. We find that the volatility “smile” can also be explained in terms of random arbitrage opportunities.

  8. Unconditionally secure multi-party quantum commitment scheme

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Qiang; Wang, Xue; Zhan, Tao

    2018-02-01

    A new unconditionally secure multi-party quantum commitment is proposed in this paper by encoding the committed message to the phase of a quantum state. Multi-party means that there are more than one recipient in our scheme. We show that our quantum commitment scheme is unconditional hiding and binding, and hiding is perfect. Our technique is based on the interference of phase-encoded coherent states of light. Its security proof relies on the no-cloning theorem of quantum theory and the properties of quantum information.

  9. Quantum mechanics: why complex Hilbert space?

    NASA Astrophysics Data System (ADS)

    Cassinelli, G.; Lahti, P.

    2017-10-01

    We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  10. Explaining quantum correlations through evolution of causal models

    NASA Astrophysics Data System (ADS)

    Harper, Robin; Chapman, Robert J.; Ferrie, Christopher; Granade, Christopher; Kueng, Richard; Naoumenko, Daniel; Flammia, Steven T.; Peruzzo, Alberto

    2017-04-01

    We propose a framework for the systematic and quantitative generalization of Bell's theorem using causal networks. We first consider the multiobjective optimization problem of matching observed data while minimizing the causal effect of nonlocal variables and prove an inequality for the optimal region that both strengthens and generalizes Bell's theorem. To solve the optimization problem (rather than simply bound it), we develop a genetic algorithm treating as individuals causal networks. By applying our algorithm to a photonic Bell experiment, we demonstrate the trade-off between the quantitative relaxation of one or more local causality assumptions and the ability of data to match quantum correlations.

  11. The generalized second law implies a quantum singularity theorem

    NASA Astrophysics Data System (ADS)

    Wall, Aron C.

    2013-08-01

    The generalized second law can be used to prove a singularity theorem, by generalizing the notion of a trapped surface to quantum situations. Like Penrose’s original singularity theorem, it implies that spacetime is null-geodesically incomplete inside black holes, and to the past of spatially infinite Friedmann-Robertson-Walker cosmologies. If space is finite instead, the generalized second law requires that there only be a finite amount of entropy producing processes in the past, unless there is a reversal of the arrow of time. In asymptotically flat spacetime, the generalized second law also rules out traversable wormholes, negative masses, and other forms of faster-than-light travel between asymptotic regions, as well as closed timelike curves. Furthermore it is impossible to form baby universes which eventually become independent of the mother universe, or to restart inflation. Since the semiclassical approximation is used only in regions with low curvature, it is argued that the results may hold in full quantum gravity. The introduction describes the second law and its time-reverse, in ordinary and generalized thermodynamics, using either the fine-grained or the coarse-grained entropy. (The fine-grained version is used in all results except those relating to the arrow of time.)

  12. Quantum walks with an anisotropic coin II: scattering theory

    NASA Astrophysics Data System (ADS)

    Richard, S.; Suzuki, A.; de Aldecoa, R. Tiedra

    2018-05-01

    We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we consider include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary operators in a two-Hilbert spaces setting, which is of independent interest.

  13. Generalization of the Bogoliubov-Zubarev Theorem for Dynamic Pressure to the Case of Compressibility

    NASA Astrophysics Data System (ADS)

    Rudoi, Yu. G.

    2018-01-01

    We present the motivation, formulation, and modified proof of the Bogoliubov-Zubarev theorem connecting the pressure of a dynamical object with its energy within the framework of a classical description and obtain a generalization of this theorem to the case of dynamical compressibility. In both cases, we introduce the volume of the object into consideration using a singular addition to the Hamiltonian function of the physical object, which allows using the concept of the Bogoliubov quasiaverage explicitly already on a dynamical level of description. We also discuss the relation to the same result known as the Hellmann-Feynman theorem in the framework of the quantum description of a physical object.

  14. One-range addition theorems for derivatives of Slater-type orbitals.

    PubMed

    Guseinov, Israfil

    2004-06-01

    Using addition theorems for STOs introduced by the author with the help of complete orthonormal sets of psi(alpha)-ETOs (Guseinov II (2003) J Mol Model 9:190-194), where alpha=1, 0, -1, -2, ..., a large number of one-range addition theorems for first and second derivatives of STOs are established. These addition theorems are especially useful for computation of multicenter-multielectron integrals over STOs that arise in the Hartree-Fock-Roothaan approximation and also in the Hylleraas function method, which play a significant role for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids. The relationships obtained are valid for arbitrary quantum numbers, screening constants and location of STOs.

  15. Generalized Bloch theorem for complex periodic potentials: A powerful application to quantum transport calculations

    NASA Astrophysics Data System (ADS)

    Zhang, X.-G.; Varga, Kalman; Pantelides, Sokrates T.

    2007-07-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations but have not so far been adapted for quantum transport problems with open boundary conditions. Here, we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method are demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data.

  16. Open Quantum Random Walks on the Half-Line: The Karlin-McGregor Formula, Path Counting and Foster's Theorem

    NASA Astrophysics Data System (ADS)

    Jacq, Thomas S.; Lardizabal, Carlos F.

    2017-11-01

    In this work we consider open quantum random walks on the non-negative integers. By considering orthogonal matrix polynomials we are able to describe transition probability expressions for classes of walks via a matrix version of the Karlin-McGregor formula. We focus on absorbing boundary conditions and, for simpler classes of examples, we consider path counting and the corresponding combinatorial tools. A non-commutative version of the gambler's ruin is studied by obtaining the probability of reaching a certain fortune and the mean time to reach a fortune or ruin in terms of generating functions. In the case of the Hadamard coin, a counting technique for boundary restricted paths in a lattice is also presented. We discuss an open quantum version of Foster's Theorem for the expected return time together with applications.

  17. Double-time correlation functions of two quantum operations in open systems

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2017-10-01

    A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flego, S.P.; Plastino, A.; Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca

    We explore intriguing links connecting Hellmann-Feynman's theorem to a thermodynamics information-optimizing principle based on Fisher's information measure. - Highlights: > We link a purely quantum mechanical result, the Hellmann-Feynman theorem, with Jaynes' information theoretical reciprocity relations. > These relations involve the coefficients of a series expansion of the potential function. > We suggest the existence of a Legendre transform structure behind Schroedinger's equation, akin to the one characterizing thermodynamics.

  19. Steady states of OQBM: Central Limit Theorem, Gaussian and non-Gaussian behavior

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    Open Quantum Brownian Motion (OQBM) describes a Brownian particle with an additional internal quantum degree of freedom. Originally, it was introduced as a scaling limit of Open Quantum Walks (OQWs). Recently, it was noted, that for the model of free OQBM with a two-level system as an internal degree of freedom and decoherent coupling to a dissipative environment, one could use weak external driving of the internal degree of freedom to manipulate the steady-state position of the walker. This observation establishes a useful connection between controllable parameters of the OQBM, e.g. driving strengths and magnitude of detuning, and its steady state properties. Although OQWs satisfy a central limit theorem (CLT), it is known, that OQBM, in general, does not. The aim of this work is to derive steady states for some particular OQBMs and observe possible transitions from Gaussian to non-Gaussian behavior depending on the choice of quantum coin and as a function of diffusion coefficient and dissipation strength.

  20. Quantum mechanics: why complex Hilbert space?

    PubMed

    Cassinelli, G; Lahti, P

    2017-11-13

    We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  1. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    NASA Astrophysics Data System (ADS)

    Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.

    2017-05-01

    Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Robert; Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125; Mitchison, Graeme

    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's 'exponential' approximation by 'almost-product' states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choicemore » of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems.« less

  3. Recoverability in quantum information theory

    NASA Astrophysics Data System (ADS)

    Wilde, Mark

    The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.

  4. Connected components of irreducible maps and 1D quantum phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szehr, Oleg, E-mail: oleg.szehr@posteo.de; Wolf, Michael M., E-mail: wolf@ma.tum.de

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture inmore » that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.« less

  5. A short walk in quantum probability

    NASA Astrophysics Data System (ADS)

    Hudson, Robin

    2018-04-01

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas. This article is part of the themed issue `Hilbert's sixth problem'.

  6. Quantum State Tomography of a Fiber-Based Source of Polarization-Entangled Photon Pairs

    DTIC Science & Technology

    2007-12-20

    Processing 175−179 (IEEE, Bangalore, 1984). 4. A. K. Ekert, “ Quantum cryptography based on Bell’s theorem ,” Phys. Rev. Lett. 67, 661–663 (1991). 5...NUMBERS Quantum State Tomography of a Fiber- Based Source of MURI Center for Photonic Quantum Information Systems: AROIARDA Program Polarization...Computer Society Press, Los Alamitos, 1996). 7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “ Quantum cryptography ,” Rev. Mod. Phys. 74, 145

  7. Bell's theorem and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rosen, Nathan

    1994-02-01

    Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor

  8. Nonadditive entropy Sq and nonextensive statistical mechanics: Applications in geophysics and elsewhere

    NASA Astrophysics Data System (ADS)

    Tsallis, Constantino

    2012-06-01

    The celebrated Boltzmann-Gibbs (BG) entropy, S BG = -kΣi p i ln p i, and associated statistical mechanics are essentially based on hypotheses such as ergodicity, i.e., when ensemble averages coincide with time averages. This dynamical simplification occurs in classical systems (and quantum counterparts) whose microscopic evolution is governed by a positive largest Lyapunov exponent (LLE). Under such circumstances, relevant microscopic variables behave, from the probabilistic viewpoint, as (nearly) independent. Many phenomena exist, however, in natural, artificial and social systems (geophysics, astrophysics, biophysics, economics, and others) that violate ergodicity. To cover a (possibly) wide class of such systems, a generalization (nonextensive statistical mechanics) of the BG theory was proposed in 1988. This theory is based on nonadditive entropies such as S_q = kfrac{{1 - sumnolimits_i {p_i^q } }} {{q - 1}}left( {S_1 = S_{BG} } right). Here we comment some central aspects of this theory, and briefly review typical predictions, verifications and applications in geophysics and elsewhere, as illustrated through theoretical, experimental, observational, and computational results.

  9. Power-law decay exponents: A dynamical criterion for predicting thermalization

    NASA Astrophysics Data System (ADS)

    Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.

    2017-01-01

    From the analysis of the relaxation process of isolated lattice many-body quantum systems quenched far from equilibrium, we deduce a criterion for predicting when they are certain to thermalize. It is based on the algebraic behavior ∝t-γ of the survival probability at long times. We show that the value of the power-law exponent γ depends on the shape and filling of the weighted energy distribution of the initial state. Two scenarios are explored in detail: γ ≥2 and γ <1 . Exponents γ ≥2 imply that the energy distribution of the initial state is ergodically filled and the eigenstates are uncorrelated, so thermalization is guaranteed to happen. In this case, the power-law behavior is caused by bounds in the energy spectrum. Decays with γ <1 emerge when the energy eigenstates are correlated and signal lack of ergodicity. They are typical of systems undergoing localization due to strong onsite disorder and are found also in clean integrable systems.

  10. Quantum Teleportation and Grover's Algorithm Without the Wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2017-02-01

    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover's search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

  11. Quantum chaos in nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu

    A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  12. Transient quantum fluctuation theorems and generalized measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2014-01-01

    The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol. We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.

  13. Transient quantum fluctuation theorems and generalized measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2014-05-01

    The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol.We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.

  14. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE PAGES

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    2016-07-11

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  15. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  16. A Cameron-Storvick Theorem for Analytic Feynman Integrals on Product Abstract Wiener Space and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae Gil, E-mail: jgchoi@dankook.ac.kr; Chang, Seung Jun, E-mail: sejchang@dankook.ac.kr

    In this paper we derive a Cameron-Storvick theorem for the analytic Feynman integral of functionals on product abstract Wiener space B{sup 2}. We then apply our result to obtain an evaluation formula for the analytic Feynman integral of unbounded functionals on B{sup 2}. We also present meaningful examples involving functionals which arise naturally in quantum mechanics.

  17. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states

    PubMed Central

    Haw, Jing Yan; Zhao, Jie; Dias, Josephine; Assad, Syed M.; Bradshaw, Mark; Blandino, Rémi; Symul, Thomas; Ralph, Timothy C.; Lam, Ping Koy

    2016-01-01

    The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications. PMID:27782135

  18. Testing subleading multiple soft graviton theorem for CHY prescription

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay

    2018-01-01

    In arXiv:1707.06803 we derived the subleading multiple soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. In this paper we verify this explicitly using the CHY formula for tree level scattering amplitudes of arbitrary number of gravitons in Einstein gravity. We pay special care to fix the signs of the amplitudes and resolve an apparent discrepancy between our general results in arXiv:1707.06803 and previous results on soft graviton theorem from CHY formula.

  19. Classical-Quantum Correspondence by Means of Probability Densities

    NASA Technical Reports Server (NTRS)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  20. The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it

    In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less

  1. Quantum Theory from Observer's Mathematics Point of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Dmitriy; Khots, Boris

    2010-05-04

    This work considers the linear (time-dependent) Schrodinger equation, quantum theory of two-slit interference, wave-particle duality for single photons, and the uncertainty principle in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics, see [1]. Certain theoretical results and communications pertaining to these theorems are also provided.

  2. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  3. Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains

    NASA Astrophysics Data System (ADS)

    Formentin, M.; Külske, C.; Reichenbachs, A.

    2012-01-01

    We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.

  4. Understanding squeezing of quantum states with the Wigner function

    NASA Technical Reports Server (NTRS)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  5. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  6. Buonomano against Bell: Nonergodicity or nonlocality?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    The aim of this note is to attract attention of the quantum foundational community to the fact that in Bell’s arguments, one cannot distinguish two hypotheses: (a) quantum mechanics is nonlocal, (b) quantum mechanics is nonergodic. Therefore, experimental violations of Bell’s inequality can be as well interpreted as supporting the hypothesis that stochastic processes induced by quantum measurements are nonergodic. The latter hypothesis was discussed actively by Buonomano since 1980. However, in contrast to Bell’s hypothesis on nonlocality, it did not attract so much attention. The only experiment testing the hypothesis on nonergodicity was performed in neutron interferometry (by Summhammer, in 1989). This experiment can be considered as rejecting this hypothesis. However, it cannot be considered as a decisive experiment. New experiments are badly needed. We point out that a nonergodic model can be realistic, i.e. the distribution of hidden (local!) variables is well-defined. We also discuss coupling of violation of the Bell inequality with violation of the condition of weak mixing for ergodic dynamical systems.

  7. A short walk in quantum probability.

    PubMed

    Hudson, Robin

    2018-04-28

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  8. Quantum many-body adiabaticity, topological Thouless pump and driven impurity in a one-dimensional quantum fluid

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim

    2018-02-01

    The quantum adiabatic theorem states that a driven system can be kept arbitrarily close to the instantaneous eigenstate of its Hamiltonian if the latter varies in time slowly enough. When it comes to applying the adiabatic theorem in practice, the key question to be answered is how slow slowly enough is. This question can be an intricate one, especially for many-body systems, where the limits of slow driving and large system size may not commute. Recently we have shown how the quantum adiabaticity in many-body systems is related to the generalized orthogonality catastrophe [arXiv 1611.00663, to appear in Phys. Rev. Lett.]. We have proven a rigorous inequality relating these two phenomena and applied it to establish conditions for the quantized transport in the topological Thouless pump. In the present contribution we (i) review these developments and (ii) apply the inequality to establish the conditions for adiabaticity in a one-dimensional system consisting of a quantum fluid and an impurity particle pulled through the fluid by an external force. The latter analysis is vital for the correct quantitative description of the phenomenon of quasi-Bloch oscillations in a one-dimensional translation invariant impurity-fluid system.

  9. A Possible Operational Motivation for the Orthocomplementation in Quantum Structures

    NASA Astrophysics Data System (ADS)

    D'Hooghe, Bart

    2010-11-01

    In the foundations of quantum mechanics Gleason’s theorem dictates the uniqueness of the state transition probability via the inner product of the corresponding state vectors in Hilbert space, independent of which measurement context induces this transition. We argue that the state transition probability should not be regarded as a secondary concept which can be derived from the structure on the set of states and properties, but instead should be regarded as a primitive concept for which measurement context is crucial. Accordingly, we adopt an operational approach to quantum mechanics in which a physical entity is defined by the structure of its set of states, set of properties and the possible (measurement) contexts which can be applied to this entity. We put forward some elementary definitions to derive an operational theory from this State-COntext-Property (SCOP) formalism. We show that if the SCOP satisfies a Gleason-like condition, namely that the state transition probability is independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented, which is one of the ‘quantum axioms’ used in the Piron-Solèr representation theorem for quantum systems. In this sense we obtain a possible physical meaning for the orthocomplementation widely used in quantum structures.

  10. Tests of alternative quantum theories with neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.

    2014-12-04

    According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.

  11. Bit-Oriented Quantum Public-Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2018-02-01

    Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem (Q P K C) based on the Bell states. By H o l e v o's theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack (C P A). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.

  12. Extracontextuality and extravalence in quantum mechanics.

    PubMed

    Auffèves, Alexia; Grangier, Philippe

    2018-07-13

    We develop the point of view where quantum mechanics results from the interplay between the quantized number of 'modalities' accessible to a quantum system, and the continuum of 'contexts' that are required to define these modalities. We point out the specific roles of 'extracontextuality' and 'extravalence' of modalities, and relate them to the Kochen-Specker and Gleason theorems.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  13. Bit-Oriented Quantum Public-Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2018-06-01

    Quantum public key encryption system provides information confidentiality using quantum mechanics. This paper presents a quantum public key cryptosystem ( Q P K C) based on the Bell states. By H o l e v o' s theorem, the presented scheme provides the security of the secret key using one-wayness during the QPKC. While the QPKC scheme is information theoretic security under chosen plaintext attack ( C P A). Finally some important features of presented QPKC scheme can be compared with other QPKC scheme.

  14. Quantum work statistics of charged Dirac particles in time-dependent fields

    DOE PAGES

    Deffner, Sebastian; Saxena, Avadh

    2015-09-28

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.

  15. The faithful remote preparation of general quantum states

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Deng, Yun; Chen, Xiu-Bo; Yang, Yi-Xian

    2013-01-01

    This paper is to establish a theoretical framework for faithful and deterministic remote state preparation, which is related to the classical Hurwitz theorem. And then based on the new theory various schemes with different characteristics are presented. Moreover, the permutation group and the partially quantum resources have also discussed for faithful schemes.

  16. Behavior of the maximum likelihood in quantum state tomography

    NASA Astrophysics Data System (ADS)

    Scholten, Travis L.; Blume-Kohout, Robin

    2018-02-01

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.

  17. Behavior of the maximum likelihood in quantum state tomography

    DOE PAGES

    Blume-Kohout, Robin J; Scholten, Travis L.

    2018-02-22

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  18. Behavior of the maximum likelihood in quantum state tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  19. Bosonization in Space-Time

    NASA Astrophysics Data System (ADS)

    Stone, Michael

    The following sections are included: * Introduction * Free Fermi Fields * Free Bosons * The Bosonization Rules * A Quantum Pythagoras Theorem * Appendix 1A. Complex Coordinates * Appendix IB. Conformal Symmetry * References

  20. No-go theorem for boson condensation in topologically ordered quantum liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupert, Titus; He, Huan; Keyserlingk, Curt von

    Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3) k TQFTs with odd k. We further show that a 'layered' theory obtained by tensoring SO(3) k TQFT with itself any integer number of times does not admit condensation transitions either. Furthermore, this includes (as the casemore » k = 3) the noncondensability of any number of layers of the Fibonacci TQFT.« less

  1. No-go theorem for boson condensation in topologically ordered quantum liquids

    DOE PAGES

    Neupert, Titus; He, Huan; Keyserlingk, Curt von; ...

    2016-12-07

    Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3) k TQFTs with odd k. We further show that a 'layered' theory obtained by tensoring SO(3) k TQFT with itself any integer number of times does not admit condensation transitions either. Furthermore, this includes (as the casemore » k = 3) the noncondensability of any number of layers of the Fibonacci TQFT.« less

  2. Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems

    NASA Astrophysics Data System (ADS)

    Laloë, F.

    2001-06-01

    This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: They are forbidden by very general arguments based on realism and local causality. In fact, these correlations are completely impossible in any circumstance, except for very special situations designed by physicists especially to observe these purely quantum effects. Another general point that is emphasized is the necessity for the theory to predict the emergence of a single result in a single realization of an experiment. For this purpose, orthodox quantum mechanics introduces a special postulate: the reduction of the state vector, which comes in addition to the Schrödinger evolution postulate. Nevertheless, the presence in parallel of two evolution processes of the same object (the state vector) may be a potential source for conflicts; various attitudes that are possible to avoid this problem are discussed in this text. After a brief historical introduction, recalling how the very special status of the state vector has emerged in quantum mechanics, various conceptual difficulties are introduced and discussed. The Einstein-Podolsky-Rosen (EPR) theorem is presented with the help of a botanical parable, in a way that emphasizes how deeply the EPR reasoning is rooted into what is often called "scientific method." In another section the Greenberger-Horne-Zeilinger argument, the Hardy impossibilities, as well as the Bell-Kochen-Specker theorem are introduced in simple terms. The final two sections attempt to give a summary of the present situation: One section discusses nonlocality and entanglement as we see it presently, with brief mention of recent experiments; the last section contains a (nonexhaustive) list of various attitudes that are found among physicists, and that are helpful to alleviate the conceptual difficulties of quantum mechanics.

  3. Emulating Many-Body Localization with a Superconducting Quantum Processor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Chen, Jin-Jun; Zeng, Yu; Zhang, Yu-Ran; Song, Chao; Liu, Wuxin; Guo, Qiujiang; Zhang, Pengfei; Xu, Da; Deng, Hui; Huang, Keqiang; Wang, H.; Zhu, Xiaobo; Zheng, Dongning; Fan, Heng

    2018-02-01

    The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence of many-body localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization, which only addresses noninteracting particles in the presence of disorder, greatly challenges this concept, because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography. Here we present an experiment fully emulating the MBL dynamics with a 10-qubit superconducting quantum processor, which represents a spin-1 /2 X Y model featuring programmable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and, more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems on the platform of large-scale multiqubit superconducting quantum processors.

  4. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  5. A No-Go Theorem for the Continuum Limit of a Periodic Quantum Spin Chain

    NASA Astrophysics Data System (ADS)

    Jones, Vaughan F. R.

    2018-01-01

    We show that the Hilbert space formed from a block spin renormalization construction of a cyclic quantum spin chain (based on the Temperley-Lieb algebra) does not support a chiral conformal field theory whose Hamiltonian generates translation on the circle as a continuous limit of the rotations on the lattice.

  6. Averaging in SU(2) open quantum random walk

    NASA Astrophysics Data System (ADS)

    Clement, Ampadu

    2014-03-01

    We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.

  7. Quantum technology past, present, future: quantum energetics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.

    2017-04-01

    Since the development of quantum physics in the early part of the 1900s, this field of study has made remarkable contributions to our civilization. Some of these advances include lasers, light-emitting diodes (LED), sensors, spectroscopy, quantum dots, quantum gravity and quantum entanglements. In 1998, the NASA Langley Research Center established a quantum technology committee to monitor the progress in this area and initiated research to determine the potential of quantum technology for future NASA missions. The areas of interest in quantum technology at NASA included fundamental quantum-optics materials associated with quantum dots and quantum wells, device-oriented photonic crystals, smart optics, quantum conductors, quantum information and computing, teleportation theorem, and quantum energetics. A brief review of the work performed, the progress made in advancing these technologies, and the potential NASA applications of quantum technology will be presented.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  9. Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially Separated Entangled Qutrits.

    PubMed

    Hu, Xiao-Min; Chen, Jiang-Shan; Liu, Bi-Heng; Guo, Yu; Huang, Yun-Feng; Zhou, Zong-Quan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-10-21

    The physical impact and the testability of the Kochen-Specker (KS) theorem is debated because of the fact that perfect compatibility in a single quantum system cannot be achieved in practical experiments with finite precision. Here, we follow the proposal of A. Cabello and M. T. Cunha [Phys. Rev. Lett. 106, 190401 (2011)], and present a compatibility-loophole-free experimental violation of an inequality of noncontextual theories by two spatially separated entangled qutrits. A maximally entangled qutrit-qutrit state with a fidelity as high as 0.975±0.001 is prepared and distributed to separated spaces, and these two photons are then measured locally, providing the compatibility requirement. The results show that the inequality for noncontextual theory is violated by 31 standard deviations. Our experiments pave the way to close the debate about the testability of the KS theorem. In addition, the method to generate high-fidelity and high-dimension entangled states will provide significant advantages in high-dimension quantum encoding and quantum communication.

  10. H-theorem and Maxwell demon in quantum physics

    NASA Astrophysics Data System (ADS)

    Kirsanov, N. S.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.; Blatter, G.; Lesovik, G. B.

    2018-02-01

    The Second Law of Thermodynamics states that temporal evolution of an isolated system occurs with non-diminishing entropy. In quantum realm, this holds for energy-isolated systems the evolution of which is described by the so-called unital quantum channel. The entropy of a system evolving in a non-unital quantum channel can, in principle, decrease. We formulate a general criterion of unitality for the evolution of a quantum system, enabling a simple and rigorous approach for finding and identifying the processes accompanied by decreasing entropy in energy-isolated systems. We discuss two examples illustrating our findings, the quantum Maxwell demon and heating-cooling process within a two-qubit system.

  11. Ideas of Flat and Curved Space in History of Physics

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2006-04-01

    Since ``everything which is not prohibited is compulsory'' (assigned to Gell-Mann) we can postulate infinite flat Cartesian N-dimensional (N: any integer) space-time (ST) as embedding for any curved ST. Ergodicity raises quest of whether total number of inflationary and/or Everett bubbles (mini-verses) is finite, countably infinite (aleph-zero) or uncountably infinite (aleph-one). Are these bubbles form Gaussian distribution or form some non-random subsetting? Perhaps, communication between mini-verses (idea of D.Deutsch) can be facilitated by a kind of minimax non-local dynamics akin to Fermat principle? (Minimax Principle in Bubble Cosmology). Even such classical effects as magnetism and polarization have some non-local features. Can we go below the Planck length to perhaps Compton wavelength of our ``Hubble's bubble'' (h/Mc = 10 to minus 95 m, if M = 10 to 54 kg)? When talking about time loops and ergodicity (eternal return paradigm) is there some hysterisis in the way quantum states are accessed in ``forward'' or ``reverse'' direction? (reverse direction implies backward causality of J.Wheeler and/or Aristotelian final causation).

  12. Typical Local Measurements in Generalized Probabilistic Theories: Emergence of Quantum Bipartite Correlations

    NASA Astrophysics Data System (ADS)

    Kleinmann, Matthias; Osborne, Tobias J.; Scholz, Volkher B.; Werner, Albert H.

    2013-01-01

    What singles out quantum mechanics as the fundamental theory of nature? Here we study local measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalization of Dvoretzky’s theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.

  13. Classical noise, quantum noise and secure communication

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Langlois, J.

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.

  14. Some conservative estimates in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2006-08-15

    Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q{sub c} {approx} 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation H(Q{sub c})=C-bar({rho})/2, where {rho} is the density matrix of the input ensemble, C-bar({rho}) is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, R.M.

    A new statistical model (the quantum-statistical model (QSM)) was recently introduced by Kalitkin and Kuzmina for the calculation of thermodynamic properties of compressed matter. This paper examines the QSM and gives (i) a numerical QSM calculation of pressure and energy for aluminum and comparison to existing augmented-plane-wave data; (ii) display of separate kinetic, exchange, and quantum pressure terms; (iii) a study of electron density at the nucleus; (iv) a study of the effects of the Kirzhnitz-Weizsacker parameter controlling the gradient terms; (v) an analytic expansion for very high densities; and (vi) rigorous pressure theorems including a general version of themore » virial theorem which applies to an arbitrary microscopic volume. It is concluded that the QSM represents the most accurate and consistent theory of the Thomas-Fermi type.« less

  16. Black holes, information, and the universal coefficient theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrascu, Andrei T.

    2016-07-15

    General relativity is based on the diffeomorphism covariant formulation of the laws of physics while quantum mechanics is based on the principle of unitary evolution. In this article, I provide a possible answer to the black hole information paradox by means of homological algebra and pairings generated by the universal coefficient theorem. The unitarity of processes involving black holes is restored by the demanding invariance of the laws of physics to the change of coefficient structures in cohomology.

  17. Memory-built-in quantum cloning in a hybrid solid-state spin register

    NASA Astrophysics Data System (ADS)

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-07-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  18. Memory-built-in quantum cloning in a hybrid solid-state spin register.

    PubMed

    Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M

    2015-07-16

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  19. A simple condition for uniqueness of the absolutely continuous ergodic measure and its application to economic models

    NASA Astrophysics Data System (ADS)

    Sato, Kenji; Yano, Makoto

    2012-09-01

    Unique existence of the absolutely continuous ergodic measure, or existence of ergodic chaos (in a strong sense), has been considered important in economics since it explains the mechanism underlying economic fluctuations. In the present study, a simple sufficient condition for ergodic chaos is proved and applied to economic models.

  20. Work Measurement as a Generalized Quantum Measurement

    NASA Astrophysics Data System (ADS)

    Roncaglia, Augusto J.; Cerisola, Federico; Paz, Juan Pablo

    2014-12-01

    We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P (w ). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P (w ). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.

  1. Extended Quantum Field Theory, Index Theory, and the Parity Anomaly

    NASA Astrophysics Data System (ADS)

    Müller, Lukas; Szabo, Richard J.

    2018-06-01

    We use techniques from functorial quantum field theory to provide a geometric description of the parity anomaly in fermionic systems coupled to background gauge and gravitational fields on odd-dimensional spacetimes. We give an explicit construction of a geometric cobordism bicategory which incorporates general background fields in a stack, and together with the theory of symmetric monoidal bicategories we use it to provide the concrete forms of invertible extended quantum field theories which capture anomalies in both the path integral and Hamiltonian frameworks. Specialising this situation by using the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners due to Loya and Melrose, we obtain a new Hamiltonian perspective on the parity anomaly. We compute explicitly the 2-cocycle of the projective representation of the gauge symmetry on the quantum state space, which is defined in a parity-symmetric way by suitably augmenting the standard chiral fermionic Fock spaces with Lagrangian subspaces of zero modes of the Dirac Hamiltonian that naturally appear in the index theorem. We describe the significance of our constructions for the bulk-boundary correspondence in a large class of time-reversal invariant gauge-gravity symmetry-protected topological phases of quantum matter with gapless charged boundary fermions, including the standard topological insulator in 3 + 1 dimensions.

  2. The Butterfly and the Photon:. New Perspectives on Unpredictability, and the Notion of Casual Reality, in Quantum Physics

    NASA Astrophysics Data System (ADS)

    Palmer, T. N.

    2012-12-01

    This essay discusses a proposal that draws together the three great revolutionary theories of 20th Century physics: quantum theory, relativity theory and chaos theory. Motivated by the Bohmian notion of implicate order, and what in chaos theory would be described as a strange attractor, the proposal attributes special ontological significance to certain non-computable, dynamically invariant state-space geometries for the universe as a whole. Studying the phenomenon of quantum interference, it is proposed to understand quantum wave-particle duality, and indeed classical electromagnetism, in terms of particles in space time and waves on this state space geometry. Studying the EPR experiment, the acausal constraints that this invariant geometry provides on spatially distant degrees of freedom, provides a way for the underlying dynamics to be consistent with the Bell theorem, yet be relativistically covariant ("nonlocality without nonlocality"). It is suggested that the physical basis for such non-computable geometries lies in properties of gravity with the information irreversibility implied by black hole no-hair theorems being crucial. In conclusion it is proposed that quantum theory may be emergent from an extended theory of gravity which is geometric not only in space time, but also in state space. Such a notion would undermine most current attempts to "quantise gravity".

  3. Floquet Supersymmetry

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Hsieh, Timothy H.

    2018-05-01

    We show that time-reflection symmetry in periodically driven (Floquet) quantum systems enables an inherently nonequilibrium phenomenon structurally similar to quantum-mechanical supersymmetry. In particular, we find Floquet analogs of the Witten index that place lower bounds on the degeneracies of states with quasienergies 0 and π . Moreover, we show that in some cases time-reflection symmetry can also interchange fermions and bosons, leading to fermion-boson pairs with opposite quasienergy. We provide a simple class of disordered, interacting, and ergodic Floquet models with an exponentially large number of states at quasienergies 0 and π , which are robust as long as the time-reflection symmetry is preserved. Floquet supersymmetry manifests itself in the evolution of certain local observables as a period-doubling effect with dramatic finite-size scaling, providing a clear signature for experiments.

  4. Dynamical manifestations of quantum chaos

    NASA Astrophysics Data System (ADS)

    Torres Herrera, Eduardo Jonathan; Santos, Lea

    2017-04-01

    A main feature of a chaotic quantum system is a rigid spectrum, where the levels do not cross. Dynamical quantities, such as the von Neumann entanglement entropy, Shannon information entropy, and out-of-time correlators can differentiate the ergodic from the nonergodic phase in disordered interacting systems, but not level repulsion from level crossing in the delocalized phase of disordered and clean models. This is in contrast with the long-time evolution of the survival probability of the initial state. The onset of correlated energy levels is manifested by a drop, referred to as correlation hole, below the asymptotic value of the survival probability. The correlation hole is an unambiguous indicator of the presence of level repulsion. EJTH is grateful to VIEP, BUAP for financial support through the VIEP projects program.

  5. Generalized reciprocity theorem for semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1985-01-01

    A reciprocity theorem is presented that relates the short-circuit current of a device, induced by a carrier generation source, to the minority-carrier Fermi level in the dark. The basic relation is general under low injection. It holds for three-dimensional devices with position dependent parameters (energy gap, electron affinity, mobility, etc.), and for transient or steady-state conditions. This theorem allows calculation of the internal quantum efficiency of a solar cell by using the analysis of the device in the dark. Other applications could involve measurements of various device parameters, interfacial surface recombination velocity at a polcrystalline silicon emitter contact, for rexample, by using steady-state or transient photon or mass-particle radiation.

  6. Resolution of the EPR Paradox for Fermion Spin Correlations

    NASA Astrophysics Data System (ADS)

    Close, Robert

    2011-10-01

    The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.

  7. The Holographic F Theorem

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2017-12-01

    The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.

  8. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  9. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  10. Bell Nonlocality, Signal Locality and Unpredictability (or What Bohr Could Have Told Einstein at Solvay Had He Known About Bell Experiments)

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Eric G.; Wiseman, Howard M.

    2012-10-01

    The 1964 theorem of John Bell shows that no model that reproduces the predictions of quantum mechanics can simultaneously satisfy the assumptions of locality and determinism. On the other hand, the assumptions of signal locality plus predictability are also sufficient to derive Bell inequalities. This simple theorem, previously noted but published only relatively recently by Masanes, Acin and Gisin, has fundamental implications not entirely appreciated. Firstly, nothing can be concluded about the ontological assumptions of locality or determinism independently of each other—it is possible to reproduce quantum mechanics with deterministic models that violate locality as well as indeterministic models that satisfy locality. On the other hand, the operational assumption of signal locality is an empirically testable (and well-tested) consequence of relativity. Thus Bell inequality violations imply that we can trust that some events are fundamentally unpredictable, even if we cannot trust that they are indeterministic. This result grounds the quantum-mechanical prohibition of arbitrarily accurate predictions on the assumption of no superluminal signalling, regardless of any postulates of quantum mechanics. It also sheds a new light on an early stage of the historical debate between Einstein and Bohr.

  11. A perspective on quantum integrability in many-body-localized and Yang-Baxter systems

    NASA Astrophysics Data System (ADS)

    Moore, Joel E.

    2017-10-01

    Two of the most active areas in quantum many-particle dynamics involve systems with an unusually large number of conservation laws. Many-body-localized systems generalize ideas of Anderson localization by disorder to interacting systems. While localization still exists with interactions and inhibits thermalization, the interactions between conserved quantities lead to some dramatic differences from the Anderson case. Quantum integrable models such as the XXZ spin chain or Bose gas with delta-function interactions also have infinite sets of conservation laws, again leading to modifications of conventional thermalization. A practical way to treat the hydrodynamic evolution from local equilibrium to global equilibrium in such models is discussed. This paper expands upon a presentation at a discussion meeting of the Royal Society on 7 February 2017. The work described was carried out with a number of collaborators, including Jens Bardarson, Vir Bulchandani, Roni Ilan, Christoph Karrasch, Siddharth Parameswaran, Frank Pollmann and Romain Vasseur. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  12. Introduction

    NASA Astrophysics Data System (ADS)

    Cohen, E. G. D.

    Lecture notes are organized around the key word dissipation, while focusing on a presentation of modern theoretical developments in the study of irreversible phenomena. A broad cross-disciplinary perspective towards non-equilibrium statistical mechanics is backed by the general theory of nonlinear and complex dynamical systems. The classical-quantum intertwine and semiclassical dissipative borderline issue (decoherence, "classical out of quantum") are here included . Special emphasis is put on links between the theory of classical and quantum dynamical systems (temporal disorder, dynamical chaos and transport processes) with central problems of non-equilibrium statistical mechanics like e.g. the connection between dynamics and thermodynamics, relaxation towards equilibrium states and mechanisms capable to drive and next maintain the physical system far from equilibrium, in a non-equilibrium steady (stationary) state. The notion of an equilibrium state - towards which a system naturally evolves if left undisturbed - is a fundamental concept of equilibrium statistical mechanics. Taken as a primitive point of reference that allows to give an unambiguous status to near equilibrium and far from equilibrium systems, together with the dynamical notion of a relaxation (decay) towards a prescribed asymptotic invariant measure or probability distribution (properties of ergodicity and mixing are implicit). A related issue is to keep under control the process of driving a physical system away from an initial state of equilibrium and either keeping it in another (non-equilibrium) steady state or allowing to restore the initial data (return back, relax). To this end various models of environment (heat bath, reservoir, thermostat, measuring instrument etc.), and the environment - system coupling are analyzed. The central theme of the book is the dynamics of dissipation and various mechanisms responsible for the irreversible behaviour (transport properties) of open systems on classical and quantum levels of description. A distinguishing feature of these lecture notes is that microscopic foundations of irreversibility are investigated basically in terms of "small" systems, when the "system" and/or "environment" may have a finite (and small) number of degrees of freedom and may be bounded. This is to be contrasted with the casual understanding of statistical mechanics which is regarded to refer to systems with a very large number of degrees of freedom. In fact, it is commonly accepted that the accumulation of effects due to many (range of the Avogadro number) particles is required for statistical mechanics reasoning. Albeit those large numbers are not at all sufficient for transport properties. A helpful hint towards this conceptual turnover comes from the observation that for chaotic dynamical systems the random time evolution proves to be compatible with the underlying purely deterministic laws of motion. Chaotic features of the classical dynamics already appear in systems with two degrees of freedom and such systems need to be described in statistical terms, if we wish to quantify the dynamics of relaxation towards an invariant ergodic measure. The relaxation towards equilibrium finds a statistical description through an analysis of statistical ensembles. This entails an extension of the range of validity of statistical mechanics to small classical systems. On the other hand, the dynamics of fluctuations in macroscopic dissipative systems (due to their molecular composition and thermal mobility) may render a characterization of such systems as being chaotic. That motivates attempts of understanding the role of microscopic chaos and various "chaotic hypotheses" - dynamical systems approach is being pushed down to the level of atoms, molecules and complex matter constituents, whose natural substitute are low-dimensional model subsystems (encompassing as well the mesoscopic "quantum chaos") - in non-equilibrium transport phenomena. On the way a number of questions is addressed like e.g.: is there, or what is the nature of a connection between chaos (modern theory of dynamical systems) and irreversible thermodynamics; can really quantum chaos explain some peculiar features of quantum transport? The answer in both cases is positive, modulo a careful discrimination between viewing the dynamical chaos as a necessary or sufficient basis for irreversibility. In those dynamical contexts, another key term dynamical semigroups refers to major technical tools appropriate for the "dissipative mathematics", modelling irreversible behaviour on the classical and quantum levels of description. Dynamical systems theory and "quantum chaos" research involve both a high level of mathematical sophistication and heavy computer "experimentation". One of the present volume specific flavors is a tutorial access to quite advanced mathematical tools. They gradually penetrate the classical and quantum dynamical semigroup description, while culminating in the noncommutative Brillouin zone construction as a prerequisite to understand transport in aperiodic solids. Lecture notes are structured into chapters to give a better insight into major conceptual streamlines. Chapter I is devoted to a discussion of non-equilibrium steady states and, through so-called chaotic hypothesis combined with suitable fluctuation theorems, elucidates the role of Sinai-Ruelle-Bowen distribution in both equilibrium and non-equilibrium statistical physics frameworks (E. G. D. Cohen). Links between dynamics and statistics (Boltzmann versus Tsallis) are also discussed. Fluctuation relations and a survey of deterministic thermostats are given in the context of non-equilibrium steady states of fluids (L. Rondoni). Response of systems driven far from equilibrium is analyzed on the basis of a central assertion about the existence of the statistical representation in terms of an ensemble of dynamical realizations of the driving process. Non-equilibrium work relation is deduced for irreversible processes (C. Jarzynski). The survey of non-equilibrium steady states in statistical mechanics of classical and quantum systems employs heat bath models and the random matrix theory input. The quantum heat bath analysis and derivation of fluctuation-dissipation theorems is performed by means of the influence functional technique adopted to solve quantum master equations (D. Kusnezov). Chapter II deals with an issue of relaxation and its dynamical theory in both classical and quantum contexts. Pollicott-Ruelle resonance background for the exponential decay scenario is discussed for irreversible processes of diffusion in the Lorentz gas and multibaker models (P. Gaspard). The Pollicott-Ruelle theory reappears as a major inspiration in the survey of the behaviour of ensembles of chaotic systems, with a focus on model systems for which no rigorous results concerning the exponential decay of correlations in time is available (S. Fishman). The observation, that non-equilibrium transport processes in simple classical chaotic systems can be described in terms of fractal structures developing in the system phase space, links their formation and properties with the entropy production in the course of diffusion processes displaying a low dimensional deterministic (chaotic) origin (J. R. Dorfman). Chapter III offers an introduction to the theory of dynamical semigroups. Asymptotic properties of Markov operators and Markov semigroups acting in the set of probability densities (statistical ensemble notion is implicit) are analyzed. Ergodicity, mixing, strong (complete) mixing and sweeping are discussed in the familiar setting of "noise, chaos and fractals" (R. Rudnicki). The next step comprises a passage to quantum dynamical semigroups and completely positive dynamical maps, with an ultimate goal to introduce a consistent framework for the analysis of irreversible phenomena in open quantum systems, where dissipation and decoherence are crucial concepts (R. Alicki). Friction and damping in classical and quantum mechanics of finite dissipative systems is analyzed by means of Markovian quantum semigroups with special emphasis on the issue of complete positivity (M. Fannes). Specific two-level model systems of elementary particle physics (kaons) and rudiments of neutron interferometry are employed to elucidate a distinction between positivity and complete positivity (F. Benatti). Quantization of dynamics of stochastic models related to equilibrium Gibbs states results in dynamical maps which form quantum stochastic dynamical semigroups (W. A. Majewski). Chapter IV addresses diverse but deeply interrelated features of driven chaotic (mesoscopic) classical and quantum systems, their dissipative properties, notions of quantum irreversibility, entanglement, dephasing and decoherence. A survey of non-perturbative quantum effects for open quantum systems is concluded by outlining the discrepancies between random matrix theory and non-perturbative semiclassical predictions (D. Cohen). As a useful supplement to the subject of bounded open systems, methods of quantum state control in a cavity (coherent versus incoherent dynamics and dissipation) are described for low dimensional quantum systems (A. Buchleitner). The dynamics of open quantum systems can be alternatively described by means of non-Markovian stochastic Schrödinger equation, jointly for an open system and its environment, which moves us beyond the Linblad evolution scenario of Markovian dynamical semigroups. The quantum Brownian motion is considered (W. Strunz) . Chapter V enforces a conceptual transition 'from "small" to "large" systems with emphasis on irreversible thermodynamics of quantum transport. Typical features of the statistical mechanics of infinitely extended systems and the dynamical (small) systems approach are described by means of representative examples of relaxation towards asymptotic steady states: quantum one-dimensional lattice conductor and an open multibaker map (S. Tasaki). Dissipative transport in aperiodic solids is reviewed by invoking methods on noncommutative geometry. The anomalous Drude formula is derived. The occurence of quantum chaos is discussed together with its main consequences (J. Bellissard). The chapter is concluded by a survey of scaling limits of the N-body Schrödinger quantum dynamics, where classical evolution equations of irreversible statistical mechanics (linear Boltzmann, Hartree, Vlasov) emerge "out of quantum". In particular, a scaling limit of one body quantum dynamics with impurities (static random potential) and that of quantum dynamics with weakly coupled phonons are shown to yield the linear Boltzmann equation (L. Erdös). Various interrelations between chapters and individual lectures, plus a detailed fine-tuned information about the subject matter coverage of the volume, can be recovered by examining an extensive index.

  13. Subleading soft theorem for multiple soft gravitons

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay

    2017-12-01

    We derive the subleading soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. Our results are valid to all orders in perturbation theory when the number of non-compact space-time dimensions is six or more, but only for tree amplitudes for five or less non-compact space-time dimensions due to enhanced contribution to loop amplitudes from the infrared region.

  14. Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž

    2018-04-01

    A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior K (t )≃2 t is a consequence of translation and reflection symmetry of the Ising partition function.

  15. Memory-built-in quantum cloning in a hybrid solid-state spin register

    PubMed Central

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-01-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stabilitymore » parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.« less

  17. Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2016-10-01

    We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.

  18. Single-Photon-Triggered Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zheng, Li-Li; Zhu, Gui-Lei; Wu, Ying

    2018-06-01

    We propose a hybrid quantum model combining cavity QED and optomechanics, which allows the occurrence of an equilibrium superradiant quantum phase transition (QPT) triggered by a single photon. This single-photon-triggered QPT exists in the cases of both ignoring and including the so-called A2 term; i.e., it is immune to the no-go theorem. It originally comes from the photon-dependent quantum criticality featured by the proposed hybrid quantum model. Moreover, a reversed superradiant QPT is induced by the competition between the introduced A2 term and the optomechanical interaction. This work offers an approach to manipulate QPT with a single photon, which should inspire the exploration of single-photon quantum-criticality physics and the engineering of new single-photon quantum devices.

  19. The generalization of the Mermin-Wagner theorem and the possibility of long-range order in the isotropic discrete one-dimensional quantum Heisenberg model

    NASA Astrophysics Data System (ADS)

    Rudoy, Yu. G.; Kotelnikova, O. A.

    2012-10-01

    The problem of existence of long-range order in the isotropic quantum Heisenberg model on the D=1 lattice is reconsidered in view of the possibility of sufficiently slow decaying exchange interaction with infinite effective radius. It is shown that the macrosopic arguments given by Landau and Lifshitz and then supported microscopically by Mermin and Wagner fail for this case so that the non-zero spontaneous magnetization may yet exist. This result was anticipated by Thouless on the grounds of phenomenological analysis, and we give its microscopic foundation, which amounts to the generalization of Mermin-Wagner theorem for the case of the infinite second moment of the exchange interaction. Two well known in lattice statistics models - i.e., Kac-I and Kac-II - illustrate our results.

  20. Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons.

    PubMed

    Giustina, Marissa; Versteegh, Marijn A M; Wengerowsky, Sören; Handsteiner, Johannes; Hochrainer, Armin; Phelan, Kevin; Steinlechner, Fabian; Kofler, Johannes; Larsson, Jan-Åke; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Mitchell, Morgan W; Beyer, Jörn; Gerrits, Thomas; Lita, Adriana E; Shalm, Lynden K; Nam, Sae Woo; Scheidl, Thomas; Ursin, Rupert; Wittmann, Bernhard; Zeilinger, Anton

    2015-12-18

    Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

  1. Breakdown of the Wigner-Mattis theorem in semiconductor carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo; Secchi, Andrea; Manghi, Franca

    2009-03-01

    The Wigner-Mattis theorem states the ground state of two bound electrons, in the absence of the magnetic field, is always a spin-singlet. We predict the opposite result --a triplet- for two electrons in a quantum dot defined in a semiconductor carbon nanotube. The claim is supported by extensive many-body calculations based on the accurate configuration interaction code DONRODRIGO (www.s3.infm.t/donrodrigo). The crux of the matter is the peculiar two-valley structure of low-energy states, which encodes a pseudo-spin degree of freedom. The spin polarization of the ground state corresponds to a pseudo-spin singlet, which is selected by the inter-valley short-range Coulomb interaction. Single-electron excitation spectra and STM wave function images may validate this scenario, as shown by our numerical simulations.

  2. Quantum Spin Stabilized Magnetic Levitation

    NASA Astrophysics Data System (ADS)

    Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.

  3. Quantum Spin Stabilized Magnetic Levitation.

    PubMed

    Rusconi, C C; Pöchhacker, V; Kustura, K; Cirac, J I; Romero-Isart, O

    2017-10-20

    We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.

  4. The new electromagnetic tetrads, infinite tetrad nesting and the non-trivial emergence of complex numbers in real theories of gravitation

    NASA Astrophysics Data System (ADS)

    Garat, Alcides

    How complex numbers get into play in a non-trivial way in real theories of gravitation is relevant since in a unified structure they should be able to relate in a natural way with quantum theories. For a long time this issue has been lingering on both relativistic formulations and quantum theories. We will analyze this fundamental subject under the light of new group isomorphism theorems linking local internal groups of transformations and local groups of spacetime transformations. The bridge between these two kinds of transformations is represented by new tetrads introduced previously. It is precisely through these local tetrad structures that we will provide a non-trivial answer to this old issue. These new tetrads have two fundamental building components, the skeletons and the gauge vectors. It is these constructive elements that provide the mathematical support that allows to prove group isomorphism theorems. In addition to this, we will prove a unique new property, the infinite tetrad nesting, alternating the nesting with non-Abelian tetrads in the construction of the tetrad gauge vectors. As an application we will demonstrate an alternative proof of a new group isomorphism theorem.

  5. A Meinardus Theorem with Multiple Singularities

    NASA Astrophysics Data System (ADS)

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  6. A Geometrical Approach to Bell's Theorem

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2000-01-01

    Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.

  7. The (virtual) conceptual necessity of quantum probabilities in cognitive psychology.

    PubMed

    Blutner, Reinhard; beim Graben, Peter

    2013-06-01

    We propose a way in which Pothos & Busemeyer (P&B) could strengthen their position. Taking a dynamic stance, we consider cognitive tests as functions that transfer a given input state into the state after testing. Under very general conditions, it can be shown that testable properties in cognition form an orthomodular lattice. Gleason's theorem then yields the conceptual necessity of quantum probabilities (QP).

  8. A Survey of Quantum Programming Languages: History, Methods, and Tools

    DTIC Science & Technology

    2008-01-01

    and entanglement , to achieve computational solutions to certain problems in less time (fewer computational cycles) than is possible using classical...superposition of quantum bits, entanglement , destructive measurement, and the no-cloning theorem. These differences must be thoroughly understood and even...computers using well-known languages such as C, C++, Java, and rapid prototyping languages such as Maple, Mathematica, and Matlab . A good on-line

  9. Rapid Communication: Quasi-gedanken experiment challenging the no-signalling theorem

    NASA Astrophysics Data System (ADS)

    Kalamidas, Demetrios A.

    2018-01-01

    Kennedy ( Philos. Sci. 62, 4 (1995)) has argued that the various quantum mechanical no-signalling proofs formulated thus far share a common mathematical framework, are circular in nature, and do not preclude the construction of empirically testable schemes wherein superluminal exchange of information can occur. In light of this thesis, we present a potentially feasible quantum-optical scheme that purports to enable superluminal signalling.

  10. Quantum Enhanced Imaging by Entangled States

    DTIC Science & Technology

    2009-07-01

    classes of entangled states. In tripartite systems two classes of genuine tripartite entanglement have been discovered, namely, the Greenberger -Horne...D. M. Greenberger , M. Horne and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Concepts of the Universe, ed. M. Kafatos (Kluwer, Dordrecht 1989...Gallium Indium Arsenide Phosphide (a III-V compound semiconductor) GHZ: Greenberger -Horne-Zeilinger (a class of entangled states) GLAD: General

  11. Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems

    NASA Astrophysics Data System (ADS)

    Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.

    2016-11-01

    Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.

  12. Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization.

    PubMed

    De Luca, Andrea; Rosso, Alberto

    2015-08-21

    Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates. In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of thermalization in closed quantum systems where a many-body localization transition can occur varying the strength of the interactions.

  13. An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks.

    PubMed

    Zhu, Hongfei; Tan, Yu-An; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang

    2018-05-22

    With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people's lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size.

  14. Diagrammar in classical scalar field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaruzza, E., E-mail: Enrico.Cattaruzza@gmail.com; Gozzi, E., E-mail: gozzi@ts.infn.it; INFN, Sezione di Trieste

    2011-09-15

    In this paper we analyze perturbatively a g{phi}{sup 4}classical field theory with and without temperature. In order to do that, we make use of a path-integral approach developed some time ago for classical theories. It turns out that the diagrams appearing at the classical level are many more than at the quantum level due to the presence of extra auxiliary fields in the classical formalism. We shall show that a universal supersymmetry present in the classical path-integral mentioned above is responsible for the cancelation of various diagrams. The same supersymmetry allows the introduction of super-fields and super-diagrams which considerably simplifymore » the calculations and make the classical perturbative calculations almost 'identical' formally to the quantum ones. Using the super-diagrams technique, we develop the classical perturbation theory up to third order. We conclude the paper with a perturbative check of the fluctuation-dissipation theorem. - Highlights: > We provide the Feynman diagrams of perturbation theory for a classical field theory. > We give a super-formalism which links the quantum diagrams to the classical ones. > We check perturbatively the fluctuation-dissipation theorem.« less

  15. An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks

    PubMed Central

    Zhu, Hongfei; Tan, Yu-an; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang

    2018-01-01

    With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people’s lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size. PMID:29789475

  16. Functional determinants, index theorems, and exact quantum black hole entropy

    NASA Astrophysics Data System (ADS)

    Murthy, Sameer; Reys, Valentin

    2015-12-01

    The exact quantum entropy of BPS black holes can be evaluated using localization in supergravity. An important ingredient in this program, that has been lacking so far, is the one-loop effect arising from the quadratic fluctuations of the exact deformation (the QV operator). We compute the fluctuation determinant for vector multiplets and hyper multiplets around Q-invariant off-shell configurations in four-dimensional N=2 supergravity with AdS 2 × S 2 boundary conditions, using the Atiyah-Bott fixed-point index theorem and a subsequent zeta function regularization. Our results extend the large-charge on-shell entropy computations in the literature to a regime of finite charges. Based on our results, we present an exact formula for the quantum entropy of BPS black holes in N=2 supergravity. We explain cancellations concerning 1/8 -BPS black holes in N=8 supergravity that were observed in arXiv:1111.1161. We also make comments about the interpretation of a logarithmic term in the topological string partition function in the low energy supergravity theory.

  17. A significant-loophole-free test of Bell's theorem with entangled photons

    NASA Astrophysics Data System (ADS)

    Giustina, Marissa; Versteegh, Marijn A. M.; Wengerowsky, Sören; Handsteiner, Johannes; Hochrainer, Armin; Phelan, Kevin; Steinlechner, Fabian; Kofler, Johannes; Larsson, Jan-Åke; Abellán, Carlos; Amaya, Waldimar; Mitchell, Morgan W.; Beyer, Jörn; Gerrits, Thomas; Lita, Adriana E.; Shalm, Lynden K.; Nam, Sae Woo; Scheidl, Thomas; Ursin, Rupert; Wittmann, Bernhard; Zeilinger, Anton

    2017-10-01

    John Bell's theorem of 1964 states that local elements of physical reality, existing independent of measurement, are inconsistent with the predictions of quantum mechanics (Bell, J. S. (1964), Physics (College. Park. Md). Specifically, correlations between measurement results from distant entangled systems would be smaller than predicted by quantum physics. This is expressed in Bell's inequalities. Employing modifications of Bell's inequalities, many experiments have been performed that convincingly support the quantum predictions. Yet, all experiments rely on assumptions, which provide loopholes for a local realist explanation of the measurement. Here we report an experiment with polarization-entangled photons that simultaneously closes the most significant of these loopholes. We use a highly efficient source of entangled photons, distributed these over a distance of 58.5 meters, and implemented rapid random setting generation and high-efficiency detection to observe a violation of a Bell inequality with high statistical significance. The merely statistical probability of our results to occur under local realism is less than 3.74×10-31, corresponding to an 11.5 standard deviation effect.

  18. Quantum approach to classical statistical mechanics.

    PubMed

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  19. Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases

    NASA Astrophysics Data System (ADS)

    Badino, Massimiliano; Friedrich, Bretislav

    2013-09-01

    The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.

  20. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  1. Ergodicity of the generalized lemon billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingyu; Mohr, Luke; Zhang, Hong-Kun, E-mail: hongkun@math.umass.edu

    2013-12-15

    In this paper, we study a two-parameter family of convex billiard tables, by taking the intersection of two round disks (with different radii) in the plane. These tables give a generalization of the one-parameter family of lemon-shaped billiards. Initially, there is only one ergodic table among all lemon tables. In our generalized family, we observe numerically the prevalence of ergodicity among the some perturbations of that table. Moreover, numerical estimates of the mixing rate of the billiard dynamics on some ergodic tables are also provided.

  2. Nonlocality, no-signalling, and Bellʼs theorem investigated by Weyl conformal differential geometry

    NASA Astrophysics Data System (ADS)

    De Martini, Francesco; Santamato, Enrico

    2014-12-01

    The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-\\frac{1}{2} leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-\\frac{1}{2} in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality.

  3. Geometry and physics of pseudodifferential operators on manifolds

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Napolitano, George M.

    2016-09-01

    A review is made of the basic tools used in mathematics to define a calculus for pseudodifferential operators on Riemannian manifolds endowed with a connection: existence theorem for the function that generalizes the phase; analogue of Taylor's theorem; torsion and curvature terms in the symbolic calculus; the two kinds of derivative acting on smooth sections of the cotangent bundle of the Riemannian manifold; the concept of symbol as an equivalence class. Physical motivations and applications are then outlined, with emphasis on Green functions of quantum field theory and Parker's evaluation of Hawking radiation.

  4. Richard P. Feynman and the Feynman Diagrams

    Science.gov Websites

    available in full-text and on the Web. Documents: A Theorem and Its Application to Finite Tampers, DOE Fermi-Thomas Theory; DOE Technical Report, April 28, 1947 Mathematical Formulation of the Quantum Theory

  5. Chiral Luttinger liquids and a generalized Luttinger's theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Daniel; Zaletel, Michael; Moore, Joel

    2014-03-01

    We use bosonic field theories and the infinite system density matrix renormalization group (iDMRG) method to study infinite strips of fractional quantum Hall (FQH) states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge mode exponents and momenta without finite-size errors. We analyze states in the first and second level of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid (χLL) theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the non-chiral case. We prove a generalized Luttinger's theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in 1D.

  6. Chiral Luttinger liquids and a generalized Luttinger theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Dániel; Zaletel, Michael P.; Moore, Joel E.

    2013-10-01

    We use bosonic field theories and the infinite system density matrix renormalization group method to study infinite strips of fractional quantum Hall states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge-mode exponents, and momenta without finite-size errors. We analyze states in the first and second levels of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the nonchiral case. We prove a generalized Luttinger theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in one dimension.

  7. Are field quanta real objects? Some remarks on the ontology of quantum field theory

    NASA Astrophysics Data System (ADS)

    Bigaj, Tomasz

    2018-05-01

    One of the key philosophical questions regarding quantum field theory is whether it should be given a particle or field interpretation. The particle interpretation of QFT is commonly viewed as being undermined by the well-known no-go results, such as the Malament, Reeh-Schlieder and Hegerfeldt theorems. These theorems all focus on the localizability problem within the relativistic framework. In this paper I would like to go back to the basics and ask the simple-minded question of how the notion of quanta appears in the standard procedure of field quantization, starting with the elementary case of the finite numbers of harmonic oscillators, and proceeding to the more realistic scenario of continuous fields with infinitely many degrees of freedom. I will try to argue that the way the standard formalism introduces the talk of field quanta does not justify treating them as particle-like objects with well-defined properties.

  8. Boolean approach to dichotomic quantum measurement theories

    NASA Astrophysics Data System (ADS)

    Nagata, K.; Nakamura, T.; Batle, J.; Abdalla, S.; Farouk, A.

    2017-02-01

    Recently, a new measurement theory based on truth values was proposed by Nagata and Nakamura [Int. J. Theor. Phys. 55, 3616 (2016)], that is, a theory where the results of measurements are either 0 or 1. The standard measurement theory accepts a hidden variable model for a single Pauli observable. Hence, we can introduce a classical probability space for the measurement theory in this particular case. Additionally, we discuss in the present contribution the fact that projective measurement theories (the results of which are either +1 or -1) imply the Bell, Kochen, and Specker (BKS) paradox for a single Pauli observable. To justify our assertion, we present the BKS theorem in almost all the two-dimensional states by using a projective measurement theory. As an example, we present the BKS theorem in two-dimensions with white noise. Our discussion provides new insight into the quantum measurement problem by using this measurement theory based on the truth values.

  9. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  10. High-speed quantum networking by ship

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney

    2016-11-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  11. High-speed quantum networking by ship

    PubMed Central

    Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; Van Meter, Rodney

    2016-01-01

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet. PMID:27805001

  12. High-speed quantum networking by ship.

    PubMed

    Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney

    2016-11-02

    Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

  13. Superadiabatic Controlled Evolutions and Universal Quantum Computation.

    PubMed

    Santos, Alan C; Sarandy, Marcelo S

    2015-10-29

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.

  14. Superadiabatic Controlled Evolutions and Universal Quantum Computation

    PubMed Central

    Santos, Alan C.; Sarandy, Marcelo S.

    2015-01-01

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064

  15. Black holes are almost optimal quantum cloners

    NASA Astrophysics Data System (ADS)

    Adami, Christoph; Ver Steeg, Greg

    2015-06-01

    If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.

  16. Ergodicity and model quality in template-restrained canonical and temperature/Hamiltonian replica exchange coarse-grained molecular dynamics simulations of proteins.

    PubMed

    Karczyńska, Agnieszka S; Czaplewski, Cezary; Krupa, Paweł; Mozolewska, Magdalena A; Joo, Keehyoung; Lee, Jooyoung; Liwo, Adam

    2017-12-05

    Molecular simulations restrained to single or multiple templates are commonly used in protein-structure modeling. However, the restraints introduce additional barriers, thus impairing the ergodicity of simulations, which can affect the quality of the resulting models. In this work, the effect of restraint types and simulation schemes on ergodicity and model quality was investigated by performing template-restrained canonical molecular dynamics (MD), multiplexed replica-exchange molecular dynamics, and Hamiltonian replica exchange molecular dynamics (HREMD) simulations with the coarse-grained UNRES force field on nine selected proteins, with pseudo-harmonic log-Gaussian (unbounded) or Lorentzian (bounded) restraint functions. The best ergodicity was exhibited by HREMD. It has been found that non-ergodicity does not affect model quality if good templates are used to generate restraints. However, when poor-quality restraints not covering the entire protein are used, the improved ergodicity of HREMD can lead to significantly improved protein models. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. The Generalized Hellmann-Feynman Theorem Approach to Quantum Effects of Mesoscopic Complicated Coupling Circuit at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Xia

    2016-02-01

    By employing the generalized Hellmann-Feynman theorem, the quantization of mesoscopic complicated coupling circuit is proposed. The ensemble average energy, the energy fluctuation and the energy distribution are investigated at finite temperature. It is shown that the generalized Hellmann-Feynman theorem plays the key role in quantizing a mesoscopic complicated coupling circuit at finite temperature, and when the temperature is lower than the specific temperature, the value of (\\vartriangle {hat {H}})2 is almost zero and the values of e and (\\vartriangle hat {{H}})2are basically constant, but while the temperature rises to the specific temperature, both of them move upward rapidly. The energy fluctuation of the system becomes larger when the coupling inductance is larger or the coupling capacitance is smaller.

  18. Subleading soft graviton theorem for loop amplitudes

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    2017-11-01

    Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.

  19. Counterfactual attack on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wnang, Jian; Tang, Chao Jing

    2012-05-01

    It is interesting that counterfactual quantum cryptography protocols allow two remotely separated parties to share a secret key without transmitting any signal particles. Generally, these protocols, expected to provide security advantages, base their security on a translated no-cloning theorem. Therefore, they potentially exhibit unconditional security in theory. In this letter, we propose a new Trojan horse attack, by which an eavesdropper Eve can gain full information about the key without being noticed, to real implementations of a counterfactual quantum cryptography system. Most importantly, the presented attack is available even if the system has negligible imperfections. Therefore, it shows that the present realization of counterfactual quantum key distribution is vulnerable.

  20. Electronic Noise and Fluctuations in Solids

    NASA Astrophysics Data System (ADS)

    Kogan, Sh.

    2008-07-01

    Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.

  1. Memory-built-in quantum cloning in a hybrid solid-state spin register

    NASA Astrophysics Data System (ADS)

    Wang, Weibin; Zu, Chong; He, Li; Zhang, Wengang; Duan, Luming

    2015-05-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude, and making it an ideal memory qubit. Our experiment is based on control of an individual nitrogen vacancy (NV) center in the diamond, which is a diamond defect that attracts strong interest in recent years with great potential for implementation of quantum information protocols.

  2. Dynamical manifestations of quantum chaos: correlation hole and bulge

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; Santos, Lea F.

    2017-10-01

    A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable-chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  3. High-frequency stock linkage and multi-dimensional stationary processes

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Bao, Si; Chen, Jingchao

    2017-02-01

    In recent years, China's stock market has experienced dramatic fluctuations; in particular, in the second half of 2014 and 2015, the market rose sharply and fell quickly. Many classical financial phenomena, such as stock plate linkage, appeared repeatedly during this period. In general, these phenomena have usually been studied using daily-level data or minute-level data. Our paper focuses on the linkage phenomenon in Chinese stock 5-second-level data during this extremely volatile period. The method used to select the linkage points and the arbitrage strategy are both based on multi-dimensional stationary processes. A new program method for testing the multi-dimensional stationary process is proposed in our paper, and the detailed program is presented in the paper's appendix. Because of the existence of the stationary process, the strategy's logarithmic cumulative average return will converge under the condition of the strong ergodic theorem, and this ensures the effectiveness of the stocks' linkage points and the more stable statistical arbitrage strategy.

  4. Detection of ɛ-ergodicity breaking in experimental data—A study of the dynamical functional sensibility

    NASA Astrophysics Data System (ADS)

    Loch-Olszewska, Hanna; Szwabiński, Janusz

    2018-05-01

    The ergodicity breaking phenomenon has already been in the area of interest of many scientists, who tried to uncover its biological and chemical origins. Unfortunately, testing ergodicity in real-life data can be challenging, as sample paths are often too short for approximating their asymptotic behaviour. In this paper, the authors analyze the minimal lengths of empirical trajectories needed for claiming the ɛ-ergodicity based on two commonly used variants of an autoregressive fractionally integrated moving average model. The dependence of the dynamical functional on the parameters of the process is studied. The problem of choosing proper ɛ for ɛ-ergodicity testing is discussed with respect to especially the variation of the innovation process and the data sample length, with a presentation on two real-life examples.

  5. Detection of ε-ergodicity breaking in experimental data-A study of the dynamical functional sensibility.

    PubMed

    Loch-Olszewska, Hanna; Szwabiński, Janusz

    2018-05-28

    The ergodicity breaking phenomenon has already been in the area of interest of many scientists, who tried to uncover its biological and chemical origins. Unfortunately, testing ergodicity in real-life data can be challenging, as sample paths are often too short for approximating their asymptotic behaviour. In this paper, the authors analyze the minimal lengths of empirical trajectories needed for claiming the ε-ergodicity based on two commonly used variants of an autoregressive fractionally integrated moving average model. The dependence of the dynamical functional on the parameters of the process is studied. The problem of choosing proper ε for ε-ergodicity testing is discussed with respect to especially the variation of the innovation process and the data sample length, with a presentation on two real-life examples.

  6. The super-indeterminism in orthodox quantum mechanics does not implicate the reality of experimenter free will

    NASA Astrophysics Data System (ADS)

    Walleczek, J.

    2016-03-01

    The concept of ‘super-indeterminism’ captures the notion that the free choice assumption of orthodox quantum mechanics necessitates only the following requirement: an agent's free-choice performance in the selection of measurement settings must not represent an exception to the rule of irreducible quantum indeterminism in the physical universe (i.e, “universal indeterminism”). Any additional metaphysical speculation, such as to whether quantum indeterminism, i.e., intrinsic randomness, implicates the reality of experimenter “freedom”, “free will”, or “free choice”, is redundant in relation to the predictive success of orthodox quantum mechanics. Accordingly, super-indeterminism views as redundant also, from a technical standpoint, whether an affirmative or a negative answer is claimed in reference to universal indeterminism as a necessary precondition for experimenter freedom. Super-indeterminism accounts, for example, for the circular reasoning which is implicit in the free will theorem by Conway and Kochen [1,2]. The concept of super-indeterminism is of great assistance in clarifying the often misunderstood meaning of the concept of “free variables” as used by John Bell [3]. The present work argues that Bell sought an operational, effective free will theorem, one based upon the notion of “determinism without predetermination”, i.e., one wherein “free variables” represent universally uncomputable variables. In conclusion, the standard interpretation of quantum theory does not answer, and does not need to answer in order to ensure the predictive success of orthodox theory, the question of whether either incompatibilism or compatibilism is valid in relation to free-will metaphysics and to the free-will phenomenology of experimenter agents in quantum mechanics.

  7. Self-adjointness of deformed unbounded operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  8. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2015-08-07

    absorption and scattering using MODTRAN [ Berk et al.]. Thus, channel efficiency is expressed as follows: G=GT×exp[−αL], (10) where exp[−αL] is...34 New Journal of Physics 13, 013003 (2011). [Scarani et al.] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J . Cerf, Miloslav Dušek, Norbert...050303 (2005). [Renner and Cirac] R. Renner and J . I. Cirac, de Finetti representation theorem for infinite-dimensional quantum systems and

  9. Matching factorization theorems with an inverse-error weighting

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  10. Matching factorization theorems with an inverse-error weighting

    DOE PAGES

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...

    2018-04-03

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  11. Matching factorization theorems with an inverse-error weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  12. Can different quantum state vectors correspond to the same physical state? An experimental test

    NASA Astrophysics Data System (ADS)

    Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan

    2016-01-01

    A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.

  13. Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results.

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2017-08-01

    As shown in the EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities vt have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.

  14. Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model

    NASA Astrophysics Data System (ADS)

    García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.

    2018-05-01

    We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.

  15. Proof of the Spin Statistics Connection 2: Relativistic Theory

    NASA Astrophysics Data System (ADS)

    Santamato, Enrico; De Martini, Francesco

    2017-12-01

    The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.

  16. Exploring quantum thermodynamics in continuous measurement of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.

  17. Room-Temperature Quantum Cloning Machine with Full Coherent Phase Control in Nanodiamond

    PubMed Central

    Chang, Yan-Chun; Liu, Gang-Qin; Liu, Dong-Qi; Fan, Heng; Pan, Xin-Yu

    2013-01-01

    In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices. PMID:23511233

  18. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less

  19. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    PubMed

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  20. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-01

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  1. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.

    PubMed

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-21

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  2. Ergodicity in natural earthquake fault networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiampo, K. F.; Rundle, J. B.; Holliday, J.

    2007-06-15

    Numerical simulations have shown that certain driven nonlinear systems can be characterized by mean-field statistical properties often associated with ergodic dynamics [C. D. Ferguson, W. Klein, and J. B. Rundle, Phys. Rev. E 60, 1359 (1999); D. Egolf, Science 287, 101 (2000)]. These driven mean-field threshold systems feature long-range interactions and can be treated as equilibriumlike systems with statistically stationary dynamics over long time intervals. Recently the equilibrium property of ergodicity was identified in an earthquake fault system, a natural driven threshold system, by means of the Thirumalai-Mountain (TM) fluctuation metric developed in the study of diffusive systems [K. F.more » Tiampo, J. B. Rundle, W. Klein, J. S. Sa Martins, and C. D. Ferguson, Phys. Rev. Lett. 91, 238501 (2003)]. We analyze the seismicity of three naturally occurring earthquake fault networks from a variety of tectonic settings in an attempt to investigate the range of applicability of effective ergodicity, using the TM metric and other related statistics. Results suggest that, once variations in the catalog data resulting from technical and network issues are accounted for, all of these natural earthquake systems display stationary periods of metastable equilibrium and effective ergodicity that are disrupted by large events. We conclude that a constant rate of events is an important prerequisite for these periods of punctuated ergodicity and that, while the level of temporal variability in the spatial statistics is the controlling factor in the ergodic behavior of seismic networks, no single statistic is sufficient to ensure quantification of ergodicity. Ergodicity in this application not only requires that the system be stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages in studying their spatiotemporal evolution.« less

  3. Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Nag, Sabyasachi; Garg, Arti

    2018-04-01

    We analyze the many-body localization- (MBL) to-delocalization transition in the Sherrington-Kirkpatrick (SK) model of Ising spin glass in the presence of a transverse field Γ . Based on energy-resolved analysis, which is of relevance for a closed quantum system, we show that the quantum SK model has many-body mobility edges separating the MBL phase, which is nonergodic and nonthermal, from the delocalized phase, which is ergodic and thermal. The range of the delocalized regime increases with an increase in the strength of Γ , and eventually for Γ larger than ΓCP the entire many-body spectrum is delocalized. We show that the Renyi entropy is almost independent of the system size in the MBL phase while the delocalized phase shows extensive Renyi entropy. We further obtain the spin-glass transition curve in the energy density ɛ -Γ plane from the collapse of the eigenstate spin susceptibility. We demonstrate that in most of the parameter regime, the spin-glass transition occurs close to the MBL transition, indicating that the spin-glass phase is nonergodic and nonthermal while the paramagnetic phase is delocalized and thermal.

  4. Ergodic Transition in a Simple Model of the Continuous Double Auction

    PubMed Central

    Radivojević, Tijana; Anselmi, Jonatha; Scalas, Enrico

    2014-01-01

    We study a phenomenological model for the continuous double auction, whose aggregate order process is equivalent to two independent queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe a heteroskedastic behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen. PMID:24558377

  5. Ergodic transition in a simple model of the continuous double auction.

    PubMed

    Radivojević, Tijana; Anselmi, Jonatha; Scalas, Enrico

    2014-01-01

    We study a phenomenological model for the continuous double auction, whose aggregate order process is equivalent to two independent M/M/1 queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe a heteroskedastic behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen.

  6. Far-infrared response of spherical quantum dots: Dielectric effects and the generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Movilla, J. L.; Planelles, J.

    2007-05-01

    The influence of the dielectric environment on the far-infrared (FIR) absorption spectra of two-electron spherical quantum dots is theoretically studied. Effective mass and envelope function approaches with realistic steplike confining potentials are used. Special attention is paid to absorptions that are induced by the electron-electron interaction. High confining barriers make the FIR absorption coefficients almost independent of the quantum dot dielectric environment. Low barrier heights and strong dielectric mismatches preserve the strong fundamental (Kohn) mode but yield the cancellation of excited absorptions, thus monitoring dielectrically induced phase transitions from volume to surface states.

  7. What Exactly is the Information Paradox?

    NASA Astrophysics Data System (ADS)

    Mathur, S. D.

    The black hole information paradox tells us something important about the way quantum mechanics and gravity fit together. In these lectures I try to give a pedagogical review of the essential physics leading to the paradox, using mostly pictures. Hawking's argument is recast as a "theorem": if quantum gravity effects are confined to within a given length scale and the vacuum is assumed to be unique, then there will be information loss. We conclude with a brief summary of how quantum effects in string theory violate the first condition and make the interior of the hole a "fuzzball".

  8. Bell's Theorem, Entaglement, Quantum Teleportation and All That

    ScienceCinema

    Leggett, Anthony

    2018-04-19

    One of the most surprising aspects of quantum mechanics is that under certain circumstances it does not allow individual physical systems, even when isolated, to possess properties in their own right. This feature, first clearly appreciated by John Bell in 1964, has in the last three decades been tested experimentally and found (in most people's opinion) to be spectacularly confirmed. More recently it has been realized that it permits various operations which are classically impossible, such as "teleportation" and secure-in-principle cryptography. This talk is a very basic introduction to the subject, which requires only elementary quantum mechanics.

  9. Nonextensive kinetic theory and H-theorem in general relativity

    NASA Astrophysics Data System (ADS)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.

    2017-11-01

    The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.

  10. A statistical evaluation of non-ergodic variogram estimators

    USGS Publications Warehouse

    Curriero, F.C.; Hohn, M.E.; Liebhold, A.M.; Lele, S.R.

    2002-01-01

    Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial dependence in spatially referenced ecological data. A common feature of geostatistics is predicting values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial dependence in sampled data is necessary before kriging and is usually accomplished with the variogram and its traditional estimator. Other types of estimators, known as non-ergodic estimators, have been used in ecological applications. Non-ergodic estimators were originally suggested as a method of choice when sampled data are preferentially located and exhibit a skewed frequency distribution. Preferentially located samples can occur, for example, when areas with high values are sampled more intensely than other areas. In earlier studies the visual appearance of variograms from traditional and non-ergodic estimators were compared. Here we evaluate the estimators' relative performance in prediction. We also show algebraically that a non-ergodic version of the variogram is equivalent to the traditional variogram estimator. Simulations, designed to investigate the effects of data skewness and preferential sampling on variogram estimation and kriging, showed the traditional variogram estimator outperforms the non-ergodic estimators under these conditions. We also analyzed data on carabid beetle abundance, which exhibited large-scale spatial variability (trend) and a skewed frequency distribution. Detrending data followed by robust estimation of the residual variogram is demonstrated to be a successful alternative to the non-ergodic approach.

  11. High-Dimensional Circular Quantum Secret Sharing Using Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Tang, Dawei; Wang, Tie-jun; Mi, Sichen; Geng, Xiao-Meng; Wang, Chuan

    2016-11-01

    Quantum secret sharing is to distribute secret message securely between multi-parties. Here exploiting orbital angular momentum (OAM) state of single photons as the information carrier, we propose a high-dimensional circular quantum secret sharing protocol which increases the channel capacity largely. In the proposed protocol, the secret message is split into two parts, and each encoded on the OAM state of single photons. The security of the protocol is guaranteed by the laws of non-cloning theorem. And the secret messages could not be recovered except that the two receivers collaborated with each other. Moreover, the proposed protocol could be extended into high-level quantum systems, and the enhanced security could be achieved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less

  13. A Viable Paradigm for Quantum Reality

    NASA Astrophysics Data System (ADS)

    Srivastava, Jagdish

    2010-10-01

    After a brief discussion of the EPR paradox, Bell's inequality, and Aspect's experiment, arguments will be presented in favor of the following statements: ``As it stands, Quantum mechanics is incomplete. There is further hidden structure, which would involve variables. No influence can move faster than light. The wave function is one whole thing and any change in its structure instantly influences its outcomes. Bell's theorem has not been applied correctly. There is a better paradigm.'' The said paradigm will be presented.

  14. Novel Principles and the Charge-Symmetric Design of Dirac's Quantum Mechanics: I. Enhanced Eriksen's Theorem and the Universal Charge-Index Formalism for Dirac's Equation in (Strong) External Static Fields

    NASA Astrophysics Data System (ADS)

    Kononets, Yu. V.

    2016-12-01

    The presented enhanced version of Eriksen's theorem defines an universal transform of the Foldy-Wouthuysen type and in any external static electromagnetic field (ESEMF) reveals a discrete symmetry of Dirac's equation (DE), responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism (CIF) obeying the charge-index conservation law (CICL). Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac's quantum mechanics (DQM), which resolves all the riddles of the standard DE theory (SDET). Besides the abstract CIF algebra, the paper discusses: (1) the novel accurate charge-symmetric definition of the electric-current density; (2) DE in the true-particle representation, where electrons and positrons coexist on equal footing; (3) flawless "natural" scheme of second quantization; and (4) new physical grounds for the Fermi-Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein's tunneling (KT) in Klein's zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier.

  15. Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.

    PubMed

    McLeish, Tom C B

    2015-12-06

    We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.

  16. Electron-exchange and quantum screening effects on the Thomson scattering process in quantum Fermi plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590

    2013-06-15

    The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less

  17. Quantum work and the thermodynamic cost of quantum measurements

    DOE PAGES

    Deffner, Sebastian; Paz, Juan Pablo; Zurek, Wojciech H.

    2016-07-07

    Quantum work is usually determined from two projective measurements of the energy at the beginning and at the end of a thermodynamic process. However, this paradigm cannot be considered thermodynamically consistent as it does not account for the thermodynamic cost of these measurements. To remedy this conceptual inconsistency we introduce a paradigm that relies only on the expected change of the average energy given the initial energy eigenbasis. In particular, we completely omit quantum measurements in the definition of quantum work, and hence quantum work is identified as a thermodynamic quantity of only the system. As main results we derivemore » a modified quantum Jarzynski equality and a sharpened maximum work theorem in terms of the information free energy. Lastly, a comparison of our results with the standard approach allows one to quantify the informational cost of projective measurements.« less

  18. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  19. Unforgeable Noise-Tolerant Quantum Tokens

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Pastawski, Fernando; Jiang, Liang; Lukin, Mikhail; Cirac, Ignacio

    2012-06-01

    The realization of devices which harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of ``quantum money.'' A dishonest holder of a quantum bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence and operational imperfections abound. Thus, the development of secure ``quantum money''-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store and measure single qubit quantum memories, making their experimental realization accessible with current technologies.

  20. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  1. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  2. High-Power Collective Charging of a Solid-State Quantum Battery

    NASA Astrophysics Data System (ADS)

    Ferraro, Dario; Campisi, Michele; Andolina, Gian Marcello; Pellegrini, Vittorio; Polini, Marco

    2018-03-01

    Quantum information theorems state that it is possible to exploit collective quantum resources to greatly enhance the charging power of quantum batteries (QBs) made of many identical elementary units. We here present and solve a model of a QB that can be engineered in solid-state architectures. It consists of N two-level systems coupled to a single photonic mode in a cavity. We contrast this collective model ("Dicke QB"), whereby entanglement is genuinely created by the common photonic mode, to the one in which each two-level system is coupled to its own separate cavity mode ("Rabi QB"). By employing exact diagonalization, we demonstrate the emergence of a quantum advantage in the charging power of Dicke QBs, which scales like √{N } for N ≫1 .

  3. Quantum Markov semigroups constructed from quantum Bernoulli noises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Caishi; Chen, Jinshu

    2016-02-15

    Quantum Bernoulli noises (QBNs) are the family of annihilation and creation operators acting on Bernoulli functionals, which can describe a two-level quantum system with infinitely many sites. In this paper, we consider the problem to construct quantum Markov semigroups (QMSs) directly from QBNs. We first establish several new theorems concerning QBNs. In particular, we define the number operator acting on Bernoulli functionals by using the canonical orthonormal basis, prove its self-adjoint property, and describe precisely its connections with QBN in a mathematically rigorous way. We then show the possibility to construct QMS directly from QBN. This is done by combiningmore » the general results on QMS with our new results on QBN obtained here. Finally, we examine some properties of QMS constructed from QBN.« less

  4. New strings for old Veneziano amplitudes. II. Group-theoretic treatment

    NASA Astrophysics Data System (ADS)

    Kholodenko, A. L.

    2006-09-01

    In this part of our four parts work we use theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function and amplitudes associated with it can be recovered with help of finite dimensional exactly solvableN=2 supersymmetric quantum mechanical model known earlier from works of Witten, Stone and others. Using the Lefschetz isomorphism theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in the early 50s and 60s and documented in the monograph by Bourbaki. Based on these theorems, we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.

  5. Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim

    2017-11-01

    The adiabatic theorem is a fundamental result in quantum mechanics, which states that a system can be kept arbitrarily close to the instantaneous ground state of its Hamiltonian if the latter varies in time slowly enough. The theorem has an impressive record of applications ranging from foundations of quantum field theory to computational molecular dynamics. In light of this success it is remarkable that a practicable quantitative understanding of what "slowly enough" means is limited to a modest set of systems mostly having a small Hilbert space. Here we show how this gap can be bridged for a broad natural class of physical systems, namely, many-body systems where a small move in the parameter space induces an orthogonality catastrophe. In this class, the conditions for adiabaticity are derived from the scaling properties of the parameter-dependent ground state without a reference to the excitation spectrum. This finding constitutes a major simplification of a complex problem, which otherwise requires solving nonautonomous time evolution in a large Hilbert space.

  6. Lorentz-violating modification of Dirac theory based on spin-nondegenerate operators

    NASA Astrophysics Data System (ADS)

    Reis, J. A. A. S.; Schreck, M.

    2017-04-01

    The Standard Model extension (SME) parametrizes all possible Lorentz-violating contributions to the Standard Model and general relativity. It can be considered as an effective framework to describe possible quantum-gravity effects for energies much below the Planck energy. In the current paper, the spin-nondegenerate operators of the SME fermion sector are the focus. The propagators, energies, and solutions to the modified Dirac equation are obtained for several families of coefficients including nonminimal ones. The particle energies and spinors are computed at first order in Lorentz violation and, with the optical theorem, they are shown to be consistent with the propagators. The optical theorem is then also used to derive the matrices formed from a spinor and its Dirac conjugate at all orders in Lorentz violation. The results are the first explicit ones derived for the spin-nondegenerate operators. They will prove helpful for future phenomenological calculations in the SME that rely on the footing of quantum field theory.

  7. Synchronization between uncertain nonidentical networks with quantum chaotic behavior

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-11-01

    Synchronization between uncertain nonidentical networks with quantum chaotic behavior is researched. The identification laws of unknown parameters in state equations of network nodes, the adaptive laws of configuration matrix elements and outer coupling strengths are determined based on Lyapunov theorem. The conditions of realizing synchronization between uncertain nonidentical networks are discussed and obtained. Further, Jaynes-Cummings model in physics are taken as the nodes of two networks and simulation results show that the synchronization performance between networks is very stable.

  8. Two-player quantum pseudotelepathy based on recent all-versus-nothing violations of local realism

    NASA Astrophysics Data System (ADS)

    Cabello, Adán

    2006-02-01

    We introduce two two-player quantum pseudotelepathy games based on two recently proposed all-versus-nothing (AVN) proofs of Bell’s theorem [A. Cabello, Phys. Rev. Lett. 95, 210401 (2005); Phys. Rev. A 72, 050101(R) (2005)]. These games prove that Broadbent and Méthot’s claim that these AVN proofs do not rule out local-hidden-variable theories in which it is possible to exchange unlimited information inside the same light cone (quant-ph/0511047) is incorrect.

  9. What Bell proved: A reply to Blaylock

    NASA Astrophysics Data System (ADS)

    Maudlin, Tim

    2010-01-01

    Blaylock argues that the derivation of Bell's inequality requires a hidden assumption, counterfactual definiteness, of which Bell was unaware. A careful analysis of Bell's argument shows that Bell presupposes only locality and the predictions of standard quantum mechanics. Counterfactual definiteness, insofar as it is required, is derived in the course of the argument rather than presumed. Bell's theorem has no direct bearing on the many worlds interpretation not because that interpretation denies counterfactual definiteness but because it does not recover the predictions of standard quantum mechanics.

  10. Noncommutative Quantum Mechanics based on Representations of Exotic Galilei Group

    NASA Astrophysics Data System (ADS)

    Amorim, R. G. G.; Ulhoa, S. C.

    2018-02-01

    Using elements of symmetry, we constructed the Noncommutative Schrödinger Equation from a representation of Exotic Galilei Group. As a consequence, we derive the Ehrenfest theorem using noncommutative coordinates. We also have showed others features of quantum mechanics in such a manifold. As an important result, we find out that a linear potential in the noncommutative Schrödinger equation is completely analogous to the ordinary case. We also worked with harmonic and anharmonic oscillators, giving corrections in the energy for each one.

  11. Entanglement bases and general structures of orthogonal complete bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Zaizhe

    2004-10-01

    In quantum mechanics and quantum information, to establish the orthogonal bases is a useful means. The existence of unextendible product bases impels us to study the 'entanglement bases' problems. In this paper, the concepts of entanglement bases and exact-entanglement bases are defined, and a theorem about exact-entanglement bases is given. We discuss the general structures of the orthogonal complete bases. Two examples of applications are given. At last, we discuss the problem of transformation of the general structure forms.

  12. Security of continuous-variable quantum key distribution against general attacks.

    PubMed

    Leverrier, Anthony; García-Patrón, Raúl; Renner, Renato; Cerf, Nicolas J

    2013-01-18

    We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of the protocols as well as the postselection technique introduced by Christandl, Koenig, and Renner [Phys. Rev. Lett. 102, 020504 (2009)].

  13. Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabello, Adan; Department of Physics, Stockholm University, S-10691 Stockholm; D'Ambrosio, Vincenzo

    2011-09-15

    Quantum cryptographic protocols based on complementarity are not secure against attacks in which complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection against these attacks, without requiring entanglement or spatially separated composite systems. We analyze the maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital angular momentum of single photons.

  14. Topics in quantum cryptography, quantum error correction, and channel simulation

    NASA Astrophysics Data System (ADS)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel simulation with quantum side information at the receiver. Our main theorem has two important corollaries: rate-distortion theory with quantum side information and common randomness distillation. Simple proofs of achievability of classical multi-terminal source coding problems can be made via a unified approach using the channel simulation theorem as building blocks. The fully quantum generalization of the problem is also conjectured with outer and inner bounds on the achievable rate pairs.

  15. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu

    2014-04-15

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less

  16. Iterated Gate Teleportation and Blind Quantum Computation.

    PubMed

    Pérez-Delgado, Carlos A; Fitzsimons, Joseph F

    2015-06-05

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.

  17. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Harlow, Daniel; Wall, Aron C.

    2016-07-01

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A , provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  18. Quantum Field Theories Coupled to Supergravity: AdS/CFT and Local Couplings

    NASA Astrophysics Data System (ADS)

    Große, Johannes

    2007-11-01

    This article is based on my PhD thesis and covers the following topics: Holographic meson spectra in a dilaton flow background, the mixed Coulomb-Higgs branch in terms of instantons on D7 branes, and a dual description of heavy-light mesons. Moreover, in a second part the conformal anomaly of four dimensional supersymmetric quantum field theories coupled to classical N=1 supergravity is explored in a superfield formulation. The complete basis for the anomaly and consistency conditions, which arise from cohomological considerations, are given. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed.

  19. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality.

    PubMed

    Dong, Xi; Harlow, Daniel; Wall, Aron C

    2016-07-08

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  20. Continuous variable quantum cryptography using coherent states.

    PubMed

    Grosshans, Frédéric; Grangier, Philippe

    2002-02-04

    We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.

  1. Some clarifications about the Bohmian geodesic deviation equation and Raychaudhuri’s equation

    NASA Astrophysics Data System (ADS)

    Rahmani, Faramarz; Golshani, Mehdi

    2018-01-01

    One of the important and famous topics in general theory of relativity and gravitation is the problem of geodesic deviation and its related singularity theorems. An interesting subject is the investigation of these concepts when quantum effects are considered. Since the definition of trajectory is not possible in the framework of standard quantum mechanics (SQM), we investigate the problem of geodesic equation and its related topics in the framework of Bohmian quantum mechanics in which the definition of trajectory is possible. We do this in a fixed background and we do not consider the backreaction effects of matter on the space-time metric.

  2. The physical origins of the uncertainty theorem

    NASA Astrophysics Data System (ADS)

    Giese, Albrecht

    2013-10-01

    The uncertainty principle is an important element of quantum mechanics. It deals with certain pairs of physical parameters which cannot be determined to an arbitrary level of precision at the same time. According to the so-called Copenhagen interpretation of quantum mechanics, this uncertainty is an intrinsic property of the physical world. - This paper intends to show that there are good reasons for adopting a different view. According to the author, the uncertainty is not a property of the physical world but rather a limitation of our knowledge about the actual state of a physical process. This view conforms to the quantum theory of Louis de Broglie and to Albert Einstein's interpretation.

  3. General no-go theorem for entanglement extraction

    NASA Astrophysics Data System (ADS)

    Simidzija, Petar; Jonsson, Robert H.; Martín-Martínez, Eduardo

    2018-06-01

    We study under what circumstances a separable bipartite system A-B can or cannot become entangled through local interactions with a bilocal entangled source S1-S2 . We obtain constraints on the general forms of the interaction Hamiltonians coupling A with S1 and B with S2 necessary for A and B to become entangled. We are able to generalize and provide nonperturbative insight on several previous no-go theorems of entanglement harvesting from quantum fields using these general results. We also discuss the role of communication in the process of entanglement extraction, establishing a distinction between genuine entanglement extraction and communication-assisted entanglement generation.

  4. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    PubMed

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Quantum violation of an instrumental test

    NASA Astrophysics Data System (ADS)

    Chaves, Rafael; Carvacho, Gonzalo; Agresti, Iris; Di Giulio, Valerio; Aolita, Leandro; Giacomini, Sandro; Sciarrino, Fabio

    2018-03-01

    Inferring causal relations from experimental observations is of primal importance in science. Instrumental tests provide an essential tool for that aim, as they allow one to estimate causal dependencies even in the presence of unobserved common causes. In view of Bell's theorem, which implies that quantum mechanics is incompatible with our most basic notions of causality, it is of utmost importance to understand whether and how paradigmatic causal tools obtained in a classical setting can be carried over to the quantum realm. Here we show that quantum effects imply radically different predictions in the instrumental scenario. Among other results, we show that an instrumental test can be violated by entangled quantum states. Furthermore, we demonstrate such violation using a photonic set-up with active feed-forward of information, thus providing an experimental proof of this new form of non-classical behaviour. Our findings have fundamental implications in causal inference and may also lead to new applications of quantum technologies.

  6. Fermi Blobs and the Symplectic Camel: A Geometric Picture of Quantum States

    NASA Astrophysics Data System (ADS)

    Gossona, Maurice A. De

    We have explained in previous work the correspondence between the standard squeezed coherent states of quantum mechanics, and quantum blobs, which are the smallest phase space units compatible with the uncertainty principle of quantum mechanics and having the symplectic group as a group of symmetries. In this work, we discuss the relation between quantum blobs and a certain level set (which we call "Fermi blob") introduced by Enrico Fermi in 1930. Fermi blobs allows us to extend our previous results not only to the excited states of the generalized harmonic oscillator in n dimensions, but also to arbitrary quadratic Hamiltonians. As is the case for quantum blobs, we can evaluate Fermi blobs using a topological notion, related to the uncertainty principle, the symplectic capacity of a phase space set. The definition of this notion is made possible by Gromov's symplectic non-squeezing theorem, nicknamed the "principle of the symplectic camel".

  7. On the relationship between cell cycle analysis with ergodic principles and age-structured cell population models.

    PubMed

    Kuritz, K; Stöhr, D; Pollak, N; Allgöwer, F

    2017-02-07

    Cyclic processes, in particular the cell cycle, are of great importance in cell biology. Continued improvement in cell population analysis methods like fluorescence microscopy, flow cytometry, CyTOF or single-cell omics made mathematical methods based on ergodic principles a powerful tool in studying these processes. In this paper, we establish the relationship between cell cycle analysis with ergodic principles and age structured population models. To this end, we describe the progression of a single cell through the cell cycle by a stochastic differential equation on a one dimensional manifold in the high dimensional dataspace of cell cycle markers. Given the assumption that the cell population is in a steady state, we derive transformation rules which transform the number density on the manifold to the steady state number density of age structured population models. Our theory facilitates the study of cell cycle dependent processes including local molecular events, cell death and cell division from high dimensional "snapshot" data. Ergodic analysis can in general be applied to every process that exhibits a steady state distribution. By combining ergodic analysis with age structured population models we furthermore provide the theoretic basis for extensions of ergodic principles to distribution that deviate from their steady state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  9. Typical Werner states satisfying all linear Bell inequalities with dichotomic measurements

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing

    2018-04-01

    Quantum entanglement as a special resource inspires various distinct applications in quantum information processing. Unfortunately, it is NP-hard to detect general quantum entanglement using Bell testing. Our goal is to investigate quantum entanglement with white noises that appear frequently in experiment and quantum simulations. Surprisingly, for almost all multipartite generalized Greenberger-Horne-Zeilinger states there are entangled noisy states that satisfy all linear Bell inequalities consisting of full correlations with dichotomic inputs and outputs of each local observer. This result shows generic undetectability of mixed entangled states in contrast to Gisin's theorem of pure bipartite entangled states in terms of Bell nonlocality. We further provide an accessible method to show a nontrivial set of noisy entanglement with small number of parties satisfying all general linear Bell inequalities. These results imply typical incompleteness of special Bell theory in explaining entanglement.

  10. Ordering relations for quantum states

    NASA Astrophysics Data System (ADS)

    Durham, Ian

    2015-03-01

    It is often desirable to model physical states in an order-theoretic manner, e.g. as a partially ordered set. Classical states are known to possess a unique ordering relation corresponding to a neo-realist interpretation of these states. No such unique relation exists for quantum states. This lack of a unique ordering relation for quantum states turns out to be a manifestation of quantum contextuality vis-à-vis the Kochen-Specker theorem. It also turns out that this provides a link to certain large-scale thermodynamic processes. The suggestion that the ordering of quantum states leads to macroscopic thermodynamic processes is at least five decades old. The suggestion that the mechanism that drives the ordering is contextuality, is unique to this work. The argument is framed in the language of the theories of domains, categories, and topoi. Financial support provided by FQXi.

  11. Convergence of a quantum normal form and a generalization of Cherry’s theorem

    NASA Astrophysics Data System (ADS)

    Barone, Fiorella; Graffi, Sandro

    2012-01-01

    We consider on L^2({ T}^2) the Schrödinger operator family H_\\varepsilon : \\varepsilon \\in { R} with the domain and action defined as follows: \\begin{eqnarray*} D(H_\\varepsilon )=H^1({ T}^2); \\quad H_\\varepsilon u=-i\\hbar \\omega \\cdot \

  12. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    NASA Astrophysics Data System (ADS)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in quantum theory. Furthermore, we show that the Born rule need not be postulated, but can be derived in EQD. Finally, we show how the wave function can be updated by the ME method as the phase is constructed purely in terms of probabilities.

  13. Quantum Graphical Models and Belief Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, M.S.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ont., N2L 2Y5; Poulin, D.

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markovmore » Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.« less

  14. Driven Phases of Quantum Matter

    NASA Astrophysics Data System (ADS)

    Khemani, Vedika; von Keyserlingk, Curt; Lazarides, Achilleas; Moessner, Roderich; Sondhi, Shivaji

    Clean and interacting periodically driven quantum systems are believed to exhibit a single, trivial ``infinite-temperature'' Floquet-ergodic phase. By contrast, I will show that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases with spontaneously broken symmetries delineated by sharp transitions. Some of these are analogs of equilibrium states, while others are genuinely new to the Floquet setting. I will show that a subset of these novel phases are absolutely stableto all weak local deformations of the underlying Floquet drives, and spontaneously break Hamiltonian dependent emergent symmetries. Strikingly, they simultaneously also break the underlying time-translation symmetry of the Floquet drive and the order parameter exhibits oscillations at multiples of the fundamental period. This ``time-crystallinity'' goes hand in hand with spatial symmetry breaking and, altogether, these phases exhibit a novel form of simultaneous long-range order in space and time. I will describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.

  15. Asymptotic Time Decay in Quantum Physics: a Selective Review and Some New Results

    NASA Astrophysics Data System (ADS)

    Marchetti, Domingos H. U.; Wreszinski, Walter F.

    2013-05-01

    Decay of various quantities (return or survival probability, correlation functions) in time are the basis of a multitude of important and interesting phenomena in quantum physics, ranging from spectral properties, resonances, return and approach to equilibrium, to dynamical stability properties and irreversibility and the "arrow of time" in [Asymptotic Time Decay in Quantum Physics (World Scientific, 2013)]. In this review, we study several types of decay — decay in the average, decay in the Lp-sense, and pointwise decay — of the Fourier-Stieltjes transform of a measure, usually identified with the spectral measure, which appear naturally in different mathematical and physical settings. In particular, decay in the Lp-sense is related both to pointwise decay and to decay in the average and, from a physical standpoint, relates to a rigorous form of the time-energy uncertainty relation. Both decay on the average and in the Lp-sense are related to spectral properties, in particular, absolute continuity of the spectral measure. The study of pointwise decay for singular continuous measures (Rajchman measures) provides a bridge between ergodic theory, number theory and analysis, including the method of stationary phase. The theory is illustrated by some new results in the theory of sparse models.

  16. Thermalization dynamics in a quenched many-body state

    NASA Astrophysics Data System (ADS)

    Kaufman, Adam; Preiss, Philipp; Tai, Eric; Lukin, Alex; Rispoli, Matthew; Schittko, Robert; Greiner, Markus

    2016-05-01

    Quantum and classical many-body systems appear to have disparate behavior due to the different mechanisms that govern their evolution. The dynamics of a classical many-body system equilibrate to maximally entropic states and quickly re-thermalize when perturbed. The assumptions of ergodicity and unbiased configurations lead to a successful framework of describing classical systems by a sampling of thermal ensembles that are blind to the system's microscopic details. By contrast, an isolated quantum many-body system is governed by unitary evolution: the system retains memory of past dynamics and constant global entropy. However, even with differing characteristics, the long-term behavior for local observables in quenched, non-integrable quantum systems are often well described by the same thermal framework. We explore the onset of this convergence in a many-body system of bosonic atoms in an optical lattice. Our system's finite size allows us to verify full state purity and measure local observables. We observe rapid growth and saturation of the entanglement entropy with constant global purity. The combination of global purity and thermalized local observables agree with the Eigenstate Thermalization Hypothesis in the presence of a near-volume law in the entanglement entropy.

  17. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.

    PubMed

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-15

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  18. Unforgeable noise-tolerant quantum tokens

    PubMed Central

    Pastawski, Fernando; Yao, Norman Y.; Jiang, Liang; Lukin, Mikhail D.; Cirac, J. Ignacio

    2012-01-01

    The realization of devices that harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of “quantum money” [Wiesner S (1983) ACM SIGACT News 15:78–88]. A dishonest holder of a quantum bank note will invariably fail in any counterfeiting attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence, and operational imperfections abound. Thus, the development of secure “quantum money”-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store, and measure single quantum bit memories, making their experimental realization accessible with current technologies.

  19. Quantum demolition filtering and optimal control of unstable systems.

    PubMed

    Belavkin, V P

    2012-11-28

    A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  20. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-01

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  1. Are atmospheric surface layer flows ergodic?

    NASA Astrophysics Data System (ADS)

    Higgins, Chad W.; Katul, Gabriel G.; Froidevaux, Martin; Simeonov, Valentin; Parlange, Marc B.

    2013-06-01

    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface.

  2. Exponential gain of randomness certified by quantum contextuality

    NASA Astrophysics Data System (ADS)

    Um, Mark; Zhang, Junhua; Wang, Ye; Wang, Pengfei; Kim, Kihwan

    2017-04-01

    We demonstrate the protocol of exponential gain of randomness certified by quantum contextuality in a trapped ion system. The genuine randomness can be produced by quantum principle and certified by quantum inequalities. Recently, randomness expansion protocols based on inequality of Bell-text and Kochen-Specker (KS) theorem, have been demonstrated. These schemes have been theoretically innovated to exponentially expand the randomness and amplify the randomness from weak initial random seed. Here, we report the experimental evidence of such exponential expansion of randomness. In the experiment, we use three states of a 138Ba + ion between a ground state and two quadrupole states. In the 138Ba + ion system, we do not have detection loophole and we apply a methods to rule out certain hidden variable models that obey a kind of extended noncontextuality.

  3. A new approach to measuring tortuosity

    NASA Astrophysics Data System (ADS)

    Wert, Amanda; Scott, Sherry E.

    2012-03-01

    The detection and measurement of the tortuosity - i.e. the bending and winding - of vessels has been shown to be potentially useful in the assessment of cancer progression and treatment response. Although several metrics for tortuosity are used, no single one measure is able to capture all types of tortuosity. This report presents a new multiscale technique for measuring vessel tortuosity. The approach is based on a method - called the ergodicity defect - which gives a scale-dependent measure of deviation from ergodicity. Ergodicity is a concept that captures the manner in which trajectories or signals sample the space; thus, ergodicity and vessel tortuosity both involve the notion of how a signal samples space. Here we begin to explore this connection. We first apply the ergodicity defect tortuosity measure to both 2D and 3D synthetic data in order to demonstrate the response of the method to three types of tortuosity observed in clinical patterns. We then implement the technique on segmented vessels extracted from brain tumor MRA images. Results indicate that the method can be effectively used to detect and measure several types of vessel tortuosity.

  4. The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuanyuan; Zhang, Liangyun, E-mail: zlyun@njau.edu.cn

    2014-03-15

    In this paper, we introduce the category of Yetter-Drinfel'd Hom-modules which is a braided monoidal category and show that the category of Yetter-Drinfel'd Hom-modules is a full monoidal subcategory of the left center of left Hom-module category. Also we study the equivalent relationship between the category of Yetter-Drinfel'd Hom-modules and the category of Hom-modules over the Drinfel'd double. Finally, the Faddeev-Reshetikhin-Takhtajan (FRT) type theorem for the quantum Hom-Yang-Baxter equation is investigated.

  5. Einstein and the Quantum: The Secret Life of EPR

    NASA Astrophysics Data System (ADS)

    Fine, Arthur

    2006-05-01

    Locality, separation and entanglement -- 1930s style. Starting with Solvay 1927, we'll explore the background to the 1935 paper by Einstein, Podolsky and Rosen: how it was composed, the actual argument and principles used, and how the paper was received by Schroedinger, and others. We'll also look at Bohr's response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to which EPR marks a shift in Bohr's thinking about the quantum theory. Time permitting, we will contrast EPR with Bell's theorem.

  6. Redundancy of constraints in the classical and quantum theories of gravitation.

    NASA Technical Reports Server (NTRS)

    Moncrief, V.

    1972-01-01

    It is shown that in Dirac's version of the quantum theory of gravitation, the Hamiltonian constraints are greatly redundant. If the Hamiltonian constraint condition is satisfied at one point on the underlying, closed three-dimensional manifold, then it is automatically satisfied at every point, provided only that the momentum constraints are everywhere satisfied. This permits one to replace the usual infinity of Hamiltonian constraints by a single condition which may be taken in the form of an integral over the manifold. Analogous theorems are given for the classical Einstein Hamilton-Jacobi equations.

  7. Exact infinite-time statistics of the Loschmidt echo for a quantum quench.

    PubMed

    Campos Venuti, Lorenzo; Jacobson, N Tobias; Santra, Siddhartha; Zanardi, Paolo

    2011-07-01

    The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.

  8. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  9. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    NASA Astrophysics Data System (ADS)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  10. Coupled-oscillator theory of dispersion and Casimir-Polder interactions.

    PubMed

    Berman, P R; Ford, G W; Milonni, P W

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r(-4), a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called "remarkable formula" for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.

  11. Nonlocality in Bohmian mechanics

    NASA Astrophysics Data System (ADS)

    Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han

    2018-04-01

    The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.

  12. Evaluate More General Integrals Involving Universal Associated Legendre Polynomials via Taylor’s Theorem

    NASA Astrophysics Data System (ADS)

    Yañez-Navarro, G.; Sun, Guo-Hua; Sun, Dong-Sheng; Chen, Chang-Yuan; Dong, Shi-Hai

    2017-08-01

    A few important integrals involving the product of two universal associated Legendre polynomials {P}{l\\prime}{m\\prime}(x), {P}{k\\prime}{n\\prime}(x) and x2a(1 - x2)-p-1, xb(1 ± x)-p-1 and xc(1 -x2)-p-1 (1 ± x) are evaluated using the operator form of Taylor’s theorem and an integral over a single universal associated Legendre polynomial. These integrals are more general since the quantum numbers are unequal, i.e. l‧ ≠ k‧ and m‧ ≠ n‧. Their selection rules are also given. We also verify the correctness of those integral formulas numerically. Supported by 20170938-SIP-IPN, Mexico

  13. Calculation of multicenter electric field gradient integrals over Slater-type orbitals using unsymmetrical one-range addition theorems.

    PubMed

    Guseinov, Israfil I; Görgün, Nurşen Seçkin

    2011-06-01

    The electric field induced within a molecule by its electrons determines a whole series of important physical properties of the molecule. In particular, the values of the gradient of this field at the nuclei determine the interaction of their quadrupole moments with the electrons. Using unsymmetrical one-range addition theorems introduced by one of the authors, the sets of series expansion relations for multicenter electric field gradient integrals over Slater-type orbitals in terms of multicenter charge density expansion coefficients and two-center basic integrals are presented. The convergence of the series is tested by calculating concrete cases for different values of quantum numbers, parameters and locations of orbitals.

  14. Further evidence for the EPNT assumption

    NASA Technical Reports Server (NTRS)

    Greenberger, Daniel M.; Bernstein, Herbert J.; Horne, Michael; Zeilinger, Anton

    1994-01-01

    We recently proved a theorem extending the Greenberger-Horne-Zeilinger (GHZ) Theorem from multi-particle systems to two-particle systems. This proof depended upon an auxiliary assumption, the EPNT assumption (Emptiness of Paths Not Taken). According to this assumption, if there exists an Einstein-Rosen-Podolsky (EPR) element of reality that determines that a path is empty, then there can be no entity associated with the wave that travels this path (pilot-waves, empty waves, etc.) and reports information to the amplitude, when the paths recombine. We produce some further evidence in support of this assumption, which is certainly true in quantum theory. The alternative is that such a pilot-wave theory would have to violate EPR locality.

  15. Higher-dimensional communication complexity problems: Classical protocols versus quantum ones based on Bell's theorem or prepare-transmit-measure schemes

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Żukowski, Marek

    2017-04-01

    Communication complexity problems (CCPs) are tasks in which separated parties attempt to compute a function whose inputs are distributed among the parties. Their communication is limited so that not all inputs can be sent. We show that broad classes of Bell inequalities can be mapped to CCPs and that a quantum violation of a Bell inequality is a necessary and sufficient condition for an enhancement of the related CCP beyond its classical limitation. However, one can implement CCPs by transmitting a quantum system, encoding no more information than is allowed in the CCP, and extracting information by performing measurements. We show that for a large class of Bell inequalities, the improvement of the CCP associated with a quantum violation of a Bell inequality can be no greater than the improvement obtained from quantum prepare-transmit-measure strategies.

  16. Quantum Public Key Cryptosystem Based on Bell States

    NASA Astrophysics Data System (ADS)

    Wu, WanQing; Cai, QingYu; Zhang, HuanGuo; Liang, XiaoYan

    2017-11-01

    Classical public key cryptosystems ( P K C), such as R S A, E I G a m a l, E C C, are no longer secure in quantum algorithms, and quantum cryptography has become a novel research topic. In this paper we present a quantum asymmetrical cryptosystem i.e. quantum public key cryptosystem ( Q P K C) based on the Bell states. In particular, in the proposed QPKC the public key are given by the first n particles of Bell states and generalized Pauli operations. The corresponding secret key are the last n particles of Bell states and the inverse of generalized Pauli operations. The proposed QPKC encrypts the message using a public key and decrypts the ciphertext using a private key. By H o l e v o ' s theorem, we proved the security of the secret key and messages during the QPKC.

  17. Postselection technique for quantum channels with applications to quantum cryptography.

    PubMed

    Christandl, Matthias; König, Robert; Renner, Renato

    2009-01-16

    We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for an arbitrary input, it is sufficient to consider the case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained with help of the exponential de Finetti theorem.

  18. Experimental ladder proof of Hardy's nonlocality for high-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Lixiang; Zhang, Wuhong; Wu, Ziwen; Wang, Jikang; Fickler, Robert; Karimi, Ebrahim

    2017-08-01

    Recent years have witnessed a rapidly growing interest in high-dimensional quantum entanglement for fundamental studies as well as towards novel applications. Therefore, the ability to verify entanglement between physical qudits, d -dimensional quantum systems, is of crucial importance. To show nonclassicality, Hardy's paradox represents "the best version of Bell's theorem" without using inequalities. However, so far it has only been tested experimentally for bidimensional vector spaces. Here, we formulate a theoretical framework to demonstrate the ladder proof of Hardy's paradox for arbitrary high-dimensional systems. Furthermore, we experimentally demonstrate the ladder proof by taking advantage of the orbital angular momentum of high-dimensionally entangled photon pairs. We perform the ladder proof of Hardy's paradox for dimensions 3 and 4, both with the ladder up to the third step. Our paper paves the way towards a deeper understanding of the nature of high-dimensionally entangled quantum states and may find applications in quantum information science.

  19. Excluding joint probabilities from quantum theory

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Danageozian, Arshag

    2018-03-01

    Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.

  20. Spin-adapted matrix product states and operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch

    Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner–Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.

  1. A Symbiotic Relationship: The Observe-Orient-Decide-Act (OODA) Loop, Intuition, and Strategic Thought

    DTIC Science & Technology

    2013-03-01

    Incompleteness Theorem (used in mathematics), and Heisenberg’s Uncertainty Principle as it pertains to the mathematical foundations of quantum ...subtlety which normal consciousness cannot even see…”46 It is in our PME system where we can create the time to develop the unconscious realms of the

  2. Time-ordered exponential on the complex plane and Gell-Mann—Low formula as a mathematical theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakuchi, Shinichiro; Usui, Kouta

    2016-04-15

    The time-ordered exponential representation of a complex time evolution operator in the interaction picture is studied. Using the complex time evolution, we prove the Gell-Mann—Low formula under certain abstract conditions, in mathematically rigorous manner. We apply the abstract results to quantum electrodynamics with cutoffs.

  3. Uncountably many maximizing measures for a dense subset of continuous functions

    NASA Astrophysics Data System (ADS)

    Shinoda, Mao

    2018-05-01

    Ergodic optimization aims to single out dynamically invariant Borel probability measures which maximize the integral of a given ‘performance’ function. For a continuous self-map of a compact metric space and a dense set of continuous functions, we show the existence of uncountably many ergodic maximizing measures. We also show that, for a topologically mixing subshift of finite type and a dense set of continuous functions there exist uncountably many ergodic maximizing measures with full support and positive entropy.

  4. In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules

    NASA Astrophysics Data System (ADS)

    Jeon, Jae-Hyung; Tejedor, Vincent; Burov, Stas; Barkai, Eli; Selhuber-Unkel, Christine; Berg-Sørensen, Kirstine; Oddershede, Lene; Metzler, Ralf

    2011-01-01

    Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.

  5. Superconducting transitions in flat-band systems

    DOE PAGES

    Iglovikov, V. I.; Hébert, F.; Grémaud, B.; ...

    2014-09-11

    The physics of strongly correlated quantum particles within a flat band was originally explored as a route to itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes that the ground state of the repulsive Hubbard model on a bipartite lattice with unequal number of sites in each sublattice must have nonzero spin S at half-filling. Recently, there has been interest in Lieb geometries due to the possibility of novel topological insulator, nematic, and Bose-Einstein condensed (BEC) phases. In this paper, we extend the understanding of the attractive Hubbard model on the Lieb lattice by using Determinant Quantum Montemore » Carlo to study real space charge and pair correlation functions not addressed by the Lieb theorems. Specifically, our results show unusual charge and charge transfer signatures within the flat band, and a reduction in pairing order at ρ = 2/3 and ρ = 4/3, the points at which the flat band is first occupied and then completely filled. Lastly, we compare our results to the case of flat bands in the Kagome lattice and demonstrate that the behavior observed in the two cases is rather different.« less

  6. The photon identification loophole in EPRB experiments: computer models with single-wing selection

    NASA Astrophysics Data System (ADS)

    De Raedt, Hans; Michielsen, Kristel; Hess, Karl

    2017-11-01

    Recent Einstein-Podolsky-Rosen-Bohm experiments [M. Giustina et al. Phys. Rev. Lett. 115, 250401 (2015); L. K. Shalm et al. Phys. Rev. Lett. 115, 250402 (2015)] that claim to be loophole free are scrutinized. The combination of a digital computer and discrete-event simulation is used to construct a minimal but faithful model of the most perfected realization of these laboratory experiments. In contrast to prior simulations, all photon selections are strictly made, as they are in the actual experiments, at the local station and no other "post-selection" is involved. The simulation results demonstrate that a manifestly non-quantum model that identifies photons in the same local manner as in these experiments can produce correlations that are in excellent agreement with those of the quantum theoretical description of the corresponding thought experiment, in conflict with Bell's theorem which states that this is impossible. The failure of Bell's theorem is possible because of our recognition of the photon identification loophole. Such identification measurement-procedures are necessarily included in all actual experiments but are not included in the theory of Bell and his followers.

  7. Response theory of the ergodic many-body delocalized phase: Keldysh Finkel'stein sigma models and the 10-fold way

    NASA Astrophysics Data System (ADS)

    Liao, Yunxiang; Levchenko, Alex; Foster, Matthew S.

    2017-11-01

    We derive the finite temperature Keldysh response theory for interacting fermions in the presence of quenched short-ranged disorder, as applicable to any of the 10 Altland-Zirnbauer classes in an Anderson delocalized phase with at least a U(1) continuous symmetry. In this formulation of the interacting Finkel'stein nonlinear sigma model, the statistics of one-body wave functions are encoded by the constrained matrix field, while physical correlations follow from the hydrodynamic density or spin response field, which decouples the interactions. Integrating out the matrix field first, we obtain weak (anti) localization and Altshuler-Aronov quantum conductance corrections from the hydrodynamic response function. This procedure automatically incorporates the correct infrared cutoff physics, and in particular gives the Altshuler-Aronov-Khmelnitsky (AAK) equations for dephasing of weak (anti)localization due to electron-electron collisions. We explicate the method by deriving known quantumcorrections in two dimensions for the symplectic metal class AII, as well as the spin-SU(2) invariant superconductor classes C and CI. We show that quantum conductance corrections due to the special modes at zero energy in nonstandard classes are automatically cut off by temperature, as previously expected, while the Wigner-Dyson class Cooperon modes that persist to all energies are cut by dephasing. We also show that for short-ranged interactions, the standard self-consistent solution for the dephasing rate is equivalent to a particular summation of diagrams via the self-consistent Born approximation. This should be compared to the corresponding AAK solution for long-ranged Coulomb interactions, which exploits the Markovian noise correlations induced by thermal fluctuations of the electromagnetic field. We discuss prospects for exploring the many-body localization transition as a dephasing catastrophe in short-range interacting models, as encountered by approaching from the ergodic side.

  8. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.

    PubMed

    Leibovich, N; Dechant, A; Lutz, E; Barkai, E

    2016-11-01

    The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.

  9. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  10. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  11. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  12. Quantum correlations are weaved by the spinors of the Euclidean primitives

    PubMed Central

    2018-01-01

    The exceptional Lie group E8 plays a prominent role in both mathematics and theoretical physics. It is the largest symmetry group associated with the most general possible normed division algebra, namely, that of the non-associative real octonions, which—thanks to their non-associativity—form the only possible closed set of spinors (or rotors) that can parallelize the 7-sphere. By contrast, here we show how a similar 7-sphere also arises naturally from the algebraic interplay of the graded Euclidean primitives, such as points, lines, planes and volumes, which characterize the three-dimensional conformal geometry of the ambient physical space, set within its eight-dimensional Clifford-algebraic representation. Remarkably, the resulting algebra remains associative, and allows us to understand the origins and strengths of all quantum correlations locally, in terms of the geometry of the compactified physical space, namely, that of a quaternionic 3-sphere, S3, with S7 being its algebraic representation space. Every quantum correlation can thus be understood as a correlation among a set of points of this S7, computed using manifestly local spinors within S3, thereby extending the stringent bounds of ±2 set by Bell inequalities to the bounds of ±22 on the strengths of all possible strong correlations, in the same quantitatively precise manner as that predicted within quantum mechanics. The resulting geometrical framework thus overcomes Bell’s theorem by producing a strictly deterministic and realistic framework that allows a locally causal understanding of all quantum correlations, without requiring either remote contextuality or backward causation. We demonstrate this by first proving a general theorem concerning the geometrical origins of the correlations predicted by arbitrarily entangled quantum states, and then reproducing the correlations predicted by the EPR-Bohm and the GHZ states. The raison d’être of strong correlations turns out to be the Möbius-like twists in the Hopf bundles of S3 and S7. PMID:29893385

  13. Ergodic theory and experimental visualization of chaos in 3D flows

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Mezic, Igor

    2000-11-01

    In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.

  14. Quantum plug n’ play: modular computation in the quantum regime

    NASA Astrophysics Data System (ADS)

    Thompson, Jayne; Modi, Kavan; Vedral, Vlatko; Gu, Mile

    2018-01-01

    Classical computation is modular. It exploits plug n’ play architectures which allow us to use pre-fabricated circuits without knowing their construction. This bestows advantages such as allowing parts of the computational process to be outsourced, and permitting individual circuit components to be exchanged and upgraded. Here, we introduce a formal framework to describe modularity in the quantum regime. We demonstrate a ‘no-go’ theorem, stipulating that it is not always possible to make use of quantum circuits without knowing their construction. This has significant consequences for quantum algorithms, forcing the circuit implementation of certain quantum algorithms to be rebuilt almost entirely from scratch after incremental changes in the problem—such as changing the number being factored in Shor’s algorithm. We develop a workaround capable of restoring modularity, and apply it to design a modular version of Shor’s algorithm that exhibits increased versatility and reduced complexity. In doing so we pave the way to a realistic framework whereby ‘quantum chips’ and remote servers can be invoked (or assembled) to implement various parts of a more complex quantum computation.

  15. Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrödinger equation in form and fractional quantization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Science and Technology on Electronic Information Control Laboratory, 610036, Chengdu, Sichuan; Wei, Chaozhen

    2014-11-15

    In this paper we use Dirac function to construct a fractional operator called fractional corresponding operator, which is the general form of momentum corresponding operator. Then we give a judging theorem for this operator and with this judging theorem we prove that R–L, G–L, Caputo, Riesz fractional derivative operator and fractional derivative operator based on generalized functions, which are the most popular ones, coincide with the fractional corresponding operator. As a typical application, we use the fractional corresponding operator to construct a new fractional quantization scheme and then derive a uniform fractional Schrödinger equation in form. Additionally, we find thatmore » the five forms of fractional Schrödinger equation belong to the particular cases. As another main result of this paper, we use fractional corresponding operator to generalize fractional quantization scheme by using Lévy path integral and use it to derive the corresponding general form of fractional Schrödinger equation, which consequently proves that these two quantization schemes are equivalent. Meanwhile, relations between the theory in fractional quantum mechanics and that in classic quantum mechanics are also discussed. As a physical example, we consider a particle in an infinite potential well. We give its wave functions and energy spectrums in two ways and find that both results are the same.« less

  16. Quantum fluctuation theorems and power measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2015-07-01

    Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics.

  17. In search of superluminal quantum communications: recent experiments and possible improvements

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2013-06-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt, Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities vt. Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities Vt for any possible direction of velocity vec V of the tachyons preferred frame.

  18. Adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Lidar, Daniel A.

    2018-01-01

    Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.

  19. A channel-based framework for steering, non-locality and beyond

    NASA Astrophysics Data System (ADS)

    Hoban, Matty J.; Belén Sainz, Ana

    2018-05-01

    Non-locality and steering are both non-classical phenomena witnessed in nature as a result of quantum entanglement. It is now well-established that one can study non-locality independently of the formalism of quantum mechanics, in the so-called device-independent framework. With regards to steering, although one cannot study it completely independently of the quantum formalism, ‘post-quantum steering’ has been described, which is steering that cannot be reproduced by measurements on entangled states but does not lead to superluminal signalling. In this work we present a framework based on the study of quantum channels in which one can study steering (and non-locality) in quantum theory and beyond. In this framework, we show that kinds of steering, whether quantum or post-quantum, are directly related to particular families of quantum channels that have been previously introduced by Beckman et al (2001 Phys. Rev. A 64 052309). Utilizing this connection we also demonstrate new analytical examples of post-quantum steering, give a quantum channel interpretation of almost quantum non-locality and steering, easily recover and generalize the celebrated Gisin–Hughston–Jozsa–Wootters theorem, and initiate the study of post-quantum Buscemi non-locality and non-classical teleportation. In this way, we see post-quantum non-locality and steering as just two aspects of a more general phenomenon.

  20. Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Russian, Anna; Dentz, Marco; Gouze, Philippe

    2017-08-01

    Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency Rn, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q ≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.

  1. Amplitudes for multiphoton quantum processes in linear optics

    NASA Astrophysics Data System (ADS)

    Urías, Jesús

    2011-07-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  2. Topics in black holes and quantum cosmology

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel

    2012-06-01

    Black holes and the big bang beginning of the universe are among the most spectacular predictions of general relativity, having a broad impact that ranges from observational astronomy to quantum gravity. In this thesis we will focus on classical and quantum aspects of these subjects: In the first part we present a coordinate-free way of describing the approach to equilibrium of black holes within the framework of dynamical and isolated horizons. In the second part we focus on loop quantum cosmology. We present a uniqueness theorem of its kinematics, and explore the possible ways to implement its dynamics via path integrals.¹ ¹The topics presented here form part of the research done during my PhD studies. See the Vita at the end of the Thesis for a complete list of my work during this period.

  3. Operational formulation of time reversal in quantum theory

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Cerf, Nicolas J.

    2015-10-01

    The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition probabilities given by Born’s rule do not apply backward in time. Here, we resolve this problem within a rigorous operational probabilistic framework. We argue that reconciling time reversal with the probabilistic rules of the theory requires a notion of operation that permits realizations through both pre- and post-selection. We develop the generalized formulation of quantum theory that stems from this approach and give a precise definition of time-reversal symmetry, emphasizing a previously overlooked distinction between states and effects. We prove an analogue of Wigner’s theorem, which characterizes all allowed symmetry transformations in this operationally time-symmetric quantum theory. Remarkably, we find larger classes of symmetry transformations than previously assumed, suggesting a possible direction in the search for extensions of known physics.

  4. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  5. Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy

    NASA Astrophysics Data System (ADS)

    Hasebe, Kazuki

    2017-07-01

    We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  6. Axioms for quantum mechanics: relativistic causality, retrocausality, and the existence of a classical limit

    NASA Astrophysics Data System (ADS)

    Rohrlich, Daniel

    Y. Aharonov and A. Shimony both conjectured that two axioms - relativistic causality (``no superluminal signalling'') and nonlocality - so nearly contradict each other that only quantum mechanics reconciles them. Can we indeed derive quantum mechanics, at least in part, from these two axioms? No: ``PR-box'' correlations show that quantum correlations are not the most nonlocal correlations consistent with relativistic causality. Here we replace ``nonlocality'' with ``retrocausality'' and supplement the axioms of relativistic causality and retrocausality with a natural and minimal third axiom: the existence of a classical limit, in which macroscopic observables commute. That is, just as quantum mechanics has a classical limit, so must any generalization of quantum mechanics. In this limit, PR-box correlations violaterelativistic causality. Generalized to all stronger-than-quantum bipartite correlations, this result is a derivation of Tsirelson's bound (a theorem of quantum mechanics) from the three axioms of relativistic causality, retrocausality and the existence of a classical limit. Although the derivation does not assume quantum mechanics, it points to the Hilbert space structure that underlies quantum correlations. I thank the John Templeton Foundation (Project ID 43297) and the Israel Science Foundation (Grant No. 1190/13) for support.

  7. Persistence and ergodicity of plant disease model with markov conversion and impulsive toxicant input

    NASA Astrophysics Data System (ADS)

    Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.

  8. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  9. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-18

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  10. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  11. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  12. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  13. A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States

    NASA Technical Reports Server (NTRS)

    Ryff, Luiz Carlos

    1996-01-01

    A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.

  14. Gaussification and entanglement distillation of continuous-variable systems: a unifying picture.

    PubMed

    Campbell, Earl T; Eisert, Jens

    2012-01-13

    Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced.

  15. Composable security proof for continuous-variable quantum key distribution with coherent States.

    PubMed

    Leverrier, Anthony

    2015-02-20

    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.

  16. Weak ergodicity breaking, irreproducibility, and ageing in anomalous diffusion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Ralf

    2014-01-14

    Single particle traces are standardly evaluated in terms of time averages of the second moment of the position time series r(t). For ergodic processes, one can interpret such results in terms of the known theories for the corresponding ensemble averaged quantities. In anomalous diffusion processes, that are widely observed in nature over many orders of magnitude, the equivalence between (long) time and ensemble averages may be broken (weak ergodicity breaking), and these time averages may no longer be interpreted in terms of ensemble theories. Here we detail some recent results on weakly non-ergodic systems with respect to the time averagedmore » mean squared displacement, the inherent irreproducibility of individual measurements, and methods to determine the exact underlying stochastic process. We also address the phenomenon of ageing, the dependence of physical observables on the time span between initial preparation of the system and the start of the measurement.« less

  17. Deterministic and efficient quantum cryptography based on Bell's theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zengbing; Pan Jianwei; Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg

    2006-05-15

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology.

  18. Remote detection of single emitters via optical waveguides

    NASA Astrophysics Data System (ADS)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  19. Bell's "Theorem": loopholes vs. conceptual flaws

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2017-12-01

    An historical overview and detailed explication of a critical analysis of what has become known as Bell's Theorem to the effect that, it should be impossible to extend Quantum Theory with the addition of local, real variables so as to obtain a version free of the ambiguous and preternatural features of the currently accepted interpretations is presented. The central point on which this critical analysis, due originally to Edwin Jaynes, is that Bell incorrectly applied probabilistic formulas involving conditional probabilities. In addition, mathematical technicalities that have complicated the understanding of the logical or mathematical setting in which current theory and experimentation are embedded, are discussed. Finally, some historical speculations on the sociological environment, in particular misleading aspects, in which recent generations of physicists lived and worked are mentioned.

  20. Validity of black hole complementarity in the BTZ black hole

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    Based on the gedanken experiment for black hole complementarity in the Schwarzschild black hole, we calculate the energy required to duplicate information in the BTZ black hole under the assumption of absorbing boundary condition and its dual solution of the black string, respectively, in order to justify the validity of the no-cloning theorem in quantum mechanics. For the BTZ black hole, the required energy for the duplication of information can be made fairly small, whereas for the black string it exceeds the total mass of the black string, although they are related to each other under the dual transformation. So, the duplication of information might be possible in the BTZ black hole in contrast to the case of the black string, so that the no-cloning theorem could be violated for the former case. To save the duplication of information for the BTZ black hole, we perform an improved gedanken experiment by using the local thermodynamic quantities near the horizon rather than those defined at infinity, and show that the no-cloning theorem could be made valid even in the BTZ black hole. We also discuss how this local treatment for the no-cloning theorem can be applied to the black string as well as the Schwarzschild black hole innocuously.

  1. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement

    PubMed

    Pan; Bouwmeester; Daniell; Weinfurter; Zeilinger

    2000-02-03

    Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

  2. Quantum mechanics over sets

    NASA Astrophysics Data System (ADS)

    Ellerman, David

    2014-03-01

    In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.

  3. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  4. Ergodicity bounds for birth-death processes with particularities

    NASA Astrophysics Data System (ADS)

    Zeifman, Alexander I.; Satin, Yacov; Korotysheva, Anna; Shilova, Galina; Kiseleva, Ksenia; Korolev, Victor Yu.; Bening, Vladimir E.; Shorgin, Sergey Ya.

    2016-06-01

    We introduce an inhomogeneous birth-death process with birth rates λk(t), death rates µk(t), and possible transitions to/from zero with rates βk(t), rk(t) respectively, and obtain ergodicity bounds for this process.

  5. Time-reversal symmetry in nonstationary Markov processes with application to some fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Van Vliet, Carolyne M.

    2012-11-01

    Nonequilibrium processes require that the density operator of an interacting system with Hamiltonian H(t)=H0(t)+λV converges and produces entropy. Employing projection operators in the state space, the density operator is developed to all orders of perturbation and then resummed. In contrast to earlier treatments by Van Hove [Physica0031-891410.1016/S0031-8914(54)92646-4 21, 517 (1955)] and others [U. Fano, Rev. Mod. Phys.0034-686110.1103/RevModPhys.29.74 29, 74 (1959); U. Fano, in Lectures on the Many-Body Problem, Vol 2, edited by E. R. Caniello (Academic Press, New York, 1964); R. Zwanzig, in Lectures in Theoretical Physics, Vol. III, edited by W. E. Britten, B. W. Downs, and J. Downs (Wiley Interscience, New York, 1961), pp. 116-141; K. M. Van Vliet, J. Math. Phys.0022-248810.1063/1.523833 19, 1345 (1978); K. M. Van Vliet, Can. J. Phys. 56, 1206 (1978)], closed expressions are obtained. From these we establish the time-reversal symmetry property P(γ,t|γ',t')=P˜(γ',t'|γ,t), where the tilde refers to the time-reversed protocol; also a nonstationary Markovian master equation is derived. Time-reversal symmetry is then applied to thermostatted systems yielding the Crooks-Tasaki fluctuation theorem (FT) and the quantum Jarzynski work-energy theorem, as well as the general entropy FT. The quantum mechanical concepts of work and entropy are discussed in detail. Finally, we present a nonequilibrium extension of Mazo's lemma of linear response theory, obtaining some applications via this alternate route.

  6. Coupled-oscillator theory of dispersion and Casimir-Polder interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, P. R.; Ford, G. W.; Milonni, P. W.

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength.more » However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.« less

  7. Geometrical and quantum mechanical aspects in observers' mathematics

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2013-10-01

    When we create mathematical models for Quantum Mechanics we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We prove that Euclidean Geometry works in sufficiently small neighborhood of the given line, but when we enlarge the neighborhood, non-euclidean Geometry takes over. We prove that the physical speed is a random variable, cannot exceed some constant, and this constant does not depend on an inertial coordinate system. We proved the following theorems: Theorem A (Lagrangian). Let L be a Lagrange function of free material point with mass m and speed v. Then the probability P of L = m 2 v2 is less than 1: P(L = m 2 v2) < 1. Theorem B (Nadezhda effect). On the plane (x, y) on every line y = kx there is a point (x0, y0) with no existing Euclidean distance between origin (0, 0) and this point. Conjecture (Black Hole). Our space-time nature is a black hole: light cannot go out infinitely far from origin.

  8. Physical Roots of It from Bit

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2003-04-01

    Why there is Something rather than Nothing? From Pythagoras ("everything is number") to Wheeler ("it from bit") theme of ultimate origin stresses primordiality of Ideal Platonic World (IPW) of mathematics. Even popular "quantum tunnelling out of nothing" can specify "nothing" only as (essentially) IPW. IPW exists everywhere (but nowhere in particular) and logically precedes space, time, matter or any "physics" in any conceivable universe. This leads to propositional conjecture (axiom?) that (meta)physical "Platonic Pressure" of infinitude of numbers acts as engine for self-generation of physical universe directly out of mathematics: cosmogenesis is driven by the very fact of IPW inexhaustibility. While physics in other quantum branches of inflating universe (Megaverse)can be(arbitrary) different from ours, number theory (and rest of IPW)is not (it is unique, absolute, immutable and infinitely resourceful). Let (infinite) totality of microstates ("its") of entire Megaverse form countable set. Since countable sets are hierarchically inexhaustible (Cantor's "fractal branching"), each single "it" still has infinite tail of non-overlapping IPW-based "personal labels". Thus, each "bit" ("it") is infinitely and uniquely resourceful: possible venue of elimination ergodicity basis for eternal return cosmological argument. Physics (in any subuniverse) may be limited only by inherent impossibilities residing in IPW, e.g. insolvability of Continuum Problem may be IPW foundation of quantum indeterminicity.

  9. Ergodicity of a singly-thermostated harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, William Graham; Sprott, Julien Clinton; Hoover, Carol Griswold

    2016-03-01

    Although Nosé's thermostated mechanics is formally consistent with Gibbs' canonical ensemble, the thermostated Nosé-Hoover (harmonic) oscillator, with its mean kinetic temperature controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori. Oscillator ergodicity has previously been achieved by controlling two oscillator moments with two thermostat variables. Here we use computerized searches in conjunction with visualization to find singly-thermostated motion equations for the oscillator which are consistent with Gibbs' canonical distribution. Such models are the simplest able to bridge the gap between Gibbs' statistical ensembles and Newtonian single-particle dynamics.

  10. Lower bound on the time complexity of local adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenghao; Koh, Pang Wei; Zhao, Yan

    2006-11-01

    The adiabatic theorem of quantum physics has been, in recent times, utilized in the design of local search quantum algorithms, and has been proven to be equivalent to standard quantum computation, that is, the use of unitary operators [D. Aharonov in Proceedings of the 45th Annual Symposium on the Foundations of Computer Science, 2004, Rome, Italy (IEEE Computer Society Press, New York, 2004), pp. 42-51]. Hence, the study of the time complexity of adiabatic evolution algorithms gives insight into the computational power of quantum algorithms. In this paper, we present two different approaches of evaluating the time complexity for local adiabatic evolution using time-independent parameters, thus providing effective tests (not requiring the evaluation of the entire time-dependent gap function) for the time complexity of newly developed algorithms. We further illustrate our tests by displaying results from the numerical simulation of some problems, viz. specially modified instances of the Hamming weight problem.

  11. Quantum spaces, central extensions of Lie groups and related quantum field theories

    NASA Astrophysics Data System (ADS)

    Poulain, Timothé; Wallet, Jean-Christophe

    2018-02-01

    Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.

  12. Quantum Information: an invitation for mathematicians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Garcia, David

    2009-05-06

    Quantum Information is the science that aims to use the unusual behavior of the microscopic world, governed by the laws of Quantum Mechanics, in order to improve the way in which we compute or communicate information. Though the first ideas in this direction come from the early 80's, it is in the last decade when Quantum Information has suffered an spectacular development. It is impossible to resume in a paper like this one the importance and complexity of the field. Therefore, I will limit to briefly explain some of the initial ideas (considered classical by now), and to briefly suggestmore » some of the modern lines of research. By the nature of this exposition, I have decided to avoid rigor and to concentrate more in ideas and intuitions. Anyhow, I have tried to provide with enough references, in such a way that an interested reader could find there proper theorems and proofs.« less

  13. What can we learn from noise? — Mesoscopic nonequilibrium statistical physics —

    PubMed Central

    KOBAYASHI, Kensuke

    2016-01-01

    Mesoscopic systems — small electric circuits working in quantum regime — offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456

  14. What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.

    PubMed

    Kobayashi, Kensuke

    2016-01-01

    Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.

  15. Entropic Barriers for Two-Dimensional Quantum Memories

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  16. Experimental Eavesdropping Based on Optimal Quantum Cloning

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Soubusta, Jan; Miranowicz, Adam

    2013-04-01

    The security of quantum cryptography is guaranteed by the no-cloning theorem, which implies that an eavesdropper copying transmitted qubits in unknown states causes their disturbance. Nevertheless, in real cryptographic systems some level of disturbance has to be allowed to cover, e.g., transmission losses. An eavesdropper can attack such systems by replacing a noisy channel by a better one and by performing approximate cloning of transmitted qubits which disturb them but below the noise level assumed by legitimate users. We experimentally demonstrate such symmetric individual eavesdropping on the quantum key distribution protocols of Bennett and Brassard (BB84) and the trine-state spherical code of Renes (R04) with two-level probes prepared using a recently developed photonic multifunctional quantum cloner [Lemr et al., Phys. Rev. A 85, 050307(R) (2012)PLRAAN1050-2947]. We demonstrated that our optimal cloning device with high-success rate makes the eavesdropping possible by hiding it in usual transmission losses. We believe that this experiment can stimulate the quest for other operational applications of quantum cloning.

  17. Is a time symmetric interpretation of quantum theory possible without retrocausality?

    NASA Astrophysics Data System (ADS)

    Leifer, Matthew S.; Pusey, Matthew F.

    2017-06-01

    Huw Price has proposed an argument that suggests a time symmetric ontology for quantum theory must necessarily be retrocausal, i.e. it must involve influences that travel backwards in time. One of Price's assumptions is that the quantum state is a state of reality. However, one of the reasons for exploring retrocausality is that it offers the potential for evading the consequences of no-go theorems, including recent proofs of the reality of the quantum state. Here, we show that this assumption can be replaced by a different assumption, called λ-mediation, that plausibly holds independently of the status of the quantum state. We also reformulate the other assumptions behind the argument to place them in a more general framework and pin down the notion of time symmetry involved more precisely. We show that our assumptions imply a timelike analogue of Bell's local causality criterion and, in doing so, give a new interpretation of timelike violations of Bell inequalities. Namely, they show the impossibility of a (non-retrocausal) time symmetric ontology.

  18. Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states

    PubMed Central

    Bonet-Luz, Esther

    2016-01-01

    The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest’s theorem is shown to be Lie–Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie–Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature. PMID:27279764

  19. Localization in quantum field theory

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.

    In non-relativistic quantum mechanics, Born’s principle of localization is as follows: For a single particle, if a wave function ψK vanishes outside a spatial region K, it is said to be localized in K. In particular, if a spatial region K‧ is disjoint from K, a wave function ψK‧ localized in K‧ is orthogonal to ψK. Such a principle of localization does not exist compatibly with relativity and causality in quantum field theory (QFT) (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is replaced by symplectic localization of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localization gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with “continuous” spin. This review outlines the basic principles underlying symplectic localization and shows or mentions its deep implications. In particular, it has the potential to affect relativistic quantum information theory and black hole physics.

  20. Symmetry aspects in emergent quantum mechanics

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2009-06-01

    We discuss an explicit realization of the dissipative dynamics anticipated in the proof of 't Hooft's existence theorem, which states that 'For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization'. - There is an energy-parity symmetry hidden in the Liouville equation, which mimics the Kaplan-Sundrum protective symmetry for the cosmological constant. This symmetry may be broken by the coarse-graining inherent in physics at scales much larger than the Planck length. We correspondingly modify classical ensemble theory by incorporating dissipative fluctuations (information loss) - which are caused by discrete spacetime continually 'measuring' matter. In this way, aspects of quantum mechanics, such as the von Neumann equation, including a Lindblad term, arise dynamically and expectations of observables agree with the Born rule. However, the resulting quantum coherence is accompanied by an intrinsic decoherence and continuous localization mechanism. Our proposal leads towards a theory that is linear and local at the quantum mechanical level, but the relation to the underlying classical degrees of freedom is nonlocal.

Top